Can physics-informed neural networks beat the finite element method?

Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, fo...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 89; no. 1; pp. 143 - 174
Main Authors Grossmann, Tamara G, Komorowska, Urszula Julia, Latz, Jonas, Schönlieb, Carola-Bibiane
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.01.2024
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
1464-3634
DOI10.1093/imamat/hxae011

Cover

Abstract Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen–Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.
AbstractList Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen–Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.
Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.
Author Komorowska, Urszula Julia
Latz, Jonas
Grossmann, Tamara G
Schönlieb, Carola-Bibiane
Author_xml – sequence: 1
  givenname: Tamara G
  surname: Grossmann
  fullname: Grossmann, Tamara G
  email: t.g.grossmann@gmail.com
– sequence: 2
  givenname: Urszula Julia
  surname: Komorowska
  fullname: Komorowska, Urszula Julia
– sequence: 3
  givenname: Jonas
  orcidid: 0000-0002-4600-0247
  surname: Latz
  fullname: Latz, Jonas
– sequence: 4
  givenname: Carola-Bibiane
  orcidid: 0000-0003-0099-6306
  surname: Schönlieb
  fullname: Schönlieb, Carola-Bibiane
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38933736$$D View this record in MEDLINE/PubMed
BookMark eNqFkEFP3DAQha0KVBbaK8cqx_aQXTt24viEqi0UJCQucLa8zrgxJHYaO9D99zXKdlWQEKc5zHzvvXnH6MB5BwidErwkWNCV7VWv4qr9owAT8gEtCKtYTivKDtACF7zImajwEToO4R5jTEqOP6IjWgtKOa0W6MdauWxot8HqkFtn_NhDkzmYRtWlEZ_8-BCyDaiYxRYyY52NkEEHPbiY9RBb35x9QodGdQE-7-YJurs4v11f5tc3P6_W369zzYoy5rzRpqCiVjVrFKlIU5e11rwUpjS8ovWGUKPAGG64YIzRQhhoNDGVhg2GRtETtJp1Jzeo7ZPqOjmMqYFxKwmWz33IuQ-56yMRZzMxTJv0mE6h02N7yisrX26cbeUv_ygJIYLXZZEUvu4URv97ghBlb4OGrlMO_BQkxbyoCcNCpNMv_5vtXf61nQ6W84EefQgjmPfjs1eAtlFF65_D2u5t7NuM-Wl4z-IvqVe3rA
CitedBy_id crossref_primary_10_1007_s11831_024_10063_0
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1038_s41598_025_85724_6
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1090_mcom_3992
crossref_primary_10_1038_s42256_024_00897_5
crossref_primary_10_1109_TUFFC_2024_3411718
crossref_primary_10_3103_S0027134924702114
crossref_primary_10_3390_s25051401
crossref_primary_10_1063_5_0189061
crossref_primary_10_33993_jnaat521_1305
crossref_primary_10_1038_s41598_024_57137_4
crossref_primary_10_1021_acs_jctc_4c01747
crossref_primary_10_1103_PhysRevE_111_025301
crossref_primary_10_1007_s42493_024_00106_w
crossref_primary_10_6112_kscfe_2024_29_4_217
crossref_primary_10_1109_TMI_2024_3494022
crossref_primary_10_1007_s10409_024_24172_x
crossref_primary_10_1088_1361_6420_ad9cb7
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1016_j_jocs_2025_102577
crossref_primary_10_1017_dce_2024_46
crossref_primary_10_1016_j_camwa_2025_02_022
crossref_primary_10_1088_1361_6560_ada418
crossref_primary_10_1080_10255842_2025_2471504
crossref_primary_10_1109_JMMCT_2024_3452977
crossref_primary_10_1109_ACCESS_2024_3465572
crossref_primary_10_1016_j_enganabound_2025_106207
crossref_primary_10_1063_5_0180594
crossref_primary_10_1016_j_jcp_2023_112603
crossref_primary_10_1016_j_jcp_2024_113698
Cites_doi 10.1007/s40304-018-0127-z
10.1090/S0002-9904-1943-07818-4
10.1007/BF01589116
10.1016/j.cma.2020.113547
10.1007/s10915-021-01650-5
10.4208/cicp.OA-2020-0164
10.1137/19M1274067
10.1017/S0962492904000182
10.1093/imanum/drab032
10.1016/0001-6160(72)90037-5
10.1017/CBO9780511811364
10.1093/rfs/6.2.327
10.1007/978-3-642-23099-8
10.1016/j.jcp.2020.109913
10.1017/CBO9780511618635
10.1016/0045-7825(90)90082-W
10.4208/cicp.OA-2020-0193
10.1016/0021-9991(84)90128-1
10.1145/3423184
10.1088/1361-6420/ace9d4
10.1137/120871377
10.1016/j.cma.2020.113028
10.1016/j.cma.2021.113933
10.1137/100799010
10.1080/00401706.1987.10488205
10.1007/s00365-021-09549-y
10.1007/978-3-319-15431-2
10.1016/j.cnsns.2021.106041
10.1016/j.jcp.2018.10.045
10.1007/s10915-022-01939-z
10.1093/gji/ggab309
10.1007/978-3-030-77977-1_36
10.1016/0167-2789(92)90242-F
10.1103/PhysRevE.101.050201
10.1007/11424857_113
10.1016/j.jcp.2018.08.029
10.1007/978-3-642-61544-3
10.1137/0302009
10.1007/978-3-030-59702-3
10.1038/s42256-021-00302-5
10.1016/j.cam.2007.04.003
10.1137/18M1165748
10.1016/j.cma.2019.112789
10.1115/1.4009129
10.1201/9781420082104
10.4310/CMS.2011.v9.n2.a4
10.21105/joss.01931
10.1007/s00607-023-01169-7
10.1142/S0218202512500492
10.1016/j.apnum.2004.05.001
10.1017/CBO9780511576270
10.1007/s10444-023-10065-9
10.1007/s10915-004-4610-1
10.1002/gamm.202100004
10.1007/s00211-002-0413-1
10.25080/majora-212e5952-005
10.1093/imanum/drac085
10.1073/pnas.40.4.231
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
DBID TOX
AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/imamat/hxae011
DatabaseName Oxford Journals Open Access Collection
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 174
ExternalDocumentID 10.1093/imamat/hxae011
PMC11197852
38933736
10_1093_imamat_hxae011
Genre Journal Article
GrantInformation_xml – fundername: ;
– fundername: ;
  grantid: 777826
– fundername: ;
  grantid: EP/S515334/1; 2089694
– fundername: ;
  grantid: EP/T003553/1; EP/N014588/1; EP/T017961/1
– fundername: ;
  grantid: 215733/Z/19/Z; 221633/Z/20/Z
– fundername: ;
  grantid: EP/S026045/1
– fundername: ;
  grantid: EP/V029428/1
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
6TJ
70D
8WZ
A6W
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
ABAZT
ABDBF
ABDFA
ABDPE
ABDTM
ABEFU
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABJNI
ABNGD
ABNKS
ABPIB
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABVLG
ABWST
ABXVV
ABZBJ
ABZEO
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACPQN
ACUFI
ACUHS
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFIYH
AFOFC
AFSHK
AFYAG
AGINJ
AGKEF
AGKRT
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AI.
AIAGR
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DU5
D~K
EBS
EE~
EJD
ELUNK
ESX
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HVGLF
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
MBTAY
N9A
NGC
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OCL
ODMLO
OJQWA
OJZSN
OXVGQ
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
T9H
TCN
TJP
TN5
TOX
TUS
UPT
UQL
VH1
WH7
X7H
XOL
YAYTL
YKOAZ
YXANX
ZCG
ZKX
ZY4
~91
AAYXX
CITATION
6.Y
ABQTQ
ABSAR
ABTAH
ADRIX
AFXEN
M49
NPM
Z5M
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c425t-7dcf2398a84da161d858cc759f5f7638b13faeff7f79444329fedc1f6ceb0eda3
IEDL.DBID UNPAY
ISSN 0272-4960
1464-3634
IngestDate Sun Oct 26 04:17:31 EDT 2025
Tue Sep 30 17:08:42 EDT 2025
Thu Oct 02 10:39:52 EDT 2025
Wed Feb 19 02:06:48 EST 2025
Thu Apr 24 23:12:19 EDT 2025
Wed Oct 01 02:40:12 EDT 2025
Mon Jun 30 08:34:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
finite element method
partial differential equations
physics-informed neural networks
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-7dcf2398a84da161d858cc759f5f7638b13faeff7f79444329fedc1f6ceb0eda3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4600-0247
0000-0003-0099-6306
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/imamat/hxae011
PMID 38933736
PQID 3072814099
PQPubID 23479
PageCount 32
ParticipantIDs unpaywall_primary_10_1093_imamat_hxae011
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197852
proquest_miscellaneous_3072814099
pubmed_primary_38933736
crossref_primary_10_1093_imamat_hxae011
crossref_citationtrail_10_1093_imamat_hxae011
oup_primary_10_1093_imamat_hxae011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle IMA journal of applied mathematics
PublicationTitleAlternate IMA J Appl Math
PublicationYear 2024
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jin (2024062514515869000_ref35) 2023; 24
Feng (2024062514515869000_ref24) 2003; 94
Egger (2024062514515869000_ref20) 2014; 52
Kharazmi (2024062514515869000_ref37) 2021; 374
Tanyu (2024062514515869000_ref77) 2023; 39
Braess (2024062514515869000_ref9) 2007
De Ryck (2024062514515869000_ref18) 2024; 44
Jagtap (2024062514515869000_ref17) 2020; 28
Cuomo (2024062514515869000_ref16) 2022; 92
Yang (2024062514515869000_ref80) 2021; 425
Mao (2024062514515869000_ref56) 2020; 360
Mishra (2024062514515869000_ref57) 2022; 42
Schiesser (2024062514515869000_ref69) 2009
Strauss (2024062514515869000_ref76) 1978
Shin (2024062514515869000_ref71) 2020
Baydin (2024062514515869000_ref3) 2018; 18
Sirignano (2024062514515869000_ref73) 2018; 375
Kharazmi (2024062514515869000_ref36) 2019
Zhang (2024062514515869000_ref81) 2021; 17
Li (2024062514515869000_ref47) 2021
Heston (2024062514515869000_ref28) 2015; 6
Lu (2024062514515869000_ref53) 2021; 3
Allen (2024062514515869000_ref1) 1972; 20
Bungartz (2024062514515869000_ref11) 2004; 13
Kingma (2024062514515869000_ref38) 2015
Hadamard (2024062514515869000_ref26) 1902
Lu (2024062514515869000_ref54) 2021; 63
Risken (2024062514515869000_ref65) 1996
Wojtowytsch (2024062514515869000_ref79) 2020; 1
Eymard (2024062514515869000_ref22) 1997
Ma (2024062514515869000_ref55) 2022; 55
Lawrence (2024062514515869000_ref21) 2010
Liu (2024062514515869000_ref51) 2009
Feng (2024062514515869000_ref25) 2005; 24
Fabiani (2024062514515869000_ref23) 2021; 89
Hu (2024062514515869000_ref31) 2024
Shi (2024062514515869000_ref70) 2016; 289
Iserles (2024062514515869000_ref33) 2008
Raissi (2024062514515869000_ref62) 2019; 378
Raissi (2024062514515869000_ref64) 2017
Smith (2024062514515869000_ref74) 2021; 228
Hennigh (2024062514515869000_ref27) 2021
Rudin (2024062514515869000_ref67) 1992; 60
Bertozzi (2024062514515869000_ref7) 2010; 9
Kunisch (2024062514515869000_ref44) 2021
Kovacs (2024062514515869000_ref41) 2022; 104
Liu (2024062514515869000_ref50) 1989; 45
Kushner (2024062514515869000_ref45) 1964; 2
Rahaman (2024062514515869000_ref61) 2019
Koto (2024062514515869000_ref40) 2008; 215
Lin (2024062514515869000_ref48) 1988
Kressner (2024062514515869000_ref42) 2011; 32
Rozenman (2024062514515869000_ref66) 2020; 101
Logg (2024062514515869000_ref52) 2012
Stein (2024062514515869000_ref75) 1987; 29
Beirão da Veiga (2024062514515869000_ref4) 2013; 23
Chen (2024062514515869000_ref13) 2020; 5
Patera (2024062514515869000_ref59) 1984; 54
Jagtap (2024062514515869000_ref34) 2020; 365
Beneš (2024062514515869000_ref6) 2004; 51
Li (2024062514515869000_ref46) 2021; 383
Alnæs (2024062514515869000_ref2) 2015; 3
Xavier Sierra-Canto (2024062514515869000_ref72)
Burger (2024062514515869000_ref12) 2014; 372
Sander (2024062514515869000_ref68) 2020
Chuang (2024062514515869000_ref14) 2022
Weinan (2024062514515869000_ref19) 2018; 6
Higham (2024062514515869000_ref29) 2019; 61
Budd (2024062514515869000_ref10) 2021; 44
Krishnapriyan (2024062514515869000_ref43) 2021; 34
Bradbury (2024062514515869000_ref8) 2018
Lin (2024062514515869000_ref49) 2005
Raissi (2024062514515869000_ref63) 2017
Hrennikoff (2024062514515869000_ref30) 2021; 8
Bellmann (2024062514515869000_ref5) 1954; 40
Courant (2024062514515869000_ref15) 1943; 49
Taubes (2024062514515869000_ref78) 2008
Moseley (2024062514515869000_ref58) 2023; 49
Hulbert (2024062514515869000_ref32) 1990; 84
Kiran (2024062514515869000_ref39) 2023; 105
Quarteroni (2024062514515869000_ref60) 2016
References_xml – volume-title: Evans. Partial Differential Equations
  year: 2010
  ident: 2024062514515869000_ref21
– volume: 6
  start-page: 1
  year: 2018
  ident: 2024062514515869000_ref19
  article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– volume: 49
  start-page: 1
  year: 1943
  ident: 2024062514515869000_ref15
  article-title: Variational methods for the solution of problems of equilibrium and vibrations
  publication-title: Bull. Am. Math. Soc.
  doi: 10.1090/S0002-9904-1943-07818-4
– volume: 45
  start-page: 503
  year: 1989
  ident: 2024062514515869000_ref50
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 374
  start-page: 113547
  year: 2021
  ident: 2024062514515869000_ref37
  article-title: Karniadakis. hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113547
– volume: 89
  start-page: 44
  year: 2021
  ident: 2024062514515869000_ref23
  article-title: Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-021-01650-5
– year: 2019
  ident: 2024062514515869000_ref36
  article-title: Variational Physics-Informed Neural Networks For Solving Partial Differential Equations.
– volume: 28
  start-page: 2002
  year: 2020
  ident: 2024062514515869000_ref17
  article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.OA-2020-0164
– volume: 63
  start-page: 208
  year: 2021
  ident: 2024062514515869000_ref54
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– volume: 13
  start-page: 147
  year: 2004
  ident: 2024062514515869000_ref11
  article-title: Sparse grids
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000182
– volume-title: Neural Networks
  year: 2024
  ident: 2024062514515869000_ref31
  article-title: Tackling the curse of dimensionality with physics-informed neural networks
– volume: 42
  start-page: 981
  year: 2022
  ident: 2024062514515869000_ref57
  article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drab032
– volume: 20
  start-page: 423
  year: 1972
  ident: 2024062514515869000_ref1
  article-title: Ground state structures in ordered binary alloys with second neighbor interactions
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(72)90037-5
– volume-title: Modeling Differential Equations in Biology
  year: 2008
  ident: 2024062514515869000_ref78
  doi: 10.1017/CBO9780511811364
– volume: 6
  start-page: 327
  year: 2015
  ident: 2024062514515869000_ref28
  article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options
  publication-title: Rev. Financ. Stud.
  doi: 10.1093/rfs/6.2.327
– volume-title: Automated Solution of Differential Equations by the Finite Element Method
  year: 2012
  ident: 2024062514515869000_ref52
  doi: 10.1007/978-3-642-23099-8
– year: 1988
  ident: 2024062514515869000_ref48
  article-title: Mathematics Applied to Deterministic Problems in the Natural Sciences
  publication-title: Soc. Ind. Appl. Math.
– volume: 425
  year: 2021
  ident: 2024062514515869000_ref80
  article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109913
– volume-title: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics
  year: 2007
  ident: 2024062514515869000_ref9
  doi: 10.1017/CBO9780511618635
– volume: 372
  start-page: 20130406
  year: 2014
  ident: 2024062514515869000_ref12
  article-title: Partial differential equation models in the socio-economic sciences. Philos Trans A Math Phys
  publication-title: Eng Sci
– volume: 84
  start-page: 327
  year: 1990
  ident: 2024062514515869000_ref32
  article-title: Space-time finite element methods for second-order hyperbolic equations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(90)90082-W
– year: 2020
  ident: 2024062514515869000_ref71
  article-title: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs.
  doi: 10.4208/cicp.OA-2020-0193
– volume: 34
  start-page: 26548
  year: 2021
  ident: 2024062514515869000_ref43
  article-title: Characterizing possible failure modes in physics-informed neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 54
  start-page: 468
  year: 1984
  ident: 2024062514515869000_ref59
  article-title: A spectral element method for fluid dynamics: Laminar flow in a channel expansion
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90128-1
– volume: 17
  start-page: 1
  year: 2021
  ident: 2024062514515869000_ref81
  article-title: Fast linear interpolation
  publication-title: ACM J. Emerging Technol. Comput. Syst.
  doi: 10.1145/3423184
– volume: 39
  start-page: 103001
  year: 2023
  ident: 2024062514515869000_ref77
  article-title: Deep learning methods for partial differential equations and related parameter identification problems
  publication-title: Inverse Probl.
  doi: 10.1088/1361-6420/ace9d4
– volume: 52
  start-page: 171
  year: 2014
  ident: 2024062514515869000_ref20
  article-title: Energy-corrected finite element methods for corner singularities
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120871377
– volume: 365
  year: 2020
  ident: 2024062514515869000_ref34
  article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113028
– volume: 383
  start-page: 113933
  year: 2021
  ident: 2024062514515869000_ref46
  article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113933
– year: 2017
  ident: 2024062514515869000_ref63
  article-title: Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations.
– volume: 3
  year: 2015
  ident: 2024062514515869000_ref2
  article-title: The FEniCS Project Version 1.5
  publication-title: Arch. Numer. Softw.
– volume: 32
  start-page: 1288
  year: 2011
  ident: 2024062514515869000_ref42
  article-title: Low-rank tensor Krylov subspace methods for parametrized linear systems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/100799010
– volume: 18
  start-page: 1
  year: 2018
  ident: 2024062514515869000_ref3
  article-title: Automatic differentiation in machine learning: a survey
  publication-title: J. Mach. Learn. Res.
– volume: 24
  start-page: 1
  year: 2023
  ident: 2024062514515869000_ref35
  article-title: A continuous-time stochastic gradient descent method for continuous data
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 143
  year: 1987
  ident: 2024062514515869000_ref75
  article-title: Large sample properties of simulations using Latin hypercube sampling
  publication-title: Technometrics
  doi: 10.1080/00401706.1987.10488205
– volume: 55
  start-page: 369
  year: 2022
  ident: 2024062514515869000_ref55
  article-title: The barron space and the flow-induced function spaces for neural network models
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-021-09549-y
– volume-title: Reduced Basis Methods for Partial Differential Equations: An Introduction
  year: 2016
  ident: 2024062514515869000_ref60
  doi: 10.1007/978-3-319-15431-2
– volume: 104
  year: 2022
  ident: 2024062514515869000_ref41
  article-title: Conditional physics informed neural networks
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2021.106041
– volume: 378
  start-page: 686
  year: 2019
  ident: 2024062514515869000_ref62
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 92
  start-page: 88
  year: 2022
  ident: 2024062514515869000_ref16
  article-title: Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-022-01939-z
– volume: 228
  start-page: 698
  year: 2021
  ident: 2024062514515869000_ref74
  article-title: HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggab309
– start-page: 447
  volume-title: Computational Science – ICCS 2021
  year: 2021
  ident: 2024062514515869000_ref27
  article-title: Nvidia simnet$^{\text{TM}}$: An ai-accelerated multi-physics simulation framework
  doi: 10.1007/978-3-030-77977-1_36
– volume: 60
  start-page: 259
  year: 1992
  ident: 2024062514515869000_ref67
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Physica D
  doi: 10.1016/0167-2789(92)90242-F
– volume-title: 3rd International Conference on Learning Representations, ICLR 2015
  year: 2015
  ident: 2024062514515869000_ref38
  article-title: Adam: A method for stochastic optimization
– volume: 101
  start-page: 050201
  year: 2020
  ident: 2024062514515869000_ref66
  article-title: Observation of accelerating solitary wavepackets
  publication-title: Phys. Rev. E (3)
  doi: 10.1103/PhysRevE.101.050201
– start-page: 1050
  volume-title: Computational Science and Its Applications – ICCSA 2005
  year: 2005
  ident: 2024062514515869000_ref49
  article-title: A fast 2D shape interpolation technique
  doi: 10.1007/11424857_113
– year: 2017
  ident: 2024062514515869000_ref64
  article-title: Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations.
– volume: 375
  start-page: 1339
  year: 2018
  ident: 2024062514515869000_ref73
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume-title: The Fokker-Planck Equation: Methods of Solution and Applications
  year: 1996
  ident: 2024062514515869000_ref65
  doi: 10.1007/978-3-642-61544-3
– volume: 2
  start-page: 106
  year: 1964
  ident: 2024062514515869000_ref45
  article-title: On the differential equations satisfied by conditional probablitity densities of markov processes, with applications
  publication-title: J.o Soc. Ind. Appl. Math. A Control
  doi: 10.1137/0302009
– start-page: 5301
  volume-title: Proceedings of the 36th International Conference on Machine Learning
  year: 2019
  ident: 2024062514515869000_ref61
  article-title: On the Spectral Bias of Neural Networks
– volume-title: DUNE — The Distributed and Unified Numerics Environment
  year: 2020
  ident: 2024062514515869000_ref68
  doi: 10.1007/978-3-030-59702-3
– volume: 3
  start-page: 218
  year: 2021
  ident: 2024062514515869000_ref53
  article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature
  publication-title: Mach. Intell.
  doi: 10.1038/s42256-021-00302-5
– start-page: 452
  volume-title: Contemporary Developments in Continuum Mechanics and Partial Differential Equations
  year: 1978
  ident: 2024062514515869000_ref76
  article-title: The Nonlinear Schrödinger Equation
– volume: 215
  start-page: 182
  year: 2008
  ident: 2024062514515869000_ref40
  article-title: Imex runge–kutta schemes for reaction–diffusion equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2007.04.003
– volume: 61
  start-page: 860
  year: 2019
  ident: 2024062514515869000_ref29
  article-title: Deep learning: An introduction for applied mathematicians
  publication-title: SIAM Rev.
  doi: 10.1137/18M1165748
– volume: 360
  start-page: 112789
  year: 2020
  ident: 2024062514515869000_ref56
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112789
– volume: 8
  start-page: A169
  year: 2021
  ident: 2024062514515869000_ref30
  article-title: Solution of problems of elasticity by the framework method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4009129
– volume-title: Meshfree methods: moving beyond the finite element method
  year: 2009
  ident: 2024062514515869000_ref51
  doi: 10.1201/9781420082104
– volume: 9
  start-page: 413
  year: 2010
  ident: 2024062514515869000_ref7
  article-title: Unconditionally stable schemes for higher order inpainting
  publication-title: Commun. Math. Sci.
  doi: 10.4310/CMS.2011.v9.n2.a4
– start-page: 16
  volume-title: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation
  year: 2021
  ident: 2024062514515869000_ref44
– volume: 5
  start-page: 1931
  year: 2020
  ident: 2024062514515869000_ref13
  article-title: NeuroDiffEq: A Python package for solving differential equations with neural networks
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01931
– year: 2018
  ident: 2024062514515869000_ref8
  article-title: JAX: composable transformations of Python+NumPy programs
– volume: 105
  start-page: 1673
  year: 2023
  ident: 2024062514515869000_ref39
  article-title: A gpu-based framework for finite element analysis of elastoplastic problems
  publication-title: Computing
  doi: 10.1007/s00607-023-01169-7
– volume: 23
  start-page: 199
  year: 2013
  ident: 2024062514515869000_ref4
  article-title: Basic principles of virtual element methods
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202512500492
– volume: 51
  start-page: 187
  year: 2004
  ident: 2024062514515869000_ref6
  article-title: Geometrical image segmentation by the Allen–Cahn equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.05.001
– volume-title: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab
  year: 2009
  ident: 2024062514515869000_ref69
  doi: 10.1017/CBO9780511576270
– volume: 49
  start-page: 62
  year: 2023
  ident: 2024062514515869000_ref58
  article-title: Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-023-10065-9
– start-page: 307
  volume-title: Ninth International Conference on Machine Learning and Applications
  ident: 2024062514515869000_ref72
  article-title: Parallel training of a back-propagation neural network using cuda
– volume: 1
  start-page: 121
  year: 2020
  ident: 2024062514515869000_ref79
  article-title: Can shallow neural networks beat the curse of dimensionality? A mean field training perspective. IEEE Transactions on
  publication-title: Artif. Intell.
– volume: 24
  start-page: 121
  year: 2005
  ident: 2024062514515869000_ref25
  article-title: A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-004-4610-1
– start-page: 713
  volume-title: Handbook of Numerical Analysis
  year: 1997
  ident: 2024062514515869000_ref22
  article-title: Finite Volume Methods
– volume: 44
  start-page: e202100004
  year: 2021
  ident: 2024062514515869000_ref10
  article-title: Classification and image processing with a semi-discrete scheme for fidelity forced Allen–Cahn on graphs
  publication-title: GAMM-Mitteilungen
  doi: 10.1002/gamm.202100004
– volume-title: 9th International Conference on Learning Representations
  year: 2021
  ident: 2024062514515869000_ref47
  article-title: Fourier neural operator for parametric partial differential equations
– volume: 94
  start-page: 33
  year: 2003
  ident: 2024062514515869000_ref24
  article-title: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows
  publication-title: Numer. Math.
  doi: 10.1007/s00211-002-0413-1
– year: 2022
  ident: 2024062514515869000_ref14
  article-title: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration.
  doi: 10.25080/majora-212e5952-005
– volume-title: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics
  year: 2008
  ident: 2024062514515869000_ref33
– start-page: 49
  year: 1902
  ident: 2024062514515869000_ref26
  article-title: Sur les problèmes aux dérivées partielles et leur signification physique
  publication-title: Princeton University Bulletin
– volume: 44
  start-page: 83
  year: 2024
  ident: 2024062514515869000_ref18
  article-title: Error estimates for physics-informed neural networks approximating the navier–stokes equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drac085
– volume: 289
  start-page: 298
  year: 2016
  ident: 2024062514515869000_ref70
  article-title: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation
  publication-title: Appl. Math. Comput.
– volume: 40
  start-page: 231
  year: 1954
  ident: 2024062514515869000_ref5
  article-title: Dynamic programming and a new formalism in the calculus of variations
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.40.4.231
SSID ssj0001570
Score 2.6036716
Snippet Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 143
SubjectTerms Original Papers
Title Can physics-informed neural networks beat the finite element method?
URI https://www.ncbi.nlm.nih.gov/pubmed/38933736
https://www.proquest.com/docview/3072814099
https://pubmed.ncbi.nlm.nih.gov/PMC11197852
https://doi.org/10.1093/imamat/hxae011
UnpaywallVersion publishedVersion
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate (EBSCOhost)
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1464-3634
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0001570
  issn: 0272-4960
  databaseCode: ABDBF
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1464-3634
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0001570
  issn: 0272-4960
  databaseCode: AMVHM
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFH6C5AAc2KHDEhmEBBe3E28zPqGoUCKkFA4NCqeRVzUinVYkEcuvx44no04RCud5tjz2e8-f3vIZ4JXTIpc-95jpmGYkSuKSaIKVZ8TrnAePGOOQk2MxnrKPMz5rCmRjL0wnfy_pwfxMBeR2cPpTuTy28PYFD5i7B_3p8efR100ApSCYydQOzATDVFDWsjNenaBz-3Q62i4By7_rI2-s6wv164daLC5dPkd34MN22anm5Nv-eqX3ze8rjI67_-su3G7wJxolhbkH11x9H25NWvLW5QN4d6hqlCIeS5yIVZ1FkfgyDKxT2fgS6eDEURiF_DzCVuRSHTpKT1K_fQjTo_cnh2PcPLaATTDbFS6s8ZELUJXMqgADbclLYwouPffBB5V6SL1y3hc-WDBjlEgfNmjohXE6d1bRR9Crz2u3B0gUhFtCvPDKMqMKPTSqdJZKK6U33GeAt4dQmYaJPD6IsahSRpxWaXeqZncyeN3KXyQOjn9KvgxnulPoxfbIq2BLMUGiane-XlbB35ENA5jM4HFSgXauCOxoQUUGZUc5WoHI0939Us9PN3zdw5iqLTnJ4E2rRzvW-OT_RZ_CTRKAVgoLPYPe6vvaPQ9AaaUH0B9NvownA7h-8mk2aGzmD7deGbM
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7QE4lHcbXjIICS5us34lPqGqUCqkVhxYqZwiv0ZdsaQVuysevx57nY2aIrScM7Yce2b8aR6fAV4Fq0qNJVJhU5qRGU1rZhk1KBjaUkaPmOKQJ6fqeCI-nsmzrkA29cIM8vea70-_mYjc9s9_mlCmFt4tJSPmHsHW5PTTwZdVAKViVOjcDiyUoFxx0bMzXp9gcPsMOtquAMu_6yNvLttL8-uHmc2uXD5Hd-DDetm55uTr3nJh99zva4yOm__rLmx3-JMcZIW5BzdCex9un_TkrfMH8O7QtCRHPOY0E6sGTxLxZRzY5rLxObHRiZM4iuA0wVYSch06yU9Sv30Ik6P3nw-PaffYAnXRbBe08g4TF6CphTcRBvpa1s5VUqPE6INqO-ZoAmKF0YKF4Exj3KAxKhdsGbzhj2DUXrRhF4iqmPSMoULjhTOVHTtTB8-11xqdxALo-hAa1zGRpwcxZk3OiPMm707T7U4Br3v5y8zB8U_Jl_FMNwq9WB95E20pJUhMGy6W8yb6O7ZiANMF7GQV6OdKwI5XXBVQD5SjF0g83cMv7fR8xdc9TqnaWrIC3vR6tGGNj_9f9AncYhFo5bDQUxgtvi_DswiUFvZ5ZyV_AGW1Fvs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+physics-informed+neural+networks+beat+the+finite+element+method%3F&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Grossmann%2C+Tamara+G&rft.au=Komorowska%2C+Urszula+Julia&rft.au=Latz%2C+Jonas&rft.au=Sch%C3%B6nlieb%2C+Carola-Bibiane&rft.date=2024-01-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=89&rft.issue=1&rft.spage=143&rft.epage=174&rft_id=info:doi/10.1093%2Fimamat%2Fhxae011&rft.externalDocID=10.1093%2Fimamat%2Fhxae011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon