evaluation of approaches for modelling hydrological processes in high‐elevation, glacierized Andean watersheds

We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model...

Full description

Saved in:
Bibliographic Details
Published inHydrological processes Vol. 28; no. 23; pp. 5674 - 5695
Main Authors Ragettli, S, Cortés, G, McPhee, J, Pellicciotti, F
Format Journal Article
LanguageEnglish
Published Chichester Wiley 15.11.2014
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0885-6087
1099-1085
DOI10.1002/hyp.10055

Cover

Abstract We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.
AbstractList We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes. Copyright © 2013 John Wiley & Sons, Ltd.
We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of conceptualization and the spatial structure that are needed to model present and future streamflows. We use a conceptual semi‐distributed model based on elevation bands [Water Evaluation and Planning (WEAP)], frequently used for water management, and a physically oriented, fully distributed model [Topographic Kinematic Wave Approximation and Integration ETH Zurich (TOPKAPI‐ETH)] developed for research purposes mainly. We evaluate the ability of the two models to reproduce the key hydrological processes in the basin with emphasis on snow accumulation and melt, streamflow and the relationships between internal processes. Both models are capable of reproducing observed runoff and the evolution of Moderate‐resolution Imaging Spectroradiometer snow cover adequately. In spite of WEAP's simple and conceptual approach for modelling snowmelt and its lack of glacier representation and snow gravitational redistribution as well as a proper routing algorithm, this model can reproduce historical data with a similar goodness of fit as the more complex TOPKAPI‐ETH. We show that the performance of both models can be improved by using measured precipitation gradients of higher temporal resolution. In contrast to the good performance of the conceptual model for the present climate, however, we demonstrate that the simplifications in WEAP lead to error compensation, which results in different predictions in simulated melt and runoff for a potentially warmer future climate. TOPKAPI‐ETH, using a more physical representation of processes, depends less on calibration and thus is less subject to a compensation of errors through different model components. Our results show that data obtained locally in ad hoc short‐term field campaigns are needed to complement data extrapolated from long‐term records for simulating changes in the water cycle of high‐elevation catchments but that these data can only be efficiently used by a model applying a spatially distributed physical representation of hydrological processes.
Author Ragettli, S.
Cortés, G.
Pellicciotti, F.
McPhee, J.
Author_xml – sequence: 1
  fullname: Ragettli, S
– sequence: 2
  fullname: Cortés, G
– sequence: 3
  fullname: McPhee, J
– sequence: 4
  fullname: Pellicciotti, F
BookMark eNp9ksFu1DAQhi1UJLaFA0-AJS4gETpO4sQ5thV0QdWCgKriZE2T8cbFGwc7S1lOPALPyJPg7QKHSnCaOXz_r39-zT7bG_xAjD0U8FwA5If9ZtwuUt5hMwFNkwlQco_NQCmZVaDqe2w_xisAKEHBjI30Bd0aJ-sH7g3HcQwe254iNz7wle_IOTsseb_pgnd-aVt0PDEtxZggO_DeLvuf33-QS05bm2d86bC1FOw36vjR0BEO_BonCrGnLt5ndw26SA9-zwN2_vLFh5N5dvbm9NXJ0VnWlrmUmTRKKCmphKK6bCqsc2maUtaqUcKgAiQBFZIssRYtdQXlVQPSdJd5QwaAigP2ZOebwn5eU5z0ysY2XYMD-XXUoqoKKWshREIf30Kv_DoMKV2i6kLlDTQqUU93VBt8jIGMHoNdYdhoAXrbvU7d65vuE3t4i23tdNPOFNC6_ymuraPNv631_OPbP4psp7Bxoq9_FRg-6RS6lvpicaoXx_PX70As9EXiH-14g17jMtioz9_nIGT6BVEVIIpfgq-x3g
CitedBy_id crossref_primary_10_3390_w12123547
crossref_primary_10_1177_0309133317710832
crossref_primary_10_1080_02626667_2016_1240870
crossref_primary_10_1007_s10666_024_09975_9
crossref_primary_10_5194_tc_14_2005_2020
crossref_primary_10_2166_wpt_2024_181
crossref_primary_10_1016_j_jhydrol_2025_133114
crossref_primary_10_1002_hyp_11314
crossref_primary_10_1029_2022WR032113
crossref_primary_10_5194_hess_21_5111_2017
crossref_primary_10_5194_hess_23_4763_2019
crossref_primary_10_1029_2017JD028055
crossref_primary_10_1007_s00477_021_02111_z
crossref_primary_10_1029_2020WR027188
crossref_primary_10_1016_j_ejrh_2021_100797
crossref_primary_10_1007_s00704_017_2366_4
crossref_primary_10_1016_j_advwatres_2015_01_013
crossref_primary_10_1007_s40808_022_01364_z
crossref_primary_10_1016_j_scitotenv_2022_155068
crossref_primary_10_1017_jog_2017_46
crossref_primary_10_1002_2015WR018376
crossref_primary_10_5194_esurf_5_493_2017
crossref_primary_10_1016_j_jhydrol_2015_03_036
crossref_primary_10_5194_hess_27_3463_2023
crossref_primary_10_2166_wcc_2023_268
crossref_primary_10_1680_jwama_16_00129
crossref_primary_10_1016_j_jhydrol_2021_126241
crossref_primary_10_1016_j_advwatres_2016_05_001
crossref_primary_10_5194_tc_12_2175_2018
crossref_primary_10_3389_feart_2020_579142
crossref_primary_10_5194_gmd_9_4491_2016
crossref_primary_10_3390_w15071439
crossref_primary_10_1051_lhb_2018032
crossref_primary_10_1016_j_heliyon_2022_e11867
crossref_primary_10_1007_s11269_020_02659_5
crossref_primary_10_1002_hyp_13354
crossref_primary_10_1002_2015JD023137
crossref_primary_10_1002_2015EF000311
crossref_primary_10_1002_wat2_1483
crossref_primary_10_4236_ojmh_2024_144012
crossref_primary_10_2139_ssrn_4096558
crossref_primary_10_1017_jog_2020_52
crossref_primary_10_5194_tc_10_927_2016
crossref_primary_10_1002_wat2_1696
crossref_primary_10_1016_j_ecolecon_2017_11_010
crossref_primary_10_1016_j_jhydrol_2021_127048
crossref_primary_10_1016_j_ejrh_2021_100932
crossref_primary_10_1073_pnas_1606526113
crossref_primary_10_1016_j_jhydrol_2019_123981
crossref_primary_10_1002_2013WR014506
crossref_primary_10_1029_2018JD028857
crossref_primary_10_1016_j_geomorph_2015_02_025
crossref_primary_10_5194_hess_26_2481_2022
crossref_primary_10_1029_2019WR024880
crossref_primary_10_5194_gmd_8_2009_2015
crossref_primary_10_5194_hess_20_411_2016
crossref_primary_10_1002_hyp_10971
crossref_primary_10_1002_2016WR020126
crossref_primary_10_1002_hyp_10973
crossref_primary_10_1029_2019GL084730
Cites_doi 10.5194/hess-5-1-2001
10.1098/rspa.2002.0986
10.3189/172756409787769627
10.5194/hess‐17‐1035‐2013
10.1016/j.advwatres.2012.11.013
10.5194/hess‐15‐1661‐2011
10.3189/172756500781832675
10.1016/j.jhydrol.2008.06.006
10.1029/2010WR009824
10.1016/j.jhydrol.2011.05.013
10.1029/2008JD011021
10.1623/hysj.2005.50.6.933
10.1017/S0022143000002306
10.1002/hyp.5662
10.1061/41143(394)15
10.1111/j.1752-1688.2009.00375.x
10.1038/nature04141
10.3189/172756408784700572
10.1623/hysj.54.6.1053
10.1016/j.advwatres.2012.07.013
10.5354/0719-5370.2000.27709
10.1029/2008JD010519
10.1002/hyp.7958
10.1029/2011WR010559
10.1002/hyp.504
10.1029/2011WR010733
10.3189/172756402781817734
10.1175/2010JHM1191.1
10.1002/joc.3370110105
10.1029/2001WR000978
10.1016/j.jhydrol.2011.12.004
10.1007/978-3-540-37293-6_9
10.1080/713811744
10.1175/JCLI3969.1
10.1002/hyp.7085
10.1007/s10584‐010‐9888‐4
10.5194/tc‐5‐1099‐2011
10.1016/j.jhydrol.2008.02.001
10.3189/002214311796406013
10.1002/hyp.6203
10.1002/wrcr.20219
10.1016/j.jhydrol.2003.12.039
10.1002/hyp.5155
10.1002/hyp.5109
10.1016/j.advwatres.2012.03.002
10.1623/hysj.53.3.588
10.3189/002214309788608804
10.5194/hess‐14‐1963‐2010
10.1029/2000JD900134
10.1029/2004GL020229
10.1126/science.1128087
10.5194/hess‐15‐635‐2011
10.1016/j.jhydrol.2013.04.026
10.1002/hyp.6204
10.1016/0309‐1708(93)90028‐E
10.1029/2003WR002160
10.1002/hyp
10.1029/2010JD014351
10.1002/hyp.6268
10.1029/95WR02718
10.1029/2011JD015842
10.1029/96WR00896
10.1007/s00382‐009‐0564‐1
10.1061/(ASCE)WR.1943‐5452.0000202
10.1029/2009WR007706
10.5194/hess-6-859-2002
10.1023/A:1024458411589
10.1080/07900629650041902
10.5194/hess‐15‐1227‐2011
10.1002/(SICI)1099-1085(19991215)13:17<2751::AID-HYP897>3.0.CO;2-O
10.1659/MRD‐JOURNAL‐D‐11‐00092.1
10.1002/j.1477-8696.1998.tb06408.x
10.3189/172756505781829124
10.3406/bifea.1998.1328
ContentType Journal Article
Copyright Copyright © 2013 John Wiley & Sons, Ltd.
Copyright © 2014 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2013 John Wiley & Sons, Ltd.
– notice: Copyright © 2014 John Wiley & Sons, Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
DOI 10.1002/hyp.10055
DatabaseName AGRIS
Istex
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
Civil Engineering Abstracts

AGRICOLA
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 5695
ExternalDocumentID 3657318941
10_1002_hyp_10055
HYP10055
ark_67375_WNG_NBHJR01N_W
US201500016301
Genre article
GeographicLocations Chile
Andes region
GeographicLocations_xml – name: Chile
– name: Andes region
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
ALVPJ
BSCLL
HGLYW
OIG
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c4255-5f81855e4036b96a725f94578981fa80ae106ae54a71ced3e26905fdb29ef00e3
IEDL.DBID DR2
ISSN 0885-6087
IngestDate Fri Jul 11 18:39:25 EDT 2025
Fri Jul 25 04:02:39 EDT 2025
Wed Oct 01 02:29:49 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Wed Jan 22 17:04:19 EST 2025
Sun Sep 21 06:18:57 EDT 2025
Wed Dec 27 19:10:40 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4255-5f81855e4036b96a725f94578981fa80ae106ae54a71ced3e26905fdb29ef00e3
Notes http://dx.doi.org/10.1002/hyp.10055
ark:/67375/WNG-NBHJR01N-W
ArticleID:HYP10055
istex:C8B8A754C33800BA2CE45C6F6470FF3FBFB3C2D7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1673829098
PQPubID 2034139
PageCount 22
ParticipantIDs proquest_miscellaneous_1663557111
proquest_journals_1673829098
crossref_primary_10_1002_hyp_10055
crossref_citationtrail_10_1002_hyp_10055
wiley_primary_10_1002_hyp_10055_HYP10055
istex_primary_ark_67375_WNG_NBHJR01N_W
fao_agris_US201500016301
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2014
PublicationDateYYYYMMDD 2014-11-15
PublicationDate_xml – month: 11
  year: 2014
  text: 15 November 2014
  day: 15
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2014
Publisher Wiley
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Yates D. 1996. WatBal: an integrated water balance model for climate impact assessment of river basin runoff. International Journal of Water Resources Development 12(2): 121-139.
Vicuña S, Garreaud RD, McPhee J. 2010. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105(3-4): 469-488. doi:10.1007/s10584-010-9888-4
Bradley RS, Vuille M, Diaz HF, Vergara W. 2006. Threats to water supplies in the tropical Andes. Science 312: 1755-1756. doi:10.1126/science.1128087
Parajka J, Blöschl G. 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology 358(3-4): 240-258. doi:10.1016/j.jhydrol.2008.06.006
Masiokas M, Villalba R, Luckman B, Le Quesne C, Aravena J. 2006. Snowpack variations in the central Andes of Argentina and Chile, 1951-2005: large scale atmospheric influences and implications for water resources in the region. Journal of Climate 19(24): 6334-6352.
Sivapalan M. 2003a. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes 17(5): 1037-1041. doi:10.1002/hyp.5109
Rosenthal W, Dozier J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper. Water Resources Research 32(1): 115-130. doi:10.1029/95WR02718
Schaefli B, Harman CJ, Sivapalan M, Schymanski SJ. 2011. HESS opinions: hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences 15(2): 635-646. doi:10.5194/hess-15-635-2011
Seibert J, McDonnell JJ. 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research 38(11): doi:10.1029/2001WR000978
Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303-309. doi:10.1038/nature04141
Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, Mehta VK, Purkey D, Viers JH, Yates D. 2009. Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation. Journal of the American Water Resources Association 45(6): 1409-1423.
Winter TC. 2001. Ground water and surface water: the linkage tightens, but challenges remain. Hydrological Processes 15(18): 3605-3606. doi:10.1002/hyp.504
Urrutia R, Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114(D02108). doi:10.1029/2008JD011021
Finger D, Heinrich G, Gobiet A, Bauder A. 2012. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resources Research 48(2): doi:10.1029/2011WR010733
Makkink G. 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288.
Bradley RS, Keimig FT, Diaz HF. 2004. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters 31(16): 2-5. doi:10.1029/2004GL020229.
Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart JE, Carenzo M. 2008. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of Central Chile, using melt models of different complexity. Hydrological Processes 22: 3980-3997. doi:10.1002/hyp.7085
Pellicciotti F, Raschle T, Huerlimann T, Carenzo M, Burlando P. 2011. Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling. Journal of Glaciology 57(202): 367-381.
Franz KJ, Karsten LR. 2013. Calibration of a distributed snow model using MODIS snow covered area data. Journal of Hydrology 494: 160-175. doi:10.1016/j.jhydrol.2013.04.026
Ohlanders N, Rodriguez M, McPhee J. 2013. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17(3): 1035-1050. doi:10.5194/hess-17-1035-2013
Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H. 2005. WEAP21: a demand-, priority-, and preference-driven water planning model. Water Resources 30(4): 487-512.
Petersen L, Pellicciotti F. 2011. Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of Geophysical Research 116(D23). doi:10.1029/2011JD015842
Pellicciotti F, Buergi C, Immerzeel WW, Konz M, Shrestha AB. 2012. Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan (HKH) Basins: suggestions for calibration strategies. Mountain Research and Development 32(1): 39-50. doi:10.1659/MRD-JOURNAL-D-11-00092.1
Vicuña S, McPhee J, Garreaud R. 2012. Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile. Journal of Water Resources Planning and Management 138(5): 431-441. doi:10.1061/(ASCE)WR.1943-5452.0000202
Rivera A, Acuña C, Casassa G, Bown F. 2002. Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise. Annals of Glaciology 34: 367-372.
Iqbal M. 1983. An Introduction to Solar Radiation. Academic Press: London; 390.
Gascoin S, Kinnard C, Ponce R, Lhermitte S, MacDonell S, Rabatel A. 2011. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. The Cryosphere 5(4): 1099-1113. doi:10.5194/tc-5-1099-2011
Rutllant J, Fuenzalida H. 2007. Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation. International Journal of Climatology 11(1): 63-76. doi:10.1002/joc.3370110105
Essery R, Morin S, Lejeune Y, Ménard CB. 2013. A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources 55: 131-148. doi:10.1016/j.advwatres.2012.07.013
Huss M, Bauder A, Funk M. 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology 50(50): 198-206.
Stehr A, Debels P, Arumi JL, Romero F, Alcayaga H. 2009. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal 54(6): 1053-1067. doi:10.1623/hysj.54.6.1053
Beniston M. 2003. Climatic change in mountain regions a review of possible impacts. Climatic Change 59: 5-31. doi:10.1023/A:1024458411589.
Stehr A, Debels P, Romero F, Alcayaga H. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal 53(3): 37-41. doi:10.1623/hysj.53.3.588
Legendre P, Legendre L. 1998. Numerical Ecology. Elsevier: Amsterdam; 853.
Wolter K, Timlin MS. 1998. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53: 315-324.
Burness S. 2004. Water management in a mountain front recharge aquifer. Water Resources Research 40(6): doi:10.1029/2003WR002160
Koren V, Reed S, Smith M, Zhang Z, Seo D-J. 2004. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology 291(3-4): 297-318. doi:10.1016/j.jhydrol.2003.12.039
Liu Z, Todini E. 2005. Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrological Processes 19(10): 1983-2006. doi:10.1002/hyp.5662
Rivera A, Casassa G, Acuña C, Lange H. 2000. Variaciones recientes de glaciares en Chile. Revista de Investigaciones Geograficas 34: 29-60.
Rittger K, Painter TH, Dozier J. 2013. Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51: 367-380. doi:10.1016/j.advwatres.2012.03.002
Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences 5(1): 1-12.
Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12). doi:10.1029/2009WR007706
Gascoin S, Lhermitte S, Kinnard C, Bortels K, Liston GE. 2013. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25-39. doi:10.1016/j.advwatres.2012.11.013
Kling H, Fürst J, Nachtnebel HP. 2006. Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes 20(10): 2141-2156. doi:10.1002/hyp.6203
Sivapalan M. 2003b. Prediction in ungauged basins a grand challenge for theoretical hydrology. Hydrological Processes 17(15): 3163-3170. doi:10.1002/hyp.5155
Bartolini E, Allamano P, Laio F, Claps P. 2011. Runoff regime estimation at high-elevation sites a parsimonious water balance approach. Hydrology and Earth System Sciences 15(5): 1661-1673. doi:10.5194/hess-15-1661-2011.
Greuell W, Böhm R. 1998. 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. Journal of Glaciology 44(146): 9-20.
Weingartner R, Viviroli D, Schädler B. 2007. Water resources in mountain regions a methodological highland-lowland-system. Hydrological Processes 21: 578-585. doi:10.1002/hyp.6268
Hall D, Riggs G. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes 1547: 1534-1547. doi:10.1002/hyp
Schaefli B, Huss M. 2011. Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences 15(4): 1227-1241. doi:10.5194/hess-15-1227-2011
Beven K. 2002. Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458(2026): 2465-2484. doi:10.1098/rspa.2002
1957; 11
2011; 116
2009; 45
2010; 11
2010; 14
2010; 105
2000; 46
2003; 59
2007; 1547
2003; 17
2011; 57
2011; 15
2009; 114
1996; 32
1998; 44
2009; 55
2004; 31
2003b; 17
2011; 405
2006; 20
2013; 17
2009; 54
2013; 55
1990
2004; 291
2000
2009; 50
2013; 51
2010; 115
1999; 13
2005; 30
2012; 420–421
1983
2008; 358
2001; 15
2008; 22
2011; 25
2008; 353
2007; 21
2012; 138
1998; 53
1998; 27
2002; 38
2004; 40
2013; 49
2012
2010
2002; 34
2002; 6
2002; 458
2009
1998
2005; 438
2003a; 17
2006
2006; 19
1993
2008; 53
2007; 11
2011; 5
2012; 32
2006; 312
1996; 12
2009; 34
2005; 19
1993; 16
2001; 5
2000; 34
2000; 106
2005; 51
2008; 48
2005; 50
2011; 47
2012; 48
2013; 494
2007; 318
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
Makkink G (e_1_2_8_44_1) 1957; 11
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_57_1
Escobar F (e_1_2_8_19_1) 1998; 27
e_1_2_8_70_1
Iqbal M (e_1_2_8_33_1) 1983
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_74_1
e_1_2_8_30_1
Rivera A (e_1_2_8_61_1) 2000; 34
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
Legendre P (e_1_2_8_38_1) 1998
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
Yates D (e_1_2_8_85_1) 2005; 30
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
Pellicciotti F (e_1_2_8_51_1) 2007; 318
e_1_2_8_71_1
References_xml – reference: Ohlanders N, Rodriguez M, McPhee J. 2013. Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences 17(3): 1035-1050. doi:10.5194/hess-17-1035-2013
– reference: Pellicciotti F, Burlando P, van Vliet K. 2007. Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile. International Association of Hydrological Sciences 318: 17-38.
– reference: Beniston M. 2003. Climatic change in mountain regions a review of possible impacts. Climatic Change 59: 5-31. doi:10.1023/A:1024458411589.
– reference: Liu Z, Todini E. 2002. Towards a comprehensive physically-based rainfall-runoff model. Hydrology and Earth System Sciences 6(5): 859-881.
– reference: Franz KJ, Karsten LR. 2013. Calibration of a distributed snow model using MODIS snow covered area data. Journal of Hydrology 494: 160-175. doi:10.1016/j.jhydrol.2013.04.026
– reference: Rivera A, Casassa G, Acuña C, Lange H. 2000. Variaciones recientes de glaciares en Chile. Revista de Investigaciones Geograficas 34: 29-60.
– reference: Parajka J, Blöschl G. 2008. The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology 358(3-4): 240-258. doi:10.1016/j.jhydrol.2008.06.006
– reference: Bartolini E, Allamano P, Laio F, Claps P. 2011. Runoff regime estimation at high-elevation sites a parsimonious water balance approach. Hydrology and Earth System Sciences 15(5): 1661-1673. doi:10.5194/hess-15-1661-2011.
– reference: Seibert J, McDonnell JJ. 2002. On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research 38(11): doi:10.1029/2001WR000978
– reference: Corripio J. 2003. Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain. International Journal of Geographic Information Science 17(1): 1-23.
– reference: Gascoin S, Kinnard C, Ponce R, Lhermitte S, MacDonell S, Rabatel A. 2011. Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile. The Cryosphere 5(4): 1099-1113. doi:10.5194/tc-5-1099-2011
– reference: Petersen L, Pellicciotti F. 2011. Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile. Journal of Geophysical Research 116(D23). doi:10.1029/2011JD015842
– reference: Bradley RS, Vuille M, Diaz HF, Vergara W. 2006. Threats to water supplies in the tropical Andes. Science 312: 1755-1756. doi:10.1126/science.1128087
– reference: Stehr A, Debels P, Romero F, Alcayaga H. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal 53(3): 37-41. doi:10.1623/hysj.53.3.588
– reference: Winsemius HC, Schaefli B, Montanari A, Savenije HHG. 2009. On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information. Water Resources Research 45(12). doi:10.1029/2009WR007706
– reference: Carenzo M, Pellicciotti F, Rimkus S, Burlando P. 2009. Assessing the transferability and robustness of an enhanced temperature-index glacier melt model. Journal of Glaciology 55(190): 258-274.
– reference: Pellicciotti F, Brock B, Strasser U, Burlando P, Funk M, Corripio J. 2005. An enhanced temperature-index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland. Journal of Glaciology 51(175): 573-587.
– reference: Beven K. 2002. Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 458(2026): 2465-2484. doi:10.1098/rspa.2002.0986
– reference: Yates D. 1996. WatBal: an integrated water balance model for climate impact assessment of river basin runoff. International Journal of Water Resources Development 12(2): 121-139.
– reference: Vicuña S, Garreaud RD, McPhee J. 2010. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change 105(3-4): 469-488. doi:10.1007/s10584-010-9888-4
– reference: Beven K. 2001. How far can we go in distributed hydrological modelling? Hydrology and Earth System Sciences 5(1): 1-12.
– reference: Bown F, Rivera A, Acuna C. 2008. Recent glacier variations at the Aconcagua basin, central Chilean Andes. Annals of Glaciology 48: 43-48.
– reference: Bradley RS, Keimig FT, Diaz HF. 2004. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters 31(16): 2-5. doi:10.1029/2004GL020229.
– reference: Refsgaard JC, Knudsen J. 1996. Operational validation and intercomparison of different types of hydrological models. Water Resources Research 32(7): 2189-2202. doi:10.1029/96WR00896
– reference: Essery R, Morin S, Lejeune Y, Ménard CB. 2013. A comparison of 1701 snow models using observations from an alpine site. Advances in Water Resources 55: 131-148. doi:10.1016/j.advwatres.2012.07.013
– reference: Makkink G. 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers 11: 277-288.
– reference: Koren V, Reed S, Smith M, Zhang Z, Seo D-J. 2004. Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology 291(3-4): 297-318. doi:10.1016/j.jhydrol.2003.12.039
– reference: Pellicciotti F, Helbing J, Rivera A, Favier V, Corripio J, Araos J, Sicart JE, Carenzo M. 2008. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of Central Chile, using melt models of different complexity. Hydrological Processes 22: 3980-3997. doi:10.1002/hyp.7085
– reference: Cortés G, Vargas X, McPhee J. 2011. Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera. Journal of Hydrology 405(1-2): 93-109. doi:10.1016/j.jhydrol.2011.05.013
– reference: Young CA, Escobar-Arias MI, Fernandes M, Joyce B, Kiparsky M, Mount JF, Mehta VK, Purkey D, Viers JH, Yates D. 2009. Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation. Journal of the American Water Resources Association 45(6): 1409-1423.
– reference: Shea JM, Moore RD. 2010. Prediction of spatially distributed regional-scale fields of air temperature and vapor pressure over mountain glaciers. Journal of Geophysical Research 115(D23): 1-15. doi:10.1029/2010JD014351
– reference: Urrutia R, Vuille M. 2009. Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century. Journal of Geophysical Research 114(D02108). doi:10.1029/2008JD011021
– reference: Escobar F, Aceituno P. 1998. Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno. Bulletin de l'Institut Français d'Études Andines 27(3): 753-759.
– reference: Greuell W, Böhm R. 1998. 2 m temperatures along melting mid-latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature. Journal of Glaciology 44(146): 9-20.
– reference: Gurtz J. 1999. Spatially distributed hydrotope-based modelling of evapotranspiration and runoff in mountainous basins. Hydrological Processes 13(17): 2751-2768.
– reference: Sivapalan M. 2003a. Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection? Hydrological Processes 17(5): 1037-1041. doi:10.1002/hyp.5109
– reference: Stehr A, Debels P, Arumi JL, Romero F, Alcayaga H. 2009. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal 54(6): 1053-1067. doi:10.1623/hysj.54.6.1053
– reference: Rosenthal W, Dozier J. 1996. Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper. Water Resources Research 32(1): 115-130. doi:10.1029/95WR02718
– reference: Lehning M, Völksch I, Gustafsson D, Nguyen TA, Stähli M, Zappa M. 2006. ALPINE3D a detailed model of mountain surface processes and its application to snow hydrology. Hydrological Processes 20: 2111-2128. doi:10.1002/hyp.6204.
– reference: Masiokas M, Villalba R, Luckman B, Le Quesne C, Aravena J. 2006. Snowpack variations in the central Andes of Argentina and Chile, 1951-2005: large scale atmospheric influences and implications for water resources in the region. Journal of Climate 19(24): 6334-6352.
– reference: Rittger K, Painter TH, Dozier J. 2013. Assessment of methods for mapping snow cover from MODIS. Advances in Water Resources 51: 367-380. doi:10.1016/j.advwatres.2012.03.002
– reference: Barnett TP, Adam JC, Lettenmaier DP. 2005. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066): 303-309. doi:10.1038/nature04141
– reference: Liu Z, Todini E. 2005. Assessing the TOPKAPI non-linear reservoir cascade approximation by means of a characteristic lines solution. Hydrological Processes 19(10): 1983-2006. doi:10.1002/hyp.5662
– reference: Kling H, Fürst J, Nachtnebel HP. 2006. Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes 20(10): 2141-2156. doi:10.1002/hyp.6203
– reference: Vicuña S, McPhee J, Garreaud R. 2012. Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile. Journal of Water Resources Planning and Management 138(5): 431-441. doi:10.1061/(ASCE)WR.1943-5452.0000202
– reference: Gascoin S, Lhermitte S, Kinnard C, Bortels K, Liston GE. 2013. Wind effects on snow cover in Pascua-Lama, Dry Andes of Chile. Advances in Water Resources 55: 25-39. doi:10.1016/j.advwatres.2012.11.013
– reference: Carrasco J, Casassa G, Quintana J. 2005. Changes of the 0 isotherm and the equilibrium line in altitude in central Chile during the last quarter of the 20th century. Hydrological Sciences Journal 50(6): 933-948.
– reference: Burness S. 2004. Water management in a mountain front recharge aquifer. Water Resources Research 40(6): doi:10.1029/2003WR002160
– reference: Pellicciotti F, Raschle T, Huerlimann T, Carenzo M, Burlando P. 2011. Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling. Journal of Glaciology 57(202): 367-381.
– reference: Rutllant J, Fuenzalida H. 2007. Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation. International Journal of Climatology 11(1): 63-76. doi:10.1002/joc.3370110105
– reference: Wolter K, Timlin MS. 1998. Measuring the strength of ENSO events: how does 1997/98 rank? Weather 53: 315-324.
– reference: Rangwala I, Miller JR, Russell GL, Xu M. 2009. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Climate Dynamics 34(6): 859-872. doi:10.1007/s00382-009-0564-1
– reference: Iqbal M. 1983. An Introduction to Solar Radiation. Academic Press: London; 390.
– reference: Schaefli B, Harman CJ, Sivapalan M, Schymanski SJ. 2011. HESS opinions: hydrologic predictions in a changing environment: behavioral modeling. Hydrology and Earth System Sciences 15(2): 635-646. doi:10.5194/hess-15-635-2011
– reference: Masiokas MH, Villalba R, Luckman BH, Mauget S. 2010. Intra- to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 and 37°S. Journal of Hydrometeorology 11(3): 822-831. doi:10.1175/2010JHM1191.1
– reference: Beven K. 1993. Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources 16(1): 41-51. doi:10.1016/0309-1708(93)90028-E
– reference: Finger D, Heinrich G, Gobiet A, Bauder A. 2012. Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century. Water Resources Research 48(2): doi:10.1029/2011WR010733
– reference: Falvey M, Garreaud RD. 2009. Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (19792006). Journal of Geophysical Research 114(D4): 1-16. doi:10.1029/2008JD010519
– reference: Finger D, Pellicciotti F, Konz M, Rimkus S, Burlando P. 2011. The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model. Water Resources Research 47(7): 1-14. doi:10.1029/2010WR009824
– reference: Kuzmin V, Seo D-J, Koren V. 2008. Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search. Journal of Hydrology 353(1-2): 109-128. doi:10.1016/j.jhydrol.2008.02.001
– reference: Winter TC. 2001. Ground water and surface water: the linkage tightens, but challenges remain. Hydrological Processes 15(18): 3605-3606. doi:10.1002/hyp.504
– reference: Legendre P, Legendre L. 1998. Numerical Ecology. Elsevier: Amsterdam; 853.
– reference: Magnusson J, Farinotti D, Jonas T, Bavay M. 2011. Quantitative evaluation of different hydrological modelling approaches in a partly glacierized Swiss watershed. Hydrological Processes 25(13): 2071-2084. doi:10.1002/hyp.7958
– reference: Yates D, Purkey D, Sieber J, Huber-Lee A, Galbraith H. 2005. WEAP21: a demand-, priority-, and preference-driven water planning model. Water Resources 30(4): 487-512.
– reference: Huss M, Bauder A, Funk M. 2009. Homogenization of long-term mass-balance time series. Annals of Glaciology 50(50): 198-206.
– reference: Hall D, Riggs G. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes 1547: 1534-1547. doi:10.1002/hyp
– reference: Melo O, Vargas X, Vicuna S, Meza F, McPhee J. 2010. Climate change economic impacts on supply of water for the M & I sector in the metropolitan region of Chile. Watershed Management 159-170. doi:10.1061/41143(394)15
– reference: Zhang Z, Koren V, Reed S, Smith M, Zhang Y, Moreda F, Cosgrove B. 2012. SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations. Journal of Hydrology 420-421: 216-227. doi:10.1016/j.jhydrol.2011.12.004
– reference: Stehr A, Aguayo M, Link O, Parra O, Romero F, Alcayaga H. 2010. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences 14(10): 1963-1977. doi:10.5194/hess-14-1963-2010
– reference: Vuille M, Bradley RS, Keimig F. 2000. Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. Journal of Geophysical Research 106(D10): 12,447-12,460. doi:10.1029/2000JD900134
– reference: Weingartner R, Viviroli D, Schädler B. 2007. Water resources in mountain regions a methodological highland-lowland-system. Hydrological Processes 21: 578-585. doi:10.1002/hyp.6268
– reference: Rivera A, Acuña C, Casassa G, Bown F. 2002. Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise. Annals of Glaciology 34: 367-372.
– reference: Schaefli B, Huss M. 2011. Integrating point glacier mass balance observations into hydrologic model identification. Hydrology and Earth System Sciences 15(4): 1227-1241. doi:10.5194/hess-15-1227-2011
– reference: Warscher M, Strasser U, Kraller G, Marke T, Franz H, Kunstmann H. 2013. Performance of complex snow cover descriptions in a distributed hydrological model system: a case study for the high Alpine terrain of the Berchtesgaden Alps. Water Resources Research 49(5): 2619-2637. doi:10.1002/wrcr.20219
– reference: Sivapalan M. 2003b. Prediction in ungauged basins a grand challenge for theoretical hydrology. Hydrological Processes 17(15): 3163-3170. doi:10.1002/hyp.5155
– reference: Brock BW, Willis IC, Sharp MJ. 2000. Measurement and parameterisation of albedo variations at Haut Glacier d'Arolla, Switzerland. Journal of Glaciology 46(155): 675-688.
– reference: Pellicciotti F, Buergi C, Immerzeel WW, Konz M, Shrestha AB. 2012. Challenges and uncertainties in hydrological modeling of remote Hindu Kush-Karakoram-Himalayan (HKH) Basins: suggestions for calibration strategies. Mountain Research and Development 32(1): 39-50. doi:10.1659/MRD-JOURNAL-D-11-00092.1
– reference: Ragettli S, Pellicciotti F. 2012. Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters. Water Resources Research 48: 1-20. doi:10.1029/2011WR010559.
– start-page: 159
  year: 2010
  end-page: 170
  article-title: Climate change economic impacts on supply of water for the M & I sector in the metropolitan region of Chile
  publication-title: Watershed Management
– year: 2009
– volume: 25
  start-page: 2071
  issue: 13
  year: 2011
  end-page: 2084
  article-title: Quantitative evaluation of different hydrological modelling approaches in a partly glacierized Swiss watershed
  publication-title: Hydrological Processes
– volume: 17
  start-page: 1037
  issue: 5
  year: 2003a
  end-page: 1041
  article-title: Process complexity at hillslope scale, process simplicity at the watershed scale: is there a connection?
  publication-title: Hydrological Processes
– volume: 55
  start-page: 258
  issue: 190
  year: 2009
  end-page: 274
  article-title: Assessing the transferability and robustness of an enhanced temperature‐index glacier melt model
  publication-title: Journal of Glaciology
– volume: 50
  start-page: 198
  issue: 50
  year: 2009
  end-page: 206
  article-title: Homogenization of long‐term mass‐balance time series
  publication-title: Annals of Glaciology
– volume: 21
  start-page: 578
  year: 2007
  end-page: 585
  article-title: Water resources in mountain regions a methodological highland–lowland‐system
  publication-title: Hydrological Processes
– volume: 438
  start-page: 303
  issue: 7066
  year: 2005
  end-page: 309
  article-title: Potential impacts of a warming climate on water availability in snow‐dominated regions
  publication-title: Nature
– start-page: 154
  year: 2006
  end-page: 181
– volume: 458
  start-page: 2465
  issue: 2026
  year: 2002
  end-page: 2484
  article-title: Towards a coherent philosophy for modelling the environment
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 6
  start-page: 859
  issue: 5
  year: 2002
  end-page: 881
  article-title: Towards a comprehensive physically‐based rainfall–runoff model
  publication-title: Hydrology and Earth System Sciences
– volume: 405
  start-page: 93
  issue: 1–2
  year: 2011
  end-page: 109
  article-title: Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera
  publication-title: Journal of Hydrology
– start-page: 853
  year: 1998
– volume: 494
  start-page: 160
  year: 2013
  end-page: 175
  article-title: Calibration of a distributed snow model using MODIS snow covered area data
  publication-title: Journal of Hydrology
– start-page: 390
  year: 1983
– volume: 31
  start-page: 2
  issue: 16
  year: 2004
  end-page: 5
  article-title: Projected temperature changes along the American cordillera and the planned GCOS network
  publication-title: Geophysical Research Letters
– year: 1990
– volume: 11
  start-page: 277
  year: 1957
  end-page: 288
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: Journal of the Institution of Water Engineers
– volume: 51
  start-page: 367
  year: 2013
  end-page: 380
  article-title: Assessment of methods for mapping snow cover from MODIS
  publication-title: Advances in Water Resources
– volume: 40
  issue: 6
  year: 2004
  article-title: Water management in a mountain front recharge aquifer
  publication-title: Water Resources Research
– year: 1998
– volume: 17
  start-page: 1035
  issue: 3
  year: 2013
  end-page: 1050
  article-title: Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt
  publication-title: Hydrology and Earth System Sciences
– volume: 11
  start-page: 822
  issue: 3
  year: 2010
  end-page: 831
  article-title: Intra‐ to multidecadal variations of snowpack and streamflow records in the Andes of Chile and Argentina between 30 and 37°S
  publication-title: Journal of Hydrometeorology
– volume: 50
  start-page: 933
  issue: 6
  year: 2005
  end-page: 948
  article-title: Changes of the 0 isotherm and the equilibrium line in altitude in central Chile during the last quarter of the 20th century
  publication-title: Hydrological Sciences Journal
– volume: 353
  start-page: 109
  issue: 1–2
  year: 2008
  end-page: 128
  article-title: Fast and efficient optimization of hydrologic model parameters using a priori estimates and stepwise line search
  publication-title: Journal of Hydrology
– volume: 17
  start-page: 1
  issue: 1
  year: 2003
  end-page: 23
  article-title: Vectorial algebra algorithms for calculating terrain parameters from DEMs and solar radiation modelling in mountainous terrain
  publication-title: International Journal of Geographic Information Science
– volume: 32
  start-page: 115
  issue: 1
  year: 1996
  end-page: 130
  article-title: Automated mapping of montane snow cover at subpixel resolution from the Landsat thematic mapper
  publication-title: Water Resources Research
– volume: 51
  start-page: 573
  issue: 175
  year: 2005
  end-page: 587
  article-title: An enhanced temperature‐index glacier melt model including the shortwave radiation balance: development and testing for Haut Glacier d'Arolla, Switzerland
  publication-title: Journal of Glaciology
– volume: 5
  start-page: 1
  issue: 1
  year: 2001
  end-page: 12
  article-title: How far can we go in distributed hydrological modelling?
  publication-title: Hydrology and Earth System Sciences
– volume: 45
  start-page: 1409
  issue: 6
  year: 2009
  end-page: 1423
  article-title: Modeling the hydrology of climate change in California's Sierra Nevada for subwatershed scale adaptation
  publication-title: Journal of the American Water Resources Association
– volume: 47
  start-page: 1
  issue: 7
  year: 2011
  end-page: 14
  article-title: The value of glacier mass balance, satellite snow cover images, and hourly discharge for improving the performance of a physically based distributed hydrological model
  publication-title: Water Resources Research
– volume: 15
  start-page: 1227
  issue: 4
  year: 2011
  end-page: 1241
  article-title: Integrating point glacier mass balance observations into hydrologic model identification
  publication-title: Hydrology and Earth System Sciences
– volume: 48
  issue: 2
  year: 2012
  article-title: Projections of future water resources and their uncertainty in a glacierized catchment in the Swiss Alps and the subsequent effects on hydropower production during the 21st century
  publication-title: Water Resources Research
– volume: 49
  start-page: 2619
  issue: 5
  year: 2013
  end-page: 2637
  article-title: Performance of complex snow cover descriptions in a distributed hydrological model system: a case study for the high Alpine terrain of the Berchtesgaden Alps
  publication-title: Water Resources Research
– volume: 20
  start-page: 2111
  year: 2006
  end-page: 2128
  article-title: ALPINE3D a detailed model of mountain surface processes and its application to snow hydrology
  publication-title: Hydrological Processes
– volume: 53
  start-page: 315
  year: 1998
  end-page: 324
  article-title: Measuring the strength of ENSO events: how does 1997/98 rank?
  publication-title: Weather
– volume: 20
  start-page: 2141
  issue: 10
  year: 2006
  end-page: 2156
  article-title: Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long‐term, large‐basin water balance model
  publication-title: Hydrological Processes
– year: 1993
– volume: 312
  start-page: 1755
  year: 2006
  end-page: 1756
  article-title: Threats to water supplies in the tropical Andes
  publication-title: Science
– volume: 19
  start-page: 1983
  issue: 10
  year: 2005
  end-page: 2006
  article-title: Assessing the TOPKAPI non‐linear reservoir cascade approximation by means of a characteristic lines solution
  publication-title: Hydrological Processes
– volume: 54
  start-page: 1053
  issue: 6
  year: 2009
  end-page: 1067
  article-title: Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data‐scarce Chilean Andean basin
  publication-title: Hydrological Sciences Journal
– volume: 57
  start-page: 367
  issue: 202
  year: 2011
  end-page: 381
  article-title: Transmission of solar radiation through clouds on melting glaciers a comparison of parameterisations and their impact on melt modelling
  publication-title: Journal of Glaciology
– volume: 17
  start-page: 3163
  issue: 15
  year: 2003b
  end-page: 3170
  article-title: Prediction in ungauged basins a grand challenge for theoretical hydrology
  publication-title: Hydrological Processes
– volume: 420–421
  start-page: 216
  year: 2012
  end-page: 227
  article-title: SAC‐SMA a priori parameter differences and their impact on distributed hydrologic model simulations
  publication-title: Journal of Hydrology
– volume: 291
  start-page: 297
  issue: 3–4
  year: 2004
  end-page: 318
  article-title: Hydrology laboratory research modeling system (HL‐RMS) of the US national weather service
  publication-title: Journal of Hydrology
– volume: 115
  start-page: 1
  issue: D23
  year: 2010
  end-page: 15
  article-title: Prediction of spatially distributed regional‐scale fields of air temperature and vapor pressure over mountain glaciers
  publication-title: Journal of Geophysical Research
– volume: 116
  issue: D23
  year: 2011
  article-title: Spatial and temporal variability of air temperature on a melting glacier: atmospheric controls, extrapolation methods and their effect on melt modeling, Juncal Norte Glacier, Chile
  publication-title: Journal of Geophysical Research
– volume: 318
  start-page: 17
  year: 2007
  end-page: 38
  article-title: Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile
  publication-title: International Association of Hydrological Sciences
– volume: 19
  start-page: 6334
  issue: 24
  year: 2006
  end-page: 6352
  article-title: Snowpack variations in the central Andes of Argentina and Chile, 1951–2005: large scale atmospheric influences and implications for water resources in the region
  publication-title: Journal of Climate
– volume: 114
  start-page: 1
  issue: D4
  year: 2009
  end-page: 16
  article-title: Regional cooling in a warming world: recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (19792006)
  publication-title: Journal of Geophysical Research
– volume: 34
  start-page: 367
  year: 2002
  end-page: 372
  article-title: Use of remote sensing and field data to estimate the contribution of Chilean glaciers to the sea level rise
  publication-title: Annals of Glaciology
– volume: 138
  start-page: 431
  issue: 5
  year: 2012
  end-page: 441
  article-title: Agriculture vulnerability to climate change in a snowmelt driven basin in semiarid Chile
  publication-title: Journal of Water Resources Planning and Management
– volume: 32
  start-page: 39
  issue: 1
  year: 2012
  end-page: 50
  article-title: Challenges and uncertainties in hydrological modeling of remote Hindu Kush–Karakoram–Himalayan (HKH) Basins: suggestions for calibration strategies
  publication-title: Mountain Research and Development
– volume: 46
  start-page: 675
  issue: 155
  year: 2000
  end-page: 688
  article-title: Measurement and parameterisation of albedo variations at Haut Glacier d'Arolla, Switzerland
  publication-title: Journal of Glaciology
– year: 2000
– volume: 34
  start-page: 859
  issue: 6
  year: 2009
  end-page: 872
  article-title: Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty‐first century
  publication-title: Climate Dynamics
– volume: 34
  start-page: 29
  year: 2000
  end-page: 60
  article-title: Variaciones recientes de glaciares en Chile
  publication-title: Revista de Investigaciones Geograficas
– volume: 15
  start-page: 1661
  issue: 5
  year: 2011
  end-page: 1673
  article-title: Runoff regime estimation at high‐elevation sites a parsimonious water balance approach
  publication-title: Hydrology and Earth System Sciences
– volume: 16
  start-page: 41
  issue: 1
  year: 1993
  end-page: 51
  article-title: Prophecy, reality and uncertainty in distributed hydrological modelling
  publication-title: Advances in Water Resources
– volume: 27
  start-page: 753
  issue: 3
  year: 1998
  end-page: 759
  article-title: Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno
  publication-title: Bulletin de l'Institut Français d'Études Andines
– volume: 15
  start-page: 3605
  issue: 18
  year: 2001
  end-page: 3606
  article-title: Ground water and surface water: the linkage tightens, but challenges remain
  publication-title: Hydrological Processes
– volume: 32
  start-page: 2189
  issue: 7
  year: 1996
  end-page: 2202
  article-title: Operational validation and intercomparison of different types of hydrological models
  publication-title: Water Resources Research
– volume: 1547
  start-page: 1534
  year: 2007
  end-page: 1547
  article-title: Accuracy assessment of the MODIS snow products
  publication-title: Hydrological Processes
– year: 2012
– volume: 55
  start-page: 25
  year: 2013
  end-page: 39
  article-title: Wind effects on snow cover in Pascua‐Lama, Dry Andes of Chile
  publication-title: Advances in Water Resources
– volume: 358
  start-page: 240
  issue: 3–4
  year: 2008
  end-page: 258
  article-title: The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models
  publication-title: Journal of Hydrology
– volume: 106
  start-page: 12,447
  issue: D10
  year: 2000
  end-page: 12,460
  article-title: Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing
  publication-title: Journal of Geophysical Research
– volume: 53
  start-page: 37
  issue: 3
  year: 2008
  end-page: 41
  article-title: Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study
  publication-title: Hydrological Sciences Journal
– volume: 48
  start-page: 43
  year: 2008
  end-page: 48
  article-title: Recent glacier variations at the Aconcagua basin, central Chilean Andes
  publication-title: Annals of Glaciology
– volume: 14
  start-page: 1963
  issue: 10
  year: 2010
  end-page: 1977
  article-title: Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning
  publication-title: Hydrology and Earth System Sciences
– volume: 45
  issue: 12
  year: 2009
  article-title: On the calibration of hydrological models in ungauged basins: a framework for integrating hard and soft hydrological information
  publication-title: Water Resources Research
– volume: 55
  start-page: 131
  year: 2013
  end-page: 148
  article-title: A comparison of 1701 snow models using observations from an alpine site
  publication-title: Advances in Water Resources
– volume: 105
  start-page: 469
  issue: 3–4
  year: 2010
  end-page: 488
  article-title: Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile
  publication-title: Climatic Change
– volume: 44
  start-page: 9
  issue: 146
  year: 1998
  end-page: 20
  article-title: 2 m temperatures along melting mid‐latitude glaciers, and implications for the sensitivity of the mass balance to variations in temperature
  publication-title: Journal of Glaciology
– volume: 30
  start-page: 487
  issue: 4
  year: 2005
  end-page: 512
  article-title: WEAP21: a demand‐, priority‐, and preference‐driven water planning model
  publication-title: Water Resources
– volume: 38
  issue: 11
  year: 2002
  article-title: On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration
  publication-title: Water Resources Research
– volume: 12
  start-page: 121
  issue: 2
  year: 1996
  end-page: 139
  article-title: WatBal: an integrated water balance model for climate impact assessment of river basin runoff
  publication-title: International Journal of Water Resources Development
– volume: 11
  start-page: 63
  issue: 1
  year: 2007
  end-page: 76
  article-title: Synoptic aspects of the Central Chile rainfall variability associated with the southern oscillation
  publication-title: International Journal of Climatology
– volume: 22
  start-page: 3980
  year: 2008
  end-page: 3997
  article-title: A study of the energy balance and melt regime on Juncal Norte Glacier, semi‐arid Andes of Central Chile, using melt models of different complexity
  publication-title: Hydrological Processes
– volume: 59
  start-page: 5
  year: 2003
  end-page: 31
  article-title: Climatic change in mountain regions a review of possible impacts
  publication-title: Climatic Change
– volume: 13
  start-page: 2751
  issue: 17
  year: 1999
  end-page: 2768
  article-title: Spatially distributed hydrotope‐based modelling of evapotranspiration and runoff in mountainous basins
  publication-title: Hydrological Processes
– volume: 114
  issue: D02108
  year: 2009
  article-title: Climate change projections for the tropical Andes using a regional climate model: temperature and precipitation simulations for the end of the 21st century
  publication-title: Journal of Geophysical Research
– volume: 5
  start-page: 1099
  issue: 4
  year: 2011
  end-page: 1113
  article-title: Glacier contribution to streamflow in two headwaters of the Huasco River, Dry Andes of Chile
  publication-title: The Cryosphere
– volume: 15
  start-page: 635
  issue: 2
  year: 2011
  end-page: 646
  article-title: HESS opinions: hydrologic predictions in a changing environment: behavioral modeling
  publication-title: Hydrology and Earth System Sciences
– volume: 48
  start-page: 1
  year: 2012
  end-page: 20
  article-title: Calibration of a physically based, spatially distributed hydrological model in a glacierized basin: on the use of knowledge from glaciometeorological processes to constrain model parameters
  publication-title: Water Resources Research
– ident: e_1_2_8_6_1
  doi: 10.5194/hess-5-1-2001
– ident: e_1_2_8_7_1
  doi: 10.1098/rspa.2002.0986
– ident: e_1_2_8_32_1
  doi: 10.3189/172756409787769627
– ident: e_1_2_8_48_1
  doi: 10.5194/hess‐17‐1035‐2013
– ident: e_1_2_8_27_1
  doi: 10.1016/j.advwatres.2012.11.013
– ident: e_1_2_8_3_1
  doi: 10.5194/hess‐15‐1661‐2011
– ident: e_1_2_8_11_1
  doi: 10.3189/172756500781832675
– ident: e_1_2_8_49_1
  doi: 10.1016/j.jhydrol.2008.06.006
– ident: e_1_2_8_23_1
  doi: 10.1029/2010WR009824
– ident: e_1_2_8_17_1
  doi: 10.1016/j.jhydrol.2011.05.013
– ident: e_1_2_8_74_1
  doi: 10.1029/2008JD011021
– ident: e_1_2_8_14_1
  doi: 10.1623/hysj.2005.50.6.933
– ident: e_1_2_8_28_1
  doi: 10.1017/S0022143000002306
– ident: e_1_2_8_41_1
  doi: 10.1002/hyp.5662
– ident: e_1_2_8_47_1
  doi: 10.1061/41143(394)15
– ident: e_1_2_8_86_1
  doi: 10.1111/j.1752-1688.2009.00375.x
– ident: e_1_2_8_2_1
  doi: 10.1038/nature04141
– ident: e_1_2_8_8_1
  doi: 10.3189/172756408784700572
– ident: e_1_2_8_72_1
  doi: 10.1623/hysj.54.6.1053
– ident: e_1_2_8_21_1
  doi: 10.1016/j.advwatres.2012.07.013
– volume: 34
  start-page: 29
  year: 2000
  ident: e_1_2_8_61_1
  article-title: Variaciones recientes de glaciares en Chile
  publication-title: Revista de Investigaciones Geograficas
  doi: 10.5354/0719-5370.2000.27709
– start-page: 853
  volume-title: Numerical Ecology
  year: 1998
  ident: e_1_2_8_38_1
– ident: e_1_2_8_22_1
  doi: 10.1029/2008JD010519
– start-page: 390
  volume-title: An Introduction to Solar Radiation
  year: 1983
  ident: e_1_2_8_33_1
– ident: e_1_2_8_43_1
  doi: 10.1002/hyp.7958
– ident: e_1_2_8_57_1
  doi: 10.1029/2011WR010559
– ident: e_1_2_8_81_1
  doi: 10.1002/hyp.504
– ident: e_1_2_8_24_1
  doi: 10.1029/2011WR010733
– volume: 11
  start-page: 277
  year: 1957
  ident: e_1_2_8_44_1
  article-title: Testing the Penman formula by means of lysimeters
  publication-title: Journal of the Institution of Water Engineers
– ident: e_1_2_8_62_1
  doi: 10.3189/172756402781817734
– ident: e_1_2_8_18_1
– ident: e_1_2_8_15_1
– ident: e_1_2_8_46_1
  doi: 10.1175/2010JHM1191.1
– ident: e_1_2_8_64_1
  doi: 10.1002/joc.3370110105
– ident: e_1_2_8_67_1
  doi: 10.1029/2001WR000978
– ident: e_1_2_8_87_1
  doi: 10.1016/j.jhydrol.2011.12.004
– ident: e_1_2_8_31_1
  doi: 10.1007/978-3-540-37293-6_9
– ident: e_1_2_8_16_1
  doi: 10.1080/713811744
– ident: e_1_2_8_45_1
  doi: 10.1175/JCLI3969.1
– ident: e_1_2_8_52_1
  doi: 10.1002/hyp.7085
– ident: e_1_2_8_42_1
– ident: e_1_2_8_75_1
  doi: 10.1007/s10584‐010‐9888‐4
– ident: e_1_2_8_26_1
  doi: 10.5194/tc‐5‐1099‐2011
– volume: 30
  start-page: 487
  issue: 4
  year: 2005
  ident: e_1_2_8_85_1
  article-title: WEAP21: a demand‐, priority‐, and preference‐driven water planning model
  publication-title: Water Resources
– ident: e_1_2_8_34_1
– ident: e_1_2_8_37_1
  doi: 10.1016/j.jhydrol.2008.02.001
– ident: e_1_2_8_53_1
  doi: 10.3189/002214311796406013
– ident: e_1_2_8_20_1
– ident: e_1_2_8_35_1
  doi: 10.1002/hyp.6203
– ident: e_1_2_8_78_1
  doi: 10.1002/wrcr.20219
– ident: e_1_2_8_56_1
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jhydrol.2003.12.039
– ident: e_1_2_8_70_1
  doi: 10.1002/hyp.5155
– ident: e_1_2_8_69_1
  doi: 10.1002/hyp.5109
– ident: e_1_2_8_82_1
– ident: e_1_2_8_60_1
  doi: 10.1016/j.advwatres.2012.03.002
– ident: e_1_2_8_71_1
  doi: 10.1623/hysj.53.3.588
– ident: e_1_2_8_13_1
  doi: 10.3189/002214309788608804
– ident: e_1_2_8_73_1
  doi: 10.5194/hess‐14‐1963‐2010
– ident: e_1_2_8_77_1
  doi: 10.1029/2000JD900134
– ident: e_1_2_8_9_1
  doi: 10.1029/2004GL020229
– ident: e_1_2_8_10_1
  doi: 10.1126/science.1128087
– volume: 318
  start-page: 17
  year: 2007
  ident: e_1_2_8_51_1
  article-title: Recent trends in precipitation and streamflow in the Aconcagua River Basin, Central Chile
  publication-title: International Association of Hydrological Sciences
– ident: e_1_2_8_66_1
  doi: 10.5194/hess‐15‐635‐2011
– ident: e_1_2_8_25_1
  doi: 10.1016/j.jhydrol.2013.04.026
– ident: e_1_2_8_39_1
  doi: 10.1002/hyp.6204
– ident: e_1_2_8_5_1
  doi: 10.1016/0309‐1708(93)90028‐E
– ident: e_1_2_8_12_1
  doi: 10.1029/2003WR002160
– ident: e_1_2_8_30_1
  doi: 10.1002/hyp
– ident: e_1_2_8_68_1
  doi: 10.1029/2010JD014351
– ident: e_1_2_8_79_1
  doi: 10.1002/hyp.6268
– ident: e_1_2_8_63_1
  doi: 10.1029/95WR02718
– ident: e_1_2_8_55_1
  doi: 10.1029/2011JD015842
– ident: e_1_2_8_59_1
  doi: 10.1029/96WR00896
– ident: e_1_2_8_58_1
  doi: 10.1007/s00382‐009‐0564‐1
– ident: e_1_2_8_76_1
  doi: 10.1061/(ASCE)WR.1943‐5452.0000202
– ident: e_1_2_8_80_1
  doi: 10.1029/2009WR007706
– ident: e_1_2_8_40_1
  doi: 10.5194/hess-6-859-2002
– ident: e_1_2_8_4_1
  doi: 10.1023/A:1024458411589
– ident: e_1_2_8_84_1
  doi: 10.1080/07900629650041902
– ident: e_1_2_8_65_1
  doi: 10.5194/hess‐15‐1227‐2011
– ident: e_1_2_8_29_1
  doi: 10.1002/(SICI)1099-1085(19991215)13:17<2751::AID-HYP897>3.0.CO;2-O
– ident: e_1_2_8_54_1
  doi: 10.1659/MRD‐JOURNAL‐D‐11‐00092.1
– ident: e_1_2_8_83_1
  doi: 10.1002/j.1477-8696.1998.tb06408.x
– ident: e_1_2_8_50_1
  doi: 10.3189/172756505781829124
– volume: 27
  start-page: 753
  issue: 3
  year: 1998
  ident: e_1_2_8_19_1
  article-title: Influencia del fenómeno ENSO sobre la precipitación nival en el sector andino de Chile central durante el invierno
  publication-title: Bulletin de l'Institut Français d'Études Andines
  doi: 10.3406/bifea.1998.1328
SSID ssj0004080
Score 2.374755
Snippet We use two hydrological models of varying complexity to study the Juncal River Basin in the Central Andes of Chile with the aim to understand the degree of...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5674
SubjectTerms algorithms
Andes region
Chile
climate
conceptual modelling
data scarcity
hydrologic cycle
hydrologic models
image analysis
melting
model evaluation
mountain hydrology
physically oriented modelling
prediction
runoff
snow
snowmelt
snowpack
spectroradiometers
stream flow
water management
watersheds
Title evaluation of approaches for modelling hydrological processes in high‐elevation, glacierized Andean watersheds
URI https://api.istex.fr/ark:/67375/WNG-NBHJR01N-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10055
https://www.proquest.com/docview/1673829098
https://www.proquest.com/docview/1663557111
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0885-6087
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1085
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004080
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFA61L_qi1gsdrRJFxAenzcwkc6FPq1iXgotUl1YQQjJJ3FKZXXZ20e2TP6G_0V_SczKXtaIgvgXmZMjlXL5k5nyHkGepcSbThodGRTbkKVehBtmQFcY5w0uTGvyi-26UDsf88EScbJD9Lhem4YfoL9zQMry_RgNXut5bk4ZOVjNsCkwwj5LUH6eO1tRRnPmqaWBEIkxZnnWsQize63teiUXXnJoCQsXF_X4Fbv4KWn3UObhFPnfjbX42OdtdLvRuef4bleN_Tug2udmiUTpo1GeLbNjqDrneFkafrO6SelDRNSE4nTrakZDbmgLepb6SDqa008nKzDtPSmdN_gEInVYUKZF__rjATHb_mpcUMDv4lPnpuTV0UBmrKvpNIc_nxJr6HhkfvPn4ehi2dRrCEixehMJh1BeWQzTURaqyWLiCgyso8sipnCkL505lBVdZVFqT2BiO5MIZHRfWMWaT-2SzmlZ2m1DrYpUkmueaaW5BT_JMcee45plLlRIBedHtmCxbEnOspfFVNvTLsYRVlH4VA_K0F501zB1_EtqGbZfqC3hUOf4Q4_0PomBwewF57nWh76zmZ_gXXCbk8eitHL0aHh6xaCSPA7LTKYtsHUAtI6ymGhesyAPypH8MpovfY1Rlp0uUQbSXQbSBaXnN-PtA5fDTe9948O-iD8kNmBDHzMlI7JDNxXxpHwGEWujH3lYuAd6NGOc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbacigXdtRAAYMQ4kBaJ2NnkbgMSwmljVDpqO0BWXZsM1VRZjSLYHriJ_Ab-SW8l20oAglxi5TnxMtbvjh-3yPkcWScibXhvlGB9XnEla9B1mepcc7wwkQG_-ju51E24LvH4niFPG9zYWp-iG7DDS2j8tdo4Lghvb1kDR0uxngpxCq5BC9hqNOvDpbkUZxVddPAjIQfsSRueYVYuN01vRCNVp0aAUbF6f16AXD-CluruLNzlXxse1wfNznbms_0VnH-G5nj_w7pGrnSAFLarzXoOlmx5Q2y3tRGHy5ukmm_pEtOcDpytOUht1MKkJdWxXQwq50OF2bSOlM6rlMQQOi0pMiK_OPbd0xmrx7zjAJsB7cyOT23hvZLY1VJvyik-hxaM71FBjuvD19mflOqwS_A6IUvHAZ-YTkERJ1GKg6FSzl4gzQJnEqYsvDpqazgKg4Ka3o2hK9y4YwOU-sYs73bZK0clXaDUOtC1etpnmimuQVVSWLFneOaxy5SSnjkabtksmh4zLGcxmdZMzCHEmZRVrPokUed6Lgm7_iT0Aasu1SfwKnKwYcQt4AQCIPn88iTShm6xmpyhgfhYiGP8jcyf5HtHrAgl0ce2Wy1RTY-YCoDLKgapixNPPKwuw3Wi79kVGlHc5RBwBdDwIFhVarx947K7OR9dXHn30UfkPXscH9P7r3N390ll2FwHBMpA7FJ1maTub0HiGqm71eG8xNnmR0I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH5qiwRc2FEDBQxCiANpnYydReIyUIahwKgqjFoOyLJjm6mKMqNZBNMTP4HfyC_h2VmGIpAQt0h5iby85fPyvgfwMNFWp0qzUMvIhCxhMlQoG9JcW6tZoRPtTnTfDpL-kO0d8aM1eNrkwlT8EO2Gm7MM76-dgZuJtjsr1tDRcuIeOV-Hc4znmbvQt3uwIo9i1NdNQzPiYUKztOEVovFO--mZaLRu5Rgxqhver2cA56-w1ced3mX42LS4um5ysr2Yq-3i9Dcyx__t0hW4VANS0q006CqsmfIaXKhro4-W12HWLcmKE5yMLWl4yM2MIOQlvpiOy2ono6WeNs6UTKoUBBQ6LoljRf7x7btLZve_eUIQtqNbmR6fGk26pTayJF-ko_ocGT27AcPei_fP-2FdqiEs0Oh5yK0L_NwwDIgqT2Qac5sz9AZ5FlmZUWlw6SkNZzKNCqM7JsZVObdaxbmxlJrOTdgox6XZBGJsLDsdxTJFFTOoKlkqmbVMsdQmUvIAHjdTJoqax9yV0_gsKgbmWOAoCj-KATxoRScVecefhDZx3oX8hE5VDN_FbgvIAWH0fAE88srQfiynJ-4iXMrF4eClGDzr7x3QaCAOA9hqtEXUPmAmIldQNc5pngVwv32N1uuOZGRpxgsn4wBfigEHu-VV4-8NFf0P-_7h1r-L3oPz-7s98ebV4PVtuIh9Yy6PMuJbsDGfLswdBFRzddfbzU_pExyM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+evaluation+of+approaches+for+modelling+hydrological+processes+in+high-elevation%2C+glacierized+Andean+watersheds&rft.jtitle=Hydrological+processes&rft.au=Ragettli%2C+S.&rft.au=Cort%C3%A9s%2C+G.&rft.au=McPhee%2C+J.&rft.au=Pellicciotti%2C+F.&rft.date=2014-11-15&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=28&rft.issue=23&rft.spage=5674&rft.epage=5695&rft_id=info:doi/10.1002%2Fhyp.10055&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_NBHJR01N_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon