Multilevel Depth and Image Fusion for Human Activity Detection

Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and in...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 43; no. 5; pp. 1383 - 1394
Main Authors Bingbing Ni, Yong Pei, Moulin, Pierre, Shuicheng Yan
Format Journal Article
LanguageEnglish
Published United States IEEE 01.10.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2267
2168-2275
2168-2275
DOI10.1109/TCYB.2013.2276433

Cover

Abstract Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
AbstractList Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current methods only rely on the visual features extracted from 2-D images, and therefore often lead to unreliable salient visual feature detection and inaccurate modeling of the interaction context between individual features. In this paper, we show that these problems can be addressed by combining data from a conventional camera and a depth sensor (e.g., Microsoft Kinect). We propose a novel complex activity recognition and localization framework that effectively fuses information from both grayscale and depth image channels at multiple levels of the video processing pipeline. In the individual visual feature detection level, depth-based filters are applied to the detected human/object rectangles to remove false detections. In the next level of interaction modeling, 3-D spatial and temporal contexts among human subjects or objects are extracted by integrating information from both grayscale and depth images. Depth information is also utilized to distinguish different types of indoor scenes. Finally, a latent structural model is developed to integrate the information from multiple levels of video processing for an activity detection. Extensive experiments on two activity recognition benchmarks (one with depth information) and a challenging grayscale + depth human activity database that contains complex interactions between human-human, human-object, and human-surroundings demonstrate the effectiveness of the proposed multilevel grayscale + depth fusion scheme. Higher recognition and localization accuracies are obtained relative to the previous methods.
Author Bingbing Ni
Shuicheng Yan
Moulin, Pierre
Yong Pei
Author_xml – sequence: 1
  surname: Bingbing Ni
  fullname: Bingbing Ni
  email: bingbing.ni@adsc.com.sg
  organization: Adv. Digital Sci. Center, Singapore, Singapore
– sequence: 2
  surname: Yong Pei
  fullname: Yong Pei
  email: pei.yong@adsc.com.sg
  organization: Adv. Digital Sci. Center, Singapore, Singapore
– sequence: 3
  givenname: Pierre
  surname: Moulin
  fullname: Moulin, Pierre
  email: moulin@ifp.uiuc.edu
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 4
  surname: Shuicheng Yan
  fullname: Shuicheng Yan
  email: eleyans@nus.edu.sg
  organization: Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23996589$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_0ByAkFIlNNzP1K7G9QSpTSisVsSkLVtaNY4Mrxxlip9X8exzNMIsRi3rje63vXJ17fIqO4hAtQu8IXhKC1eXD6ufnJcWELSkVDWfsFTqhpJGL0tZH-7oRx-g8pUdcjixPSr5Bx5Qp1dRSnaBP36aQfbBPNlTXdp1_VxC76q6HX7a6mZIfYuWGsbqdeojVlcn-yedNIbMt9RDfotcOQrLnu_sM_bj58rC6Xdx__3q3urpfGE7rvGCEK9s6AtjVLXHAWN0JJp2pgYCBums5NGCVdMS4jmPccUGkc6xjIMFwdobodu4U17B5hhD0evQ9jBtNsJ7z0NlsWj3noXd5FNHFVrQehz-TTVn3PhkbAkQ7TEkTzqVgWDb1C9BimQhGcEE_HqCPwzTGsv1MUSWpovPADztqanvb7d3-S74AYguYcUhptE4bn2HONI_gw36t-ZsP1yIHysMo_qd5v9V4a-2eL0YEFZT9BcuiruY
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s11042_020_08789_7
crossref_primary_10_1109_TSMC_2024_3356530
crossref_primary_10_1371_journal_pone_0114147
crossref_primary_10_1109_THMS_2018_2850301
crossref_primary_10_1109_THMS_2017_2759809
crossref_primary_10_3390_electronics10192412
crossref_primary_10_1186_s13640_018_0365_8
crossref_primary_10_1007_s11554_016_0660_5
crossref_primary_10_1109_TCYB_2015_2494877
crossref_primary_10_1142_S0218001421500026
crossref_primary_10_1016_j_neucom_2018_08_066
crossref_primary_10_1007_s11042_018_6875_7
crossref_primary_10_1109_TPAMI_2015_2513479
crossref_primary_10_3390_s20174944
crossref_primary_10_1016_j_neucom_2022_07_048
crossref_primary_10_3390_s16122171
crossref_primary_10_3390_s16101713
crossref_primary_10_3390_informatics8010002
crossref_primary_10_1016_j_image_2016_01_003
crossref_primary_10_3390_s17051100
crossref_primary_10_1007_s11045_018_0550_z
crossref_primary_10_1109_TCYB_2016_2638856
crossref_primary_10_1109_TCYB_2021_3126831
crossref_primary_10_1109_TCYB_2021_3137753
crossref_primary_10_1016_j_imavis_2016_04_004
crossref_primary_10_1111_exsy_12096
crossref_primary_10_3390_s19040947
crossref_primary_10_1007_s00371_021_02064_y
crossref_primary_10_3233_ICA_190599
crossref_primary_10_1007_s11042_019_7740_z
crossref_primary_10_1007_s10462_021_10116_x
crossref_primary_10_1016_j_neucom_2016_07_058
crossref_primary_10_3389_fnbot_2015_00003
crossref_primary_10_1109_TCYB_2018_2869902
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1049_iet_cvi_2017_0487
crossref_primary_10_1109_TMM_2021_3134565
crossref_primary_10_1109_JSEN_2017_2723599
crossref_primary_10_1016_j_patrec_2017_05_004
crossref_primary_10_1109_JSEN_2018_2839732
crossref_primary_10_1109_TCYB_2019_2960481
crossref_primary_10_1016_j_heliyon_2021_e07797
crossref_primary_10_1016_j_inffus_2019_07_005
crossref_primary_10_1007_s11042_020_08875_w
crossref_primary_10_3390_electronics10141685
crossref_primary_10_1007_s00500_018_3364_x
crossref_primary_10_14483_22487638_17413
crossref_primary_10_1109_TCYB_2016_2524406
crossref_primary_10_1016_j_jvcir_2016_05_006
crossref_primary_10_1109_THMS_2014_2377111
crossref_primary_10_1016_j_image_2018_06_013
crossref_primary_10_32628_IJSRSET2411221
crossref_primary_10_1016_j_patrec_2020_01_010
crossref_primary_10_1109_THMS_2015_2443037
crossref_primary_10_1007_s12369_018_0498_z
crossref_primary_10_1016_j_imavis_2024_105205
crossref_primary_10_1109_ACCESS_2021_3132559
crossref_primary_10_1109_TCYB_2016_2539546
crossref_primary_10_1109_TCYB_2014_2350774
crossref_primary_10_1109_TCYB_2015_2485203
crossref_primary_10_1109_TCSVT_2019_2943010
Cites_doi 10.1109/ICCV.2003.1238378
10.1109/TPAMI.2009.167
10.1109/TPAMI.2012.67
10.5244/C.22.99
10.1109/VSPETS.2005.1570899
10.1109/TPAMI.2010.214
10.1109/34.910878
10.1109/CVPR.2011.5995407
10.1109/TPAMI.2007.70711
10.1109/CVPR.2010.5539883
10.1145/1961189.1961199
10.1109/CVPR.2007.383131
10.5244/C.20.127
10.1177/0278364913478446
10.1109/CVPR.2005.177
10.1109/TPAMI.2011.38
10.1109/CVPR.2008.4587628
10.1109/CVPR.2012.6247807
10.1109/CVPRW.2010.5543273
10.1109/TCYB.2013.2265378
10.1109/ICCVW.2011.6130379
10.1109/CVPR.2008.4587731
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7U5
ADTOC
UNPAY
DOI 10.1109/TCYB.2013.2276433
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Solid State and Superconductivity Abstracts
DatabaseTitleList Aerospace Database

MEDLINE - Academic
Aerospace Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1394
ExternalDocumentID oai:scholarbank.nus.edu.sg:10635/56712
3073300391
23996589
10_1109_TCYB_2013_2276433
6587272
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
7U5
ADTOC
UNPAY
ID FETCH-LOGICAL-c425t-3149ebf1a0f5b1fa335d738fc5a1aca5db4a6ae98f1cfd400d4718ff3d3a8ac43
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Tue Aug 26 13:28:12 EDT 2025
Sun Sep 28 00:08:38 EDT 2025
Sat Sep 27 16:27:04 EDT 2025
Sun Sep 07 03:42:50 EDT 2025
Thu Apr 03 06:52:34 EDT 2025
Wed Oct 01 05:14:30 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Tue Aug 26 16:43:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c425t-3149ebf1a0f5b1fa335d738fc5a1aca5db4a6ae98f1cfd400d4718ff3d3a8ac43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=http://scholarbank.nus.edu.sg/handle/10635/56712
PMID 23996589
PQID 1432982925
PQPubID 85422
PageCount 12
ParticipantIDs proquest_miscellaneous_1448730865
crossref_citationtrail_10_1109_TCYB_2013_2276433
unpaywall_primary_10_1109_tcyb_2013_2276433
pubmed_primary_23996589
crossref_primary_10_1109_TCYB_2013_2276433
proquest_miscellaneous_1433517310
proquest_journals_1432982925
ieee_primary_6587272
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-10-01
PublicationDateYYYYMMDD 2013-10-01
PublicationDate_xml – month: 10
  year: 2013
  text: 2013-10-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
ref31
ref10
ref2
lan (ref11) 2010
ref1
ref19
sung (ref18) 2011
liu (ref16) 2013
guo (ref4) 2010
yao (ref12) 2012; 34
wang (ref17) 2012
yang (ref27) 0
ref24
ref23
ref26
ref20
ref22
ref21
ref29
ref8
ref7
ref9
ref3
ref6
ref5
wolf (ref30) 2012
choi (ref28) 2009
(ref25) 0
References_xml – year: 2009
  ident: ref28
  article-title: What are they doing? Collective activity classification using spatio-temporal relationship among people
  publication-title: Proc IEEE Int Workshop Visual Surveilance
– ident: ref6
  doi: 10.1109/ICCV.2003.1238378
– year: 2012
  ident: ref30
  publication-title: The LIRIS human activities dataset and the ICPR human activities recognition and localization competition
– start-page: 1290
  year: 2012
  ident: ref17
  article-title: Mining actionlet ensemble for action recognition with depth cameras
  publication-title: Proc IEEE Int Conf Comput Vision Pattern Recognit
– ident: ref20
  doi: 10.1109/TPAMI.2009.167
– volume: 34
  start-page: 1691
  year: 2012
  ident: ref12
  article-title: Recognizing human?object interactions in still images by modeling the mutual context of objects and human poses
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.67
– ident: ref7
  doi: 10.5244/C.22.99
– ident: ref8
  doi: 10.1109/VSPETS.2005.1570899
– ident: ref24
  doi: 10.1109/TPAMI.2010.214
– ident: ref3
  doi: 10.1109/34.910878
– ident: ref9
  doi: 10.1109/CVPR.2011.5995407
– year: 2013
  ident: ref16
  article-title: Learning discriminative representations from RGB-D video data
  publication-title: Proc Int Joint Conf Artif Intell
– ident: ref5
  doi: 10.1109/TPAMI.2007.70711
– ident: ref22
  doi: 10.1109/CVPR.2010.5539883
– ident: ref23
  doi: 10.1145/1961189.1961199
– ident: ref1
  doi: 10.1109/CVPR.2007.383131
– ident: ref29
  doi: 10.5244/C.20.127
– ident: ref26
  doi: 10.1177/0278364913478446
– year: 2011
  ident: ref18
  article-title: Human activity detection from RGBD images
  publication-title: Proc AAAI Workshop Pattern Activity Intent Recognit
– year: 2010
  ident: ref4
  article-title: Action recognition in video by sparse representation on covariance manifolds of silhouette tunnels
  publication-title: Proc IEEE Int Conf Pattern Recognit
– year: 0
  ident: ref25
– ident: ref19
  doi: 10.1109/CVPR.2005.177
– start-page: 1216
  year: 2010
  ident: ref11
  article-title: Beyond actions: Discriminative models for contextual group activities
  publication-title: Proc Adv Neural Inform Process Syst
– ident: ref31
  doi: 10.1109/TPAMI.2011.38
– year: 0
  ident: ref27
  article-title: Effective 3D action recognition using eigenjoints
  publication-title: J Visual Commun Image Representation
– ident: ref21
  doi: 10.1109/CVPR.2008.4587628
– ident: ref10
  doi: 10.1109/CVPR.2012.6247807
– ident: ref14
  doi: 10.1109/CVPRW.2010.5543273
– ident: ref13
  doi: 10.1109/TCYB.2013.2265378
– ident: ref15
  doi: 10.1109/ICCVW.2011.6130379
– ident: ref2
  doi: 10.1109/CVPR.2008.4587731
SSID ssj0000816898
Score 2.355684
Snippet Recognizing complex human activities usually requires the detection and modeling of individual visual features and the interactions between them. Current...
SourceID unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1383
SubjectTerms Accuracy
Actigraphy - instrumentation
Actigraphy - methods
Action recognition and localization
Algorithms
Artificial Intelligence
Computer Peripherals
Computer Simulation
Computer Systems
Context modeling
depth sensor
Feature extraction
Gray-scale
Human motion
Humans
Image detection
Image Enhancement - instrumentation
Image Enhancement - methods
Image processing
Image recognition
Imaging, Three-Dimensional - methods
Joints
Pattern Recognition, Automated - methods
Position (location)
Recognition
spatial and temporal context
Studies
Subtraction Technique
Transducers
Video
Video Games
Visual
Visualization
Whole Body Imaging - instrumentation
Whole Body Imaging - methods
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLem2wPwABuDcbChIPHAh3qXNkmveZl0DE4DiQmknbQ9VU7agLSjO3Gt0PjrcdpctWlogrdWddNEtuOfa8cGeGkTW5DVdhFBcR1Jy3mUOWUirrh1CgudFD6i-_k4PZrLT6fqdAPWTRCDR2ewOh9VTVdJcPVt3FUcIA0n8zhW6cS3Fd5MFaHvAWzOj79Mz3wPuTglpidt09hwPVEhkBlzPa7tpfG5XGJED8gQi2umqO2t8jeYeQ_uNNUSL3_hYnHF9MwewNf1AZ4u4-R81NRmZH_frOf4z6vagvsBh7JpJzjbsFFWD2E7aPqKvQrlqF_vwEF7Rnfhk4vY-3JZf2c0IPv4gzYiNmv8zzZGwJe10QA2tV03CqKs2ySv6hHMZx9ODo-i0HUhsqS_NW3KUpfGxciJZ7FDIVQxEZmzCmO0qAojMcVSZy62rqAtoPD2zTlRCMzQSvEYBtVFVT4BZqVJjROpJRgk0cebExRKxmhkYpGrIfA1A3IbSpL7zhiLvHVNuM5PDs_e5Z5neeDZEN70ryy7ehy3Ee94rvaEhLZ83HkIe2su50FjV-QCiURniU5oVi_6x6RrPoCCVXnRtDRCxRNCxLfRkAsoyFGkcXY7Ceq_788R0xz0EN72InVjFV5Mr63i6X9RP4O7_rbLN9yDQf2zKfcJN9XmeVCVPyf9DzI
  priority: 102
  providerName: Unpaywall
Title Multilevel Depth and Image Fusion for Human Activity Detection
URI https://ieeexplore.ieee.org/document/6587272
https://www.ncbi.nlm.nih.gov/pubmed/23996589
https://www.proquest.com/docview/1432982925
https://www.proquest.com/docview/1433517310
https://www.proquest.com/docview/1448730865
http://scholarbank.nus.edu.sg/handle/10635/56712
UnpaywallVersion submittedVersion
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbtRAzGrLATgApTwWSjVIHHhlO5lHHpdKS2FVkFpx6ErtKZqnKnXJrmgiVL4ezyQb0VJV3CLFmYzH9tgee2yAN4YZi1rbJ2iKl4kwlCaFlzqhkhovlS2ZDRHdw6PsYCa-nciTNfg43IVxzsXkMzcOjzGWbxemDUdlu6gtQ9xwHdbzIuvuag3nKbGBRGx9y_AhQasi74OYKS13j_dPP4U8Lj5mLEclHNrnhFudOGJ5RSPFFis3WZv34W5bL9XlLzWf_6WBpg_hcDX3LvHkfNw2emx-Xyvr-L_IPYIHvSlKJh3vbMKaqx_DZi_sF-RtX5H63RbsxWu685BfRD67ZXNGVG3J1x-4F5FpG87bCNq-JAYEyMR0DSkQsol5XvUTmE2_HO8fJH3jhcSgCDe4L4vSaZ8qimRLveJc2pwX3kiVKqOk1UJlypWFT423uAvYoOK855arQhnBn8JGvajdcyBG6Ex7nhm0hIQKIWemuBSp0oIZReUI6GrxK9NXJQ_NMeZV9E5oWQXSVYF0VU-6EbwfPll2JTluA94KSz0A9qs8gu0VhateaC_QC-KsLFjJcFavh9cobiGGomq3aCMMl2mORvFtMOgFcvQVcZxnHfcM_18x3Qg-DOz0DxaNudRXsHhxMxYv4V6A6nILt2Gj-dm6V2gjNXonCscO3JkdfZ-c_gGN-wmh
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjR3LbhQxzCrlUDgApTwWCgSJA6_ZZvLYnbkglcJqC92etlI5jfIUEsvsis4Ila_HyWRHFKqKW6RxMnEcx3ZsxwAvDDMWpbbPUBUvM2EozQovdUYlNV4qWzIbPLqz49H0RHw6lacb8LbPhXHOxeAzNwzN6Mu3S9OGq7I9lJbBb3gNrkshhOyytfoblVhCIha_ZdjIUK8YJzdmTsu9-cGX9yGSiw8ZG6MYDgV0Ql4njllekEmxyMpl-uZN2GrrlTr_qRaLP2TQ5DbM1rPvQk--DdtGD82vvx52_F_07sCtpIyS_W73bMOGq-_CdmL3M_IyvUn9agfexUTdRYgwIh_cqvlKVG3J4Xc8jcikDTduBLVfEl0CZN90JSkQsomRXvU9OJl8nB9Ms1R6ITPIxA2ezKJ02ueKIuFyrziXdswLb6TKlVHSaqFGypWFz423eA7YIOS855arQhnB78NmvazdQyBG6JH2fGRQFxIqOJ2Z4lLkSgtmFJUDoOvFr0x6lzyUx1hU0T6hZRVIVwXSVYl0A3jdd1l1j3JcBbwTlroHTKs8gN01havEtmdoB3FWFqxkOKvn_WdkuOBFUbVbthGGy3yMavFVMGgHcrQWcZwH3e7p_7_edAN402-nf7BozLm-gMWjy7F4BlvT-eyoOjo8_vwYboQeXaThLmw2P1r3BDWmRj-NjPIbPksLPg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLem2wPwABuDcbChIPHAh3qXNkmveZl0DE4DiQmknbQ9VU7agLSjO3Gt0PjrcdpctWlogrdWddNEtuOfa8cGeGkTW5DVdhFBcR1Jy3mUOWUirrh1CgudFD6i-_k4PZrLT6fqdAPWTRCDR2ewOh9VTVdJcPVt3FUcIA0n8zhW6cS3Fd5MFaHvAWzOj79Mz3wPuTglpidt09hwPVEhkBlzPa7tpfG5XGJED8gQi2umqO2t8jeYeQ_uNNUSL3_hYnHF9MwewNf1AZ4u4-R81NRmZH_frOf4z6vagvsBh7JpJzjbsFFWD2E7aPqKvQrlqF_vwEF7Rnfhk4vY-3JZf2c0IPv4gzYiNmv8zzZGwJe10QA2tV03CqKs2ySv6hHMZx9ODo-i0HUhsqS_NW3KUpfGxciJZ7FDIVQxEZmzCmO0qAojMcVSZy62rqAtoPD2zTlRCMzQSvEYBtVFVT4BZqVJjROpJRgk0cebExRKxmhkYpGrIfA1A3IbSpL7zhiLvHVNuM5PDs_e5Z5neeDZEN70ryy7ehy3Ee94rvaEhLZ83HkIe2su50FjV-QCiURniU5oVi_6x6RrPoCCVXnRtDRCxRNCxLfRkAsoyFGkcXY7Ceq_788R0xz0EN72InVjFV5Mr63i6X9RP4O7_rbLN9yDQf2zKfcJN9XmeVCVPyf9DzI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multilevel+Depth+and+Image+Fusion+for+Human+Activity+Detection&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Bingbing+Ni&rft.au=Yong+Pei&rft.au=Moulin%2C+Pierre&rft.au=Shuicheng+Yan&rft.date=2013-10-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=43&rft.issue=5&rft.spage=1383&rft.epage=1394&rft_id=info:doi/10.1109%2FTCYB.2013.2276433&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2013_2276433
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon