Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm
Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages of zero environmental emissions as well as higher energy efficiencies in generation and consumption are realized simultaneously. However, to o...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 145; pp. 839 - 855 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        15.02.2018
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 1873-6785  | 
| DOI | 10.1016/j.energy.2017.12.155 | 
Cover
| Abstract | Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages of zero environmental emissions as well as higher energy efficiencies in generation and consumption are realized simultaneously. However, to override the inherent intermittent availability of RE sources and to enhance the performance of RE-CCHP systems, it is necessary to include thermal and electrical storage mechanisms. The objective of this study is to develop a simulation model for optimization of different configuration alternatives of autonomous RE-CCHP system for meeting cooling, heating and electrical loads, based on photovoltaic-thermal (PVT) panel, wind turbine (WT), thermal energy storage (TES), electrical energy storage (EES), absorption chiller (CHABS), electric chiller (CHELEC) and electric heater (EH). For operation of autonomous RE-CCHP system, two operational strategies, namely, following electric load (FEL) and following thermal load (FTL), are used. For optimization, a newly developed evolutionary particle swarm optimization (E-PSO) algorithm is examined and validated. It is demonstrated that the most cost effective configuration alternative of the autonomous RE-CCHP system is PVT+WT+EES+TES+CHABS+EH operating based on FTL operational strategy, where utilization of CHELEC is not needed.
•RE sources are integrated to serve autonomous tri-generation CCHP system.•Due to intermittencies of RE sources, thermal and electrical storages are required.•Operational strategies based on following electric and thermal loads are introduced.•Results show that integration of WT along with PVT allows for meeting loads. | 
    
|---|---|
| AbstractList | Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages of zero environmental emissions as well as higher energy efficiencies in generation and consumption are realized simultaneously. However, to override the inherent intermittent availability of RE sources and to enhance the performance of RE-CCHP systems, it is necessary to include thermal and electrical storage mechanisms. The objective of this study is to develop a simulation model for optimization of different configuration alternatives of autonomous RE-CCHP system for meeting cooling, heating and electrical loads, based on photovoltaic-thermal (PVT) panel, wind turbine (WT), thermal energy storage (TES), electrical energy storage (EES), absorption chiller (CHABS), electric chiller (CHELEC) and electric heater (EH). For operation of autonomous RE-CCHP system, two operational strategies, namely, following electric load (FEL) and following thermal load (FTL), are used. For optimization, a newly developed evolutionary particle swarm optimization (E-PSO) algorithm is examined and validated. It is demonstrated that the most cost effective configuration alternative of the autonomous RE-CCHP system is PVT+WT+EES+TES+CHABS+EH operating based on FTL operational strategy, where utilization of CHELEC is not needed. Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages of zero environmental emissions as well as higher energy efficiencies in generation and consumption are realized simultaneously. However, to override the inherent intermittent availability of RE sources and to enhance the performance of RE-CCHP systems, it is necessary to include thermal and electrical storage mechanisms. The objective of this study is to develop a simulation model for optimization of different configuration alternatives of autonomous RE-CCHP system for meeting cooling, heating and electrical loads, based on photovoltaic-thermal (PVT) panel, wind turbine (WT), thermal energy storage (TES), electrical energy storage (EES), absorption chiller (CHABS), electric chiller (CHELEC) and electric heater (EH). For operation of autonomous RE-CCHP system, two operational strategies, namely, following electric load (FEL) and following thermal load (FTL), are used. For optimization, a newly developed evolutionary particle swarm optimization (E-PSO) algorithm is examined and validated. It is demonstrated that the most cost effective configuration alternative of the autonomous RE-CCHP system is PVT+WT+EES+TES+CHABS+EH operating based on FTL operational strategy, where utilization of CHELEC is not needed. •RE sources are integrated to serve autonomous tri-generation CCHP system.•Due to intermittencies of RE sources, thermal and electrical storages are required.•Operational strategies based on following electric and thermal loads are introduced.•Results show that integration of WT along with PVT allows for meeting loads.  | 
    
| Author | Lorestani, A. Ardehali, M.M.  | 
    
| Author_xml | – sequence: 1 givenname: A. surname: Lorestani fullname: Lorestani, A. – sequence: 2 givenname: M.M. orcidid: 0000-0001-6346-5823 surname: Ardehali fullname: Ardehali, M.M. email: ardehali@aut.ac.ir  | 
    
| BookMark | eNqFkcFu1DAURS1UJKaFP2BhiQ0LEmzHzkxYIKEKWqRK3cDaenFeUo8SO9hOR8N38YE4hFUXsLIl33P93r2X5MJ5h4S85qzkjNfvjyU6DMO5FIzvSy5KrtQzsuOHfVXU-4O6IDtW1axQUooX5DLGI2NMHZpmR37dz8lOMFLrEg4BkvWO-p6G7HiCdkS6WdPol2Aw0t4HCkvyzk9-iTQFWwyrZCONn1rrsMsXP1o3vKMPmF_cQMF1dPYnDDSeY8KJthCzLjP46MdlpSGc6QwhWZO_jScIE_XrdPbnZg7j4INND9NL8ryHMeKrv-cV-f7l87fr2-Lu_ubr9ae7wkihUqFED8og1ErWZi-aquk5dABV05m-4dC2dccqbjouDUAtmOJCmrbhvDd91TXVFXm7-c7B_1gwJj3ZaHAcwWFeXgshOBO1lHWWvnkiPebAXJ5OCyZrVkmlDlklN5UJPsaAvZ5DTj-cNWd6rVIf9Za3XqvUXOhcZcY-PMGMTX8ySQHs-D_44wZjTurRYtDRWHQGOxvQJN15-2-D39RaxYQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_renene_2021_02_165 crossref_primary_10_1016_j_energy_2021_119777 crossref_primary_10_3390_en15041472 crossref_primary_10_1016_j_renene_2024_120641 crossref_primary_10_1016_j_enconman_2021_113911 crossref_primary_10_1016_j_tsep_2025_103332 crossref_primary_10_1016_j_energy_2023_127554 crossref_primary_10_1016_j_applthermaleng_2018_09_046 crossref_primary_10_1016_j_energy_2021_121733 crossref_primary_10_3390_en16052454 crossref_primary_10_1016_j_energy_2018_12_047 crossref_primary_10_1002_ese3_864 crossref_primary_10_1016_j_enbuild_2022_112383 crossref_primary_10_2478_rtuect_2023_0028 crossref_primary_10_1007_s40313_019_00555_x crossref_primary_10_1016_j_enconman_2020_113648 crossref_primary_10_1016_j_esr_2020_100462 crossref_primary_10_1016_j_apenergy_2025_125389 crossref_primary_10_1016_j_enconman_2022_115827 crossref_primary_10_1016_j_enconman_2020_113800 crossref_primary_10_1016_j_egyr_2023_05_013 crossref_primary_10_1007_s10973_020_10517_0 crossref_primary_10_1016_j_ijepes_2022_108684 crossref_primary_10_32604_EE_2021_015542 crossref_primary_10_1016_j_enbuild_2023_113182 crossref_primary_10_1016_j_energy_2019_04_152 crossref_primary_10_1002_tee_23651 crossref_primary_10_1016_j_enconman_2023_117860 crossref_primary_10_1016_j_applthermaleng_2019_114356 crossref_primary_10_1016_j_jclepro_2020_120419 crossref_primary_10_1016_j_energy_2018_06_198 crossref_primary_10_1016_j_energy_2023_129715 crossref_primary_10_1007_s12555_019_0498_2 crossref_primary_10_1038_s41598_024_78994_z crossref_primary_10_1016_j_energy_2018_12_171 crossref_primary_10_1016_j_est_2024_112904 crossref_primary_10_1109_ACCESS_2020_2996913 crossref_primary_10_1016_j_ecmx_2024_100790 crossref_primary_10_1016_j_jclepro_2019_119082 crossref_primary_10_3390_en11113052 crossref_primary_10_1016_j_apenergy_2018_07_112 crossref_primary_10_1016_j_enbuild_2022_112618 crossref_primary_10_1007_s10470_025_02320_4 crossref_primary_10_3390_su12052027 crossref_primary_10_1016_j_egyai_2022_100195 crossref_primary_10_1016_j_applthermaleng_2025_125996 crossref_primary_10_1016_j_jclepro_2022_130380 crossref_primary_10_1016_j_est_2020_101697 crossref_primary_10_1016_j_ijhydene_2021_02_174 crossref_primary_10_1016_j_energy_2018_06_067 crossref_primary_10_3390_electronics13112045 crossref_primary_10_1016_j_eswa_2023_121540 crossref_primary_10_3233_JIFS_181990 crossref_primary_10_1016_j_energy_2020_117279 crossref_primary_10_1016_j_rser_2021_111892 crossref_primary_10_1016_j_apenergy_2023_122583 crossref_primary_10_1063_5_0024714 crossref_primary_10_1016_j_rser_2022_112625 crossref_primary_10_2139_ssrn_4118203 crossref_primary_10_1002_2050_7038_13183 crossref_primary_10_1016_j_energy_2020_118537 crossref_primary_10_1016_j_energy_2024_130362 crossref_primary_10_1016_j_energy_2020_118536 crossref_primary_10_1007_s12667_023_00603_1 crossref_primary_10_1088_1755_1315_546_2_022059 crossref_primary_10_1155_2022_6481531 crossref_primary_10_1016_j_energy_2018_07_167 crossref_primary_10_1016_j_ijepes_2022_108529 crossref_primary_10_1166_jno_2024_3681 crossref_primary_10_1016_j_applthermaleng_2020_115834 crossref_primary_10_1016_j_seta_2024_104091 crossref_primary_10_1080_03772063_2022_2163711 crossref_primary_10_1115_1_4065503 crossref_primary_10_1016_j_ijepes_2020_105984 crossref_primary_10_1007_s10470_019_01452_8 crossref_primary_10_1016_j_renene_2021_09_016 crossref_primary_10_3390_app11031063 crossref_primary_10_1016_j_energy_2023_128430 crossref_primary_10_1016_j_rser_2022_112320 crossref_primary_10_1016_j_seta_2021_101135 crossref_primary_10_1016_j_rser_2023_114105 crossref_primary_10_1016_j_est_2024_112497 crossref_primary_10_1016_j_energy_2021_122085 crossref_primary_10_1016_j_seta_2022_102416 crossref_primary_10_1002_ese3_2039 crossref_primary_10_1016_j_energy_2024_131729 crossref_primary_10_1016_j_jclepro_2022_132758 crossref_primary_10_1088_1755_1315_687_1_012098 crossref_primary_10_1177_1687814019827414 crossref_primary_10_1016_j_enconman_2018_11_053 crossref_primary_10_1016_j_energy_2023_129594 crossref_primary_10_1016_j_energy_2024_133694 crossref_primary_10_1016_j_est_2024_111214 crossref_primary_10_1016_j_energy_2019_03_095 crossref_primary_10_1016_j_ijhydene_2023_01_371 crossref_primary_10_1007_s12652_020_02511_z crossref_primary_10_1155_2022_2752678 crossref_primary_10_1016_j_enbuild_2019_04_004  | 
    
| Cites_doi | 10.1016/j.rser.2017.01.174 10.1016/j.rser.2015.09.046 10.1016/j.energy.2017.08.029 10.1016/j.enpol.2010.06.012 10.1016/j.enconman.2012.08.012 10.1016/j.energy.2016.05.085 10.1049/iet-gtd.2016.0656 10.1016/j.renene.2014.05.006 10.1016/j.enbuild.2016.12.048 10.1016/j.applthermaleng.2007.05.001 10.1016/j.applthermaleng.2014.10.023 10.1049/iet-rpg.2015.0394 10.1016/j.jngse.2015.02.019 10.1016/j.renene.2015.01.029 10.1016/j.solener.2014.12.013 10.1049/iet-rpg.2016.0646 10.1016/j.ijhydene.2011.02.003 10.1016/j.enconman.2015.07.062 10.1016/j.enconman.2015.02.014 10.1016/j.apenergy.2012.02.035 10.1016/j.apenergy.2009.08.012 10.1016/j.renene.2015.02.045 10.1002/pip.590 10.1002/pip.559  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Elsevier Ltd Copyright Elsevier BV Feb 15, 2018  | 
    
| Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier BV Feb 15, 2018  | 
    
| DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K F28 FR3 KR7 L7M SOI 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2017.12.155 | 
    
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| EISSN | 1873-6785 | 
    
| EndPage | 855 | 
    
| ExternalDocumentID | 10_1016_j_energy_2017_12_155 S0360544217321989  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ~HD 7SP 7ST 7TB 8FD AGCQF C1K F28 FR3 KR7 L7M SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c425t-52fa5cea6546c72939f1adaa39dcf91abb6d031cd14caa6205124cb911fcf3d93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Wed Oct 01 13:53:52 EDT 2025 Wed Aug 13 09:37:17 EDT 2025 Wed Oct 01 01:34:49 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 23 02:33:57 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Evolutionary particle swarm optimization Combined cooling Renewable energy Heating and power Energy storage  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c425t-52fa5cea6546c72939f1adaa39dcf91abb6d031cd14caa6205124cb911fcf3d93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6346-5823 | 
    
| PQID | 2046034558 | 
    
| PQPubID | 2045484 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_2221026446 proquest_journals_2046034558 crossref_primary_10_1016_j_energy_2017_12_155 crossref_citationtrail_10_1016_j_energy_2017_12_155 elsevier_sciencedirect_doi_10_1016_j_energy_2017_12_155  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-02-15 | 
    
| PublicationDateYYYYMMDD | 2018-02-15 | 
    
| PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Hosseinalizadeh, Shakouri, Amalnick, Taghipour (bib6) 2016; 54 Tripanagnostopoulos, Souliotis, Battisti, Corrado (bib35) 2005; 13 Maleki, Askarzadeh (bib30) 2014; 7 Chicco, Mancarella (bib1) 2005; 2006 Das, Tan, Yatim, Lau (bib9) 2017; 76 Tichi, Ardehali, Nazari (bib12) 2010; 38 Wang, Zhong, Xia, Kang, Du (bib18) 2017; 11 Singh, Agrawal, Gadh (bib22) 2015; 105 Yousefi, Ghodusinejad, Noorollahi (bib26) 2017; 138 Moradi, Eskandari, Mahdi Hosseinian (bib15) 2014; 2015 Ren, Gao, Ruan (bib11) 2008; 28 Gharavi, Ardehali, Ghanbari-Tichi (bib31) 2015; 78 Afzali, Mahalec (bib19) 2017 Borhanazad, Mekhilef, Gounder Ganapathy, Modiri-Delshad, Mirtaheri (bib5) 2014; 71 Shabani, Andrews (bib20) 2011; 36 Brandoni, Renzi (bib14) 2015; 75 Lorestani, Ardehali, Gharehpetian (bib29) 2016; 2016 Pourmousavi, Nehrir, Colson, Wang (bib3) 2010; 2010 Ben Cheikh El Hocine, Gama, Touafek (bib25) 2017 Zhou, Lou, Li, Lu, Yang (bib2) 2010; 87 Hong, Lian (bib4) 2011; 2012 Maleki, Ameri, Keynia (bib8) 2015; 80 Suhane, Rangnekar, Khare, Mittal (bib7) 2016; 10 Gu, Wang, Wu, Luo, Tang, Wang (bib28) 2016; 2016 Ju, Tan, Li, Tan, Yu, Song (bib16) 2016; 111 Murphy (bib24) 2007 Ma, Xu, Chen, Ju (bib10) 2017; 11 Rabbani, Mohammadi, Mobini (bib17) 2018; 9 Tookanlou, Ardehali, Nazari (bib32) 2015; 23 Fang, Wang, Shi (bib13) 2011; 2012 Liu, Shi, Fang (bib33) 2012; 95 Van Helden, Van Zolingen, Zondag (bib21) 2004; 12 Safari, Ardehali, Sirizi (bib34) 2013; 65 Gholami, Khalilnejad, Gharehpetian (bib23) 2015; 95 Askarzadeh, dos Santos Coelho (bib27) 2015; 112 Pourmousavi (10.1016/j.energy.2017.12.155_bib3) 2010; 2010 Ma (10.1016/j.energy.2017.12.155_bib10) 2017; 11 Hosseinalizadeh (10.1016/j.energy.2017.12.155_bib6) 2016; 54 Yousefi (10.1016/j.energy.2017.12.155_bib26) 2017; 138 Murphy (10.1016/j.energy.2017.12.155_bib24) 2007 Brandoni (10.1016/j.energy.2017.12.155_bib14) 2015; 75 Tripanagnostopoulos (10.1016/j.energy.2017.12.155_bib35) 2005; 13 Lorestani (10.1016/j.energy.2017.12.155_bib29) 2016; 2016 Safari (10.1016/j.energy.2017.12.155_bib34) 2013; 65 Ren (10.1016/j.energy.2017.12.155_bib11) 2008; 28 Rabbani (10.1016/j.energy.2017.12.155_bib17) 2018; 9 Ju (10.1016/j.energy.2017.12.155_bib16) 2016; 111 Zhou (10.1016/j.energy.2017.12.155_bib2) 2010; 87 Askarzadeh (10.1016/j.energy.2017.12.155_bib27) 2015; 112 Wang (10.1016/j.energy.2017.12.155_bib18) 2017; 11 Moradi (10.1016/j.energy.2017.12.155_bib15) 2014; 2015 Van Helden (10.1016/j.energy.2017.12.155_bib21) 2004; 12 Suhane (10.1016/j.energy.2017.12.155_bib7) 2016; 10 Ben Cheikh El Hocine (10.1016/j.energy.2017.12.155_bib25) 2017 Hong (10.1016/j.energy.2017.12.155_bib4) 2011; 2012 Gu (10.1016/j.energy.2017.12.155_bib28) 2016; 2016 Maleki (10.1016/j.energy.2017.12.155_bib30) 2014; 7 Fang (10.1016/j.energy.2017.12.155_bib13) 2011; 2012 Tookanlou (10.1016/j.energy.2017.12.155_bib32) 2015; 23 Chicco (10.1016/j.energy.2017.12.155_bib1) 2005; 2006 Liu (10.1016/j.energy.2017.12.155_bib33) 2012; 95 Afzali (10.1016/j.energy.2017.12.155_bib19) 2017 Shabani (10.1016/j.energy.2017.12.155_bib20) 2011; 36 Gharavi (10.1016/j.energy.2017.12.155_bib31) 2015; 78 Gholami (10.1016/j.energy.2017.12.155_bib23) 2015; 95 Das (10.1016/j.energy.2017.12.155_bib9) 2017; 76 Singh (10.1016/j.energy.2017.12.155_bib22) 2015; 105 Borhanazad (10.1016/j.energy.2017.12.155_bib5) 2014; 71 Tichi (10.1016/j.energy.2017.12.155_bib12) 2010; 38 Maleki (10.1016/j.energy.2017.12.155_bib8) 2015; 80  | 
    
| References_xml | – volume: 2016 start-page: 1 year: 2016 end-page: 11 ident: bib28 article-title: An online optimal dispatch schedule for CCHP microgrids based on model predictive control publication-title: IEEE Trans Smart Grid – volume: 2006 start-page: 265 year: 2005 end-page: 272 ident: bib1 article-title: From cogeneration to trigeneration: profitable alternatives in a competitive market publication-title: IEEE Trans Energy Convers – volume: 71 start-page: 295 year: 2014 end-page: 306 ident: bib5 article-title: Optimization of micro-grid system using MOPSO publication-title: Renew Energy – volume: 28 start-page: 514 year: 2008 end-page: 523 ident: bib11 article-title: Optimal sizing for residential CHP system publication-title: Appl Therm Eng – volume: 9 start-page: 99 year: 2018 end-page: 122 ident: bib17 article-title: Optimum design of a CCHP system based on Economical, energy and environmental considerations using GA and PSO publication-title: Int J Ind Eng Comput – start-page: 1 year: 2017 end-page: 29 ident: bib25 article-title: The Feasibility of new design of hybrid photovoltaic-thermal system-A theoretical approach publication-title: Int J Ambient Energy – volume: 95 start-page: 326 year: 2015 end-page: 333 ident: bib23 article-title: Electrothermal performance and environmental effects of optimal photovoltaic-thermal system publication-title: Energy Convers Manag – volume: 10 start-page: 964 year: 2016 end-page: 972 ident: bib7 article-title: Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation publication-title: IET Renew Power Gener – volume: 7 start-page: 147 year: 2014 end-page: 153 ident: bib30 article-title: Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan publication-title: Iran. Sustain Energy Technol Assess. – volume: 80 start-page: 552 year: 2015 end-page: 563 ident: bib8 article-title: Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system publication-title: Renew Energy – volume: 2012 start-page: 1032 year: 2011 end-page: 1041 ident: bib13 article-title: A novel optimal operational strategy for the CCHP system based on two operating modes publication-title: IEEE Trans Power Syst – volume: 23 start-page: 417 year: 2015 end-page: 430 ident: bib32 article-title: Combined cooling, heating, and power system optimal pricing for electricity and natural gas using particle swarm optimization based on bi-level programming approach: case study of Canadian energy sector publication-title: J. Nat. Gas Sci. Eng. – year: 2017 ident: bib19 article-title: Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller publication-title: Energy – volume: 12 start-page: 415 year: 2004 end-page: 426 ident: bib21 article-title: PV Thermal systems: PV panels supplying renewable electricity and heat publication-title: Prog Photovoltaics Res Appl – volume: 11 start-page: 785 year: 2017 end-page: 794 ident: bib18 article-title: Optimal joint-dispatch of energy and reserve for CCHP-based microgrids publication-title: IET Gener, Transm Distrib – volume: 65 start-page: 41 year: 2013 end-page: 49 ident: bib34 article-title: Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage publication-title: Energy Convers Manag – volume: 105 start-page: 303 year: 2015 end-page: 312 ident: bib22 article-title: Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array publication-title: Energy Convers Manag – volume: 78 start-page: 427 year: 2015 end-page: 437 ident: bib31 article-title: Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions publication-title: Renew Energy – volume: 13 start-page: 235 year: 2005 end-page: 250 ident: bib35 article-title: Energy, cost and LCA results of PV and hybrid PV/T solar systems publication-title: Prog Photovoltaics Res Appl – volume: 2010 start-page: 193 year: 2010 end-page: 201 ident: bib3 article-title: Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization publication-title: IEEE Trans Software Eng – volume: 75 start-page: 896 year: 2015 end-page: 907 ident: bib14 article-title: Optimal sizing of hybrid solar micro-CHP systems for the household sector publication-title: Appl Therm Eng – volume: 111 start-page: 322 year: 2016 end-page: 340 ident: bib16 article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China publication-title: Energy – volume: 76 start-page: 1332 year: 2017 end-page: 1347 ident: bib9 article-title: Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 5442 year: 2011 end-page: 5452 ident: bib20 article-title: An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system publication-title: Int J Hydrogen Energy – volume: 95 start-page: 164 year: 2012 end-page: 173 ident: bib33 article-title: A new operation strategy for CCHP systems with hybrid chillers publication-title: Appl Energy – volume: 87 start-page: 380 year: 2010 end-page: 389 ident: bib2 article-title: Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems publication-title: Appl Energy – volume: 54 start-page: 139 year: 2016 end-page: 150 ident: bib6 article-title: Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran publication-title: Renew Sustain Energy Rev – volume: 11 start-page: 194 year: 2017 end-page: 202 ident: bib10 article-title: Multi-objective optimal configuration method for a standalone wind–solar–battery hybrid power system publication-title: IET Renew Power Gener – year: 2007 ident: bib24 article-title: IEA solar heating & cooling programme – volume: 138 start-page: 309 year: 2017 end-page: 317 ident: bib26 article-title: GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission publication-title: Energy Build – volume: 2015 start-page: 1087 year: 2014 end-page: 1095 ident: bib15 article-title: Operational strategy optimization in an optimal sized smart microgrid publication-title: IEEE Trans Smart Grid – volume: 2012 start-page: 640 year: 2011 end-page: 647 ident: bib4 article-title: Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using markov-based genetic algorithm publication-title: IEEE Trans Power Deliv – volume: 38 start-page: 6240 year: 2010 end-page: 6250 ident: bib12 article-title: Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm publication-title: Energy Pol – volume: 112 start-page: 383 year: 2015 end-page: 396 ident: bib27 article-title: A novel framework for optimization of a grid independent hybrid renewable energy system: a case study of Iran publication-title: Sol Energy – volume: 2016 start-page: 1 year: 2016 end-page: 8 ident: bib29 article-title: Optimal resource planning of smart home energy system under dynamic pricing based on invasive weed optimization algorithm publication-title: Smart Grids Conf – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.energy.2017.12.155_bib29 article-title: Optimal resource planning of smart home energy system under dynamic pricing based on invasive weed optimization algorithm publication-title: Smart Grids Conf – volume: 76 start-page: 1332 year: 2017 ident: 10.1016/j.energy.2017.12.155_bib9 article-title: Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.174 – volume: 7 start-page: 147 year: 2014 ident: 10.1016/j.energy.2017.12.155_bib30 article-title: Optimal sizing of a PV/wind/diesel system with battery storage for electrification to an off-grid remote region: a case study of Rafsanjan publication-title: Iran. Sustain Energy Technol Assess. – volume: 54 start-page: 139 year: 2016 ident: 10.1016/j.energy.2017.12.155_bib6 article-title: Economic sizing of a hybrid (PV-WT-FC) renewable energy system (HRES) for stand-alone usages by an optimization-simulation model: case study of Iran publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.09.046 – volume: 2015 start-page: 1087 issue: 6 year: 2014 ident: 10.1016/j.energy.2017.12.155_bib15 article-title: Operational strategy optimization in an optimal sized smart microgrid publication-title: IEEE Trans Smart Grid – year: 2017 ident: 10.1016/j.energy.2017.12.155_bib19 article-title: Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller publication-title: Energy doi: 10.1016/j.energy.2017.08.029 – volume: 38 start-page: 6240 year: 2010 ident: 10.1016/j.energy.2017.12.155_bib12 article-title: Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm publication-title: Energy Pol doi: 10.1016/j.enpol.2010.06.012 – volume: 9 start-page: 99 year: 2018 ident: 10.1016/j.energy.2017.12.155_bib17 article-title: Optimum design of a CCHP system based on Economical, energy and environmental considerations using GA and PSO publication-title: Int J Ind Eng Comput – volume: 65 start-page: 41 year: 2013 ident: 10.1016/j.energy.2017.12.155_bib34 article-title: Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2012.08.012 – start-page: 1 year: 2017 ident: 10.1016/j.energy.2017.12.155_bib25 article-title: The Feasibility of new design of hybrid photovoltaic-thermal system-A theoretical approach publication-title: Int J Ambient Energy – volume: 2006 start-page: 265 issue: 21 year: 2005 ident: 10.1016/j.energy.2017.12.155_bib1 article-title: From cogeneration to trigeneration: profitable alternatives in a competitive market publication-title: IEEE Trans Energy Convers – volume: 111 start-page: 322 year: 2016 ident: 10.1016/j.energy.2017.12.155_bib16 article-title: Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China publication-title: Energy doi: 10.1016/j.energy.2016.05.085 – volume: 11 start-page: 785 year: 2017 ident: 10.1016/j.energy.2017.12.155_bib18 article-title: Optimal joint-dispatch of energy and reserve for CCHP-based microgrids publication-title: IET Gener, Transm Distrib doi: 10.1049/iet-gtd.2016.0656 – volume: 71 start-page: 295 year: 2014 ident: 10.1016/j.energy.2017.12.155_bib5 article-title: Optimization of micro-grid system using MOPSO publication-title: Renew Energy doi: 10.1016/j.renene.2014.05.006 – volume: 138 start-page: 309 year: 2017 ident: 10.1016/j.energy.2017.12.155_bib26 article-title: GA/AHP-based optimal design of a hybrid CCHP system considering economy, energy and emission publication-title: Energy Build doi: 10.1016/j.enbuild.2016.12.048 – volume: 28 start-page: 514 year: 2008 ident: 10.1016/j.energy.2017.12.155_bib11 article-title: Optimal sizing for residential CHP system publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2007.05.001 – volume: 75 start-page: 896 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib14 article-title: Optimal sizing of hybrid solar micro-CHP systems for the household sector publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2014.10.023 – volume: 10 start-page: 964 year: 2016 ident: 10.1016/j.energy.2017.12.155_bib7 article-title: Sizing and performance analysis of standalone wind-photovoltaic based hybrid energy system using ant colony optimisation publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2015.0394 – volume: 23 start-page: 417 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib32 article-title: Combined cooling, heating, and power system optimal pricing for electricity and natural gas using particle swarm optimization based on bi-level programming approach: case study of Canadian energy sector publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.02.019 – volume: 78 start-page: 427 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib31 article-title: Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions publication-title: Renew Energy doi: 10.1016/j.renene.2015.01.029 – volume: 2012 start-page: 640 issue: 27 year: 2011 ident: 10.1016/j.energy.2017.12.155_bib4 article-title: Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using markov-based genetic algorithm publication-title: IEEE Trans Power Deliv – volume: 2010 start-page: 193 issue: 1 year: 2010 ident: 10.1016/j.energy.2017.12.155_bib3 article-title: Real-time energy management of a stand-alone hybrid wind-microturbine energy system using particle swarm optimization publication-title: IEEE Trans Software Eng – volume: 112 start-page: 383 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib27 article-title: A novel framework for optimization of a grid independent hybrid renewable energy system: a case study of Iran publication-title: Sol Energy doi: 10.1016/j.solener.2014.12.013 – volume: 11 start-page: 194 year: 2017 ident: 10.1016/j.energy.2017.12.155_bib10 article-title: Multi-objective optimal configuration method for a standalone wind–solar–battery hybrid power system publication-title: IET Renew Power Gener doi: 10.1049/iet-rpg.2016.0646 – volume: 36 start-page: 5442 year: 2011 ident: 10.1016/j.energy.2017.12.155_bib20 article-title: An experimental investigation of a PEM fuel cell to supply both heat and power in a solar-hydrogen RAPS system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.02.003 – volume: 105 start-page: 303 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib22 article-title: Optimization of single channel glazed photovoltaic thermal (PVT) array using Evolutionary Algorithm (EA) and carbon credit earned by the optimized array publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.07.062 – year: 2007 ident: 10.1016/j.energy.2017.12.155_bib24 – volume: 95 start-page: 326 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib23 article-title: Electrothermal performance and environmental effects of optimal photovoltaic-thermal system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.02.014 – volume: 95 start-page: 164 year: 2012 ident: 10.1016/j.energy.2017.12.155_bib33 article-title: A new operation strategy for CCHP systems with hybrid chillers publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.02.035 – volume: 87 start-page: 380 year: 2010 ident: 10.1016/j.energy.2017.12.155_bib2 article-title: Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.08.012 – volume: 80 start-page: 552 year: 2015 ident: 10.1016/j.energy.2017.12.155_bib8 article-title: Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system publication-title: Renew Energy doi: 10.1016/j.renene.2015.02.045 – volume: 13 start-page: 235 year: 2005 ident: 10.1016/j.energy.2017.12.155_bib35 article-title: Energy, cost and LCA results of PV and hybrid PV/T solar systems publication-title: Prog Photovoltaics Res Appl doi: 10.1002/pip.590 – volume: 2012 start-page: 1032 issue: 27 year: 2011 ident: 10.1016/j.energy.2017.12.155_bib13 article-title: A novel optimal operational strategy for the CCHP system based on two operating modes publication-title: IEEE Trans Power Syst – volume: 12 start-page: 415 year: 2004 ident: 10.1016/j.energy.2017.12.155_bib21 article-title: PV Thermal systems: PV panels supplying renewable electricity and heat publication-title: Prog Photovoltaics Res Appl doi: 10.1002/pip.559 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.energy.2017.12.155_bib28 article-title: An online optimal dispatch schedule for CCHP microgrids based on model predictive control publication-title: IEEE Trans Smart Grid  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.5423172 | 
    
| Snippet | Renewable energy (RE) sources can be integrated to serve autonomous tri-generation combined cooling, heating and power (CCHP) systems, so that the advantages... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 839 | 
    
| SubjectTerms | absorption Algorithms Alternative energy sources Combined cooling Computer simulation Configurations Cooling Cooling systems cost effectiveness electric power Electrical loads emissions energy efficiency Energy storage Evolutionary algorithms Evolutionary particle swarm optimization Heating Heating and power HVAC Particle physics Particle swarm optimization Photovoltaics Renewable energy Renewable energy sources simulation models Storage Thermal analysis Thermal energy Turbines Wind power Wind turbines  | 
    
| Title | Optimal integration of renewable energy sources for autonomous tri-generation combined cooling, heating and power system based on evolutionary particle swarm optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2017.12.155 https://www.proquest.com/docview/2046034558 https://www.proquest.com/docview/2221026446  | 
    
| Volume | 145 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6785 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoALgkLFllJNJY6E3STOh49V1WoBqT1Apd6sieMsi7rJKslScemv6g9kxnHagpAqccsm9q7lsZ_fZOfNCPEeZwVimRXE3GI5OCiqQsV5b6MsSlwNJI62OEvnF_LzZXK5JY5HLQyHVXrsHzDdobW_M_WzOV0vl9OvhL3ENyRx6jjiyB9WsMuMqxh8vHkQ5pG7GpLcOODWo3zOxXhZp6_jAK-MXwqGLPj79_H0F1C70-f0hXjuaSMcDSN7KbZsvSOejqribkfsntwr1qih37LdK3F7TqCwoltjYggyBDQVcCrLa9ZNwTA8GF7jd0AsFnDT8zc3mw76dhksXG5q15PmiXxpW9IFl_tZfABGc7oArEtYc801GLJDAx-QJVAf-9Ovb2x_wdrPLnTX2K6g4dF5LSjg1aJpl_331WtxcXry7Xge-FINgaFN35M7W2FiLLI0yhBfj1UVYokYq9JUKsSiSEuCD1OG0iCmEUFBJE1BSFuZKi5VvCu266a2bwSwg2WkLLJKzWRc2dzmIbvSqHKj0iKbiHi0kDY-jzmX07jSY8DaDz1MnGa76jDSZNeJCO56rYc8Ho-0z0bj6z_Wo6aj5pGe--Na0R4POnou01kskySfiMO7x7ST-e8ZrC3ZUxNTI7ZH_DTd--8ffyue0aecw8rDZF9s9-3GviPW1BcHblsciCdHn77Mz34DtFcdfA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQLgkLF0gKDxJGwm8R5HVHVaoFSDrRSb9bEdpZF3WSVZFtx4VfxA5lxnPIQUiVukR-J5bE_f-PMQ4hXOCsRTVYSc4vloKAUFRYc9zbKosTlQGJri9N0fi7fXyQXW-Jw9IVhs0qP_QOmO7T2JVM_m9P1cjn9TNhLfEMSp44jtvy5I-7KJMpYA3vz_Tc7j9wlkeTWATcf_eeckZd1DnZs4ZXxrWDIHn__Pp_-Qmp3_Bw_EPc9b4S3w9Aeii1b74qd0a242xV7R79c1qih37PdI_HjE6HCiorGyBAkCWgq4FiW1-w4BcPwYLjH74BoLOCm5zc3mw76dhksXHBq15MmipRpa-iB8_0sXgPDOT0A1gbWnHQNhvDQwCekAepjr_wCx_YbrP30QneN7QoaHp13BgW8XDTtsv-yeizOj4_ODueBz9UQaNr1PemzFSbaIvtGaSLscVGFaBDjwuiqCLEsU0P4oU0oNWIaERZEUpcEtZWuYlPEe2K7bmr7RABrWFrKMquKmYwrm9s8ZF0ai1wXaZlNRDxKSGkfyJzzaVyq0WLtqxomTrFcVRgpkutEBDe91kMgj1vaZ6Pw1R8LUtFZc0vPg3GtKA8IHdXLdBbLJMkn4uVNNW1l_j-DtSV5KqJqRPeIoKZP__vjL8TO_OzjiTp5d_phX9yjmpxtzMPkQGz37cY-IwrVl8_dFvkJFzQfEQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+integration+of+renewable+energy+sources+for+autonomous+tri-generation+combined+cooling%2C+heating+and+power+system+based+on+evolutionary+particle+swarm+optimization+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Lorestani%2C+A.&rft.au=Ardehali%2C+M.M.&rft.date=2018-02-15&rft.issn=0360-5442&rft.volume=145&rft.spage=839&rft.epage=855&rft_id=info:doi/10.1016%2Fj.energy.2017.12.155&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2017_12_155 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |