Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation
Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic...
Saved in:
| Published in | Algorithms Vol. 16; no. 5; p. 255 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a16050255 |
Cover
| Abstract | Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets in relation to the entropy of the time series recorded in the reservoir of the neural network. NNetEn estimates the chaotic dynamics of time series in an original way and does not take into account probability distribution functions. We propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis. For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The electroencephalography signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented. |
|---|---|
| AbstractList | Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability distribution function. However, for the effective separation of time series, new entropy estimation methods are required to characterize the chaotic dynamic of the system. Our concept of Neural Network Entropy (NNetEn) is based on the classification of special datasets in relation to the entropy of the time series recorded in the reservoir of the neural network. NNetEn estimates the chaotic dynamics of time series in an original way and does not take into account probability distribution functions. We propose two new classification metrics: R2 Efficiency and Pearson Efficiency. The efficiency of NNetEn is verified on separation of two chaotic time series of sine mapping using dispersion analysis. For two close dynamic time series (r = 1.1918 and r = 1.2243), the F-ratio has reached the value of 124 and reflects high efficiency of the introduced method in classification problems. The electroencephalography signal classification for healthy persons and patients with Alzheimer disease illustrates the practical application of the NNetEn features. Our computations demonstrate the synergistic effect of increasing classification accuracy when applying traditional entropy measures and the NNetEn concept conjointly. An implementation of the algorithms in Python is presented. |
| Audience | Academic |
| Author | Murugappan, Murugappan Heidari, Hanif Izotov, Yuriy Belyaev, Maksim Velichko, Andrei |
| Author_xml | – sequence: 1 givenname: Andrei orcidid: 0000-0002-9341-1831 surname: Velichko fullname: Velichko, Andrei – sequence: 2 givenname: Maksim surname: Belyaev fullname: Belyaev, Maksim – sequence: 3 givenname: Yuriy orcidid: 0000-0002-4217-7969 surname: Izotov fullname: Izotov, Yuriy – sequence: 4 givenname: Murugappan orcidid: 0000-0002-5839-4589 surname: Murugappan fullname: Murugappan, Murugappan – sequence: 5 givenname: Hanif orcidid: 0000-0002-6321-3295 surname: Heidari fullname: Heidari, Hanif |
| BookMark | eNp1kt1q3DAQhU1JoUnai76BoDdNySaSbEl271LjpoGwDSS9FrPyaKON19pKNmGfoK8dZd2mP6QIJHE452NmpINsr_c9ZtlbRk_yvKKnwCQVlAvxIttnVVXNirLK9_64v8oOYlxRKkUl2X72Y45jgI7Mcbj34Y40_RD8Zkvez5PS9EcffymzTxCxJU1zTq7dsk8R6FtS34IfnCE3bo3kGoPDSOoOYnTWGRic74_J1Xa49T25AnMHSyTWBzLBSQ2dGbud7XX20kIX8c3P8zD79rm5qb_MLr-eX9RnlzNTcDHMpLWUFohClGARmAXgMhcLo6AoFC-UVAtOc6mUEIybJAMFDgyhrNCUmB9mFxO39bDSm-DWELbag9M7wYelhpA66lC3hqNa5EzYnBcMZCkrtUgbKiyE4TyxPkyssd_A9h667gnIqH58Dv30HMn8bjJvgv8-Yhz0yo8hzTFqXrKKS1ZK9tu1hFSB660fApi1i0afKUHLUkr1yDp5xpVWi2tn0oewLul_BU6ngAk-xoBWGzfs5p6Crnu23KN_Ev9v7QHHcsIH |
| CitedBy_id | crossref_primary_10_3390_jpm15010027 crossref_primary_10_1142_S0129183125500457 crossref_primary_10_1016_j_biosystems_2023_105020 crossref_primary_10_3390_electronics13142727 crossref_primary_10_3390_signals6010007 crossref_primary_10_3390_s23167137 crossref_primary_10_1029_2023SW003475 crossref_primary_10_3390_math12070938 |
| Cites_doi | 10.1016/j.ins.2013.12.029 10.3390/e20010021 10.1007/s11265-020-01611-5 10.3390/e19120652 10.1140/epjst/e2013-01862-7 10.1007/s11571-020-09626-1 10.3389/fnins.2020.00700 10.1142/S0129065716500052 10.1109/TAFFC.2020.3031004 10.3390/e23020222 10.1016/j.compbiomed.2019.04.015 10.1023/A:1023785123428 10.1007/s11071-023-08298-w 10.3390/e20060449 10.3390/s21185989 10.3390/rs14092166 10.1016/j.asoc.2010.11.020 10.3390/e24111693 10.1029/2022JA030630 10.1088/1361-6579/ab499e 10.3390/s22134820 10.1109/RBME.2020.2969915 10.3390/en13102487 10.1109/CSPA.2013.6530058 10.3390/e14081553 10.3389/fphys.2017.00720 10.1007/s11517-014-1216-0 10.1088/1742-6596/2094/3/032015 10.1371/journal.pone.0259448 10.1007/s13246-015-0333-x 10.1109/ACCESS.2019.2929266 10.1016/j.knosys.2015.08.004 10.3390/diagnostics11081437 10.1016/j.measurement.2022.111446 10.3390/electronics9091432 10.1016/j.bspc.2013.08.001 10.1186/s40708-021-00141-5 10.1007/s11741-008-0511-3 10.1109/TBME.2017.2664105 10.3390/e18010022 10.3390/e23111432 10.1109/ACCESS.2019.2917303 10.3390/technologies9040081 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a16050255 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_dc2e7b315f3241a68697b869e7e45c22 10.3390/a16050255 A750886675 10_3390_a16050255 |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK COVID FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c425t-6ff004ee558afea1faa2635bc7a44724767b2036775512cc7aa0a2a1ea89ec8e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:52:49 EDT 2025 Sun Oct 26 04:09:12 EDT 2025 Fri Jul 25 10:46:10 EDT 2025 Mon Oct 20 22:09:23 EDT 2025 Mon Oct 20 16:25:26 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Thu Oct 16 04:24:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c425t-6ff004ee558afea1faa2635bc7a44724767b2036775512cc7aa0a2a1ea89ec8e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6321-3295 0000-0002-4217-7969 0000-0002-5839-4589 0000-0002-9341-1831 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1999-4893/16/5/255/pdf?version=1684751497 |
| PQID | 2819261861 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_dc2e7b315f3241a68697b869e7e45c22 unpaywall_primary_10_3390_a16050255 proquest_journals_2819261861 gale_infotracmisc_A750886675 gale_infotracacademiconefile_A750886675 crossref_citationtrail_10_3390_a16050255 crossref_primary_10_3390_a16050255 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Li (ref_16) 2015; 53 Yang (ref_25) 2023; 14 ref_11 ref_10 Hussain (ref_15) 2019; 7 Acharya (ref_41) 2015; 88 Yan (ref_23) 2019; 109 Chiang (ref_13) 2019; 7 Karmakar (ref_5) 2017; 8 Xie (ref_12) 2011; 11 Hosseini (ref_43) 2021; 14 Tonoyan (ref_8) 2016; 26 Zanin (ref_17) 2012; 14 ref_20 Heidari (ref_29) 2023; 111 Banerjee (ref_21) 2014; 264 ref_27 ref_26 Heidari (ref_28) 2021; 2094 Oludehinwa (ref_35) 2022; 127 Amin (ref_40) 2015; 38 ref_36 ref_34 ref_33 ref_32 Li (ref_31) 2022; 199 ref_30 Nezafati (ref_9) 2020; 14 ref_39 Manis (ref_19) 2017; 64 ref_37 Gao (ref_38) 2021; 15 Patel (ref_14) 2021; 8 Riedl (ref_18) 2013; 222 ref_47 ref_46 ref_44 Rohila (ref_24) 2019; 40 ref_42 Nath (ref_45) 2022; 94 ref_1 Li (ref_22) 2008; 12 Jacobson (ref_2) 2003; 33 ref_3 ref_49 Hill (ref_51) 2013; 8 ref_48 Yang (ref_6) 2000; 22 ref_4 ref_7 |
| References_xml | – volume: 264 start-page: 118 year: 2014 ident: ref_21 article-title: Feature selection with SVD entropy: Some modification and extension publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.029 – ident: ref_49 – ident: ref_32 – ident: ref_11 doi: 10.3390/e20010021 – volume: 94 start-page: 513 year: 2022 ident: ref_45 article-title: Machine learning based stress monitoring in older adults using wearable sensors and cortisol as stress biomarker publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-020-01611-5 – ident: ref_10 doi: 10.3390/e19120652 – volume: 222 start-page: 249 year: 2013 ident: ref_18 article-title: Practical considerations of permutation entropy publication-title: Eur. Phys. J. Spec. Top. doi: 10.1140/epjst/e2013-01862-7 – volume: 15 start-page: 369 year: 2021 ident: ref_38 article-title: Complex networks and deep learning for EEG signal analysis publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09626-1 – volume: 14 start-page: 700 year: 2020 ident: ref_9 article-title: Functional MRI signal complexity analysis using sample entropy publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00700 – volume: 26 start-page: 1650005 year: 2016 ident: ref_8 article-title: Discriminating multiple emotional states from EEG using a data-adaptive, multiscale information-theoretic approach publication-title: Int. J. Neural Syst. doi: 10.1142/S0129065716500052 – volume: 14 start-page: 321 year: 2023 ident: ref_25 article-title: Classification of interbeat interval time-series using attention entropy publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.3031004 – ident: ref_42 – ident: ref_1 doi: 10.3390/e23020222 – volume: 109 start-page: 280 year: 2019 ident: ref_23 article-title: Novel gridded descriptors of poincaré plot for analyzing heartbeat interval time-series publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.04.015 – volume: 33 start-page: 323 year: 2003 ident: ref_2 article-title: Horizon Entropy publication-title: Found. Phys. doi: 10.1023/A:1023785123428 – volume: 111 start-page: 9305 year: 2023 ident: ref_29 article-title: Novel techniques for improving NNetEn entropy calculation for short and noisy time series publication-title: Nonlinear Dyn. doi: 10.1007/s11071-023-08298-w – ident: ref_7 doi: 10.3390/e20060449 – ident: ref_4 – ident: ref_50 doi: 10.3390/s21185989 – ident: ref_33 doi: 10.3390/rs14092166 – ident: ref_48 – volume: 11 start-page: 2871 year: 2011 ident: ref_12 article-title: Complexity analysis of the biomedical signal using fuzzy entropy measurement publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.11.020 – ident: ref_34 doi: 10.3390/e24111693 – volume: 127 start-page: e2022JA030630 year: 2022 ident: ref_35 article-title: Dynamical complexity response in Traveling Ionospheric Disturbances across Eastern Africa sector during geomagnetic storms using Neural Network Entropy publication-title: J. Geophys. Res. Space Phys. doi: 10.1029/2022JA030630 – volume: 40 start-page: 105006 year: 2019 ident: ref_24 article-title: Phase entropy: A new complexity measure for heart rate variability publication-title: Physiol. Meas. doi: 10.1088/1361-6579/ab499e – ident: ref_36 doi: 10.3390/s22134820 – volume: 14 start-page: 204 year: 2021 ident: ref_43 article-title: A Review on Machine Learning for EEG Signal Processing in Bioengineering publication-title: IEEE Rev. Biomed. Eng. doi: 10.1109/RBME.2020.2969915 – volume: 22 start-page: 72 year: 2000 ident: ref_6 article-title: Approximate Entropy and Its Application to Biosignal Analysis publication-title: Nonlinear Biomed. Signal Process. – ident: ref_3 doi: 10.3390/en13102487 – ident: ref_39 doi: 10.1109/CSPA.2013.6530058 – volume: 14 start-page: 1553 year: 2012 ident: ref_17 article-title: Permutation entropy and its main biomedical and econophysics applications: A review publication-title: Entropy doi: 10.3390/e14081553 – volume: 8 start-page: 720 year: 2017 ident: ref_5 article-title: Stability, consistency and performance of distribution entropy in analysing short length heart rate variability (HRV) signal publication-title: Front. Physiol. doi: 10.3389/fphys.2017.00720 – volume: 53 start-page: 77 year: 2015 ident: ref_16 article-title: Assessing the complexity of short-term heartbeat interval series by distribution entropy publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-014-1216-0 – ident: ref_30 – volume: 2094 start-page: 32015 year: 2021 ident: ref_28 article-title: An improved LogNNet classifier for IoT applications publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2094/3/032015 – ident: ref_47 doi: 10.1371/journal.pone.0259448 – volume: 38 start-page: 139 year: 2015 ident: ref_40 article-title: Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques publication-title: Australas. Phys. Eng. Sci. Med. doi: 10.1007/s13246-015-0333-x – volume: 7 start-page: 103255 year: 2019 ident: ref_13 article-title: Wavelet-Based EEG Processing for Epilepsy Detection Using Fuzzy Entropy and Associative Petri Net publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2929266 – volume: 88 start-page: 85 year: 2015 ident: ref_41 article-title: Application of entropies for automated diagnosis of epilepsy using EEG signals: A review publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2015.08.004 – ident: ref_37 doi: 10.3390/diagnostics11081437 – volume: 199 start-page: 111446 year: 2022 ident: ref_31 article-title: Research on feature extraction method of ship radiated noise with K-nearest neighbor mutual information variational mode decomposition, neural network estimation time entropy and self-organizing map neural network publication-title: Measurement doi: 10.1016/j.measurement.2022.111446 – ident: ref_27 doi: 10.3390/electronics9091432 – volume: 8 start-page: 838 year: 2013 ident: ref_51 article-title: Respiratory cycle related EEG changes: Modified respiratory cycle segmentation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2013.08.001 – volume: 8 start-page: 20 year: 2021 ident: ref_14 article-title: EEG-based human emotion recognition using entropy as a feature extraction measure publication-title: Brain Inform. doi: 10.1186/s40708-021-00141-5 – ident: ref_46 – volume: 12 start-page: 433 year: 2008 ident: ref_22 article-title: Analysis of heart rate variability based on singular value decomposition entropy publication-title: J. Shanghai Univ. Engl. Ed. doi: 10.1007/s11741-008-0511-3 – volume: 64 start-page: 2711 year: 2017 ident: ref_19 article-title: Bubble Entropy: An entropy almost free of parameters publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2664105 – ident: ref_20 doi: 10.3390/e18010022 – ident: ref_26 doi: 10.3390/e23111432 – volume: 7 start-page: 64704 year: 2019 ident: ref_15 article-title: Analyzing the Dynamics of Lung Cancer Imaging Data Using Refined Fuzzy Entropy Methods by Extracting Different Features publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917303 – ident: ref_44 doi: 10.3390/technologies9040081 |
| SSID | ssj0065961 |
| Score | 2.3333662 |
| Snippet | Entropy measures are effective features for time series classification problems. Traditional entropy measures, such as Shannon entropy, use probability... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 255 |
| SubjectTerms | Algorithms Analysis Classification Datasets Distribution (Probability theory) Distribution functions Electroencephalography Emotions Entropy Entropy (Information theory) entropy features Heart rate neural network entropy Neural networks NNetEn Probability distribution Probability distribution functions Python Separation Severe acute respiratory syndrome coronavirus 2 Signal classification Software Synergistic effect Time series time series classification |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDLfQXoAH_iMKG4oAiSFR7dKmScPbduqYkDhNgkl7i9w0hWmn7sRuQvcJ-Nqzm_a0EyBeeOlD4qZJbMdO4_wM8KYlK6c92lTaWqd88JZiU-apVY2mirwxiu87f57poxP16bQ4vZHqi2PCIjxwnLi9xmfB1LksWjL9EnWpranpEUxQhc_61XdS2nEzFddgXVgtI45QTpv6PZTUCfaeN6xPD9L_-1J8F25fdQtc_cT5_IatOXwA9wYnUezHzj2EW6F7BPfHBAxi0MfH8IuhNYhwFmO5RcVh54uV2J1RSdW9-zCWpAdkrBpRVR_Fl7Nv3DZ2jZh-xwv6guBrIIJ_k4VL0SfJ5PChnmPvxfGKwQXEMfpzWnkEubgiNi6mOPdD7q8ncHJYfZ0epUNmhdSTji5T3bakHCEURYltQNkiMihN7Q0qZTJltKn5hNIYcqgyT8U4wQxlwNIGX4b8KWx1F114BkLbkl6RppkgOWO-tT7k1FRQxCqrcpPA7jjjzg-w45z9Yu5o-8HMcWvmJPBqTbqIWBt_Ijpgtq0JGB67LyChcYPQuH8JTQJvmemOlZg643G4i0BDYjgst2_Yb9W0mUpge4OSlM9vVo9i4wblv3R8NplxHgKZwOu1KP19SM__x5BewJ2M_K8Yi7kNW8sfV2GH_KVl_bJXjWuzLg78 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9QwDLfG7QF44HuiMFAESAyJaEs_khYJod2pY0KiOgGT9la5aToQp96x3YTuL-Dfxm7TgxMfL31I3TSJY8dJ7J8BnjW0ymmLmVRZpSVfvEms00hmca3pRVSbmOOd3xf6-CR-d5qcbkExxMKwW-WgEztFXc8tn5Hv84VPyODu6s3im-SsUXy7OqTQQJ9aoX7dQYxdge2QkbFGsD3Oi-mHQTfrJNOqxxeKaLO_j4oax1b1xqrUgff_qaKvw9XLdoGr7zib_bYGHd2CG954FIc9t2_DlmvvwM0hMYPwcnoXfjDkBhEWvY-3yNkdfbESewWV5O2LV0OJHNMiVos8fys-fjnjurGtxeQzzukPgsNDBB-fuQvRJc9kt6KOky_FdMWgA2KK9itpJEGmr-grFxOcWZ8T7B6cHOWfJsfSZ1yQlmR3KXXTkNA4lyQpNg5Vg8hgNZU1GMcmjI02Fd9cGkOjHFoqxgMMUTlMM2dTF-3AqJ237j4InaX0iTL1AZKRZpvMuoiqcjFqhnw3AewNI15aD0fOWTFmJW1LmDnlmjkBPFmTLnoMjr8RjZltawKGze4K5udnpZfCsrahM1WkkobsSEUt0Zmp6OGMozaGYQDPmeklCzc1xqKPUaAuMUxWeWjYntW0yQpgd4OShNJuvh6mTemVwkX5awoH8HQ9lf7dpQf_r-QhXAvJ4uq9L3dhtDy_dI_IQlpWj_20_wlOHQ2P priority: 102 providerName: ProQuest |
| Title | Neural Network Entropy (NNetEn): Entropy-Based EEG Signal and Chaotic Time Series Classification, Python Package for NNetEn Calculation |
| URI | https://www.proquest.com/docview/2819261861 https://www.mdpi.com/1999-4893/16/5/255/pdf?version=1684751497 https://doaj.org/article/dc2e7b315f3241a68697b869e7e45c22 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x7QE4sDxFYaksQGKRyGbzshMuqK3SXSFRVUCl5RRNHGdZbZVW2xZU_gB_m5nErSgPCXHJwZk4Y3k8_myPvwF4XtIsJzUmjpfk0uGDNweLOHCSsJD0IihUyPed343k6SR8exad2Q23hQ2rpKX4Re2k6yvyzI7ietKNXEK_7rwo33yxO0meJNdKE36i9qAtI8LiLWhPRuPep_oo2X7b0AkFtLZ30SNdGETvTEI1V__vHvkmXF9Vc1x_xen0pylnuA_ZRtkm0uTyaLXMj_S3X3gc_781t-GWRaOi15jPHbhmqruwv8n0IOzAvwffmcODBEdN0LhIOb59vhaHIypJq5evNyVOn2bFQqTpifhwcc51Y1WIwWec0R8E3zcRvB9nFqLOxslxSrVpvBLjNbMYiDHqS3JxgrC0aCoXA5xqm2TsPkyG6cfBqWNTODianMHSkWVJo9CYKIqxNOiViMx-k2uFYaj8UEmV81GoUoTcfE3FeIw-egbjxOjYBA-gVc0q8xCETGL6xFPFMRLq02WiTUBVmRAlc8irDhxu-jTTlt-c02xMM1rncPdn2-7vwNOt6Lwh9fiTUJ8NYyvAPNx1wezqPLPDOiu0b1QeeFFJwNQjTWSicnoYZUhH3-_ACzarjL0FKaPRXnqgJjHvVtZTDJAlrdo6cLAjSaNc777eGGZmvcwi40NQnxMeeB14tjXWvzfp0T9JPYYbPiG5JqrzAFrLq5V5QshrmXdhLx6edKHdT0fj9916_6Jrh9wPb30oFQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB64I0IFFjxEEXCavzajZEq1ASXlLZWVFqpNzNer1tE5IQmVZVfwL_itzFjrwMRj1svPqzH4_XO7Mysd_YbgBcFeTmpMXLcKJMOb7w5mHd8JwpySTf8XAV83vkgkf3j4ONJeLIEP5qzMJxW2djEylDnI83_yDd5w8djcHf33fibw1WjeHe1KaGBtrRCvlVBjNmDHXtmdklLuMnW7nuS90vP24mPen3HVhlwNOnr1JFFQYpiTBh2sDDoFogM0JJphUGgvEBJlfFunVLE2dPUjG300DXYiYzuGJ_4XoOVwA8iWvytdONkcNj4AhlG0q3xjHw_am-iS4PBUfyCF6yKBfzpEtZg9aIc4-wSh8PffN7OLbhhg1WxXWvXbVgy5R242RSCENYu3IXvDPFBhEmdUy5iTn8fz8RGQi1x-fpt0-J0yWnmIo4_iE9fTpk3lrnoneGI3iD4OIrg33VmIqpinZzGVGnOGzGYMciBGKD-ShZQUKgtauaih0Nta5Ddg-MrGfv7sFyOSvMAhIw69Iir8jZSUKiLSBufWJkAJUPMqxZsNCOeagt_zlU4hiktg1g46Vw4LXg2Jx3XmB9_I-qy2OYEDNNdNYzOT1M769Nce0ZlvhsWFLe61BMZqYwuRhnqo-e14BULPWVjQp3RaM9E0CcxLFe6rTh-lrSoa8H6AiUZAb14u1Gb1BqhSfpryrTg-VyV_v1JD__P5Cms9o8O9tP93WTvEVz3KNqrMz_XYXl6fmEeU3Q2zZ7YKSDg81XPup9vnUrt |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEB6VInE8cFcYCqw4RJGwEq_tXRsJoTZ12lKIIpVKfXPH63VBRE5oUlX5Bfwnfh0zPgIRx1tf_LBej9e7c6135huA5wVZOWUwdr04Uy4fvLmYR74bB7miG36uA853_jhQu4fB-6PwaAV-tLkwHFbZ6sRKUedjw__IO3zgIxnc3esUTVjEcLv_bvLN5QpSfNLaltOoWWTfzs9p-zZ9u7dNa_1Cyn7yqbfrNhUGXEO8OnNVURCTWBuGERYWvQKRwVkyozEItAy00hmf1GlNjoU01IxdlOhZjGJrIusT3UtwWTOKO2ep93daK6DCWHk1kpHvx90OejQN7L8v2b-qTMCfxuA6XD0rJzg_x9HoN2vXvwU3GjdVbNZ8dRtWbHkHbrYlIESjEe7Cdwb3oI6DOppcJBz4PpmLjQG1JOWrN22Lu0XmMhdJsiMOvpwwbSxz0fuMY3qD4EQUwT_q7FRUZTo5gKnimddiOGd4AzFE85V0nyAnW9TERQ9Hpqk-dg8OL2Tm12C1HJf2PggVR_SIp_MukjtoithYn0jZABWDy2sHNtoZT00DfM71N0YpbYB4cdLF4jjwdNF1UqN9_K3TFi_bogMDdFcN49OTtJH3NDfS6sz3woI8Vo9GomKd0cVqS2OU0oGXvOgpqxEajMEmG4I-iQG50k3NnrOi7ZwD60s9SfzN8u2WbdJG_UzTX8LiwLMFK_37kx78n8gTuEKyln7YG-w_hGuS3Lw65HMdVmenZ_YRuWWz7HHF_wKOL1rgfgJeXEiH |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9B9wA8MD5FYCALkBgSWeZ82AkvqKs6JiSqSlBpPEUXxxnTqrRaW1D5B_i3uUucivIhIV7y4Fycs3w-_2yffwfwvKJZThnMfJkVyueDNx_LNPKzuFT0Iip1zPed34_UySR-d5qcug23hQurpKX4eeOkmyvyzI4SSBUkAaHfYF5Wb764nSSpyLXShJ_pq7CjEsLiPdiZjMb9T81Rsvu2pROKaG0foCRdGERvTUINV__vHvkGXFvVc1x_xen0pynneBfyTtk20uTiYLUsDsy3X3gc_781t-CmQ6Oi35rPbbhi6zuw22V6EG7g34XvzOFBgqM2aFwMOb59vhb7IyoZ1i9fdyX-Ec2KpRgO34oP52dcN9alGHzGGf1B8H0TwftxdiGabJwcp9SYxisxXjOLgRijuSAXJwhLi7ZyMcCpcUnG7sHkePhxcOK7FA6-IWew9FVV0Si0NklSrCzKCpHZbwqjMY51GGulCz4K1ZqQW2ioGA8xRGkxzaxJbXQfevWstg9AqCylT6QuD5FQn6kyYyOqysaomENee7Df9WluHL85p9mY5rTO4e7PN93vwdON6Lwl9fiT0BEbxkaAebibgtnlWe6GdV6a0OoikklFwFSSJirTBT2stqRjGHrwgs0qZ29Byhh0lx6oScy7lfc1A2RFqzYP9rYkaZSb7dedYebOyyxyPgQNOeGB9ODZxlj_3qSH_yT1CK6HhOTaqM496C0vV_YxIa9l8cQNrx94yiSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+Entropy+%3A+Entropy-Based+EEG+Signal+and+Chaotic+Time+Series+Classification%2C+Python+Package+for+NNetEn+Calculation&rft.jtitle=Algorithms&rft.au=Velichko%2C+Andrei&rft.au=Belyaev%2C+Maksim&rft.au=Izotov%2C+Yuriy&rft.au=Murugappan%2C+Murugappan&rft.date=2023-05-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=5&rft_id=info:doi/10.3390%2Fa16050255&rft.externalDocID=A750886675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |