evaluation of approaches for modelling hydrological processes in high‐elevation, glacierized Andean watersheds
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model...
Saved in:
| Published in | Hydrological processes Vol. 28; no. 23; pp. 5674 - 5695 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester
Wiley
15.11.2014
Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-6087 1099-1085 |
| DOI | 10.1002/hyp.10055 |
Cover
| Abstract | We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd. We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd. We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. |
| Author | Ragettli, S. Cortés, G. Pellicciotti, F. McPhee, J. |
| Author_xml | – sequence: 1 fullname: Ragettli, S – sequence: 2 fullname: Cortés, G – sequence: 3 fullname: McPhee, J – sequence: 4 fullname: Pellicciotti, F |
| BookMark | eNp9ksFu1DAQhi1UJLaFA0-AJS4gETpO4sQ5thV0QdWCgKriZE2T8cbFGwc7S1lOPALPyJPg7QKHSnCaOXz_r39-zT7bG_xAjD0U8FwA5If9ZtwuUt5hMwFNkwlQco_NQCmZVaDqe2w_xisAKEHBjI30Bd0aJ-sH7g3HcQwe254iNz7wle_IOTsseb_pgnd-aVt0PDEtxZggO_DeLvuf33-QS05bm2d86bC1FOw36vjR0BEO_BonCrGnLt5ndw26SA9-zwN2_vLFh5N5dvbm9NXJ0VnWlrmUmTRKKCmphKK6bCqsc2maUtaqUcKgAiQBFZIssRYtdQXlVQPSdJd5QwaAigP2ZOebwn5eU5z0ysY2XYMD-XXUoqoKKWshREIf30Kv_DoMKV2i6kLlDTQqUU93VBt8jIGMHoNdYdhoAXrbvU7d65vuE3t4i23tdNPOFNC6_ymuraPNv631_OPbP4psp7Bxoq9_FRg-6RS6lvpicaoXx_PX70As9EXiH-14g17jMtioz9_nIGT6BVEVIIpfgq-x3g |
| CitedBy_id | crossref_primary_10_3390_w12123547 crossref_primary_10_1177_0309133317710832 crossref_primary_10_1080_02626667_2016_1240870 crossref_primary_10_1007_s10666_024_09975_9 crossref_primary_10_5194_tc_14_2005_2020 crossref_primary_10_2166_wpt_2024_181 crossref_primary_10_1016_j_jhydrol_2025_133114 crossref_primary_10_1002_hyp_11314 crossref_primary_10_1029_2022WR032113 crossref_primary_10_5194_hess_21_5111_2017 crossref_primary_10_5194_hess_23_4763_2019 crossref_primary_10_1029_2017JD028055 crossref_primary_10_1007_s00477_021_02111_z crossref_primary_10_1029_2020WR027188 crossref_primary_10_1016_j_ejrh_2021_100797 crossref_primary_10_1007_s00704_017_2366_4 crossref_primary_10_1016_j_advwatres_2015_01_013 crossref_primary_10_1007_s40808_022_01364_z crossref_primary_10_1016_j_scitotenv_2022_155068 crossref_primary_10_1017_jog_2017_46 crossref_primary_10_1002_2015WR018376 crossref_primary_10_5194_esurf_5_493_2017 crossref_primary_10_1016_j_jhydrol_2015_03_036 crossref_primary_10_5194_hess_27_3463_2023 crossref_primary_10_2166_wcc_2023_268 crossref_primary_10_1680_jwama_16_00129 crossref_primary_10_1016_j_jhydrol_2021_126241 crossref_primary_10_1016_j_advwatres_2016_05_001 crossref_primary_10_5194_tc_12_2175_2018 crossref_primary_10_3389_feart_2020_579142 crossref_primary_10_5194_gmd_9_4491_2016 crossref_primary_10_3390_w15071439 crossref_primary_10_1051_lhb_2018032 crossref_primary_10_1016_j_heliyon_2022_e11867 crossref_primary_10_1007_s11269_020_02659_5 crossref_primary_10_1002_hyp_13354 crossref_primary_10_1002_2015JD023137 crossref_primary_10_1002_2015EF000311 crossref_primary_10_1002_wat2_1483 crossref_primary_10_4236_ojmh_2024_144012 crossref_primary_10_2139_ssrn_4096558 crossref_primary_10_1017_jog_2020_52 crossref_primary_10_5194_tc_10_927_2016 crossref_primary_10_1002_wat2_1696 crossref_primary_10_1016_j_ecolecon_2017_11_010 crossref_primary_10_1016_j_jhydrol_2021_127048 crossref_primary_10_1016_j_ejrh_2021_100932 crossref_primary_10_1073_pnas_1606526113 crossref_primary_10_1016_j_jhydrol_2019_123981 crossref_primary_10_1002_2013WR014506 crossref_primary_10_1029_2018JD028857 crossref_primary_10_1016_j_geomorph_2015_02_025 crossref_primary_10_5194_hess_26_2481_2022 crossref_primary_10_1029_2019WR024880 crossref_primary_10_5194_gmd_8_2009_2015 crossref_primary_10_5194_hess_20_411_2016 crossref_primary_10_1002_hyp_10971 crossref_primary_10_1002_2016WR020126 crossref_primary_10_1002_hyp_10973 crossref_primary_10_1029_2019GL084730 |
| Cites_doi | 10.5194/hess-5-1-2001 10.1098/rspa.2002.0986 10.3189/172756409787769627 10.5194/hess‐17‐1035‐2013 10.1016/j.advwatres.2012.11.013 10.5194/hess‐15‐1661‐2011 10.3189/172756500781832675 10.1016/j.jhydrol.2008.06.006 10.1029/2010WR009824 10.1016/j.jhydrol.2011.05.013 10.1029/2008JD011021 10.1623/hysj.2005.50.6.933 10.1017/S0022143000002306 10.1002/hyp.5662 10.1061/41143(394)15 10.1111/j.1752-1688.2009.00375.x 10.1038/nature04141 10.3189/172756408784700572 10.1623/hysj.54.6.1053 10.1016/j.advwatres.2012.07.013 10.5354/0719-5370.2000.27709 10.1029/2008JD010519 10.1002/hyp.7958 10.1029/2011WR010559 10.1002/hyp.504 10.1029/2011WR010733 10.3189/172756402781817734 10.1175/2010JHM1191.1 10.1002/joc.3370110105 10.1029/2001WR000978 10.1016/j.jhydrol.2011.12.004 10.1007/978-3-540-37293-6_9 10.1080/713811744 10.1175/JCLI3969.1 10.1002/hyp.7085 10.1007/s10584‐010‐9888‐4 10.5194/tc‐5‐1099‐2011 10.1016/j.jhydrol.2008.02.001 10.3189/002214311796406013 10.1002/hyp.6203 10.1002/wrcr.20219 10.1016/j.jhydrol.2003.12.039 10.1002/hyp.5155 10.1002/hyp.5109 10.1016/j.advwatres.2012.03.002 10.1623/hysj.53.3.588 10.3189/002214309788608804 10.5194/hess‐14‐1963‐2010 10.1029/2000JD900134 10.1029/2004GL020229 10.1126/science.1128087 10.5194/hess‐15‐635‐2011 10.1016/j.jhydrol.2013.04.026 10.1002/hyp.6204 10.1016/0309‐1708(93)90028‐E 10.1029/2003WR002160 10.1002/hyp 10.1029/2010JD014351 10.1002/hyp.6268 10.1029/95WR02718 10.1029/2011JD015842 10.1029/96WR00896 10.1007/s00382‐009‐0564‐1 10.1061/(ASCE)WR.1943‐5452.0000202 10.1029/2009WR007706 10.5194/hess-6-859-2002 10.1023/A:1024458411589 10.1080/07900629650041902 10.5194/hess‐15‐1227‐2011 10.1002/(SICI)1099-1085(19991215)13:17<2751::AID-HYP897>3.0.CO;2-O 10.1659/MRD‐JOURNAL‐D‐11‐00092.1 10.1002/j.1477-8696.1998.tb06408.x 10.3189/172756505781829124 10.3406/bifea.1998.1328 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
| DBID | FBQ BSCLL AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1002/hyp.10055 |
| DatabaseName | AGRIS Istex CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts AGRICOLA |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1099-1085 |
| EndPage | 5695 |
| ExternalDocumentID | 3657318941 10_1002_hyp_10055 HYP10055 ark_67375_WNG_NBHJR01N_W US201500016301 |
| Genre | article |
| GeographicLocations | Chile Andes region |
| GeographicLocations_xml | – name: Chile – name: Andes region |
| GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABIJN ABPVW ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFVGU AFZJQ AGJLS AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FBQ FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TEORI UB1 V2E VH1 W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WWD WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG ALVPJ BSCLL HGLYW OIG AAYXX CITATION 7QH 7ST 7TG 7UA 8FD C1K F1W FR3 H96 KL. KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c4255-5f81855e4036b96a725f94578981fa80ae106ae54a71ced3e26905fdb29ef00e3 |
| IEDL.DBID | DR2 |
| ISSN | 0885-6087 |
| IngestDate | Fri Jul 11 18:39:25 EDT 2025 Fri Jul 25 04:02:39 EDT 2025 Wed Oct 01 02:29:49 EDT 2025 Thu Apr 24 23:07:43 EDT 2025 Wed Jan 22 17:04:19 EST 2025 Sun Sep 21 06:18:57 EDT 2025 Wed Dec 27 19:10:40 EST 2023 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 23 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4255-5f81855e4036b96a725f94578981fa80ae106ae54a71ced3e26905fdb29ef00e3 |
| Notes | http://dx.doi.org/10.1002/hyp.10055 ark:/67375/WNG-NBHJR01N-W ArticleID:HYP10055 istex:C8B8A754C33800BA2CE45C6F6470FF3FBFB3C2D7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1673829098 |
| PQPubID | 2034139 |
| PageCount | 22 |
| ParticipantIDs | proquest_miscellaneous_1663557111 proquest_journals_1673829098 crossref_primary_10_1002_hyp_10055 crossref_citationtrail_10_1002_hyp_10055 wiley_primary_10_1002_hyp_10055_HYP10055 istex_primary_ark_67375_WNG_NBHJR01N_W fao_agris_US201500016301 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 15 November 2014 |
| PublicationDateYYYYMMDD | 2014-11-15 |
| PublicationDate_xml | – month: 11 year: 2014 text: 15 November 2014 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester |
| PublicationPlace_xml | – name: Chichester |
| PublicationTitle | Hydrological processes |
| PublicationTitleAlternate | Hydrol. Process |
| PublicationYear | 2014 |
| Publisher | Wiley Blackwell Publishing Ltd Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
| References | Yates D. 1996. WatBal: an integrated water balance model for climate impact assessment of river basin runoff. International Journal of Water Resources Development 12(2): 121-139. Vicuña S, Garreaud RD, McPhee J. 2010. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105(3-4): 469-488. doi:10.1007/s10584-010-9888-4 Bradley RS, Vuille M, Diaz HF, Vergara W. 2006. Threats to water supplies in the tropical Andes. Science 312: 1755-1756. doi:10.1126/science.1128087 Parajka J, Blöschl G. 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology 358(3-4): 240-258. doi:10.1016/j.jhydrol.2008.06.006 Masiokas M, Villalba R, Luckman B, Le Quesne C, Aravena J. 2006. Snowpack variations in the central Andes of Argentina and Chile, 1951-2005: large scale atmospheric influences and implications for water resources in the region. Journal of Climate 19(24): 6334-6352. Sivapalan M. 2003a. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes 17(5): 1037-1041. doi:10.1002/hyp.5109 Rosenthal W, Dozier J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper. Water Resources Research 32(1): 115-130. doi:10.1029/95WR02718 Schaefli B, Harman CJ, Sivapalan M, Schymanski SJ. 2011. HESS opinions: hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences 15(2): 635-646. doi:10.5194/hess-15-635-2011 Seibert J, McDonnell JJ. 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research 38(11): doi:10.1029/2001WR000978 Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303-309. doi:10.1038/nature04141 Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, Mehta VK, Purkey D, Viers JH, Yates D. 2009. Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation. Journal of the American Water Resources Association 45(6): 1409-1423. Winter TC. 2001. Ground water and surface water: the linkage tightens, but challenges remain. Hydrological Processes 15(18): 3605-3606. doi:10.1002/hyp.504 Urrutia R, Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114(D02108). doi:10.1029/2008JD011021 Finger D, Heinrich G, Gobiet A, Bauder A. 2012. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resources Research 48(2): doi:10.1029/2011WR010733 Makkink G. 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288. Bradley RS, Keimig FT, Diaz HF. 2004. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters 31(16): 2-5. doi:10.1029/2004GL020229. Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart JE, Carenzo M. 2008. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of Central Chile, using melt models of different complexity. Hydrological Processes 22: 3980-3997. doi:10.1002/hyp.7085 Pellicciotti F, Raschle T, Huerlimann T, Carenzo M, Burlando P. 2011. Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling. Journal of Glaciology 57(202): 367-381. Franz KJ, Karsten LR. 2013. Calibration of a distributed snow model using MODIS snow covered area data. Journal of Hydrology 494: 160-175. doi:10.1016/j.jhydrol.2013.04.026 Ohlanders N, Rodriguez M, McPhee J. 2013. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17(3): 1035-1050. doi:10.5194/hess-17-1035-2013 Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H. 2005. WEAP21: a demand-, priority-, and preference-driven water planning model. Water Resources 30(4): 487-512. Petersen L, Pellicciotti F. 2011. Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of Geophysical Research 116(D23). doi:10.1029/2011JD015842 Pellicciotti F, Buergi C, Immerzeel WW, Konz M, Shrestha AB. 2012. Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan (HKH) Basins: suggestions for calibration strategies. Mountain Research and Development 32(1): 39-50. doi:10.1659/MRD-JOURNAL-D-11-00092.1 Vicuña S, McPhee J, Garreaud R. 2012. Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile. Journal of Water Resources Planning and Management 138(5): 431-441. doi:10.1061/(ASCE)WR.1943-5452.0000202 Rivera A, Acuña C, Casassa G, Bown F. 2002. Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise. Annals of Glaciology 34: 367-372. Iqbal M. 1983. An Introduction to Solar Radiation. Academic Press: London; 390. Gascoin S, Kinnard C, Ponce R, Lhermitte S, MacDonell S, Rabatel A. 2011. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. The Cryosphere 5(4): 1099-1113. doi:10.5194/tc-5-1099-2011 Rutllant J, Fuenzalida H. 2007. Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation. International Journal of Climatology 11(1): 63-76. doi:10.1002/joc.3370110105 Essery R, Morin S, Lejeune Y, Ménard CB. 2013. A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources 55: 131-148. doi:10.1016/j.advwatres.2012.07.013 Huss M, Bauder A, Funk M. 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology 50(50): 198-206. Stehr A, Debels P, Arumi JL, Romero F, Alcayaga H. 2009. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal 54(6): 1053-1067. doi:10.1623/hysj.54.6.1053 Beniston M. 2003. Climatic change in mountain regions a review of possible impacts. Climatic Change 59: 5-31. doi:10.1023/A:1024458411589. Stehr A, Debels P, Romero F, Alcayaga H. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal 53(3): 37-41. doi:10.1623/hysj.53.3.588 Legendre P, Legendre L. 1998. Numerical Ecology. Elsevier: Amsterdam; 853. Wolter K, Timlin MS. 1998. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53: 315-324. Burness S. 2004. Water management in a mountain front recharge aquifer. Water Resources Research 40(6): doi:10.1029/2003WR002160 Koren V, Reed S, Smith M, Zhang Z, Seo D-J. 2004. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology 291(3-4): 297-318. doi:10.1016/j.jhydrol.2003.12.039 Liu Z, Todini E. 2005. Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrological Processes 19(10): 1983-2006. doi:10.1002/hyp.5662 Rivera A, Casassa G, Acuña C, Lange H. 2000. Variaciones recientes de glaciares en Chile. Revista de Investigaciones Geograficas 34: 29-60. Rittger K, Painter TH, Dozier J. 2013. Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51: 367-380. doi:10.1016/j.advwatres.2012.03.002 Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences 5(1): 1-12. Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12). doi:10.1029/2009WR007706 Gascoin S, Lhermitte S, Kinnard C, Bortels K, Liston GE. 2013. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25-39. doi:10.1016/j.advwatres.2012.11.013 Kling H, Fürst J, Nachtnebel HP. 2006. Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes 20(10): 2141-2156. doi:10.1002/hyp.6203 Sivapalan M. 2003b. Prediction in ungauged basins a grand challenge for theoretical hydrology. Hydrological Processes 17(15): 3163-3170. doi:10.1002/hyp.5155 Bartolini E, Allamano P, Laio F, Claps P. 2011. Runoff regime estimation at high-elevation sites a parsimonious water balance approach. Hydrology and Earth System Sciences 15(5): 1661-1673. doi:10.5194/hess-15-1661-2011. Greuell W, Böhm R. 1998. 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. Journal of Glaciology 44(146): 9-20. Weingartner R, Viviroli D, Schädler B. 2007. Water resources in mountain regions a methodological highland-lowland-system. Hydrological Processes 21: 578-585. doi:10.1002/hyp.6268 Hall D, Riggs G. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes 1547: 1534-1547. doi:10.1002/hyp Schaefli B, Huss M. 2011. Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences 15(4): 1227-1241. doi:10.5194/hess-15-1227-2011 Beven K. 2002. Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458(2026): 2465-2484. doi:10.1098/rspa.2002 1957; 11 2011; 116 2009; 45 2010; 11 2010; 14 2010; 105 2000; 46 2003; 59 2007; 1547 2003; 17 2011; 57 2011; 15 2009; 114 1996; 32 1998; 44 2009; 55 2004; 31 2003b; 17 2011; 405 2006; 20 2013; 17 2009; 54 2013; 55 1990 2004; 291 2000 2009; 50 2013; 51 2010; 115 1999; 13 2005; 30 2012; 420–421 1983 2008; 358 2001; 15 2008; 22 2011; 25 2008; 353 2007; 21 2012; 138 1998; 53 1998; 27 2002; 38 2004; 40 2013; 49 2012 2010 2002; 34 2002; 6 2002; 458 2009 1998 2005; 438 2003a; 17 2006 2006; 19 1993 2008; 53 2007; 11 2011; 5 2012; 32 2006; 312 1996; 12 2009; 34 2005; 19 1993; 16 2001; 5 2000; 34 2000; 106 2005; 51 2008; 48 2005; 50 2011; 47 2012; 48 2013; 494 2007; 318 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 Makkink G (e_1_2_8_44_1) 1957; 11 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_57_1 Escobar F (e_1_2_8_19_1) 1998; 27 e_1_2_8_70_1 Iqbal M (e_1_2_8_33_1) 1983 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_74_1 e_1_2_8_30_1 Rivera A (e_1_2_8_61_1) 2000; 34 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 Legendre P (e_1_2_8_38_1) 1998 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 Yates D (e_1_2_8_85_1) 2005; 30 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 Pellicciotti F (e_1_2_8_51_1) 2007; 318 e_1_2_8_71_1 |
| References_xml | – reference: Ohlanders N, Rodriguez M, McPhee J. 2013. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17(3): 1035-1050. doi:10.5194/hess-17-1035-2013 – reference: Pellicciotti F, Burlando P, van Vliet K. 2007. Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile. International Association of Hydrological Sciences 318: 17-38. – reference: Beniston M. 2003. Climatic change in mountain regions a review of possible impacts. Climatic Change 59: 5-31. doi:10.1023/A:1024458411589. – reference: Liu Z, Todini E. 2002. Towards a comprehensive physically-based rainfall-runoff model. Hydrology and Earth System Sciences 6(5): 859-881. – reference: Franz KJ, Karsten LR. 2013. Calibration of a distributed snow model using MODIS snow covered area data. Journal of Hydrology 494: 160-175. doi:10.1016/j.jhydrol.2013.04.026 – reference: Rivera A, Casassa G, Acuña C, Lange H. 2000. Variaciones recientes de glaciares en Chile. Revista de Investigaciones Geograficas 34: 29-60. – reference: Parajka J, Blöschl G. 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology 358(3-4): 240-258. doi:10.1016/j.jhydrol.2008.06.006 – reference: Bartolini E, Allamano P, Laio F, Claps P. 2011. Runoff regime estimation at high-elevation sites a parsimonious water balance approach. Hydrology and Earth System Sciences 15(5): 1661-1673. doi:10.5194/hess-15-1661-2011. – reference: Seibert J, McDonnell JJ. 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research 38(11): doi:10.1029/2001WR000978 – reference: Corripio J. 2003. Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. International Journal of Geographic Information Science 17(1): 1-23. – reference: Gascoin S, Kinnard C, Ponce R, Lhermitte S, MacDonell S, Rabatel A. 2011. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. The Cryosphere 5(4): 1099-1113. doi:10.5194/tc-5-1099-2011 – reference: Petersen L, Pellicciotti F. 2011. Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of Geophysical Research 116(D23). doi:10.1029/2011JD015842 – reference: Bradley RS, Vuille M, Diaz HF, Vergara W. 2006. Threats to water supplies in the tropical Andes. Science 312: 1755-1756. doi:10.1126/science.1128087 – reference: Stehr A, Debels P, Romero F, Alcayaga H. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal 53(3): 37-41. doi:10.1623/hysj.53.3.588 – reference: Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12). doi:10.1029/2009WR007706 – reference: Carenzo M, Pellicciotti F, Rimkus S, Burlando P. 2009. Assessing the transferability and robustness of an enhanced temperature-index glacier melt model. Journal of Glaciology 55(190): 258-274. – reference: Pellicciotti F, Brock B, Strasser U, Burlando P, Funk M, Corripio J. 2005. An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland. Journal of Glaciology 51(175): 573-587. – reference: Beven K. 2002. Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458(2026): 2465-2484. doi:10.1098/rspa.2002.0986 – reference: Yates D. 1996. WatBal: an integrated water balance model for climate impact assessment of river basin runoff. International Journal of Water Resources Development 12(2): 121-139. – reference: Vicuña S, Garreaud RD, McPhee J. 2010. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105(3-4): 469-488. doi:10.1007/s10584-010-9888-4 – reference: Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences 5(1): 1-12. – reference: Bown F, Rivera A, Acuna C. 2008. Recent glacier variations at the Aconcagua basin, central Chilean Andes. Annals of Glaciology 48: 43-48. – reference: Bradley RS, Keimig FT, Diaz HF. 2004. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters 31(16): 2-5. doi:10.1029/2004GL020229. – reference: Refsgaard JC, Knudsen J. 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research 32(7): 2189-2202. doi:10.1029/96WR00896 – reference: Essery R, Morin S, Lejeune Y, Ménard CB. 2013. A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources 55: 131-148. doi:10.1016/j.advwatres.2012.07.013 – reference: Makkink G. 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288. – reference: Koren V, Reed S, Smith M, Zhang Z, Seo D-J. 2004. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology 291(3-4): 297-318. doi:10.1016/j.jhydrol.2003.12.039 – reference: Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart JE, Carenzo M. 2008. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of Central Chile, using melt models of different complexity. Hydrological Processes 22: 3980-3997. doi:10.1002/hyp.7085 – reference: Cortés G, Vargas X, McPhee J. 2011. Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. Journal of Hydrology 405(1-2): 93-109. doi:10.1016/j.jhydrol.2011.05.013 – reference: Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, Mehta VK, Purkey D, Viers JH, Yates D. 2009. Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation. Journal of the American Water Resources Association 45(6): 1409-1423. – reference: Shea JM, Moore RD. 2010. Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. Journal of Geophysical Research 115(D23): 1-15. doi:10.1029/2010JD014351 – reference: Urrutia R, Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114(D02108). doi:10.1029/2008JD011021 – reference: Escobar F, Aceituno P. 1998. Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno. Bulletin de l'Institut Français d'Études Andines 27(3): 753-759. – reference: Greuell W, Böhm R. 1998. 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. Journal of Glaciology 44(146): 9-20. – reference: Gurtz J. 1999. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrological Processes 13(17): 2751-2768. – reference: Sivapalan M. 2003a. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes 17(5): 1037-1041. doi:10.1002/hyp.5109 – reference: Stehr A, Debels P, Arumi JL, Romero F, Alcayaga H. 2009. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal 54(6): 1053-1067. doi:10.1623/hysj.54.6.1053 – reference: Rosenthal W, Dozier J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper. Water Resources Research 32(1): 115-130. doi:10.1029/95WR02718 – reference: Lehning M, Völksch I, Gustafsson D, Nguyen TA, Stähli M, Zappa M. 2006. ALPINE3D a detailed model of mountain surface processes and its application to snow hydrology. Hydrological Processes 20: 2111-2128. doi:10.1002/hyp.6204. – reference: Masiokas M, Villalba R, Luckman B, Le Quesne C, Aravena J. 2006. Snowpack variations in the central Andes of Argentina and Chile, 1951-2005: large scale atmospheric influences and implications for water resources in the region. Journal of Climate 19(24): 6334-6352. – reference: Rittger K, Painter TH, Dozier J. 2013. Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51: 367-380. doi:10.1016/j.advwatres.2012.03.002 – reference: Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303-309. doi:10.1038/nature04141 – reference: Liu Z, Todini E. 2005. Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrological Processes 19(10): 1983-2006. doi:10.1002/hyp.5662 – reference: Kling H, Fürst J, Nachtnebel HP. 2006. Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes 20(10): 2141-2156. doi:10.1002/hyp.6203 – reference: Vicuña S, McPhee J, Garreaud R. 2012. Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile. Journal of Water Resources Planning and Management 138(5): 431-441. doi:10.1061/(ASCE)WR.1943-5452.0000202 – reference: Gascoin S, Lhermitte S, Kinnard C, Bortels K, Liston GE. 2013. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25-39. doi:10.1016/j.advwatres.2012.11.013 – reference: Carrasco J, Casassa G, Quintana J. 2005. Changes of the 0 isotherm and the equilibrium line in altitude in central Chile during the last quarter of the 20th century. Hydrological Sciences Journal 50(6): 933-948. – reference: Burness S. 2004. Water management in a mountain front recharge aquifer. Water Resources Research 40(6): doi:10.1029/2003WR002160 – reference: Pellicciotti F, Raschle T, Huerlimann T, Carenzo M, Burlando P. 2011. Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling. Journal of Glaciology 57(202): 367-381. – reference: Rutllant J, Fuenzalida H. 2007. Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation. International Journal of Climatology 11(1): 63-76. doi:10.1002/joc.3370110105 – reference: Wolter K, Timlin MS. 1998. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53: 315-324. – reference: Rangwala I, Miller JR, Russell GL, Xu M. 2009. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dynamics 34(6): 859-872. doi:10.1007/s00382-009-0564-1 – reference: Iqbal M. 1983. An Introduction to Solar Radiation. Academic Press: London; 390. – reference: Schaefli B, Harman CJ, Sivapalan M, Schymanski SJ. 2011. HESS opinions: hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences 15(2): 635-646. doi:10.5194/hess-15-635-2011 – reference: Masiokas MH, Villalba R, Luckman BH, Mauget S. 2010. Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 and 37°S. Journal of Hydrometeorology 11(3): 822-831. doi:10.1175/2010JHM1191.1 – reference: Beven K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources 16(1): 41-51. doi:10.1016/0309-1708(93)90028-E – reference: Finger D, Heinrich G, Gobiet A, Bauder A. 2012. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resources Research 48(2): doi:10.1029/2011WR010733 – reference: Falvey M, Garreaud RD. 2009. Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (19792006). Journal of Geophysical Research 114(D4): 1-16. doi:10.1029/2008JD010519 – reference: Finger D, Pellicciotti F, Konz M, Rimkus S, Burlando P. 2011. The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model. Water Resources Research 47(7): 1-14. doi:10.1029/2010WR009824 – reference: Kuzmin V, Seo D-J, Koren V. 2008. Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. Journal of Hydrology 353(1-2): 109-128. doi:10.1016/j.jhydrol.2008.02.001 – reference: Winter TC. 2001. Ground water and surface water: the linkage tightens, but challenges remain. Hydrological Processes 15(18): 3605-3606. doi:10.1002/hyp.504 – reference: Legendre P, Legendre L. 1998. Numerical Ecology. Elsevier: Amsterdam; 853. – reference: Magnusson J, Farinotti D, Jonas T, Bavay M. 2011. Quantitative evaluation of different hydrological modelling approaches in a partly glacierized Swiss watershed. Hydrological Processes 25(13): 2071-2084. doi:10.1002/hyp.7958 – reference: Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H. 2005. WEAP21: a demand-, priority-, and preference-driven water planning model. Water Resources 30(4): 487-512. – reference: Huss M, Bauder A, Funk M. 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology 50(50): 198-206. – reference: Hall D, Riggs G. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes 1547: 1534-1547. doi:10.1002/hyp – reference: Melo O, Vargas X, Vicuna S, Meza F, McPhee J. 2010. Climate change economic impacts on supply of water for the M & I sector in the metropolitan region of Chile. Watershed Management 159-170. doi:10.1061/41143(394)15 – reference: Zhang Z, Koren V, Reed S, Smith M, Zhang Y, Moreda F, Cosgrove B. 2012. SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations. Journal of Hydrology 420-421: 216-227. doi:10.1016/j.jhydrol.2011.12.004 – reference: Stehr A, Aguayo M, Link O, Parra O, Romero F, Alcayaga H. 2010. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences 14(10): 1963-1977. doi:10.5194/hess-14-1963-2010 – reference: Vuille M, Bradley RS, Keimig F. 2000. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 106(D10): 12,447-12,460. doi:10.1029/2000JD900134 – reference: Weingartner R, Viviroli D, Schädler B. 2007. Water resources in mountain regions a methodological highland-lowland-system. Hydrological Processes 21: 578-585. doi:10.1002/hyp.6268 – reference: Rivera A, Acuña C, Casassa G, Bown F. 2002. Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise. Annals of Glaciology 34: 367-372. – reference: Schaefli B, Huss M. 2011. Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences 15(4): 1227-1241. doi:10.5194/hess-15-1227-2011 – reference: Warscher M, Strasser U, Kraller G, Marke T, Franz H, Kunstmann H. 2013. Performance of complex snow cover descriptions in a distributed hydrological model system: a case study for the high Alpine terrain of the Berchtesgaden Alps. Water Resources Research 49(5): 2619-2637. doi:10.1002/wrcr.20219 – reference: Sivapalan M. 2003b. Prediction in ungauged basins a grand challenge for theoretical hydrology. Hydrological Processes 17(15): 3163-3170. doi:10.1002/hyp.5155 – reference: Brock BW, Willis IC, Sharp MJ. 2000. Measurement and parameterisation of albedo variations at Haut Glacier d'Arolla, Switzerland. Journal of Glaciology 46(155): 675-688. – reference: Pellicciotti F, Buergi C, Immerzeel WW, Konz M, Shrestha AB. 2012. Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan (HKH) Basins: suggestions for calibration strategies. Mountain Research and Development 32(1): 39-50. doi:10.1659/MRD-JOURNAL-D-11-00092.1 – reference: Ragettli S, Pellicciotti F. 2012. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resources Research 48: 1-20. doi:10.1029/2011WR010559. – start-page: 159 year: 2010 end-page: 170 article-title: Climate change economic impacts on supply of water for the M & I sector in the metropolitan region of Chile publication-title: Watershed Management – year: 2009 – volume: 25 start-page: 2071 issue: 13 year: 2011 end-page: 2084 article-title: Quantitative evaluation of different hydrological modelling approaches in a partly glacierized Swiss watershed publication-title: Hydrological Processes – volume: 17 start-page: 1037 issue: 5 year: 2003a end-page: 1041 article-title: Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? publication-title: Hydrological Processes – volume: 55 start-page: 258 issue: 190 year: 2009 end-page: 274 article-title: Assessing the transferability and robustness of an enhanced temperature‐index glacier melt model publication-title: Journal of Glaciology – volume: 50 start-page: 198 issue: 50 year: 2009 end-page: 206 article-title: Homogenization of long‐term mass‐balance time series publication-title: Annals of Glaciology – volume: 21 start-page: 578 year: 2007 end-page: 585 article-title: Water resources in mountain regions a methodological highland–lowland‐system publication-title: Hydrological Processes – volume: 438 start-page: 303 issue: 7066 year: 2005 end-page: 309 article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions publication-title: Nature – start-page: 154 year: 2006 end-page: 181 – volume: 458 start-page: 2465 issue: 2026 year: 2002 end-page: 2484 article-title: Towards a coherent philosophy for modelling the environment publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 6 start-page: 859 issue: 5 year: 2002 end-page: 881 article-title: Towards a comprehensive physically‐based rainfall–runoff model publication-title: Hydrology and Earth System Sciences – volume: 405 start-page: 93 issue: 1–2 year: 2011 end-page: 109 article-title: Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera publication-title: Journal of Hydrology – start-page: 853 year: 1998 – volume: 494 start-page: 160 year: 2013 end-page: 175 article-title: Calibration of a distributed snow model using MODIS snow covered area data publication-title: Journal of Hydrology – start-page: 390 year: 1983 – volume: 31 start-page: 2 issue: 16 year: 2004 end-page: 5 article-title: Projected temperature changes along the American cordillera and the planned GCOS network publication-title: Geophysical Research Letters – year: 1990 – volume: 11 start-page: 277 year: 1957 end-page: 288 article-title: Testing the Penman formula by means of lysimeters publication-title: Journal of the Institution of Water Engineers – volume: 51 start-page: 367 year: 2013 end-page: 380 article-title: Assessment of methods for mapping snow cover from MODIS publication-title: Advances in Water Resources – volume: 40 issue: 6 year: 2004 article-title: Water management in a mountain front recharge aquifer publication-title: Water Resources Research – year: 1998 – volume: 17 start-page: 1035 issue: 3 year: 2013 end-page: 1050 article-title: Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt publication-title: Hydrology and Earth System Sciences – volume: 11 start-page: 822 issue: 3 year: 2010 end-page: 831 article-title: Intra‐ to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 and 37°S publication-title: Journal of Hydrometeorology – volume: 50 start-page: 933 issue: 6 year: 2005 end-page: 948 article-title: Changes of the 0 isotherm and the equilibrium line in altitude in central Chile during the last quarter of the 20th century publication-title: Hydrological Sciences Journal – volume: 353 start-page: 109 issue: 1–2 year: 2008 end-page: 128 article-title: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search publication-title: Journal of Hydrology – volume: 17 start-page: 1 issue: 1 year: 2003 end-page: 23 article-title: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain publication-title: International Journal of Geographic Information Science – volume: 32 start-page: 115 issue: 1 year: 1996 end-page: 130 article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper publication-title: Water Resources Research – volume: 51 start-page: 573 issue: 175 year: 2005 end-page: 587 article-title: An enhanced temperature‐index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland publication-title: Journal of Glaciology – volume: 5 start-page: 1 issue: 1 year: 2001 end-page: 12 article-title: How far can we go in distributed hydrological modelling? publication-title: Hydrology and Earth System Sciences – volume: 45 start-page: 1409 issue: 6 year: 2009 end-page: 1423 article-title: Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation publication-title: Journal of the American Water Resources Association – volume: 47 start-page: 1 issue: 7 year: 2011 end-page: 14 article-title: The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model publication-title: Water Resources Research – volume: 15 start-page: 1227 issue: 4 year: 2011 end-page: 1241 article-title: Integrating point glacier mass balance observations into hydrologic model identification publication-title: Hydrology and Earth System Sciences – volume: 48 issue: 2 year: 2012 article-title: Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century publication-title: Water Resources Research – volume: 49 start-page: 2619 issue: 5 year: 2013 end-page: 2637 article-title: Performance of complex snow cover descriptions in a distributed hydrological model system: a case study for the high Alpine terrain of the Berchtesgaden Alps publication-title: Water Resources Research – volume: 20 start-page: 2111 year: 2006 end-page: 2128 article-title: ALPINE3D a detailed model of mountain surface processes and its application to snow hydrology publication-title: Hydrological Processes – volume: 53 start-page: 315 year: 1998 end-page: 324 article-title: Measuring the strength of ENSO events: how does 1997/98 rank? publication-title: Weather – volume: 20 start-page: 2141 issue: 10 year: 2006 end-page: 2156 article-title: Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long‐term, large‐basin water balance model publication-title: Hydrological Processes – year: 1993 – volume: 312 start-page: 1755 year: 2006 end-page: 1756 article-title: Threats to water supplies in the tropical Andes publication-title: Science – volume: 19 start-page: 1983 issue: 10 year: 2005 end-page: 2006 article-title: Assessing the TOPKAPI non‐linear reservoir cascade approximation by means of a characteristic lines solution publication-title: Hydrological Processes – volume: 54 start-page: 1053 issue: 6 year: 2009 end-page: 1067 article-title: Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data‐scarce Chilean Andean basin publication-title: Hydrological Sciences Journal – volume: 57 start-page: 367 issue: 202 year: 2011 end-page: 381 article-title: Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling publication-title: Journal of Glaciology – volume: 17 start-page: 3163 issue: 15 year: 2003b end-page: 3170 article-title: Prediction in ungauged basins a grand challenge for theoretical hydrology publication-title: Hydrological Processes – volume: 420–421 start-page: 216 year: 2012 end-page: 227 article-title: SAC‐SMA a priori parameter differences and their impact on distributed hydrologic model simulations publication-title: Journal of Hydrology – volume: 291 start-page: 297 issue: 3–4 year: 2004 end-page: 318 article-title: Hydrology laboratory research modeling system (HL‐RMS) of the US national weather service publication-title: Journal of Hydrology – volume: 115 start-page: 1 issue: D23 year: 2010 end-page: 15 article-title: Prediction of spatially distributed regional‐scale fields of air temperature and vapor pressure over mountain glaciers publication-title: Journal of Geophysical Research – volume: 116 issue: D23 year: 2011 article-title: Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile publication-title: Journal of Geophysical Research – volume: 318 start-page: 17 year: 2007 end-page: 38 article-title: Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile publication-title: International Association of Hydrological Sciences – volume: 19 start-page: 6334 issue: 24 year: 2006 end-page: 6352 article-title: Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large scale atmospheric influences and implications for water resources in the region publication-title: Journal of Climate – volume: 114 start-page: 1 issue: D4 year: 2009 end-page: 16 article-title: Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (19792006) publication-title: Journal of Geophysical Research – volume: 34 start-page: 367 year: 2002 end-page: 372 article-title: Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise publication-title: Annals of Glaciology – volume: 138 start-page: 431 issue: 5 year: 2012 end-page: 441 article-title: Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile publication-title: Journal of Water Resources Planning and Management – volume: 32 start-page: 39 issue: 1 year: 2012 end-page: 50 article-title: Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) Basins: suggestions for calibration strategies publication-title: Mountain Research and Development – volume: 46 start-page: 675 issue: 155 year: 2000 end-page: 688 article-title: Measurement and parameterisation of albedo variations at Haut Glacier d'Arolla, Switzerland publication-title: Journal of Glaciology – year: 2000 – volume: 34 start-page: 859 issue: 6 year: 2009 end-page: 872 article-title: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty‐first century publication-title: Climate Dynamics – volume: 34 start-page: 29 year: 2000 end-page: 60 article-title: Variaciones recientes de glaciares en Chile publication-title: Revista de Investigaciones Geograficas – volume: 15 start-page: 1661 issue: 5 year: 2011 end-page: 1673 article-title: Runoff regime estimation at high‐elevation sites a parsimonious water balance approach publication-title: Hydrology and Earth System Sciences – volume: 16 start-page: 41 issue: 1 year: 1993 end-page: 51 article-title: Prophecy, reality and uncertainty in distributed hydrological modelling publication-title: Advances in Water Resources – volume: 27 start-page: 753 issue: 3 year: 1998 end-page: 759 article-title: Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno publication-title: Bulletin de l'Institut Français d'Études Andines – volume: 15 start-page: 3605 issue: 18 year: 2001 end-page: 3606 article-title: Ground water and surface water: the linkage tightens, but challenges remain publication-title: Hydrological Processes – volume: 32 start-page: 2189 issue: 7 year: 1996 end-page: 2202 article-title: Operational validation and intercomparison of different types of hydrological models publication-title: Water Resources Research – volume: 1547 start-page: 1534 year: 2007 end-page: 1547 article-title: Accuracy assessment of the MODIS snow products publication-title: Hydrological Processes – year: 2012 – volume: 55 start-page: 25 year: 2013 end-page: 39 article-title: Wind effects on snow cover in Pascua‐Lama, Dry Andes of Chile publication-title: Advances in Water Resources – volume: 358 start-page: 240 issue: 3–4 year: 2008 end-page: 258 article-title: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models publication-title: Journal of Hydrology – volume: 106 start-page: 12,447 issue: D10 year: 2000 end-page: 12,460 article-title: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing publication-title: Journal of Geophysical Research – volume: 53 start-page: 37 issue: 3 year: 2008 end-page: 41 article-title: Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study publication-title: Hydrological Sciences Journal – volume: 48 start-page: 43 year: 2008 end-page: 48 article-title: Recent glacier variations at the Aconcagua basin, central Chilean Andes publication-title: Annals of Glaciology – volume: 14 start-page: 1963 issue: 10 year: 2010 end-page: 1977 article-title: Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning publication-title: Hydrology and Earth System Sciences – volume: 45 issue: 12 year: 2009 article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information publication-title: Water Resources Research – volume: 55 start-page: 131 year: 2013 end-page: 148 article-title: A comparison of 1701 snow models using observations from an alpine site publication-title: Advances in Water Resources – volume: 105 start-page: 469 issue: 3–4 year: 2010 end-page: 488 article-title: Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile publication-title: Climatic Change – volume: 44 start-page: 9 issue: 146 year: 1998 end-page: 20 article-title: 2 m temperatures along melting mid‐latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature publication-title: Journal of Glaciology – volume: 30 start-page: 487 issue: 4 year: 2005 end-page: 512 article-title: WEAP21: a demand‐, priority‐, and preference‐driven water planning model publication-title: Water Resources – volume: 38 issue: 11 year: 2002 article-title: On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration publication-title: Water Resources Research – volume: 12 start-page: 121 issue: 2 year: 1996 end-page: 139 article-title: WatBal: an integrated water balance model for climate impact assessment of river basin runoff publication-title: International Journal of Water Resources Development – volume: 11 start-page: 63 issue: 1 year: 2007 end-page: 76 article-title: Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation publication-title: International Journal of Climatology – volume: 22 start-page: 3980 year: 2008 end-page: 3997 article-title: A study of the energy balance and melt regime on Juncal Norte Glacier, semi‐arid Andes of Central Chile, using melt models of different complexity publication-title: Hydrological Processes – volume: 59 start-page: 5 year: 2003 end-page: 31 article-title: Climatic change in mountain regions a review of possible impacts publication-title: Climatic Change – volume: 13 start-page: 2751 issue: 17 year: 1999 end-page: 2768 article-title: Spatially distributed hydrotope‐based modelling of evapotranspiration and runoff in mountainous basins publication-title: Hydrological Processes – volume: 114 issue: D02108 year: 2009 article-title: Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century publication-title: Journal of Geophysical Research – volume: 5 start-page: 1099 issue: 4 year: 2011 end-page: 1113 article-title: Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile publication-title: The Cryosphere – volume: 15 start-page: 635 issue: 2 year: 2011 end-page: 646 article-title: HESS opinions: hydrologic predictions in a changing environment: behavioral modeling publication-title: Hydrology and Earth System Sciences – volume: 48 start-page: 1 year: 2012 end-page: 20 article-title: Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters publication-title: Water Resources Research – ident: e_1_2_8_6_1 doi: 10.5194/hess-5-1-2001 – ident: e_1_2_8_7_1 doi: 10.1098/rspa.2002.0986 – ident: e_1_2_8_32_1 doi: 10.3189/172756409787769627 – ident: e_1_2_8_48_1 doi: 10.5194/hess‐17‐1035‐2013 – ident: e_1_2_8_27_1 doi: 10.1016/j.advwatres.2012.11.013 – ident: e_1_2_8_3_1 doi: 10.5194/hess‐15‐1661‐2011 – ident: e_1_2_8_11_1 doi: 10.3189/172756500781832675 – ident: e_1_2_8_49_1 doi: 10.1016/j.jhydrol.2008.06.006 – ident: e_1_2_8_23_1 doi: 10.1029/2010WR009824 – ident: e_1_2_8_17_1 doi: 10.1016/j.jhydrol.2011.05.013 – ident: e_1_2_8_74_1 doi: 10.1029/2008JD011021 – ident: e_1_2_8_14_1 doi: 10.1623/hysj.2005.50.6.933 – ident: e_1_2_8_28_1 doi: 10.1017/S0022143000002306 – ident: e_1_2_8_41_1 doi: 10.1002/hyp.5662 – ident: e_1_2_8_47_1 doi: 10.1061/41143(394)15 – ident: e_1_2_8_86_1 doi: 10.1111/j.1752-1688.2009.00375.x – ident: e_1_2_8_2_1 doi: 10.1038/nature04141 – ident: e_1_2_8_8_1 doi: 10.3189/172756408784700572 – ident: e_1_2_8_72_1 doi: 10.1623/hysj.54.6.1053 – ident: e_1_2_8_21_1 doi: 10.1016/j.advwatres.2012.07.013 – volume: 34 start-page: 29 year: 2000 ident: e_1_2_8_61_1 article-title: Variaciones recientes de glaciares en Chile publication-title: Revista de Investigaciones Geograficas doi: 10.5354/0719-5370.2000.27709 – start-page: 853 volume-title: Numerical Ecology year: 1998 ident: e_1_2_8_38_1 – ident: e_1_2_8_22_1 doi: 10.1029/2008JD010519 – start-page: 390 volume-title: An Introduction to Solar Radiation year: 1983 ident: e_1_2_8_33_1 – ident: e_1_2_8_43_1 doi: 10.1002/hyp.7958 – ident: e_1_2_8_57_1 doi: 10.1029/2011WR010559 – ident: e_1_2_8_81_1 doi: 10.1002/hyp.504 – ident: e_1_2_8_24_1 doi: 10.1029/2011WR010733 – volume: 11 start-page: 277 year: 1957 ident: e_1_2_8_44_1 article-title: Testing the Penman formula by means of lysimeters publication-title: Journal of the Institution of Water Engineers – ident: e_1_2_8_62_1 doi: 10.3189/172756402781817734 – ident: e_1_2_8_18_1 – ident: e_1_2_8_15_1 – ident: e_1_2_8_46_1 doi: 10.1175/2010JHM1191.1 – ident: e_1_2_8_64_1 doi: 10.1002/joc.3370110105 – ident: e_1_2_8_67_1 doi: 10.1029/2001WR000978 – ident: e_1_2_8_87_1 doi: 10.1016/j.jhydrol.2011.12.004 – ident: e_1_2_8_31_1 doi: 10.1007/978-3-540-37293-6_9 – ident: e_1_2_8_16_1 doi: 10.1080/713811744 – ident: e_1_2_8_45_1 doi: 10.1175/JCLI3969.1 – ident: e_1_2_8_52_1 doi: 10.1002/hyp.7085 – ident: e_1_2_8_42_1 – ident: e_1_2_8_75_1 doi: 10.1007/s10584‐010‐9888‐4 – ident: e_1_2_8_26_1 doi: 10.5194/tc‐5‐1099‐2011 – volume: 30 start-page: 487 issue: 4 year: 2005 ident: e_1_2_8_85_1 article-title: WEAP21: a demand‐, priority‐, and preference‐driven water planning model publication-title: Water Resources – ident: e_1_2_8_34_1 – ident: e_1_2_8_37_1 doi: 10.1016/j.jhydrol.2008.02.001 – ident: e_1_2_8_53_1 doi: 10.3189/002214311796406013 – ident: e_1_2_8_20_1 – ident: e_1_2_8_35_1 doi: 10.1002/hyp.6203 – ident: e_1_2_8_78_1 doi: 10.1002/wrcr.20219 – ident: e_1_2_8_56_1 – ident: e_1_2_8_36_1 doi: 10.1016/j.jhydrol.2003.12.039 – ident: e_1_2_8_70_1 doi: 10.1002/hyp.5155 – ident: e_1_2_8_69_1 doi: 10.1002/hyp.5109 – ident: e_1_2_8_82_1 – ident: e_1_2_8_60_1 doi: 10.1016/j.advwatres.2012.03.002 – ident: e_1_2_8_71_1 doi: 10.1623/hysj.53.3.588 – ident: e_1_2_8_13_1 doi: 10.3189/002214309788608804 – ident: e_1_2_8_73_1 doi: 10.5194/hess‐14‐1963‐2010 – ident: e_1_2_8_77_1 doi: 10.1029/2000JD900134 – ident: e_1_2_8_9_1 doi: 10.1029/2004GL020229 – ident: e_1_2_8_10_1 doi: 10.1126/science.1128087 – volume: 318 start-page: 17 year: 2007 ident: e_1_2_8_51_1 article-title: Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile publication-title: International Association of Hydrological Sciences – ident: e_1_2_8_66_1 doi: 10.5194/hess‐15‐635‐2011 – ident: e_1_2_8_25_1 doi: 10.1016/j.jhydrol.2013.04.026 – ident: e_1_2_8_39_1 doi: 10.1002/hyp.6204 – ident: e_1_2_8_5_1 doi: 10.1016/0309‐1708(93)90028‐E – ident: e_1_2_8_12_1 doi: 10.1029/2003WR002160 – ident: e_1_2_8_30_1 doi: 10.1002/hyp – ident: e_1_2_8_68_1 doi: 10.1029/2010JD014351 – ident: e_1_2_8_79_1 doi: 10.1002/hyp.6268 – ident: e_1_2_8_63_1 doi: 10.1029/95WR02718 – ident: e_1_2_8_55_1 doi: 10.1029/2011JD015842 – ident: e_1_2_8_59_1 doi: 10.1029/96WR00896 – ident: e_1_2_8_58_1 doi: 10.1007/s00382‐009‐0564‐1 – ident: e_1_2_8_76_1 doi: 10.1061/(ASCE)WR.1943‐5452.0000202 – ident: e_1_2_8_80_1 doi: 10.1029/2009WR007706 – ident: e_1_2_8_40_1 doi: 10.5194/hess-6-859-2002 – ident: e_1_2_8_4_1 doi: 10.1023/A:1024458411589 – ident: e_1_2_8_84_1 doi: 10.1080/07900629650041902 – ident: e_1_2_8_65_1 doi: 10.5194/hess‐15‐1227‐2011 – ident: e_1_2_8_29_1 doi: 10.1002/(SICI)1099-1085(19991215)13:17<2751::AID-HYP897>3.0.CO;2-O – ident: e_1_2_8_54_1 doi: 10.1659/MRD‐JOURNAL‐D‐11‐00092.1 – ident: e_1_2_8_83_1 doi: 10.1002/j.1477-8696.1998.tb06408.x – ident: e_1_2_8_50_1 doi: 10.3189/172756505781829124 – volume: 27 start-page: 753 issue: 3 year: 1998 ident: e_1_2_8_19_1 article-title: Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno publication-title: Bulletin de l'Institut Français d'Études Andines doi: 10.3406/bifea.1998.1328 |
| SSID | ssj0004080 |
| Score | 2.374755 |
| Snippet | We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of... |
| SourceID | proquest crossref wiley istex fao |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5674 |
| SubjectTerms | algorithms Andes region Chile climate conceptual modelling data scarcity hydrologic cycle hydrologic models image analysis melting model evaluation mountain hydrology physically oriented modelling prediction runoff snow snowmelt snowpack spectroradiometers stream flow water management watersheds |
| Title | evaluation of approaches for modelling hydrological processes in high‐elevation, glacierized Andean watersheds |
| URI | https://api.istex.fr/ark:/67375/WNG-NBHJR01N-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10055 https://www.proquest.com/docview/1673829098 https://www.proquest.com/docview/1663557111 |
| Volume | 28 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0885-6087 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1085 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004080 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61L_qi1gsdrRJFxAenzcwkc6FPq1iXgotUl1YQQjJJ3FKZXXZ20e2TP6G_0V_SczKXtaIgvgXmZMjlXL5k5nyHkGepcSbThodGRTbkKVehBtmQFcY5w0uTGvyi-26UDsf88EScbJD9Lhem4YfoL9zQMry_RgNXut5bk4ZOVjNsCkwwj5LUH6eO1tRRnPmqaWBEIkxZnnWsQize63teiUXXnJoCQsXF_X4Fbv4KWn3UObhFPnfjbX42OdtdLvRuef4bleN_Tug2udmiUTpo1GeLbNjqDrneFkafrO6SelDRNSE4nTrakZDbmgLepb6SDqa008nKzDtPSmdN_gEInVYUKZF__rjATHb_mpcUMDv4lPnpuTV0UBmrKvpNIc_nxJr6HhkfvPn4ehi2dRrCEixehMJh1BeWQzTURaqyWLiCgyso8sipnCkL505lBVdZVFqT2BiO5MIZHRfWMWaT-2SzmlZ2m1DrYpUkmueaaW5BT_JMcee45plLlRIBedHtmCxbEnOspfFVNvTLsYRVlH4VA_K0F501zB1_EtqGbZfqC3hUOf4Q4_0PomBwewF57nWh76zmZ_gXXCbk8eitHL0aHh6xaCSPA7LTKYtsHUAtI6ymGhesyAPypH8MpovfY1Rlp0uUQbSXQbSBaXnN-PtA5fDTe9948O-iD8kNmBDHzMlI7JDNxXxpHwGEWujH3lYuAd6NGOc |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbacigXdtRAAYMQ4kBaJ2NnkbgMSwmljVDpqO0BWXZsM1VRZjSLYHriJ_Ab-SW8l20oAglxi5TnxMtbvjh-3yPkcWScibXhvlGB9XnEla9B1mepcc7wwkQG_-ju51E24LvH4niFPG9zYWp-iG7DDS2j8tdo4Lghvb1kDR0uxngpxCq5BC9hqNOvDpbkUZxVddPAjIQfsSRueYVYuN01vRCNVp0aAUbF6f16AXD-CluruLNzlXxse1wfNznbms_0VnH-G5nj_w7pGrnSAFLarzXoOlmx5Q2y3tRGHy5ukmm_pEtOcDpytOUht1MKkJdWxXQwq50OF2bSOlM6rlMQQOi0pMiK_OPbd0xmrx7zjAJsB7cyOT23hvZLY1VJvyik-hxaM71FBjuvD19mflOqwS_A6IUvHAZ-YTkERJ1GKg6FSzl4gzQJnEqYsvDpqazgKg4Ka3o2hK9y4YwOU-sYs73bZK0clXaDUOtC1etpnmimuQVVSWLFneOaxy5SSnjkabtksmh4zLGcxmdZMzCHEmZRVrPokUed6Lgm7_iT0Aasu1SfwKnKwYcQt4AQCIPn88iTShm6xmpyhgfhYiGP8jcyf5HtHrAgl0ce2Wy1RTY-YCoDLKgapixNPPKwuw3Wi79kVGlHc5RBwBdDwIFhVarx947K7OR9dXHn30UfkPXscH9P7r3N390ll2FwHBMpA7FJ1maTub0HiGqm71eG8xNnmR0I |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH5qiwRc2FEDBQxCiANpnYydReIyUIahwKgqjFoOyLJjm6mKMqNZBNMTP4HfyC_h2VmGIpAQt0h5iby85fPyvgfwMNFWp0qzUMvIhCxhMlQoG9JcW6tZoRPtTnTfDpL-kO0d8aM1eNrkwlT8EO2Gm7MM76-dgZuJtjsr1tDRcuIeOV-Hc4znmbvQt3uwIo9i1NdNQzPiYUKztOEVovFO--mZaLRu5Rgxqhver2cA56-w1ced3mX42LS4um5ysr2Yq-3i9Dcyx__t0hW4VANS0q006CqsmfIaXKhro4-W12HWLcmKE5yMLWl4yM2MIOQlvpiOy2ono6WeNs6UTKoUBBQ6LoljRf7x7btLZve_eUIQtqNbmR6fGk26pTayJF-ko_ocGT27AcPei_fP-2FdqiEs0Oh5yK0L_NwwDIgqT2Qac5sz9AZ5FlmZUWlw6SkNZzKNCqM7JsZVObdaxbmxlJrOTdgox6XZBGJsLDsdxTJFFTOoKlkqmbVMsdQmUvIAHjdTJoqax9yV0_gsKgbmWOAoCj-KATxoRScVecefhDZx3oX8hE5VDN_FbgvIAWH0fAE88srQfiynJ-4iXMrF4eClGDzr7x3QaCAOA9hqtEXUPmAmIldQNc5pngVwv32N1uuOZGRpxgsn4wBfigEHu-VV4-8NFf0P-_7h1r-L3oPz-7s98ebV4PVtuIh9Yy6PMuJbsDGfLswdBFRzddfbzU_pExyM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+approaches+for+modelling+hydrological+processes+in+high-elevation%2C+glacierized+Andean+watersheds&rft.jtitle=Hydrological+processes&rft.au=Ragettli%2C+S.&rft.au=Cort%C3%A9s%2C+G.&rft.au=McPhee%2C+J.&rft.au=Pellicciotti%2C+F.&rft.date=2014-11-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=28&rft.issue=23&rft.spage=5674&rft.epage=5695&rft_id=info:doi/10.1002%2Fhyp.10055&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NBHJR01N_W |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon |