Can physics-informed neural networks beat the finite element method?
Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, fo...
        Saved in:
      
    
          | Published in | IMA journal of applied mathematics Vol. 89; no. 1; pp. 143 - 174 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Oxford University Press
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0272-4960 1464-3634 1464-3634  | 
| DOI | 10.1093/imamat/hxae011 | 
Cover
| Abstract | Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen–Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE. | 
    
|---|---|
| AbstractList | Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen–Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE. Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other sciences. To simulate such processes and systems, the solutions of PDEs often need to be approximated numerically. The finite element method, for instance, is a usual standard methodology to do so. The recent success of deep neural networks at various approximation tasks has motivated their use in the numerical solution of PDEs. These so-called physics-informed neural networks and their variants have shown to be able to successfully approximate a large range of PDEs. So far, physics-informed neural networks and the finite element method have mainly been studied in isolation of each other. In this work, we compare the methodologies in a systematic computational study. Indeed, we employ both methods to numerically solve various linear and nonlinear PDEs: Poisson in 1D, 2D and 3D, Allen-Cahn in 1D, semilinear Schrödinger in 1D and 2D. We then compare computational costs and approximation accuracies. In terms of solution time and accuracy, physics-informed neural networks have not been able to outperform the finite element method in our study. In some experiments, they were faster at evaluating the solved PDE.  | 
    
| Author | Komorowska, Urszula Julia Latz, Jonas Grossmann, Tamara G Schönlieb, Carola-Bibiane  | 
    
| Author_xml | – sequence: 1 givenname: Tamara G surname: Grossmann fullname: Grossmann, Tamara G email: t.g.grossmann@gmail.com – sequence: 2 givenname: Urszula Julia surname: Komorowska fullname: Komorowska, Urszula Julia – sequence: 3 givenname: Jonas orcidid: 0000-0002-4600-0247 surname: Latz fullname: Latz, Jonas – sequence: 4 givenname: Carola-Bibiane orcidid: 0000-0003-0099-6306 surname: Schönlieb fullname: Schönlieb, Carola-Bibiane  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38933736$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkEFP3DAQha0KVBbaK8cqx_aQXTt24viEqi0UJCQucLa8zrgxJHYaO9D99zXKdlWQEKc5zHzvvXnH6MB5BwidErwkWNCV7VWv4qr9owAT8gEtCKtYTivKDtACF7zImajwEToO4R5jTEqOP6IjWgtKOa0W6MdauWxot8HqkFtn_NhDkzmYRtWlEZ_8-BCyDaiYxRYyY52NkEEHPbiY9RBb35x9QodGdQE-7-YJurs4v11f5tc3P6_W369zzYoy5rzRpqCiVjVrFKlIU5e11rwUpjS8ovWGUKPAGG64YIzRQhhoNDGVhg2GRtETtJp1Jzeo7ZPqOjmMqYFxKwmWz33IuQ-56yMRZzMxTJv0mE6h02N7yisrX26cbeUv_ygJIYLXZZEUvu4URv97ghBlb4OGrlMO_BQkxbyoCcNCpNMv_5vtXf61nQ6W84EefQgjmPfjs1eAtlFF65_D2u5t7NuM-Wl4z-IvqVe3rA | 
    
| CitedBy_id | crossref_primary_10_1007_s11831_024_10063_0 crossref_primary_10_1016_j_cma_2025_117764 crossref_primary_10_1038_s41598_025_85724_6 crossref_primary_10_1017_dce_2024_33 crossref_primary_10_1090_mcom_3992 crossref_primary_10_1038_s42256_024_00897_5 crossref_primary_10_1109_TUFFC_2024_3411718 crossref_primary_10_3103_S0027134924702114 crossref_primary_10_3390_s25051401 crossref_primary_10_1063_5_0189061 crossref_primary_10_33993_jnaat521_1305 crossref_primary_10_1038_s41598_024_57137_4 crossref_primary_10_1021_acs_jctc_4c01747 crossref_primary_10_1103_PhysRevE_111_025301 crossref_primary_10_1007_s42493_024_00106_w crossref_primary_10_6112_kscfe_2024_29_4_217 crossref_primary_10_1109_TMI_2024_3494022 crossref_primary_10_1007_s10409_024_24172_x crossref_primary_10_1088_1361_6420_ad9cb7 crossref_primary_10_1007_s00466_023_02434_4 crossref_primary_10_1016_j_jocs_2025_102577 crossref_primary_10_1017_dce_2024_46 crossref_primary_10_1016_j_camwa_2025_02_022 crossref_primary_10_1088_1361_6560_ada418 crossref_primary_10_1080_10255842_2025_2471504 crossref_primary_10_1109_JMMCT_2024_3452977 crossref_primary_10_1109_ACCESS_2024_3465572 crossref_primary_10_1016_j_enganabound_2025_106207 crossref_primary_10_1063_5_0180594 crossref_primary_10_1016_j_jcp_2023_112603 crossref_primary_10_1016_j_jcp_2024_113698  | 
    
| Cites_doi | 10.1007/s40304-018-0127-z 10.1090/S0002-9904-1943-07818-4 10.1007/BF01589116 10.1016/j.cma.2020.113547 10.1007/s10915-021-01650-5 10.4208/cicp.OA-2020-0164 10.1137/19M1274067 10.1017/S0962492904000182 10.1093/imanum/drab032 10.1016/0001-6160(72)90037-5 10.1017/CBO9780511811364 10.1093/rfs/6.2.327 10.1007/978-3-642-23099-8 10.1016/j.jcp.2020.109913 10.1017/CBO9780511618635 10.1016/0045-7825(90)90082-W 10.4208/cicp.OA-2020-0193 10.1016/0021-9991(84)90128-1 10.1145/3423184 10.1088/1361-6420/ace9d4 10.1137/120871377 10.1016/j.cma.2020.113028 10.1016/j.cma.2021.113933 10.1137/100799010 10.1080/00401706.1987.10488205 10.1007/s00365-021-09549-y 10.1007/978-3-319-15431-2 10.1016/j.cnsns.2021.106041 10.1016/j.jcp.2018.10.045 10.1007/s10915-022-01939-z 10.1093/gji/ggab309 10.1007/978-3-030-77977-1_36 10.1016/0167-2789(92)90242-F 10.1103/PhysRevE.101.050201 10.1007/11424857_113 10.1016/j.jcp.2018.08.029 10.1007/978-3-642-61544-3 10.1137/0302009 10.1007/978-3-030-59702-3 10.1038/s42256-021-00302-5 10.1016/j.cam.2007.04.003 10.1137/18M1165748 10.1016/j.cma.2019.112789 10.1115/1.4009129 10.1201/9781420082104 10.4310/CMS.2011.v9.n2.a4 10.21105/joss.01931 10.1007/s00607-023-01169-7 10.1142/S0218202512500492 10.1016/j.apnum.2004.05.001 10.1017/CBO9780511576270 10.1007/s10444-023-10065-9 10.1007/s10915-004-4610-1 10.1002/gamm.202100004 10.1007/s00211-002-0413-1 10.25080/majora-212e5952-005 10.1093/imanum/drac085 10.1073/pnas.40.4.231  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.  | 
    
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.  | 
    
| DBID | TOX AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1093/imamat/hxae011 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1464-3634 | 
    
| EndPage | 174 | 
    
| ExternalDocumentID | 10.1093/imamat/hxae011 PMC11197852 38933736 10_1093_imamat_hxae011  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: ; – fundername: ; grantid: 777826 – fundername: ; grantid: EP/S515334/1; 2089694 – fundername: ; grantid: EP/T003553/1; EP/N014588/1; EP/T017961/1 – fundername: ; grantid: 215733/Z/19/Z; 221633/Z/20/Z – fundername: ; grantid: EP/S026045/1 – fundername: ; grantid: EP/V029428/1  | 
    
| GroupedDBID | -E4 -~X .2P .I3 0R~ 18M 1TH 29I 4.4 482 48X 5GY 5VS 5WA 6TJ 70D 8WZ A6W AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDBF ABDFA ABDPE ABDTM ABEFU ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABNGD ABNKS ABPIB ABPQP ABPTD ABQLI ABSMQ ABVGC ABVLG ABWST ABXVV ABZBJ ABZEO ACFRR ACGFO ACGFS ACGOD ACIWK ACPQN ACUFI ACUHS ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFIYH AFOFC AFSHK AFYAG AGINJ AGKEF AGKRT AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AI. AIAGR AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DU5 D~K EBS EE~ EJD ELUNK ESX F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ I-F IOX J21 JAVBF JXSIZ KAQDR KBUDW KOP KSI KSN M-Z M43 MBTAY N9A NGC NMDNZ NOMLY NU- NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OXVGQ O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RIG RNI ROL ROX ROZ RUSNO RW1 RXO RZF RZO T9H TCN TJP TN5 TOX TUS UPT UQL VH1 WH7 X7H XOL YAYTL YKOAZ YXANX ZCG ZKX ZY4 ~91 AAYXX CITATION 6.Y ABQTQ ABSAR ABTAH ADRIX AFXEN M49 NPM Z5M 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c425t-7dcf2398a84da161d858cc759f5f7638b13faeff7f79444329fedc1f6ceb0eda3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0272-4960 1464-3634  | 
    
| IngestDate | Sun Oct 26 04:17:31 EDT 2025 Tue Sep 30 17:08:42 EDT 2025 Thu Oct 02 10:39:52 EDT 2025 Wed Feb 19 02:06:48 EST 2025 Thu Apr 24 23:12:19 EDT 2025 Wed Oct 01 02:40:12 EDT 2025 Mon Jun 30 08:34:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | deep learning finite element method partial differential equations physics-informed neural networks  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c425t-7dcf2398a84da161d858cc759f5f7638b13faeff7f79444329fedc1f6ceb0eda3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-4600-0247 0000-0003-0099-6306  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/imamat/hxae011 | 
    
| PMID | 38933736 | 
    
| PQID | 3072814099 | 
    
| PQPubID | 23479 | 
    
| PageCount | 32 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_imamat_hxae011 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11197852 proquest_miscellaneous_3072814099 pubmed_primary_38933736 crossref_primary_10_1093_imamat_hxae011 crossref_citationtrail_10_1093_imamat_hxae011 oup_primary_10_1093_imamat_hxae011  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-01 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | IMA journal of applied mathematics | 
    
| PublicationTitleAlternate | IMA J Appl Math | 
    
| PublicationYear | 2024 | 
    
| Publisher | Oxford University Press | 
    
| Publisher_xml | – name: Oxford University Press | 
    
| References | Jin (2024062514515869000_ref35) 2023; 24 Feng (2024062514515869000_ref24) 2003; 94 Egger (2024062514515869000_ref20) 2014; 52 Kharazmi (2024062514515869000_ref37) 2021; 374 Tanyu (2024062514515869000_ref77) 2023; 39 Braess (2024062514515869000_ref9) 2007 De Ryck (2024062514515869000_ref18) 2024; 44 Jagtap (2024062514515869000_ref17) 2020; 28 Cuomo (2024062514515869000_ref16) 2022; 92 Yang (2024062514515869000_ref80) 2021; 425 Mao (2024062514515869000_ref56) 2020; 360 Mishra (2024062514515869000_ref57) 2022; 42 Schiesser (2024062514515869000_ref69) 2009 Strauss (2024062514515869000_ref76) 1978 Shin (2024062514515869000_ref71) 2020 Baydin (2024062514515869000_ref3) 2018; 18 Sirignano (2024062514515869000_ref73) 2018; 375 Kharazmi (2024062514515869000_ref36) 2019 Zhang (2024062514515869000_ref81) 2021; 17 Li (2024062514515869000_ref47) 2021 Heston (2024062514515869000_ref28) 2015; 6 Lu (2024062514515869000_ref53) 2021; 3 Allen (2024062514515869000_ref1) 1972; 20 Bungartz (2024062514515869000_ref11) 2004; 13 Kingma (2024062514515869000_ref38) 2015 Hadamard (2024062514515869000_ref26) 1902 Lu (2024062514515869000_ref54) 2021; 63 Risken (2024062514515869000_ref65) 1996 Wojtowytsch (2024062514515869000_ref79) 2020; 1 Eymard (2024062514515869000_ref22) 1997 Ma (2024062514515869000_ref55) 2022; 55 Lawrence (2024062514515869000_ref21) 2010 Liu (2024062514515869000_ref51) 2009 Feng (2024062514515869000_ref25) 2005; 24 Fabiani (2024062514515869000_ref23) 2021; 89 Hu (2024062514515869000_ref31) 2024 Shi (2024062514515869000_ref70) 2016; 289 Iserles (2024062514515869000_ref33) 2008 Raissi (2024062514515869000_ref62) 2019; 378 Raissi (2024062514515869000_ref64) 2017 Smith (2024062514515869000_ref74) 2021; 228 Hennigh (2024062514515869000_ref27) 2021 Rudin (2024062514515869000_ref67) 1992; 60 Bertozzi (2024062514515869000_ref7) 2010; 9 Kunisch (2024062514515869000_ref44) 2021 Kovacs (2024062514515869000_ref41) 2022; 104 Liu (2024062514515869000_ref50) 1989; 45 Kushner (2024062514515869000_ref45) 1964; 2 Rahaman (2024062514515869000_ref61) 2019 Koto (2024062514515869000_ref40) 2008; 215 Lin (2024062514515869000_ref48) 1988 Kressner (2024062514515869000_ref42) 2011; 32 Rozenman (2024062514515869000_ref66) 2020; 101 Logg (2024062514515869000_ref52) 2012 Stein (2024062514515869000_ref75) 1987; 29 Beirão da Veiga (2024062514515869000_ref4) 2013; 23 Chen (2024062514515869000_ref13) 2020; 5 Patera (2024062514515869000_ref59) 1984; 54 Jagtap (2024062514515869000_ref34) 2020; 365 Beneš (2024062514515869000_ref6) 2004; 51 Li (2024062514515869000_ref46) 2021; 383 Alnæs (2024062514515869000_ref2) 2015; 3 Xavier Sierra-Canto (2024062514515869000_ref72) Burger (2024062514515869000_ref12) 2014; 372 Sander (2024062514515869000_ref68) 2020 Chuang (2024062514515869000_ref14) 2022 Weinan (2024062514515869000_ref19) 2018; 6 Higham (2024062514515869000_ref29) 2019; 61 Budd (2024062514515869000_ref10) 2021; 44 Krishnapriyan (2024062514515869000_ref43) 2021; 34 Bradbury (2024062514515869000_ref8) 2018 Lin (2024062514515869000_ref49) 2005 Raissi (2024062514515869000_ref63) 2017 Hrennikoff (2024062514515869000_ref30) 2021; 8 Bellmann (2024062514515869000_ref5) 1954; 40 Courant (2024062514515869000_ref15) 1943; 49 Taubes (2024062514515869000_ref78) 2008 Moseley (2024062514515869000_ref58) 2023; 49 Hulbert (2024062514515869000_ref32) 1990; 84 Kiran (2024062514515869000_ref39) 2023; 105 Quarteroni (2024062514515869000_ref60) 2016  | 
    
| References_xml | – volume-title: Evans. Partial Differential Equations year: 2010 ident: 2024062514515869000_ref21 – volume: 6 start-page: 1 year: 2018 ident: 2024062514515869000_ref19 article-title: The Deep Ritz Method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – volume: 49 start-page: 1 year: 1943 ident: 2024062514515869000_ref15 article-title: Variational methods for the solution of problems of equilibrium and vibrations publication-title: Bull. Am. Math. Soc. doi: 10.1090/S0002-9904-1943-07818-4 – volume: 45 start-page: 503 year: 1989 ident: 2024062514515869000_ref50 article-title: On the limited memory BFGS method for large scale optimization publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 374 start-page: 113547 year: 2021 ident: 2024062514515869000_ref37 article-title: Karniadakis. hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113547 – volume: 89 start-page: 44 year: 2021 ident: 2024062514515869000_ref23 article-title: Numerical solution and bifurcation analysis of nonlinear partial differential equations with extreme learning machines publication-title: J. Sci. Comput. doi: 10.1007/s10915-021-01650-5 – year: 2019 ident: 2024062514515869000_ref36 article-title: Variational Physics-Informed Neural Networks For Solving Partial Differential Equations. – volume: 28 start-page: 2002 year: 2020 ident: 2024062514515869000_ref17 article-title: Extended physics-informed neural networks (XPINNs): A generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.OA-2020-0164 – volume: 63 start-page: 208 year: 2021 ident: 2024062514515869000_ref54 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – volume: 13 start-page: 147 year: 2004 ident: 2024062514515869000_ref11 article-title: Sparse grids publication-title: Acta Numer. doi: 10.1017/S0962492904000182 – volume-title: Neural Networks year: 2024 ident: 2024062514515869000_ref31 article-title: Tackling the curse of dimensionality with physics-informed neural networks – volume: 42 start-page: 981 year: 2022 ident: 2024062514515869000_ref57 article-title: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drab032 – volume: 20 start-page: 423 year: 1972 ident: 2024062514515869000_ref1 article-title: Ground state structures in ordered binary alloys with second neighbor interactions publication-title: Acta Metall. doi: 10.1016/0001-6160(72)90037-5 – volume-title: Modeling Differential Equations in Biology year: 2008 ident: 2024062514515869000_ref78 doi: 10.1017/CBO9780511811364 – volume: 6 start-page: 327 year: 2015 ident: 2024062514515869000_ref28 article-title: A closed-form solution for options with stochastic volatility with applications to bond and currency options publication-title: Rev. Financ. Stud. doi: 10.1093/rfs/6.2.327 – volume-title: Automated Solution of Differential Equations by the Finite Element Method year: 2012 ident: 2024062514515869000_ref52 doi: 10.1007/978-3-642-23099-8 – year: 1988 ident: 2024062514515869000_ref48 article-title: Mathematics Applied to Deterministic Problems in the Natural Sciences publication-title: Soc. Ind. Appl. Math. – volume: 425 year: 2021 ident: 2024062514515869000_ref80 article-title: B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109913 – volume-title: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics year: 2007 ident: 2024062514515869000_ref9 doi: 10.1017/CBO9780511618635 – volume: 372 start-page: 20130406 year: 2014 ident: 2024062514515869000_ref12 article-title: Partial differential equation models in the socio-economic sciences. Philos Trans A Math Phys publication-title: Eng Sci – volume: 84 start-page: 327 year: 1990 ident: 2024062514515869000_ref32 article-title: Space-time finite element methods for second-order hyperbolic equations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(90)90082-W – year: 2020 ident: 2024062514515869000_ref71 article-title: On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type PDEs. doi: 10.4208/cicp.OA-2020-0193 – volume: 34 start-page: 26548 year: 2021 ident: 2024062514515869000_ref43 article-title: Characterizing possible failure modes in physics-informed neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 54 start-page: 468 year: 1984 ident: 2024062514515869000_ref59 article-title: A spectral element method for fluid dynamics: Laminar flow in a channel expansion publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90128-1 – volume: 17 start-page: 1 year: 2021 ident: 2024062514515869000_ref81 article-title: Fast linear interpolation publication-title: ACM J. Emerging Technol. Comput. Syst. doi: 10.1145/3423184 – volume: 39 start-page: 103001 year: 2023 ident: 2024062514515869000_ref77 article-title: Deep learning methods for partial differential equations and related parameter identification problems publication-title: Inverse Probl. doi: 10.1088/1361-6420/ace9d4 – volume: 52 start-page: 171 year: 2014 ident: 2024062514515869000_ref20 article-title: Energy-corrected finite element methods for corner singularities publication-title: SIAM J. Numer. Anal. doi: 10.1137/120871377 – volume: 365 year: 2020 ident: 2024062514515869000_ref34 article-title: Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113028 – volume: 383 start-page: 113933 year: 2021 ident: 2024062514515869000_ref46 article-title: A physics-guided neural network framework for elastic plates: Comparison of governing equations-based and energy-based approaches publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113933 – year: 2017 ident: 2024062514515869000_ref63 article-title: Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations. – volume: 3 year: 2015 ident: 2024062514515869000_ref2 article-title: The FEniCS Project Version 1.5 publication-title: Arch. Numer. Softw. – volume: 32 start-page: 1288 year: 2011 ident: 2024062514515869000_ref42 article-title: Low-rank tensor Krylov subspace methods for parametrized linear systems publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/100799010 – volume: 18 start-page: 1 year: 2018 ident: 2024062514515869000_ref3 article-title: Automatic differentiation in machine learning: a survey publication-title: J. Mach. Learn. Res. – volume: 24 start-page: 1 year: 2023 ident: 2024062514515869000_ref35 article-title: A continuous-time stochastic gradient descent method for continuous data publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 143 year: 1987 ident: 2024062514515869000_ref75 article-title: Large sample properties of simulations using Latin hypercube sampling publication-title: Technometrics doi: 10.1080/00401706.1987.10488205 – volume: 55 start-page: 369 year: 2022 ident: 2024062514515869000_ref55 article-title: The barron space and the flow-induced function spaces for neural network models publication-title: Constr. Approx. doi: 10.1007/s00365-021-09549-y – volume-title: Reduced Basis Methods for Partial Differential Equations: An Introduction year: 2016 ident: 2024062514515869000_ref60 doi: 10.1007/978-3-319-15431-2 – volume: 104 year: 2022 ident: 2024062514515869000_ref41 article-title: Conditional physics informed neural networks publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2021.106041 – volume: 378 start-page: 686 year: 2019 ident: 2024062514515869000_ref62 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 92 start-page: 88 year: 2022 ident: 2024062514515869000_ref16 article-title: Scientific Machine Learning Through Physics–Informed Neural Networks: Where we are and What’s Next publication-title: J. Sci. Comput. doi: 10.1007/s10915-022-01939-z – volume: 228 start-page: 698 year: 2021 ident: 2024062514515869000_ref74 article-title: HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks publication-title: Geophys. J. Int. doi: 10.1093/gji/ggab309 – start-page: 447 volume-title: Computational Science – ICCS 2021 year: 2021 ident: 2024062514515869000_ref27 article-title: Nvidia simnet$^{\text{TM}}$: An ai-accelerated multi-physics simulation framework doi: 10.1007/978-3-030-77977-1_36 – volume: 60 start-page: 259 year: 1992 ident: 2024062514515869000_ref67 article-title: Nonlinear total variation based noise removal algorithms publication-title: Physica D doi: 10.1016/0167-2789(92)90242-F – volume-title: 3rd International Conference on Learning Representations, ICLR 2015 year: 2015 ident: 2024062514515869000_ref38 article-title: Adam: A method for stochastic optimization – volume: 101 start-page: 050201 year: 2020 ident: 2024062514515869000_ref66 article-title: Observation of accelerating solitary wavepackets publication-title: Phys. Rev. E (3) doi: 10.1103/PhysRevE.101.050201 – start-page: 1050 volume-title: Computational Science and Its Applications – ICCSA 2005 year: 2005 ident: 2024062514515869000_ref49 article-title: A fast 2D shape interpolation technique doi: 10.1007/11424857_113 – year: 2017 ident: 2024062514515869000_ref64 article-title: Physics Informed Deep Learning (Part II): Data-driven Discovery of Nonlinear Partial Differential Equations. – volume: 375 start-page: 1339 year: 2018 ident: 2024062514515869000_ref73 article-title: DGM: A deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – volume-title: The Fokker-Planck Equation: Methods of Solution and Applications year: 1996 ident: 2024062514515869000_ref65 doi: 10.1007/978-3-642-61544-3 – volume: 2 start-page: 106 year: 1964 ident: 2024062514515869000_ref45 article-title: On the differential equations satisfied by conditional probablitity densities of markov processes, with applications publication-title: J.o Soc. Ind. Appl. Math. A Control doi: 10.1137/0302009 – start-page: 5301 volume-title: Proceedings of the 36th International Conference on Machine Learning year: 2019 ident: 2024062514515869000_ref61 article-title: On the Spectral Bias of Neural Networks – volume-title: DUNE — The Distributed and Unified Numerics Environment year: 2020 ident: 2024062514515869000_ref68 doi: 10.1007/978-3-030-59702-3 – volume: 3 start-page: 218 year: 2021 ident: 2024062514515869000_ref53 article-title: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nature publication-title: Mach. Intell. doi: 10.1038/s42256-021-00302-5 – start-page: 452 volume-title: Contemporary Developments in Continuum Mechanics and Partial Differential Equations year: 1978 ident: 2024062514515869000_ref76 article-title: The Nonlinear Schrödinger Equation – volume: 215 start-page: 182 year: 2008 ident: 2024062514515869000_ref40 article-title: Imex runge–kutta schemes for reaction–diffusion equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2007.04.003 – volume: 61 start-page: 860 year: 2019 ident: 2024062514515869000_ref29 article-title: Deep learning: An introduction for applied mathematicians publication-title: SIAM Rev. doi: 10.1137/18M1165748 – volume: 360 start-page: 112789 year: 2020 ident: 2024062514515869000_ref56 article-title: Physics-informed neural networks for high-speed flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112789 – volume: 8 start-page: A169 year: 2021 ident: 2024062514515869000_ref30 article-title: Solution of problems of elasticity by the framework method publication-title: J. Appl. Mech. doi: 10.1115/1.4009129 – volume-title: Meshfree methods: moving beyond the finite element method year: 2009 ident: 2024062514515869000_ref51 doi: 10.1201/9781420082104 – volume: 9 start-page: 413 year: 2010 ident: 2024062514515869000_ref7 article-title: Unconditionally stable schemes for higher order inpainting publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2011.v9.n2.a4 – start-page: 16 volume-title: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation year: 2021 ident: 2024062514515869000_ref44 – volume: 5 start-page: 1931 year: 2020 ident: 2024062514515869000_ref13 article-title: NeuroDiffEq: A Python package for solving differential equations with neural networks publication-title: J. Open Source Softw. doi: 10.21105/joss.01931 – year: 2018 ident: 2024062514515869000_ref8 article-title: JAX: composable transformations of Python+NumPy programs – volume: 105 start-page: 1673 year: 2023 ident: 2024062514515869000_ref39 article-title: A gpu-based framework for finite element analysis of elastoplastic problems publication-title: Computing doi: 10.1007/s00607-023-01169-7 – volume: 23 start-page: 199 year: 2013 ident: 2024062514515869000_ref4 article-title: Basic principles of virtual element methods publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202512500492 – volume: 51 start-page: 187 year: 2004 ident: 2024062514515869000_ref6 article-title: Geometrical image segmentation by the Allen–Cahn equation publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2004.05.001 – volume-title: A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab year: 2009 ident: 2024062514515869000_ref69 doi: 10.1017/CBO9780511576270 – volume: 49 start-page: 62 year: 2023 ident: 2024062514515869000_ref58 article-title: Finite basis physics-informed neural networks (FBPINNs): a scalable domain decomposition approach for solving differential equations publication-title: Adv. Comput. Math. doi: 10.1007/s10444-023-10065-9 – start-page: 307 volume-title: Ninth International Conference on Machine Learning and Applications ident: 2024062514515869000_ref72 article-title: Parallel training of a back-propagation neural network using cuda – volume: 1 start-page: 121 year: 2020 ident: 2024062514515869000_ref79 article-title: Can shallow neural networks beat the curse of dimensionality? A mean field training perspective. IEEE Transactions on publication-title: Artif. Intell. – volume: 24 start-page: 121 year: 2005 ident: 2024062514515869000_ref25 article-title: A Posteriori Error Estimates and an Adaptive Finite Element Method for the Allen–Cahn Equation and the Mean Curvature Flow publication-title: J. Sci. Comput. doi: 10.1007/s10915-004-4610-1 – start-page: 713 volume-title: Handbook of Numerical Analysis year: 1997 ident: 2024062514515869000_ref22 article-title: Finite Volume Methods – volume: 44 start-page: e202100004 year: 2021 ident: 2024062514515869000_ref10 article-title: Classification and image processing with a semi-discrete scheme for fidelity forced Allen–Cahn on graphs publication-title: GAMM-Mitteilungen doi: 10.1002/gamm.202100004 – volume-title: 9th International Conference on Learning Representations year: 2021 ident: 2024062514515869000_ref47 article-title: Fourier neural operator for parametric partial differential equations – volume: 94 start-page: 33 year: 2003 ident: 2024062514515869000_ref24 article-title: Numerical analysis of the Allen–Cahn equation and approximation for mean curvature flows publication-title: Numer. Math. doi: 10.1007/s00211-002-0413-1 – year: 2022 ident: 2024062514515869000_ref14 article-title: Experience report of physics-informed neural networks in fluid simulations: pitfalls and frustration. doi: 10.25080/majora-212e5952-005 – volume-title: A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Mathematics year: 2008 ident: 2024062514515869000_ref33 – start-page: 49 year: 1902 ident: 2024062514515869000_ref26 article-title: Sur les problèmes aux dérivées partielles et leur signification physique publication-title: Princeton University Bulletin – volume: 44 start-page: 83 year: 2024 ident: 2024062514515869000_ref18 article-title: Error estimates for physics-informed neural networks approximating the navier–stokes equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drac085 – volume: 289 start-page: 298 year: 2016 ident: 2024062514515869000_ref70 article-title: Superconvergence analysis of conforming finite element method for nonlinear Schrödinger equation publication-title: Appl. Math. Comput. – volume: 40 start-page: 231 year: 1954 ident: 2024062514515869000_ref5 article-title: Dynamic programming and a new formalism in the calculus of variations publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.40.4.231  | 
    
| SSID | ssj0001570 | 
    
| Score | 2.6036716 | 
    
| Snippet | Partial differential equations (PDEs) play a fundamental role in the mathematical modelling of many processes and systems in physical, biological and other... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 143 | 
    
| SubjectTerms | Original Papers | 
    
| Title | Can physics-informed neural networks beat the finite element method? | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/38933736 https://www.proquest.com/docview/3072814099 https://pubmed.ncbi.nlm.nih.gov/PMC11197852 https://doi.org/10.1093/imamat/hxae011  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 89 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate (EBSCOhost) customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1464-3634 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0001570 issn: 0272-4960 databaseCode: ABDBF dateStart: 19960201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1464-3634 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0001570 issn: 0272-4960 databaseCode: AMVHM dateStart: 19960201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JbxMxFH6C5AAc2KHDEhmEBBe3E28zPqGoUCKkFA4NCqeRVzUinVYkEcuvx44no04RCud5tjz2e8-f3vIZ4JXTIpc-95jpmGYkSuKSaIKVZ8TrnAePGOOQk2MxnrKPMz5rCmRjL0wnfy_pwfxMBeR2cPpTuTy28PYFD5i7B_3p8efR100ApSCYydQOzATDVFDWsjNenaBz-3Q62i4By7_rI2-s6wv164daLC5dPkd34MN22anm5Nv-eqX3ze8rjI67_-su3G7wJxolhbkH11x9H25NWvLW5QN4d6hqlCIeS5yIVZ1FkfgyDKxT2fgS6eDEURiF_DzCVuRSHTpKT1K_fQjTo_cnh2PcPLaATTDbFS6s8ZELUJXMqgADbclLYwouPffBB5V6SL1y3hc-WDBjlEgfNmjohXE6d1bRR9Crz2u3B0gUhFtCvPDKMqMKPTSqdJZKK6U33GeAt4dQmYaJPD6IsahSRpxWaXeqZncyeN3KXyQOjn9KvgxnulPoxfbIq2BLMUGiane-XlbB35ENA5jM4HFSgXauCOxoQUUGZUc5WoHI0939Us9PN3zdw5iqLTnJ4E2rRzvW-OT_RZ_CTRKAVgoLPYPe6vvaPQ9AaaUH0B9NvownA7h-8mk2aGzmD7deGbM | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6h7QE4lHcbXjIICS5us34lPqGqUCqkVhxYqZwiv0ZdsaQVuysevx57nY2aIrScM7Yce2b8aR6fAV4Fq0qNJVJhU5qRGU1rZhk1KBjaUkaPmOKQJ6fqeCI-nsmzrkA29cIM8vea70-_mYjc9s9_mlCmFt4tJSPmHsHW5PTTwZdVAKViVOjcDiyUoFxx0bMzXp9gcPsMOtquAMu_6yNvLttL8-uHmc2uXD5Hd-DDetm55uTr3nJh99zva4yOm__rLmx3-JMcZIW5BzdCex9un_TkrfMH8O7QtCRHPOY0E6sGTxLxZRzY5rLxObHRiZM4iuA0wVYSch06yU9Sv30Ik6P3nw-PaffYAnXRbBe08g4TF6CphTcRBvpa1s5VUqPE6INqO-ZoAmKF0YKF4Exj3KAxKhdsGbzhj2DUXrRhF4iqmPSMoULjhTOVHTtTB8-11xqdxALo-hAa1zGRpwcxZk3OiPMm707T7U4Br3v5y8zB8U_Jl_FMNwq9WB95E20pJUhMGy6W8yb6O7ZiANMF7GQV6OdKwI5XXBVQD5SjF0g83cMv7fR8xdc9TqnaWrIC3vR6tGGNj_9f9AncYhFo5bDQUxgtvi_DswiUFvZ5ZyV_AGW1Fvs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Can+physics-informed+neural+networks+beat+the+finite+element+method%3F&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=Grossmann%2C+Tamara+G&rft.au=Komorowska%2C+Urszula+Julia&rft.au=Latz%2C+Jonas&rft.au=Sch%C3%B6nlieb%2C+Carola-Bibiane&rft.date=2024-01-01&rft.pub=Oxford+University+Press&rft.issn=0272-4960&rft.eissn=1464-3634&rft.volume=89&rft.issue=1&rft.spage=143&rft.epage=174&rft_id=info:doi/10.1093%2Fimamat%2Fhxae011&rft.externalDocID=10.1093%2Fimamat%2Fhxae011 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon |