Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation

Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 5; p. 255
Main Authors Velichko, Andrei, Belyaev, Maksim, Izotov, Yuriy, Murugappan, Murugappan, Heidari, Hanif
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2023
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a16050255

Cover

Abstract Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets in relation to the entropy of the time series recorded in the reservoir of the neural network. NNetEn estimates the chaotic dynamics of time series in an original way and does not take into account probability distribution functions. We propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis. For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The electroencephalography signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented.
AbstractList Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets in relation to the entropy of the time series recorded in the reservoir of the neural network. NNetEn estimates the chaotic dynamics of time series in an original way and does not take into account probability distribution functions. We propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis. For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The electroencephalography signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented.
Audience Academic
Author Murugappan, Murugappan
Heidari, Hanif
Izotov, Yuriy
Belyaev, Maksim
Velichko, Andrei
Author_xml – sequence: 1
  givenname: Andrei
  orcidid: 0000-0002-9341-1831
  surname: Velichko
  fullname: Velichko, Andrei
– sequence: 2
  givenname: Maksim
  surname: Belyaev
  fullname: Belyaev, Maksim
– sequence: 3
  givenname: Yuriy
  orcidid: 0000-0002-4217-7969
  surname: Izotov
  fullname: Izotov, Yuriy
– sequence: 4
  givenname: Murugappan
  orcidid: 0000-0002-5839-4589
  surname: Murugappan
  fullname: Murugappan, Murugappan
– sequence: 5
  givenname: Hanif
  orcidid: 0000-0002-6321-3295
  surname: Heidari
  fullname: Heidari, Hanif
BookMark eNp1kt1q3DAQhU1JoUnai76BoDdNySaSbEl271LjpoGwDSS9FrPyaKON19pKNmGfoK8dZd2mP6QIJHE452NmpINsr_c9ZtlbRk_yvKKnwCQVlAvxIttnVVXNirLK9_64v8oOYlxRKkUl2X72Y45jgI7Mcbj34Y40_RD8Zkvez5PS9EcffymzTxCxJU1zTq7dsk8R6FtS34IfnCE3bo3kGoPDSOoOYnTWGRic74_J1Xa49T25AnMHSyTWBzLBSQ2dGbud7XX20kIX8c3P8zD79rm5qb_MLr-eX9RnlzNTcDHMpLWUFohClGARmAXgMhcLo6AoFC-UVAtOc6mUEIybJAMFDgyhrNCUmB9mFxO39bDSm-DWELbag9M7wYelhpA66lC3hqNa5EzYnBcMZCkrtUgbKiyE4TyxPkyssd_A9h667gnIqH58Dv30HMn8bjJvgv8-Yhz0yo8hzTFqXrKKS1ZK9tu1hFSB660fApi1i0afKUHLUkr1yDp5xpVWi2tn0oewLul_BU6ngAk-xoBWGzfs5p6Crnu23KN_Ev9v7QHHcsIH
CitedBy_id crossref_primary_10_3390_jpm15010027
crossref_primary_10_1142_S0129183125500457
crossref_primary_10_1016_j_biosystems_2023_105020
crossref_primary_10_3390_electronics13142727
crossref_primary_10_3390_signals6010007
crossref_primary_10_3390_s23167137
crossref_primary_10_1029_2023SW003475
crossref_primary_10_3390_math12070938
Cites_doi 10.1016/j.ins.2013.12.029
10.3390/e20010021
10.1007/s11265-020-01611-5
10.3390/e19120652
10.1140/epjst/e2013-01862-7
10.1007/s11571-020-09626-1
10.3389/fnins.2020.00700
10.1142/S0129065716500052
10.1109/TAFFC.2020.3031004
10.3390/e23020222
10.1016/j.compbiomed.2019.04.015
10.1023/A:1023785123428
10.1007/s11071-023-08298-w
10.3390/e20060449
10.3390/s21185989
10.3390/rs14092166
10.1016/j.asoc.2010.11.020
10.3390/e24111693
10.1029/2022JA030630
10.1088/1361-6579/ab499e
10.3390/s22134820
10.1109/RBME.2020.2969915
10.3390/en13102487
10.1109/CSPA.2013.6530058
10.3390/e14081553
10.3389/fphys.2017.00720
10.1007/s11517-014-1216-0
10.1088/1742-6596/2094/3/032015
10.1371/journal.pone.0259448
10.1007/s13246-015-0333-x
10.1109/ACCESS.2019.2929266
10.1016/j.knosys.2015.08.004
10.3390/diagnostics11081437
10.1016/j.measurement.2022.111446
10.3390/electronics9091432
10.1016/j.bspc.2013.08.001
10.1186/s40708-021-00141-5
10.1007/s11741-008-0511-3
10.1109/TBME.2017.2664105
10.3390/e18010022
10.3390/e23111432
10.1109/ACCESS.2019.2917303
10.3390/technologies9040081
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a16050255
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_dc2e7b315f3241a68697b869e7e45c22
10.3390/a16050255
A750886675
10_3390_a16050255
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
COVID
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c425t-6ff004ee558afea1faa2635bc7a44724767b2036775512cc7aa0a2a1ea89ec8e3
IEDL.DBID UNPAY
ISSN 1999-4893
IngestDate Fri Oct 03 12:52:49 EDT 2025
Sun Oct 26 04:09:12 EDT 2025
Fri Jul 25 10:46:10 EDT 2025
Mon Oct 20 22:09:23 EDT 2025
Mon Oct 20 16:25:26 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Thu Oct 16 04:24:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-6ff004ee558afea1faa2635bc7a44724767b2036775512cc7aa0a2a1ea89ec8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6321-3295
0000-0002-4217-7969
0000-0002-5839-4589
0000-0002-9341-1831
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1999-4893/16/5/255/pdf?version=1684751497
PQID 2819261861
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_dc2e7b315f3241a68697b869e7e45c22
unpaywall_primary_10_3390_a16050255
proquest_journals_2819261861
gale_infotracmisc_A750886675
gale_infotracacademiconefile_A750886675
crossref_citationtrail_10_3390_a16050255
crossref_primary_10_3390_a16050255
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Li (ref_16) 2015; 53
Yang (ref_25) 2023; 14
ref_11
ref_10
Hussain (ref_15) 2019; 7
Acharya (ref_41) 2015; 88
Yan (ref_23) 2019; 109
Chiang (ref_13) 2019; 7
Karmakar (ref_5) 2017; 8
Xie (ref_12) 2011; 11
Hosseini (ref_43) 2021; 14
Tonoyan (ref_8) 2016; 26
Zanin (ref_17) 2012; 14
ref_20
Heidari (ref_29) 2023; 111
Banerjee (ref_21) 2014; 264
ref_27
ref_26
Heidari (ref_28) 2021; 2094
Oludehinwa (ref_35) 2022; 127
Amin (ref_40) 2015; 38
ref_36
ref_34
ref_33
ref_32
Li (ref_31) 2022; 199
ref_30
Nezafati (ref_9) 2020; 14
ref_39
Manis (ref_19) 2017; 64
ref_37
Gao (ref_38) 2021; 15
Patel (ref_14) 2021; 8
Riedl (ref_18) 2013; 222
ref_47
ref_46
ref_44
Rohila (ref_24) 2019; 40
ref_42
Nath (ref_45) 2022; 94
ref_1
Li (ref_22) 2008; 12
Jacobson (ref_2) 2003; 33
ref_3
ref_49
Hill (ref_51) 2013; 8
ref_48
Yang (ref_6) 2000; 22
ref_4
ref_7
References_xml – volume: 264
  start-page: 118
  year: 2014
  ident: ref_21
  article-title: Feature selection with SVD entropy: Some modification and extension
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.029
– ident: ref_49
– ident: ref_32
– ident: ref_11
  doi: 10.3390/e20010021
– volume: 94
  start-page: 513
  year: 2022
  ident: ref_45
  article-title: Machine learning based stress monitoring in older adults using wearable sensors and cortisol as stress biomarker
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-020-01611-5
– ident: ref_10
  doi: 10.3390/e19120652
– volume: 222
  start-page: 249
  year: 2013
  ident: ref_18
  article-title: Practical considerations of permutation entropy
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2013-01862-7
– volume: 15
  start-page: 369
  year: 2021
  ident: ref_38
  article-title: Complex networks and deep learning for EEG signal analysis
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09626-1
– volume: 14
  start-page: 700
  year: 2020
  ident: ref_9
  article-title: Functional MRI signal complexity analysis using sample entropy
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00700
– volume: 26
  start-page: 1650005
  year: 2016
  ident: ref_8
  article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065716500052
– volume: 14
  start-page: 321
  year: 2023
  ident: ref_25
  article-title: Classification of interbeat interval time-series using attention entropy
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.3031004
– ident: ref_42
– ident: ref_1
  doi: 10.3390/e23020222
– volume: 109
  start-page: 280
  year: 2019
  ident: ref_23
  article-title: Novel gridded descriptors of poincaré plot for analyzing heartbeat interval time-series
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.04.015
– volume: 33
  start-page: 323
  year: 2003
  ident: ref_2
  article-title: Horizon Entropy
  publication-title: Found. Phys.
  doi: 10.1023/A:1023785123428
– volume: 111
  start-page: 9305
  year: 2023
  ident: ref_29
  article-title: Novel techniques for improving NNetEn entropy calculation for short and noisy time series
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-023-08298-w
– ident: ref_7
  doi: 10.3390/e20060449
– ident: ref_4
– ident: ref_50
  doi: 10.3390/s21185989
– ident: ref_33
  doi: 10.3390/rs14092166
– ident: ref_48
– volume: 11
  start-page: 2871
  year: 2011
  ident: ref_12
  article-title: Complexity analysis of the biomedical signal using fuzzy entropy measurement
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.11.020
– ident: ref_34
  doi: 10.3390/e24111693
– volume: 127
  start-page: e2022JA030630
  year: 2022
  ident: ref_35
  article-title: Dynamical complexity response in Traveling Ionospheric Disturbances across Eastern Africa sector during geomagnetic storms using Neural Network Entropy
  publication-title: J. Geophys. Res. Space Phys.
  doi: 10.1029/2022JA030630
– volume: 40
  start-page: 105006
  year: 2019
  ident: ref_24
  article-title: Phase entropy: A new complexity measure for heart rate variability
  publication-title: Physiol. Meas.
  doi: 10.1088/1361-6579/ab499e
– ident: ref_36
  doi: 10.3390/s22134820
– volume: 14
  start-page: 204
  year: 2021
  ident: ref_43
  article-title: A Review on Machine Learning for EEG Signal Processing in Bioengineering
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2020.2969915
– volume: 22
  start-page: 72
  year: 2000
  ident: ref_6
  article-title: Approximate Entropy and Its Application to Biosignal Analysis
  publication-title: Nonlinear Biomed. Signal Process.
– ident: ref_3
  doi: 10.3390/en13102487
– ident: ref_39
  doi: 10.1109/CSPA.2013.6530058
– volume: 14
  start-page: 1553
  year: 2012
  ident: ref_17
  article-title: Permutation entropy and its main biomedical and econophysics applications: A review
  publication-title: Entropy
  doi: 10.3390/e14081553
– volume: 8
  start-page: 720
  year: 2017
  ident: ref_5
  article-title: Stability, consistency and performance of distribution entropy in analysing short length heart rate variability (HRV) signal
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2017.00720
– volume: 53
  start-page: 77
  year: 2015
  ident: ref_16
  article-title: Assessing the complexity of short-term heartbeat interval series by distribution entropy
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1216-0
– ident: ref_30
– volume: 2094
  start-page: 32015
  year: 2021
  ident: ref_28
  article-title: An improved LogNNet classifier for IoT applications
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2094/3/032015
– ident: ref_47
  doi: 10.1371/journal.pone.0259448
– volume: 38
  start-page: 139
  year: 2015
  ident: ref_40
  article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques
  publication-title: Australas. Phys. Eng. Sci. Med.
  doi: 10.1007/s13246-015-0333-x
– volume: 7
  start-page: 103255
  year: 2019
  ident: ref_13
  article-title: Wavelet-Based EEG Processing for Epilepsy Detection Using Fuzzy Entropy and Associative Petri Net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929266
– volume: 88
  start-page: 85
  year: 2015
  ident: ref_41
  article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.08.004
– ident: ref_37
  doi: 10.3390/diagnostics11081437
– volume: 199
  start-page: 111446
  year: 2022
  ident: ref_31
  article-title: Research on feature extraction method of ship radiated noise with K-nearest neighbor mutual information variational mode decomposition, neural network estimation time entropy and self-organizing map neural network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111446
– ident: ref_27
  doi: 10.3390/electronics9091432
– volume: 8
  start-page: 838
  year: 2013
  ident: ref_51
  article-title: Respiratory cycle related EEG changes: Modified respiratory cycle segmentation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2013.08.001
– volume: 8
  start-page: 20
  year: 2021
  ident: ref_14
  article-title: EEG-based human emotion recognition using entropy as a feature extraction measure
  publication-title: Brain Inform.
  doi: 10.1186/s40708-021-00141-5
– ident: ref_46
– volume: 12
  start-page: 433
  year: 2008
  ident: ref_22
  article-title: Analysis of heart rate variability based on singular value decomposition entropy
  publication-title: J. Shanghai Univ. Engl. Ed.
  doi: 10.1007/s11741-008-0511-3
– volume: 64
  start-page: 2711
  year: 2017
  ident: ref_19
  article-title: Bubble Entropy: An entropy almost free of parameters
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2664105
– ident: ref_20
  doi: 10.3390/e18010022
– ident: ref_26
  doi: 10.3390/e23111432
– volume: 7
  start-page: 64704
  year: 2019
  ident: ref_15
  article-title: Analyzing the Dynamics of Lung Cancer Imaging Data Using Refined Fuzzy Entropy Methods by Extracting Different Features
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917303
– ident: ref_44
  doi: 10.3390/technologies9040081
SSID ssj0065961
Score 2.3333662
Snippet Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 255
SubjectTerms Algorithms
Analysis
Classification
Datasets
Distribution (Probability theory)
Distribution functions
Electroencephalography
Emotions
Entropy
Entropy (Information theory)
entropy features
Heart rate
neural network entropy
Neural networks
NNetEn
Probability distribution
Probability distribution functions
Python
Separation
Severe acute respiratory syndrome coronavirus 2
Signal classification
Software
Synergistic effect
Time series
time series classification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDLfQXoAH_iMKG4oAiSFR7dKmScPbduqYkDhNgkl7i9w0hWmn7sRuQvcJ-Nqzm_a0EyBeeOlD4qZJbMdO4_wM8KYlK6c92lTaWqd88JZiU-apVY2mirwxiu87f57poxP16bQ4vZHqi2PCIjxwnLi9xmfB1LksWjL9EnWpranpEUxQhc_61XdS2nEzFddgXVgtI45QTpv6PZTUCfaeN6xPD9L_-1J8F25fdQtc_cT5_IatOXwA9wYnUezHzj2EW6F7BPfHBAxi0MfH8IuhNYhwFmO5RcVh54uV2J1RSdW9-zCWpAdkrBpRVR_Fl7Nv3DZ2jZh-xwv6guBrIIJ_k4VL0SfJ5PChnmPvxfGKwQXEMfpzWnkEubgiNi6mOPdD7q8ncHJYfZ0epUNmhdSTji5T3bakHCEURYltQNkiMihN7Q0qZTJltKn5hNIYcqgyT8U4wQxlwNIGX4b8KWx1F114BkLbkl6RppkgOWO-tT7k1FRQxCqrcpPA7jjjzg-w45z9Yu5o-8HMcWvmJPBqTbqIWBt_Ijpgtq0JGB67LyChcYPQuH8JTQJvmemOlZg643G4i0BDYjgst2_Yb9W0mUpge4OSlM9vVo9i4wblv3R8NplxHgKZwOu1KP19SM__x5BewJ2M_K8Yi7kNW8sfV2GH_KVl_bJXjWuzLg78
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfG7QF44HuiMFAESAyJaEs_khYJod2pY0KiOgGT9la5aToQp96x3YTuL-Dfxm7TgxMfL31I3TSJY8dJ7J8BnjW0ymmLmVRZpSVfvEms00hmca3pRVSbmOOd3xf6-CR-d5qcbkExxMKwW-WgEztFXc8tn5Hv84VPyODu6s3im-SsUXy7OqTQQJ9aoX7dQYxdge2QkbFGsD3Oi-mHQTfrJNOqxxeKaLO_j4oax1b1xqrUgff_qaKvw9XLdoGr7zib_bYGHd2CG954FIc9t2_DlmvvwM0hMYPwcnoXfjDkBhEWvY-3yNkdfbESewWV5O2LV0OJHNMiVos8fys-fjnjurGtxeQzzukPgsNDBB-fuQvRJc9kt6KOky_FdMWgA2KK9itpJEGmr-grFxOcWZ8T7B6cHOWfJsfSZ1yQlmR3KXXTkNA4lyQpNg5Vg8hgNZU1GMcmjI02Fd9cGkOjHFoqxgMMUTlMM2dTF-3AqJ237j4InaX0iTL1AZKRZpvMuoiqcjFqhnw3AewNI15aD0fOWTFmJW1LmDnlmjkBPFmTLnoMjr8RjZltawKGze4K5udnpZfCsrahM1WkkobsSEUt0Zmp6OGMozaGYQDPmeklCzc1xqKPUaAuMUxWeWjYntW0yQpgd4OShNJuvh6mTemVwkX5awoH8HQ9lf7dpQf_r-QhXAvJ4uq9L3dhtDy_dI_IQlpWj_20_wlOHQ2P
  priority: 102
  providerName: ProQuest
Title Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation
URI https://www.proquest.com/docview/2819261861
https://www.mdpi.com/1999-4893/16/5/255/pdf?version=1684751497
https://doaj.org/article/dc2e7b315f3241a68697b869e7e45c22
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QE4sDxFYaksQGKRyGbzshMuqK3SXSFRVUCl5RRNHGdZbZVW2xZU_gB_m5nErSgPCXHJwZk4Y3k8_myPvwF4XtIsJzUmjpfk0uGDNweLOHCSsJD0IihUyPed343k6SR8exad2Q23hQ2rpKX4Re2k6yvyzI7ietKNXEK_7rwo33yxO0meJNdKE36i9qAtI8LiLWhPRuPep_oo2X7b0AkFtLZ30SNdGETvTEI1V__vHvkmXF9Vc1x_xen0pylnuA_ZRtkm0uTyaLXMj_S3X3gc_781t-GWRaOi15jPHbhmqruwv8n0IOzAvwffmcODBEdN0LhIOb59vhaHIypJq5evNyVOn2bFQqTpifhwcc51Y1WIwWec0R8E3zcRvB9nFqLOxslxSrVpvBLjNbMYiDHqS3JxgrC0aCoXA5xqm2TsPkyG6cfBqWNTODianMHSkWVJo9CYKIqxNOiViMx-k2uFYaj8UEmV81GoUoTcfE3FeIw-egbjxOjYBA-gVc0q8xCETGL6xFPFMRLq02WiTUBVmRAlc8irDhxu-jTTlt-c02xMM1rncPdn2-7vwNOt6Lwh9fiTUJ8NYyvAPNx1wezqPLPDOiu0b1QeeFFJwNQjTWSicnoYZUhH3-_ACzarjL0FKaPRXnqgJjHvVtZTDJAlrdo6cLAjSaNc777eGGZmvcwi40NQnxMeeB14tjXWvzfp0T9JPYYbPiG5JqrzAFrLq5V5QshrmXdhLx6edKHdT0fj9916_6Jrh9wPb30oFQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB64I0IFFjxEEXCavzajZEq1ASXlLZWVFqpNzNer1tE5IQmVZVfwL_itzFjrwMRj1svPqzH4_XO7Mysd_YbgBcFeTmpMXLcKJMOb7w5mHd8JwpySTf8XAV83vkgkf3j4ONJeLIEP5qzMJxW2djEylDnI83_yDd5w8djcHf33fibw1WjeHe1KaGBtrRCvlVBjNmDHXtmdklLuMnW7nuS90vP24mPen3HVhlwNOnr1JFFQYpiTBh2sDDoFogM0JJphUGgvEBJlfFunVLE2dPUjG300DXYiYzuGJ_4XoOVwA8iWvytdONkcNj4AhlG0q3xjHw_am-iS4PBUfyCF6yKBfzpEtZg9aIc4-wSh8PffN7OLbhhg1WxXWvXbVgy5R242RSCENYu3IXvDPFBhEmdUy5iTn8fz8RGQi1x-fpt0-J0yWnmIo4_iE9fTpk3lrnoneGI3iD4OIrg33VmIqpinZzGVGnOGzGYMciBGKD-ShZQUKgtauaih0Nta5Ddg-MrGfv7sFyOSvMAhIw69Iir8jZSUKiLSBufWJkAJUPMqxZsNCOeagt_zlU4hiktg1g46Vw4LXg2Jx3XmB9_I-qy2OYEDNNdNYzOT1M769Nce0ZlvhsWFLe61BMZqYwuRhnqo-e14BULPWVjQp3RaM9E0CcxLFe6rTh-lrSoa8H6AiUZAb14u1Gb1BqhSfpryrTg-VyV_v1JD__P5Cms9o8O9tP93WTvEVz3KNqrMz_XYXl6fmEeU3Q2zZ7YKSDg81XPup9vnUrt
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8cFcYCqw4RJGwEq_tXRsJoTZ12lKIIpVKfXPH63VBRE5oUlX5Bfwnfh0zPgIRx1tf_LBej9e7c6135huA5wVZOWUwdr04Uy4fvLmYR74bB7miG36uA853_jhQu4fB-6PwaAV-tLkwHFbZ6sRKUedjw__IO3zgIxnc3esUTVjEcLv_bvLN5QpSfNLaltOoWWTfzs9p-zZ9u7dNa_1Cyn7yqbfrNhUGXEO8OnNVURCTWBuGERYWvQKRwVkyozEItAy00hmf1GlNjoU01IxdlOhZjGJrIusT3UtwWTOKO2ep93daK6DCWHk1kpHvx90OejQN7L8v2b-qTMCfxuA6XD0rJzg_x9HoN2vXvwU3GjdVbNZ8dRtWbHkHbrYlIESjEe7Cdwb3oI6DOppcJBz4PpmLjQG1JOWrN22Lu0XmMhdJsiMOvpwwbSxz0fuMY3qD4EQUwT_q7FRUZTo5gKnimddiOGd4AzFE85V0nyAnW9TERQ9Hpqk-dg8OL2Tm12C1HJf2PggVR_SIp_MukjtoithYn0jZABWDy2sHNtoZT00DfM71N0YpbYB4cdLF4jjwdNF1UqN9_K3TFi_bogMDdFcN49OTtJH3NDfS6sz3woI8Vo9GomKd0cVqS2OU0oGXvOgpqxEajMEmG4I-iQG50k3NnrOi7ZwD60s9SfzN8u2WbdJG_UzTX8LiwLMFK_37kx78n8gTuEKyln7YG-w_hGuS3Lw65HMdVmenZ_YRuWWz7HHF_wKOL1rgfgJeXEiH
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B9wA8MD5FYCALkBgSWeZ82AkvqKs6JiSqSlBpPEUXxxnTqrRaW1D5B_i3uUucivIhIV7y4Fycs3w-_2yffwfwvKJZThnMfJkVyueDNx_LNPKzuFT0Iip1zPed34_UySR-d5qcug23hQurpKX4eeOkmyvyzI4SSBUkAaHfYF5Wb764nSSpyLXShJ_pq7CjEsLiPdiZjMb9T81Rsvu2pROKaG0foCRdGERvTUINV__vHvkGXFvVc1x_xen0pynneBfyTtk20uTiYLUsDsy3X3gc_781t-CmQ6Oi35rPbbhi6zuw22V6EG7g34XvzOFBgqM2aFwMOb59vhb7IyoZ1i9fdyX-Ec2KpRgO34oP52dcN9alGHzGGf1B8H0TwftxdiGabJwcp9SYxisxXjOLgRijuSAXJwhLi7ZyMcCpcUnG7sHkePhxcOK7FA6-IWew9FVV0Si0NklSrCzKCpHZbwqjMY51GGulCz4K1ZqQW2ioGA8xRGkxzaxJbXQfevWstg9AqCylT6QuD5FQn6kyYyOqysaomENee7Df9WluHL85p9mY5rTO4e7PN93vwdON6Lwl9fiT0BEbxkaAebibgtnlWe6GdV6a0OoikklFwFSSJirTBT2stqRjGHrwgs0qZ29Byhh0lx6oScy7lfc1A2RFqzYP9rYkaZSb7dedYebOyyxyPgQNOeGB9ODZxlj_3qSH_yT1CK6HhOTaqM496C0vV_YxIa9l8cQNrx94yiSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Entropy+%3A+Entropy-Based+EEG+Signal+and+Chaotic+Time+Series+Classification%2C+Python+Package+for+NNetEn+Calculation&rft.jtitle=Algorithms&rft.au=Velichko%2C+Andrei&rft.au=Belyaev%2C+Maksim&rft.au=Izotov%2C+Yuriy&rft.au=Murugappan%2C+Murugappan&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=5&rft_id=info:doi/10.3390%2Fa16050255&rft.externalDocID=A750886675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon