Bi-directional Monte-Carlo modelling of solar-induced chlorophyll fluorescence images for 3D vegetation canopies in the DART model

•Monte Carlo solar-induced fluorescence (SIF) modeling was introduced in DART-Lux.•SIF emission equations were adapted to the bi-directional path tracing algorithm.•The new modeling results were compared to SCOPE and DART-FT for 3 types of canopies.•The potential of DART-Lux to simulate large scale...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of applied earth observation and geoinformation Vol. 118; p. 103254
Main Authors Regaieg, Omar, Lauret, Nicolas, Wang, Yingjie, Guilleux, Jordan, Chavanon, Eric, Gastellu-Etchegorry, Jean-Philippe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Elsevier
Subjects
Online AccessGet full text
ISSN1569-8432
1872-826X
1872-826X
DOI10.1016/j.jag.2023.103254

Cover

Abstract •Monte Carlo solar-induced fluorescence (SIF) modeling was introduced in DART-Lux.•SIF emission equations were adapted to the bi-directional path tracing algorithm.•The new modeling results were compared to SCOPE and DART-FT for 3 types of canopies.•The potential of DART-Lux to simulate large scale SIF images was shown. Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3×3km2 Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/).
AbstractList Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3 x 3 km$^2$ Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/).
Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3×3km2 Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/).
Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3×3km2 Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/).
•Monte Carlo solar-induced fluorescence (SIF) modeling was introduced in DART-Lux.•SIF emission equations were adapted to the bi-directional path tracing algorithm.•The new modeling results were compared to SCOPE and DART-FT for 3 types of canopies.•The potential of DART-Lux to simulate large scale SIF images was shown. Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer models (RTM) are essential to better interpret and extract information from SIF signals. DART is one of the most comprehensive and accurate 3D RTMs. Its standard mode DART-FT simulates SIF using a discrete ordinates method but is not adapted to large landscapes due to computational constraints. DART-Lux, the new mode based on a bi-directional path tracing algorithm, greatly improves DART computational efficiency for simulating images. This paper presents the theory of a novel SIF modelling algorithm in DART-Lux. We verified its accuracy with DART-FT and the SCOPE model for three types of canopies: turbid medium, maize field and forest. DART-Lux closely matches DART-FT (relative difference < 2%) with much better computational efficiency depending on the scene complexity, number of spectral bands and needed accuracy. For example, simulation time is reduced by a factor of ≈48, and memory usage by ≈50 for a maize field at 1 cm resolution. It allowed to simulate SIF images of large scenes as the 3×3km2 Ripperdan agricultural site that DART-FT could not simulate. The new SIF modelling algorithm opens new horizons for RS studies of large and complex landscapes. It is available as part of released DART versions (v1152 onwards) (https://dart.omp.eu/).
ArticleNumber 103254
Author Wang, Yingjie
Guilleux, Jordan
Chavanon, Eric
Regaieg, Omar
Lauret, Nicolas
Gastellu-Etchegorry, Jean-Philippe
Author_xml – sequence: 1
  givenname: Omar
  orcidid: 0000-0002-8176-1092
  surname: Regaieg
  fullname: Regaieg, Omar
– sequence: 2
  givenname: Nicolas
  surname: Lauret
  fullname: Lauret, Nicolas
– sequence: 3
  givenname: Yingjie
  surname: Wang
  fullname: Wang, Yingjie
– sequence: 4
  givenname: Jordan
  surname: Guilleux
  fullname: Guilleux, Jordan
– sequence: 5
  givenname: Eric
  surname: Chavanon
  fullname: Chavanon, Eric
– sequence: 6
  givenname: Jean-Philippe
  surname: Gastellu-Etchegorry
  fullname: Gastellu-Etchegorry, Jean-Philippe
BackLink https://hal.science/hal-04631420$$DView record in HAL
BookMark eNqNUk2L1DAYLrKCu6M_wFuOeuiYjzZp8TTOqrswIsgK3kKavu2kZJKatLPM1V9uakXwIp6avnk-Xp4nN9mV8w6y7CXBW4IJfzNsB9VvKaYs_TNaFk-ya1IJmleUf7tK55LXeVUw-iy7iXHAmAjBq-vsxzuTtyaAnox3yqJP3k2Q71WwHp18C9Ya1yPfoeitCrlx7ayhRfpoffDj8WIt6uzsA0QNTgMyJ9VDRJ0PiN2iM_QwqUUaaeX8aNKVcWg6ArrdfXlYHZ5nTztlI7z4_d1kXz-8f9jf5YfPH-_3u0OuC1pOOdc6bdxRXhcc11hQjSlmTGBGRENVR5gWmlNV8wq6ikMhWI1xI7CuVYWVYpvsftVtvRrkGNKq4SK9MvLXwIdeqjAZbUG2TXJjnGLOqkIUdV0KxlhB0rQpm-S6yeiqNbtRXR6VtX8ECZZLI3KQqRG5NCLXRhLp9Uo6KvuX_93uIJcZLjgjBcVnkrCvVuwY_PcZ4iRPJkVsrXLg5yhpxVIqlNE6QckK1cHHGKD7r1XerhxIgZ8NBBm1WQpc30JKxPyD_RPPf8Ad
Cites_doi 10.1016/0034-4257(84)90057-9
10.1016/j.rse.2018.04.012
10.1016/j.rse.2019.04.030
10.6028/NBS.TN.910-2
10.1016/j.rse.2018.05.035
10.5194/bg-6-3109-2009
10.1016/0034-4257(95)00253-7
10.1016/j.rse.2019.111274
10.1080/02757250009532389
10.1016/j.rse.2020.111902
10.1016/j.rse.2016.10.036
10.1016/j.rse.2021.112497
10.1016/j.rse.2017.02.012
10.1016/j.rse.2017.08.029
10.1111/gcb.14302
10.1145/218380.218498
10.5194/gmd-13-4041-2020
10.1016/0034-4257(91)90023-Y
10.1007/s10712-018-9478-y
10.1016/j.rse.2020.112195
10.1016/j.rse.2021.112564
10.1016/j.rse.2021.112673
10.1016/j.rse.2015.06.004
10.1073/pnas.1320008111
10.1093/jxb/eru191
10.1016/j.rse.2022.112973
10.1016/j.jqsrt.2020.107183
10.1016/j.rse.2020.111722
ContentType Journal Article
Copyright 2023 The Author(s)
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 The Author(s)
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOA
DOI 10.1016/j.jag.2023.103254
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-826X
ExternalDocumentID oai_doaj_org_article_db6cc36206384749957333416ccb5b03
10.1016/j.jag.2023.103254
oai:HAL:hal-04631420v1
10_1016_j_jag_2023_103254
S1569843223000766
GroupedDBID 29J
4.4
5GY
6I.
AAFTH
AAQXK
AAXUO
ABFYP
ABLST
ABQEM
ABQYD
ABYKQ
ACLVX
ACRLP
ACSBN
ADBBV
ADMUD
AFKWA
AFTJW
AFXIZ
AGYEJ
AHEUO
AIKHN
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AZFZN
BKOJK
BLECG
EBS
EJD
FDB
FEDTE
FIRID
FYGXN
GROUPED_DOAJ
HVGLF
IMUCA
KCYFY
KOM
M41
O-L
P-8
P-9
P2P
R2-
RIG
ROL
SDF
SDG
SES
SPC
SSE
SSJ
T5K
~02
AAHBH
AALRI
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
AITUG
ANKPU
APXCP
CITATION
EFJIC
EFKBS
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c425t-6cc768f2694609072c0203370317b2af13c7c62a968ef86e473900b70c9a80aa3
IEDL.DBID DOA
ISSN 1569-8432
1872-826X
IngestDate Fri Oct 03 12:51:58 EDT 2025
Sun Oct 26 03:55:41 EDT 2025
Sat Oct 25 06:43:48 EDT 2025
Sat Sep 27 22:04:14 EDT 2025
Wed Oct 29 21:27:38 EDT 2025
Fri Feb 23 02:37:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords DART
SIF
3D vegetation structure
Bi-directional path tracing
Remote sensing
Language English
License This is an open access article under the CC BY-NC-ND license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-6cc768f2694609072c0203370317b2af13c7c62a968ef86e473900b70c9a80aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8176-1092
0000-0001-5041-8550
OpenAccessLink https://doaj.org/article/db6cc36206384749957333416ccb5b03
PQID 2834252329
PQPubID 24069
ParticipantIDs doaj_primary_oai_doaj_org_article_db6cc36206384749957333416ccb5b03
unpaywall_primary_10_1016_j_jag_2023_103254
hal_primary_oai_HAL_hal_04631420v1
proquest_miscellaneous_2834252329
crossref_primary_10_1016_j_jag_2023_103254
elsevier_sciencedirect_doi_10_1016_j_jag_2023_103254
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of applied earth observation and geoinformation
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Hernández-Clemente, North, Hornero, Zarco-Tejada (b0035) 2017; 193
Guanter, Zhang, Jung, Joiner, Voigt, Berry, Frankenberg, Huete, Zarco-Tejada, Lee, Moran, Ponce-Campos, Beer, Camps-Valls, Buchmann, Gianelle, Klumpp, Cescatti, Baker, Griffis (b0030) 2014; 111
Veach (b0125) 1998
Veach, E., & Guibas, L. J. (1995). Optimally combining sampling techniques for Monte Carlo rendering. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 419–428. 10.1145/218380.218498.
Liu, Guanter, Liu, Damm, Malenovský, Rascher, Peng, Du, Gastellu-Etchegorry (b0060) 2019; 231
Malenovský, Regaieg, Yin, Lauret, Guilleux, Chavanon, Duran, Janoutová, Delavois, Meynier, Medjdoub, Yang, van der Tol, Morton, Cook, Gastellu-Etchegorry (b0070) 2021; 263
Porcar-Castell, Tyystjärvi, Atherton, van der Tol, Flexas, Pfündel, Moreno, Frankenberg, Berry (b0095) 2014; 65
Rosema, Verhoef, Schroote, Snel (b0105) 1991; 37
Pharr, Jakob, Humphreys (b0090) 2016
Sakai, Kobayashi, Kato (b0110) 2020; 13
Damm, Guanter, Paul-Limages, van der Tol, Hueni, Buchmann, Eugster, Ammann, Schaepman (b0015) 2015; 166
Wang, Kallel, Yang, Regaieg, Lauret, Guilleux, Chavanon, Gastellu-Etchegorry (b0160) 2022; 274
Regaieg, Yin, Malenovský, Cook, Morton, Gastellu-Etchegorry (b0100) 2021; 265
Yang, Verhoef, van der Tol (b0165) 2017; 201
Song, Guanter, Guan, You, Huete, Ju, Zhang (b0115) 2018; 24
van der Tol, Verhoef, Timmermans, Verhoef, Su (b0120) 2009; 6
Zhang, Zhang, Porcar-Castell, Joiner, Guanter, Yang, Migliavacca, Ju, Sun, Chen, Martini, Zhang, Li, Cleverly, Wang, Goulas (b0170) 2020; 240
Zhao, Dai, Verhoef, Guo, van der Tol, Li, Huang (b0175) 2016; 187
Nicodemus, F.E. (Fred E. (1978). Self-study manual on optical radiation measurements: Part I--Concepts, Chapters 4 and 5. National Bureau of Standards (U.S.).
Vilfan, Van der Tol, Yang, Wyber, Malenovský, Robinson, Verhoef (b0150) 2018; 211
Liu, Luo, Lu, Atherton, Gastellu-Etchegorry (b0065) 2020; 12
Wang, Lauret, Gastellu-Etchegorry (b0155) 2020; 247
Verrelst, Malenovsky, van der Tol, Camps-Valls, Gastellu-Etchegorry, Lewis, North, Moreno (b0140) 2019; 40
Mohammed, Colombo, Middleton, Rascher, van der Tol, Nedbal, Goulas, Pérez-Priego, Damm, Meroni, Joiner, Cogliati, Verhoef, Malenovský, Gastellu-Etchegorry, Miller, Guanter, Moreno, Moya, Zarco-Tejada (b0080) 2019; 231
Kallel (b0045) 2020; 253
Disney, Lewis, North (b0020) 2000; 18
Miller, J., 2005. Development of a Vegetation Fluorescence Canopy Model.
Kalos, Whitlock (b0050) 1986; Vol. 1
Hornero, North, Zarco-Tejada, Rascher, Martín, Migliavacca, Hernandez-Clemente (b0040) 2021; 253
.
Gastellu-Etchegorry, Demarez, Pinel, Zagolski (b0025) 1996; 58
Cormen, Leiserson, Rivest, Stein (b0010) 2009
Braghiere, Wang, Doughty, Sousa, Magney, Widlowski, Longo, Bloom, Worden, Gentine, Frankenberg (b0005) 2021; 261
Verhoef (b0135) 1984; 16
Liu, Atherton, Mõttus, Gastellu-Etchegorry, Malenovský, Raumonen, Åkerblom, Mäkipää, Porcar-Castell (b0055) 2019; 232
Hornero (10.1016/j.jag.2023.103254_b0040) 2021; 253
van der Tol (10.1016/j.jag.2023.103254_b0120) 2009; 6
Hernández-Clemente (10.1016/j.jag.2023.103254_b0035) 2017; 193
10.1016/j.jag.2023.103254_b0085
Veach (10.1016/j.jag.2023.103254_b0125) 1998
Kallel (10.1016/j.jag.2023.103254_b0045) 2020; 253
Yang (10.1016/j.jag.2023.103254_b0165) 2017; 201
Gastellu-Etchegorry (10.1016/j.jag.2023.103254_b0025) 1996; 58
Cormen (10.1016/j.jag.2023.103254_b0010) 2009
Liu (10.1016/j.jag.2023.103254_b0060) 2019; 231
Malenovský (10.1016/j.jag.2023.103254_b0070) 2021; 263
Verrelst (10.1016/j.jag.2023.103254_b0140) 2019; 40
Pharr (10.1016/j.jag.2023.103254_b0090) 2016
Liu (10.1016/j.jag.2023.103254_b0055) 2019; 232
Damm (10.1016/j.jag.2023.103254_b0015) 2015; 166
Guanter (10.1016/j.jag.2023.103254_b0030) 2014; 111
Mohammed (10.1016/j.jag.2023.103254_b0080) 2019; 231
Zhao (10.1016/j.jag.2023.103254_b0175) 2016; 187
Regaieg (10.1016/j.jag.2023.103254_b0100) 2021; 265
Porcar-Castell (10.1016/j.jag.2023.103254_b0095) 2014; 65
Wang (10.1016/j.jag.2023.103254_b0160) 2022; 274
10.1016/j.jag.2023.103254_b0075
10.1016/j.jag.2023.103254_b0130
Wang (10.1016/j.jag.2023.103254_b0155) 2020; 247
Vilfan (10.1016/j.jag.2023.103254_b0150) 2018; 211
Kalos (10.1016/j.jag.2023.103254_b0050) 1986; Vol. 1
Liu (10.1016/j.jag.2023.103254_b0065) 2020; 12
Verhoef (10.1016/j.jag.2023.103254_b0135) 1984; 16
Sakai (10.1016/j.jag.2023.103254_b0110) 2020; 13
Song (10.1016/j.jag.2023.103254_b0115) 2018; 24
Braghiere (10.1016/j.jag.2023.103254_b0005) 2021; 261
Rosema (10.1016/j.jag.2023.103254_b0105) 1991; 37
Disney (10.1016/j.jag.2023.103254_b0020) 2000; 18
Zhang (10.1016/j.jag.2023.103254_b0170) 2020; 240
References_xml – volume: 13
  start-page: 4041
  year: 2020
  end-page: 4066
  ident: b0110
  article-title: FLiES-SIF version 1.0: Three-dimensional radiative transfer model for estimating solar induced fluorescence
  publication-title: Geosci. Model Dev.
– volume: 24
  start-page: 4023
  year: 2018
  end-page: 4037
  ident: b0115
  article-title: Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains
  publication-title: Glob. Chang. Biol.
– volume: 16
  start-page: 125
  year: 1984
  end-page: 141
  ident: b0135
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
– volume: 201
  start-page: 1
  year: 2017
  end-page: 11
  ident: b0165
  article-title: The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: b0090
  article-title: Physically Based Rendering: From Theory to Implementation
– volume: 231
  year: 2019
  ident: b0060
  article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model
  publication-title: Remote Sens. Environ.
– volume: 261
  year: 2021
  ident: b0005
  article-title: Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation Earth System model
  publication-title: Remote Sens. Environ.
– reference: Nicodemus, F.E. (Fred E. (1978). Self-study manual on optical radiation measurements: Part I--Concepts, Chapters 4 and 5. National Bureau of Standards (U.S.).
– volume: 247
  year: 2020
  ident: b0155
  article-title: DART radiative transfer modelling for sloping landscapes
  publication-title: Remote Sens. Environ.
– volume: 240
  year: 2020
  ident: b0170
  article-title: Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
– volume: 231
  year: 2019
  ident: b0080
  article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
  publication-title: Remote Sens. Environ.
– volume: 187
  start-page: 385
  year: 2016
  end-page: 399
  ident: b0175
  article-title: FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy
  publication-title: Remote Sens. Environ.
– volume: 37
  start-page: 117
  year: 1991
  end-page: 130
  ident: b0105
  article-title: Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements
  publication-title: Remote Sens. Environ.
– reference: Miller, J., 2005. Development of a Vegetation Fluorescence Canopy Model.
– volume: 65
  start-page: 4065
  year: 2014
  end-page: 4095
  ident: b0095
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges
  publication-title: J. Exp. Bot.
– volume: 166
  start-page: 91
  year: 2015
  end-page: 105
  ident: b0015
  article-title: Far-red sun-induced chlorophyll fluorescence shows ecosystem - specific relationships to gross primary production: An assessment based on observational and modeling approaches
  publication-title: Remote Sens. Environ.
– volume: 232
  year: 2019
  ident: b0055
  article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements
  publication-title: Remote Sens. Environ.
– year: 2009
  ident: b0010
  article-title: Introduction to Algorithms
– volume: 263
  year: 2021
  ident: b0070
  article-title: Discrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation canopies
  publication-title: Remote Sens. Environ.
– reference: .
– volume: Vol. 1:
  start-page: Basics.
  year: 1986
  ident: b0050
  publication-title: Monte Carlo methods
– year: 1998
  ident: b0125
  article-title: [Phd]
– volume: 265
  year: 2021
  ident: b0100
  article-title: Assessing impacts of canopy 3D structure on chlorophyll fluorescence radiance and radiative budget of deciduous forest stands using DART
  publication-title: Remote Sens. Environ.
– volume: 40
  start-page: 589
  year: 2019
  end-page: 629
  ident: b0140
  article-title: Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
  publication-title: Surv. Geophys.
– volume: 58
  start-page: 131
  year: 1996
  end-page: 156
  ident: b0025
  article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies
  publication-title: Remote Sens. Environ.
– volume: 253
  year: 2021
  ident: b0040
  article-title: Assessing the contribution of understory sun-induced chlorophyll fluorescence through 3-D radiative transfer modelling and field data
  publication-title: Remote Sens. Environ.
– reference: Veach, E., & Guibas, L. J. (1995). Optimally combining sampling techniques for Monte Carlo rendering. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, 419–428. 10.1145/218380.218498.
– volume: 211
  start-page: 345
  year: 2018
  end-page: 356
  ident: b0150
  article-title: Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics
  publication-title: Remote Sens. Environ.
– volume: 193
  start-page: 165
  year: 2017
  end-page: 179
  ident: b0035
  article-title: Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: Article 23
  year: 2020
  ident: b0065
  article-title: Simulation-Based Evaluation of the Estimation Methods of Far-Red Solar-Induced Chlorophyll Fluorescence Escape Probability in Discontinuous Forest Canopies
  publication-title: Remote Sens. (Basel)
– volume: 253
  year: 2020
  ident: b0045
  article-title: FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 111
  start-page: E1327
  year: 2014
  end-page: E1333
  ident: b0030
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci.
– volume: 18
  start-page: 163
  year: 2000
  end-page: 196
  ident: b0020
  article-title: Monte Carlo ray tracing in optical canopy reflectance modelling
  publication-title: Remote Sens. Rev.
– volume: 6
  start-page: 3109
  year: 2009
  end-page: 3129
  ident: b0120
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
– volume: 274
  year: 2022
  ident: b0160
  article-title: DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 125
  issue: 2
  year: 1984
  ident: 10.1016/j.jag.2023.103254_b0135
  article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90057-9
– volume: 211
  start-page: 345
  year: 2018
  ident: 10.1016/j.jag.2023.103254_b0150
  article-title: Extending Fluspect to simulate xanthophyll driven leaf reflectance dynamics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.012
– volume: 231
  year: 2019
  ident: 10.1016/j.jag.2023.103254_b0080
  article-title: Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.030
– ident: 10.1016/j.jag.2023.103254_b0085
  doi: 10.6028/NBS.TN.910-2
– volume: 231
  year: 2019
  ident: 10.1016/j.jag.2023.103254_b0060
  article-title: Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.035
– volume: 6
  start-page: 3109
  issue: 12
  year: 2009
  ident: 10.1016/j.jag.2023.103254_b0120
  article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance
  publication-title: Biogeosciences
  doi: 10.5194/bg-6-3109-2009
– volume: 58
  start-page: 131
  issue: 2
  year: 1996
  ident: 10.1016/j.jag.2023.103254_b0025
  article-title: Modeling radiative transfer in heterogeneous 3-D vegetation canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00253-7
– volume: 232
  year: 2019
  ident: 10.1016/j.jag.2023.103254_b0055
  article-title: Simulating solar-induced chlorophyll fluorescence in a boreal forest stand reconstructed from terrestrial laser scanning measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111274
– ident: 10.1016/j.jag.2023.103254_b0075
– volume: 18
  start-page: 163
  issue: 2–4
  year: 2000
  ident: 10.1016/j.jag.2023.103254_b0020
  article-title: Monte Carlo ray tracing in optical canopy reflectance modelling
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757250009532389
– volume: 247
  year: 2020
  ident: 10.1016/j.jag.2023.103254_b0155
  article-title: DART radiative transfer modelling for sloping landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111902
– volume: 187
  start-page: 385
  year: 2016
  ident: 10.1016/j.jag.2023.103254_b0175
  article-title: FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.10.036
– volume: 261
  year: 2021
  ident: 10.1016/j.jag.2023.103254_b0005
  article-title: Accounting for canopy structure improves hyperspectral radiative transfer and sun-induced chlorophyll fluorescence representations in a new generation Earth System model
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112497
– volume: 193
  start-page: 165
  year: 2017
  ident: 10.1016/j.jag.2023.103254_b0035
  article-title: Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.02.012
– year: 2009
  ident: 10.1016/j.jag.2023.103254_b0010
– volume: 201
  start-page: 1
  year: 2017
  ident: 10.1016/j.jag.2023.103254_b0165
  article-title: The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.08.029
– year: 2016
  ident: 10.1016/j.jag.2023.103254_b0090
– volume: 24
  start-page: 4023
  issue: 9
  year: 2018
  ident: 10.1016/j.jag.2023.103254_b0115
  article-title: Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14302
– ident: 10.1016/j.jag.2023.103254_b0130
  doi: 10.1145/218380.218498
– volume: 13
  start-page: 4041
  issue: 9
  year: 2020
  ident: 10.1016/j.jag.2023.103254_b0110
  article-title: FLiES-SIF version 1.0: Three-dimensional radiative transfer model for estimating solar induced fluorescence
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-13-4041-2020
– volume: 37
  start-page: 117
  issue: 2
  year: 1991
  ident: 10.1016/j.jag.2023.103254_b0105
  article-title: Simulating fluorescence light-canopy interaction in support of laser-induced fluorescence measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(91)90023-Y
– volume: 40
  start-page: 589
  issue: 3
  year: 2019
  ident: 10.1016/j.jag.2023.103254_b0140
  article-title: Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods
  publication-title: Surv. Geophys.
  doi: 10.1007/s10712-018-9478-y
– volume: 253
  year: 2021
  ident: 10.1016/j.jag.2023.103254_b0040
  article-title: Assessing the contribution of understory sun-induced chlorophyll fluorescence through 3-D radiative transfer modelling and field data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112195
– volume: 263
  year: 2021
  ident: 10.1016/j.jag.2023.103254_b0070
  article-title: Discrete anisotropic radiative transfer modelling of solar-induced chlorophyll fluorescence: Structural impacts in geometrically explicit vegetation canopies
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112564
– volume: Vol. 1:
  start-page: Basics.
  year: 1986
  ident: 10.1016/j.jag.2023.103254_b0050
  publication-title: Monte Carlo methods
– volume: 265
  year: 2021
  ident: 10.1016/j.jag.2023.103254_b0100
  article-title: Assessing impacts of canopy 3D structure on chlorophyll fluorescence radiance and radiative budget of deciduous forest stands using DART
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112673
– volume: 166
  start-page: 91
  year: 2015
  ident: 10.1016/j.jag.2023.103254_b0015
  article-title: Far-red sun-induced chlorophyll fluorescence shows ecosystem - specific relationships to gross primary production: An assessment based on observational and modeling approaches
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.06.004
– volume: 12
  start-page: Article 23
  issue: 23
  year: 2020
  ident: 10.1016/j.jag.2023.103254_b0065
  article-title: Simulation-Based Evaluation of the Estimation Methods of Far-Red Solar-Induced Chlorophyll Fluorescence Escape Probability in Discontinuous Forest Canopies
  publication-title: Remote Sens. (Basel)
– year: 1998
  ident: 10.1016/j.jag.2023.103254_b0125
– volume: 111
  start-page: E1327
  issue: 14
  year: 2014
  ident: 10.1016/j.jag.2023.103254_b0030
  article-title: Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1320008111
– volume: 65
  start-page: 4065
  issue: 15
  year: 2014
  ident: 10.1016/j.jag.2023.103254_b0095
  article-title: Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/eru191
– volume: 274
  year: 2022
  ident: 10.1016/j.jag.2023.103254_b0160
  article-title: DART-Lux: An unbiased and rapid Monte Carlo radiative transfer method for simulating remote sensing images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.112973
– volume: 253
  year: 2020
  ident: 10.1016/j.jag.2023.103254_b0045
  article-title: FluLCVRT: Reflectance and fluorescence of leaf and canopy modeling based on Monte Carlo vector radiative transfer simulation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2020.107183
– volume: 240
  year: 2020
  ident: 10.1016/j.jag.2023.103254_b0170
  article-title: Reduction of structural impacts and distinction of photosynthetic pathways in a global estimation of GPP from space-borne solar-induced chlorophyll fluorescence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111722
SSID ssj0017768
Score 2.3786583
Snippet •Monte Carlo solar-induced fluorescence (SIF) modeling was introduced in DART-Lux.•SIF emission equations were adapted to the bi-directional path tracing...
Remote sensing (RS) of solar-induced chlorophyll fluorescence (SIF) has a great potential for monitoring plant photosynthetic activity. Radiative transfer...
SourceID doaj
unpaywall
hal
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103254
SubjectTerms 3D vegetation structure
algorithms
Bi-directional path tracing
chlorophyll
corn
DART
Environmental Engineering
Environmental Sciences
forests
memory
photosynthesis
radiative transfer
Remote sensing
SIF
spatial data
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection Journals
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELba7QE4IChUDS8ZxAlkNhs7iXPcblstj_YClXqzbMfepgrJah9FXPnlzOSx7F5A4hjLGzueseebnZnPhLyNkdYqilLmeOaZiPKESeM5E3EuMU5k8hSLky8uk-mV-HQdX--RSV8Lg2mV3dnfnunNad21DLvVHM6LYvgVPI9MClBI3sSTkn1yAPZHygE5GH_8PL3cBBPStK2Ig_4Mf9AHN5s0r1s9-4BXiGP1eRSLHfPUsPjvWKn9G0yX3MKi99bVXP_8octyyyydPyIPOzxJx-2UH5M9Vx2SB1ssg4fk6OxPMRt07Xbz8gn5dVKw9vOb_wPpBTJVsYlelDVtbsjBUnVae7pE_5eB9w56kFN7Az5-DeIpS-rLdb1oGKGso8V3OJyWFGAw5af0zs26VEYK4qvn4JLToqIAOOkpoOh2hKfk6vzs22TKujsZmIXdvWKJtbCaHutfkxAc68hiKJMjC35qIu1H3KY2iXSWSOdl4kTKszA0aWgzLUOt-REZVHXljgnNZRjnzkWcA8bQ8ch4m3iBcWEpfJiagLzrRaHmLfWG6nPSbhXITaHcVCu3gJygsDYdkTW7aagXM9WpjcoNTB8sNsI0kYKvh2SQYMah1cQm5AERvajVjhLCq4q_jf0G1GJn6On4i8I25GMbiSi8GwXkda81CnYwhmV05er1UgHAg6UFZJsF5P1Gnf79yc_-b7bPyX18arOPXpDBarF2LwFYrcyrbuP8BgddHKs
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY7gE48FhYEV4yiBPIVR6Okxy7L1WIXXGgUjlZtmPvdglJ1TSL4MgvZyaPpUWIxzGWFSeemcw3mZnPhLyKkdYqDBNmo8wxHuaCpdpFjMd5inkinSfYnHx6JqYz_nYez3uyaOyF2crft3VYl-p8jGd8Y3s4RDM7ZFfEALtHZHd29n7yseVDFRlLeXsYWZAmYOGhmA8ZzN_dY8sHtVT9W65o5wJrIjcA582mXKqvX1RRbPiek7td1VbdUhZiycmncbPWY_PtF0LHf3qte-ROj0DppFOZ--SGLffI7Q1ewj2yf_yz_Q2m9vZfPyDfDxasc4LtH0R6itxW7FCtioq2Z-pgczutHK0xYmYQ74Pm5NRcFNWqAoEWBXVFU61aDilj6eIzfM5qCsCZRkf0yp73xY8UBF4tIYini5ICRKVHgLu7FR6S2cnxh8Mp609xYAa-B2smjIGQxmHHrPAhFA8NJj8j5M1PdKhcEJnEiFBlIrUuFZYnUeb7OvFNplJfqWifjMqqtI8IzVM_zq0NowhQiYoD7YxwHDPJKXd-oj3yepCrXHZkHXKoYruUsOMSd1x2O-6RA5T89UTk2W4HQE6yN1uZa3h88PEI7HgC0SHSR4Ljh1Edaz_yCB_0RvaQpZMC3Grxp7Vfgo5tLT2dvJM4hgxuAQ_9q8AjLwYVlGDzmMhRpa2aWgIkhK0FLJx55M21bv79lR__1-wn5BZedWVKT8lovWrsM0Bga_28t70fgUglXw
  priority: 102
  providerName: Unpaywall
Title Bi-directional Monte-Carlo modelling of solar-induced chlorophyll fluorescence images for 3D vegetation canopies in the DART model
URI https://dx.doi.org/10.1016/j.jag.2023.103254
https://www.proquest.com/docview/2834252329
https://hal.science/hal-04631420
https://doi.org/10.1016/j.jag.2023.103254
https://doaj.org/article/db6cc36206384749957333416ccb5b03
UnpaywallVersion publishedVersion
Volume 118
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: ACRLP
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-826X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017768
  issn: 1569-8432
  databaseCode: AIKHN
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHIADgkJF-KgM4gQyytpOnBy321YLtKsKsVI5WY5jt1uFZLUfRVz55czESdm90AunaK0oTvzG9pudmWdC3iUoa8W5Yk7knklepiwrvGAyKTOMExWlwuLk00k6nsrP58n5xlFfmBMW5IHDwGGZmLWwyuLWKhXwcxTwg6UXWoukCDqfcZb3zlQXP1AqFMElac4yKXgfz2wzu67MxUc8NRwLznkit3akVrh_a2O6e4kZkhv08_66nptfP01VbexEx4_Jo45C0mF49Sfkjqt3ycMNYcFdsnf0t34Nbu0m8PIp-X0wY2EXa_8CpKcoTsVGZlE1tD0UB6vTaePpEl1eBg47QF9SewlufQOIVBX11bpZtCJQ1tHZD1iPlhSYLxWH9NpddNmLFBBr5uCF01lNgWPSQyDOoYdnZHp89G00Zt0xDMzChF4xGGkYTY8lr2kMvjS3GL0UKHyvCm78QFhlU27yNHM-S51UIo_jQsU2N1lsjNgjO3VTu-eEllmclM5xIYBWmGRQeJt6iaHgTPpYFRF530Oh50FtQ_dpaFcacNOImw64ReQAwbq5EYWy2wYwH92Zj77NfCIie6h1xzkCCvCo2b_6fgtmsdX1eHiisQ0l2AaSx9eDiLzprUbDpMVIjKlds15q4HQwtEBm84h8uDGn2z_5xf_45JfkAT4ypB-9Ijurxdq9Bma1KvbJveHo68kZXj99GU_220kFv6aTs-H3P_StHwc
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lc9MwENb0cSgcGCh06paHYDjBiDiWbNnHNG3HpUkutDO9aSRbTt0xdiaPMlz55ez6EZILzHCVFUvW7krfZnc_EfLRR1orz5PM8ihjwksDFpqMM-GnIcaJTCqxOHk8CeJb8fXOv9shw64WBtMq272_2dPr3bpt6bWr2Zvlee8beB5RKEAheR1PCnbJvvC5BOvcH1xdx5N1MEHKpiIO-jP8QRfcrNO8HvT0C14hjtXnni-2jqeaxX_rlNq9x3TJDSx6sCpn-ucPXRQbx9Llc_KsxZN00Ez5Bdmx5SF5usEyeEiOLv4Us0HX1poXL8mvs5w1n1__H0jHyFTFhnpeVLS-IQdL1WmV0QX6vwy8d9CDlCb34ONXIJ6ioFmxquY1I1Riaf4dNqcFBRhM-Tl9tNM2lZGC-KoZuOQ0LykATnoOKLoZ4RW5vby4GcasvZOBJWDdSxYkCaxmhvWvgQuOtZdgKJMjC740ns76PJFJ4OkoCG0WBlZIHrmukW4S6dDVmh-RvbIq7TGhaej6qbUe54AxtN83WRJkAuPCochcaRzyqROFmjXUG6rLSXtQIDeFclON3BxyhsJad0TW7Lqhmk9VqzYqNTB9OLERpgkJvh6SQcIxDq3GNy53iOhErbaUEF6V_23sD6AWW0PHg5HCNuRj6wvPfew75H2nNQosGMMyurTVaqEA4MHSArKNHPJ5rU7__uST_5vtO3IQ34xHanQ1uT4lT_BJk4n0muwt5yv7BkDW0rxtjeg3Yb8fjA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY7gE48FhYEV4yiBPIVR6Okxy7L1WIXXGgUjlZtmPvdglJ1TSL4MgvZyaPpUWIxzGWFSeemcw3mZnPhLyKkdYqDBNmo8wxHuaCpdpFjMd5inkinSfYnHx6JqYz_nYez3uyaOyF2crft3VYl-p8jGd8Y3s4RDM7ZFfEALtHZHd29n7yseVDFRlLeXsYWZAmYOGhmA8ZzN_dY8sHtVT9W65o5wJrIjcA582mXKqvX1RRbPiek7td1VbdUhZiycmncbPWY_PtF0LHf3qte-ROj0DppFOZ--SGLffI7Q1ewj2yf_yz_Q2m9vZfPyDfDxasc4LtH0R6itxW7FCtioq2Z-pgczutHK0xYmYQ74Pm5NRcFNWqAoEWBXVFU61aDilj6eIzfM5qCsCZRkf0yp73xY8UBF4tIYini5ICRKVHgLu7FR6S2cnxh8Mp609xYAa-B2smjIGQxmHHrPAhFA8NJj8j5M1PdKhcEJnEiFBlIrUuFZYnUeb7OvFNplJfqWifjMqqtI8IzVM_zq0NowhQiYoD7YxwHDPJKXd-oj3yepCrXHZkHXKoYruUsOMSd1x2O-6RA5T89UTk2W4HQE6yN1uZa3h88PEI7HgC0SHSR4Ljh1Edaz_yCB_0RvaQpZMC3Grxp7Vfgo5tLT2dvJM4hgxuAQ_9q8AjLwYVlGDzmMhRpa2aWgIkhK0FLJx55M21bv79lR__1-wn5BZedWVKT8lovWrsM0Bga_28t70fgUglXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-directional+Monte-Carlo+modelling+of+solar-induced+chlorophyll+fluorescence+images+for+3D+vegetation+canopies+in+the+DART+model&rft.jtitle=International+journal+of+applied+earth+observation+and+geoinformation&rft.au=Omar+Regaieg&rft.au=Nicolas+Lauret&rft.au=Yingjie+Wang&rft.au=Jordan+Guilleux&rft.date=2023-04-01&rft.pub=Elsevier&rft.issn=1569-8432&rft.volume=118&rft.spage=103254&rft_id=info:doi/10.1016%2Fj.jag.2023.103254&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_db6cc36206384749957333416ccb5b03
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-8432&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-8432&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-8432&client=summon