Modelling mobile-based technology adoption among people with dementia

The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed informa...

Full description

Saved in:
Bibliographic Details
Published inPersonal and ubiquitous computing Vol. 26; no. 2; pp. 365 - 384
Main Authors Chaurasia, Priyanka, McClean, Sally, Nugent, Chris D., Cleland, Ian, Zhang, Shuai, Donnelly, Mark P., Scotney, Bryan W., Sanders, Chelsea, Smith, Ken, Norton, Maria C., Tschanz, JoAnn
Format Journal Article
LanguageEnglish
Published London Springer London 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1617-4909
1617-4917
DOI10.1007/s00779-021-01572-x

Cover

Abstract The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using k NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.
AbstractList The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.
The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.
The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using k NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.
The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.
Author Donnelly, Mark P.
Tschanz, JoAnn
McClean, Sally
Sanders, Chelsea
Nugent, Chris D.
Norton, Maria C.
Zhang, Shuai
Smith, Ken
Cleland, Ian
Chaurasia, Priyanka
Scotney, Bryan W.
Author_xml – sequence: 1
  givenname: Priyanka
  orcidid: 0000-0003-4249-3678
  surname: Chaurasia
  fullname: Chaurasia, Priyanka
  email: p.chaurasia@ulster.ac.uk
  organization: School of Computing and Intelligent Systems, Ulster University
– sequence: 2
  givenname: Sally
  surname: McClean
  fullname: McClean, Sally
  organization: School of Computing, Ulster University
– sequence: 3
  givenname: Chris D.
  surname: Nugent
  fullname: Nugent, Chris D.
  organization: School of Computing, Ulster University
– sequence: 4
  givenname: Ian
  surname: Cleland
  fullname: Cleland, Ian
  organization: School of Computing, Ulster University
– sequence: 5
  givenname: Shuai
  surname: Zhang
  fullname: Zhang, Shuai
  organization: School of Computing, Ulster University
– sequence: 6
  givenname: Mark P.
  surname: Donnelly
  fullname: Donnelly, Mark P.
  organization: School of Computing, Ulster University
– sequence: 7
  givenname: Bryan W.
  surname: Scotney
  fullname: Scotney, Bryan W.
  organization: School of Computing, Ulster University
– sequence: 8
  givenname: Chelsea
  surname: Sanders
  fullname: Sanders, Chelsea
  organization: Department of Psychology, Utah State University
– sequence: 9
  givenname: Ken
  surname: Smith
  fullname: Smith, Ken
  organization: Department of Family and Consumer Studies, University of Utah
– sequence: 10
  givenname: Maria C.
  surname: Norton
  fullname: Norton, Maria C.
  organization: Department of Family, Consumer, and Human Development, Utah State University
– sequence: 11
  givenname: JoAnn
  surname: Tschanz
  fullname: Tschanz, JoAnn
  organization: Department of Psychology, Utah State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35368316$$D View this record in MEDLINE/PubMed
BookMark eNp9UTtPwzAYtFARLYU_wIAisbAE_MprQUJVeUggFpgtx_naukrsEKdA_z0OgQId6sGfJd-dz3eHaGCsAYROCL4gGCeXzm9JFmJKQkyihIYfe2hEYpKEPCPJYHPG2RAdOrfEmCQxjw_QkEUsThmJR2j6aAsoS23mQWVzXUKYSwdF0IJaGFva-TqQha1bbU0gK-thNdi6hOBdt4uggApMq-UR2p_J0sHx9xyjl5vp8-QufHi6vZ9cP4SK04iEPGKUZ4yqNI9ymOGYpQXJFQeikoxB5AdTxSyVUvlFlB8RhiTjlHIpgbIxuup161VeQaH8440sRd3oSjZrYaUW_2-MXoi5fRNpxhiLO4Hzb4HGvq7AtaLSTvkApAG7coL6fDJOGE899GwLurSrxvjvdSgcxf4zneDpX0cbKz8Je0DaA1RjnWtgJpRuZZenN6hLQbDoyhR9mcKXKb7KFB-eSreoP-o7SawnOQ82c2h-be9gfQKQV7Mq
CitedBy_id crossref_primary_10_1007_s00779_021_01638_w
crossref_primary_10_1177_20552076231162985
crossref_primary_10_2196_57940
crossref_primary_10_3390_ijerph19031133
crossref_primary_10_1007_s13755_023_00257_4
Cites_doi 10.1016/j.socscimed.2009.02.010
10.1080/17483100600845414
10.1016/j.chb.2010.02.005
10.1037/0882-7974.21.2.333
10.3109/09540261.2013.849663
10.1016/j.pmcj.2009.04.001
10.1613/jair.953
10.1016/j.chb.2010.06.020
10.3233/THC-2012-0677
10.1109/JBHI.2013.2267549
10.1186/s12916-014-0192-4
10.1109/TNSRE.2004.828423
10.1207/s15327752jpa6803_3
10.1038/nrneurol.2012.263
10.1093/ageing/afu189
10.1093/iwc/iwt041
10.1016/j.jbi.2016.08.021
10.1016/S0895-4356(99)00103-1
10.2307/30036540
10.1258/135763307779701158
10.1002/9781118490082
10.1109/EMBC.2016.7591704
10.1007/978-3-319-13105-4_39
10.1145/1456659.1456684
10.4324/9781315787954
10.4017/gt.2011.10.01.006.00
10.1109/IEMBS.2011.6091310
10.1007/978-1-4615-5725-8_3
10.1007/978-3-319-48799-1_12
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7SC
7XB
8AL
8AO
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s00779-021-01572-x
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Computer Science Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1617-4917
EndPage 384
ExternalDocumentID PMC8933362
35368316
10_1007_s00779_021_01572_x
Genre Journal Article
GrantInformation_xml – fundername: Alzheimer's Association
  grantid: ETAC-12-242841
  funderid: http://dx.doi.org/10.13039/100000957
– fundername: ;
  grantid: ETAC-12-242841
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
199
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8AO
8FE
8FG
8FW
8TC
8UJ
8US
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAGAY
AAHNG
AAIAL
AAJBT
AAJKR
AALFJ
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADL
ADMLS
ADPZR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AIKLT
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BDXCO
BENPR
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCLIF
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HCIFZ
HF~
HG5
HG6
HGAVV
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAS
LLZTM
M0N
M4Y
MA-
MQGED
N2Q
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W7O
WK8
XJE
YLTOR
YZZ
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEFXT
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
SJN
NPM
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23
IEDL.DBID U2A
ISSN 1617-4909
IngestDate Thu Aug 21 18:21:00 EDT 2025
Fri Sep 05 07:11:23 EDT 2025
Sat Aug 23 13:58:17 EDT 2025
Wed Feb 19 02:26:13 EST 2025
Thu Apr 24 23:12:16 EDT 2025
Tue Jul 01 02:25:59 EDT 2025
Fri Feb 21 02:47:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Technology adoption
Assistive technologies
Medical history
Dementia
Reminder application
Language English
License The Author(s) 2021.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4249-3678
OpenAccessLink https://link.springer.com/10.1007/s00779-021-01572-x
PMID 35368316
PQID 2640565322
PQPubID 25320
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933362
proquest_miscellaneous_2646941348
proquest_journals_2640565322
pubmed_primary_35368316
crossref_citationtrail_10_1007_s00779_021_01572_x
crossref_primary_10_1007_s00779_021_01572_x
springer_journals_10_1007_s00779_021_01572_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Personal and ubiquitous computing
PublicationTitleAbbrev Pers Ubiquit Comput
PublicationTitleAlternate Pers Ubiquitous Comput
PublicationYear 2022
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Scherer, Jutai, Fuhrer, Demers, Deruyter (CR18) 2007; 2
Czaja, Charness, Fisk, Hertzog, Nair, Rogers, Sharit (CR24) 2006; 21
Davis, Offord (CR31) 1997; 68
Smith, Mineau, Garibotti, Kerber (CR28) 2009; 68
Cook, Augusto, Jakkula (CR3) 2009; 5
Chuttur (CR19) 2009; 9
Mitzner, Boron, Fausset, Adams, Charness, Czaja, Dijkstra, Fisk, Rogers, Sharit (CR23) 2010; 26
CR37
CR13
Wilkowska, Gaul, Ziefle (CR15) 2010; 6389
CR34
CR11
CR33
CR10
CR32
Chawla, Bowyer, Hall, Kegelmeyer (CR26) 2002; 16
Chaurasia, McClean, Nugent, Cleland, Zhang, Donnelly, Scotney, Sanders, Smith, Norton, Tschanz (CR4) 2016; 63
Hartin, Nugent, McClean, Cleland, Norton, Sanders, Tschanz (CR14) 2014; 2014
Stefanov, Bien, Bang (CR2) 2004; 12
Yen, Wu, Cheng, Huang (CR17) 2010; 26
Zhang, McClean, Nugent, Donnelly, Galway, Scotney, Cleland (CR8) 2014; 18
O’Neill, McClean, Donnelly, Nugent, Galway, Cleland, Zhang, Young, Scotney, Mason, Craig (CR9) 2014; 26
Bunn, Burn, Goodman, Rait, Norton, Robinson, Schoeman, Brayne (CR27) 2014; 12
Liu, Liu, Kanekiyo, Xu, Bu (CR36) 2013; 9
CR6
Sander, Oxlund, Jespersen, Krasnik, Mortensen, Westendorp, Rasmussen (CR1) 2015; 44
CR5
CR7
Steyerberg, Eijkemans, Habbema (CR30) 1999; 52
CR25
Tschanz, Norton, Zandi, Lyketsos (CR12) 2013; 25
CR22
Venkatesh, Morris, Gordon, Davis (CR20) 2003; 27
Chaurasia, McClean, Scotney, Nugent (CR29) 2012; 20
Stronge, Rogers, Fisk (CR21) 2007; 13
Esmaeilzadeh, Sambasivan, Nezakati H (CR38) 2012; 3
Day, Jutai (CR16) 1996; 9
Goldman (CR35) 2014
M Scherer (1572_CR18) 2007; 2
S Zhang (1572_CR8) 2014; 18
M Chuttur (1572_CR19) 2009; 9
1572_CR37
DJ Cook (1572_CR3) 2009; 5
1572_CR34
1572_CR13
PJ Hartin (1572_CR14) 2014; 2014
DH Stefanov (1572_CR2) 2004; 12
1572_CR10
1572_CR32
1572_CR11
A Stronge (1572_CR21) 2007; 13
1572_CR33
SJ Czaja (1572_CR24) 2006; 21
F Bunn (1572_CR27) 2014; 12
TL Mitzner (1572_CR23) 2010; 26
KR Smith (1572_CR28) 2009; 68
LJ Davis (1572_CR31) 1997; 68
P Chaurasia (1572_CR4) 2016; 63
M Sander (1572_CR1) 2015; 44
JT Tschanz (1572_CR12) 2013; 25
NV Chawla (1572_CR26) 2002; 16
1572_CR7
P Chaurasia (1572_CR29) 2012; 20
P Esmaeilzadeh (1572_CR38) 2012; 3
DC Yen (1572_CR17) 2010; 26
1572_CR25
SA O’Neill (1572_CR9) 2014; 26
V Venkatesh (1572_CR20) 2003; 27
1572_CR6
1572_CR5
H Day (1572_CR16) 1996; 9
EW Steyerberg (1572_CR30) 1999; 52
B Goldman (1572_CR35) 2014
W Wilkowska (1572_CR15) 2010; 6389
1572_CR22
C-C Liu (1572_CR36) 2013; 9
References_xml – ident: CR22
– volume: 68
  start-page: 1649
  issue: 9
  year: 2009
  end-page: 1658
  ident: CR28
  article-title: “Effects of childhood and middle-adulthood family conditions on later-life mortality: evidence from the Utah Population Database”, 1850–2002
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2009.02.010
– volume: 2
  start-page: 1
  issue: 1
  year: 2007
  end-page: 8
  ident: CR18
  article-title: A framework for modelling the selection of assistive technology devices (ATDs)
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.1080/17483100600845414
– volume: 26
  start-page: 906
  issue: 5
  year: 2010
  end-page: 915
  ident: CR17
  article-title: Determinants of users’ intention to adopt wireless technology: an empirical study by integrating TTF with TAM
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2010.02.005
– volume: 21
  start-page: 333
  issue: 2
  year: 2006
  end-page: 352
  ident: CR24
  article-title: Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE)
  publication-title: Psychol Aging
  doi: 10.1037/0882-7974.21.2.333
– ident: CR37
– volume: 25
  start-page: 673
  issue: 6
  year: 2013
  end-page: 685
  ident: CR12
  article-title: The Cache County Study on Memory in Aging: factors affecting risk of Alzheimer’s disease and its progression after onset
  publication-title: Int Rev Psychiatry
  doi: 10.3109/09540261.2013.849663
– volume: 6389
  start-page: 82
  year: 2010
  end-page: 100
  ident: CR15
  article-title: A small but significant difference - the role of gender on acceptance of medical assistive technologies
  publication-title: in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– ident: CR10
– volume: 3
  start-page: 56
  year: 2012
  end-page: 68
  ident: CR38
  article-title: The limitations of using the existing tam in adoption of clinical decision support system in hospitals: an empirical study in Malaysia
  publication-title: Int J Res Bus Soc Sci
– ident: CR33
– volume: 5
  start-page: 277
  issue: 4
  year: 2009
  end-page: 298
  ident: CR3
  article-title: Ambient intelligence: technologies, applications, and opportunities
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2009.04.001
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  end-page: 357
  ident: CR26
  article-title: SMOTE: Synthetic Minority Over-Sampling Technique
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: CR6
– volume: 26
  start-page: 1710
  issue: 6
  year: 2010
  end-page: 1721
  ident: CR23
  article-title: Older adults talk technology: technology usage and attitudes
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2010.06.020
– volume: 20
  start-page: 277
  issue: 4
  year: 2012
  end-page: 295
  ident: CR29
  article-title: Duration discretisation for activity recognition
  publication-title: Technol Health Care
  doi: 10.3233/THC-2012-0677
– volume: 18
  start-page: 375
  issue: 1
  year: 2014
  end-page: 383
  ident: CR8
  article-title: A predictive model for assistive technology adoption for people with dementia
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/JBHI.2013.2267549
– volume: 2014
  start-page: 5389
  year: 2014
  end-page: 5392
  ident: CR14
  article-title: A smartphone application to evaluate technology adoption and usage in persons with dementia
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
– volume: 12
  start-page: 1
  issue: 1
  year: 2014
  end-page: 15
  ident: CR27
  article-title: Comorbidity and dementia: a scoping review of the literature
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0192-4
– ident: CR25
– year: 2014
  ident: CR35
  publication-title: Having a copy of ApoE4 gene variant doubles Alzheimer’s risk for women but not for men
– volume: 9
  start-page: 159
  issue: 2
  year: 1996
  end-page: 168
  ident: CR16
  article-title: Measuring the psychosocial impact of assistive devices: the PIADS
  publication-title: Can J Rehabil
– ident: CR13
– ident: CR11
– volume: 9
  start-page: 290
  year: 2009
  ident: CR19
  article-title: Overview of the technology acceptance model: origins , developments and future directions
  publication-title: All Sprouts Content
– ident: CR32
– ident: CR34
– volume: 12
  start-page: 228
  issue: 2
  year: 2004
  end-page: 250
  ident: CR2
  article-title: The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2004.828423
– volume: 68
  start-page: 497
  issue: 3
  year: 1997
  end-page: 507
  ident: CR31
  article-title: Logistic regression
  publication-title: J Pers Assess
  doi: 10.1207/s15327752jpa6803_3
– volume: 9
  start-page: 106
  issue: 2
  year: 2013
  end-page: 118
  ident: CR36
  article-title: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2012.263
– volume: 44
  start-page: 185
  issue: 2
  year: 2015
  end-page: 187
  ident: CR1
  article-title: The challenges of human population ageing
  publication-title: Age Ageing
  doi: 10.1093/ageing/afu189
– ident: CR5
– ident: CR7
– volume: 26
  start-page: 169
  year: 2014
  end-page: 176
  ident: CR9
  article-title: Development of a technology adoption and usage prediction tool for assistive technology for people with dementia
  publication-title: Interact Comput
  doi: 10.1093/iwc/iwt041
– volume: 63
  start-page: 235
  year: 2016
  end-page: 248
  ident: CR4
  article-title: Modelling assistive technology adoption for people with dementia
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2016.08.021
– volume: 52
  start-page: 935
  issue: 10
  year: 1999
  end-page: 942
  ident: CR30
  article-title: Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(99)00103-1
– volume: 27
  start-page: 425
  year: 2003
  end-page: 478
  ident: CR20
  article-title: User acceptance of information technology: toward a unified view
  publication-title: MIS Q
  doi: 10.2307/30036540
– volume: 13
  start-page: 1
  year: 2007
  end-page: 3
  ident: CR21
  article-title: Human factors considerations in implementing telemedicine systems to accommodate older adults
  publication-title: J Telemed Telecare
  doi: 10.1258/135763307779701158
– volume: 5
  start-page: 277
  issue: 4
  year: 2009
  ident: 1572_CR3
  publication-title: Pervasive and Mobile Computing
  doi: 10.1016/j.pmcj.2009.04.001
– volume: 9
  start-page: 290
  year: 2009
  ident: 1572_CR19
  publication-title: All Sprouts Content
– volume: 26
  start-page: 906
  issue: 5
  year: 2010
  ident: 1572_CR17
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2010.02.005
– ident: 1572_CR34
  doi: 10.1002/9781118490082
– volume: 68
  start-page: 1649
  issue: 9
  year: 2009
  ident: 1572_CR28
  publication-title: Soc Sci Med
  doi: 10.1016/j.socscimed.2009.02.010
– volume: 9
  start-page: 159
  issue: 2
  year: 1996
  ident: 1572_CR16
  publication-title: Can J Rehabil
– volume: 52
  start-page: 935
  issue: 10
  year: 1999
  ident: 1572_CR30
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(99)00103-1
– ident: 1572_CR13
– ident: 1572_CR10
  doi: 10.1109/EMBC.2016.7591704
– volume: 21
  start-page: 333
  issue: 2
  year: 2006
  ident: 1572_CR24
  publication-title: Psychol Aging
  doi: 10.1037/0882-7974.21.2.333
– volume-title: Having a copy of ApoE4 gene variant doubles Alzheimer’s risk for women but not for men
  year: 2014
  ident: 1572_CR35
– volume: 26
  start-page: 169
  year: 2014
  ident: 1572_CR9
  publication-title: Interact Comput
  doi: 10.1093/iwc/iwt041
– volume: 68
  start-page: 497
  issue: 3
  year: 1997
  ident: 1572_CR31
  publication-title: J Pers Assess
  doi: 10.1207/s15327752jpa6803_3
– volume: 20
  start-page: 277
  issue: 4
  year: 2012
  ident: 1572_CR29
  publication-title: Technol Health Care
  doi: 10.3233/THC-2012-0677
– volume: 44
  start-page: 185
  issue: 2
  year: 2015
  ident: 1572_CR1
  publication-title: Age Ageing
  doi: 10.1093/ageing/afu189
– ident: 1572_CR11
  doi: 10.1007/978-3-319-13105-4_39
– volume: 16
  start-page: 321
  issue: 1
  year: 2002
  ident: 1572_CR26
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– ident: 1572_CR6
  doi: 10.1145/1456659.1456684
– ident: 1572_CR33
  doi: 10.4324/9781315787954
– volume: 9
  start-page: 106
  issue: 2
  year: 2013
  ident: 1572_CR36
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2012.263
– volume: 63
  start-page: 235
  year: 2016
  ident: 1572_CR4
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2016.08.021
– volume: 26
  start-page: 1710
  issue: 6
  year: 2010
  ident: 1572_CR23
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2010.06.020
– ident: 1572_CR7
  doi: 10.4017/gt.2011.10.01.006.00
– volume: 12
  start-page: 228
  issue: 2
  year: 2004
  ident: 1572_CR2
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2004.828423
– volume: 3
  start-page: 56
  year: 2012
  ident: 1572_CR38
  publication-title: Int J Res Bus Soc Sci
– volume: 25
  start-page: 673
  issue: 6
  year: 2013
  ident: 1572_CR12
  publication-title: Int Rev Psychiatry
  doi: 10.3109/09540261.2013.849663
– volume: 6389
  start-page: 82
  year: 2010
  ident: 1572_CR15
  publication-title: in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 2014
  start-page: 5389
  year: 2014
  ident: 1572_CR14
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf
– ident: 1572_CR25
  doi: 10.1109/IEMBS.2011.6091310
– ident: 1572_CR37
– volume: 2
  start-page: 1
  issue: 1
  year: 2007
  ident: 1572_CR18
  publication-title: Disabil Rehabil Assist Technol
  doi: 10.1080/17483100600845414
– ident: 1572_CR32
  doi: 10.1007/978-1-4615-5725-8_3
– volume: 12
  start-page: 1
  issue: 1
  year: 2014
  ident: 1572_CR27
  publication-title: BMC Med
  doi: 10.1186/s12916-014-0192-4
– volume: 18
  start-page: 375
  issue: 1
  year: 2014
  ident: 1572_CR8
  publication-title: IEEE J Biomed Heal Informatics
  doi: 10.1109/JBHI.2013.2267549
– volume: 13
  start-page: 1
  year: 2007
  ident: 1572_CR21
  publication-title: J Telemed Telecare
  doi: 10.1258/135763307779701158
– volume: 27
  start-page: 425
  year: 2003
  ident: 1572_CR20
  publication-title: MIS Q
  doi: 10.2307/30036540
– ident: 1572_CR22
– ident: 1572_CR5
  doi: 10.1007/978-3-319-48799-1_12
SSID ssj0017646
Score 2.3693137
Snippet The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 365
SubjectTerms Accuracy
Algorithms
Computer Science
Dementia
Empirical analysis
Mobile Computing
Modelling
Original
Original Article
Personal Computing
Technology adoption
Technology utilization
User Interfaces and Human Computer Interaction
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe_Hi-xGtsoI3DSbd3TQ9iKi0FMEiYqG3sNndYEGTqi305zu7eZRa7CmHbGkyO9_MZHbmG4BLzRWjCeO4A4gmxtueG0uEexDwRHVCtIA2of88CPpD9jTioxoMyl4YU1ZZ2kRrqFUmTY78Bh03-mqO-nc3-XLN1ChzulqO0BDFaAV1aynGNqCBJjlEvW88dAcvr9W5QjvI-43Qb7us43WKNhrbTGeYbTquKVlAF9luufNlV7USf66WUf45S7UuqrcDW0VsSe5zZdiFmk73YLuc20AKGO9D1wxAs1zc5DOL0Sy4xpcpMq3S7ESozNoSYocRkbzOnJikLVE2oTgWBzDsdd8e-24xTsGVCEz8UkThMQzXZBjzWCcmVlF-LJn2JYJUc7xQqZJQoDCl9CVeuKcRr-jlhdAtegj1NEv1MRAEve_JIEgSL2GCCgzTE2GojKhi3KPSAb-UXCQLrnEz8uIjqliSrbQjlHZkpR3NHbiqfjPJmTbWrm6WGxIVqPuJFjriwEV1G_FiDkFEqrOZXWN6dykLHTjK96_6O8ppEFI_cKC9tLPVAsPFvXwnHb9bTm4M-yjGAg5clzqweKz_3-Jk_VucwmbLdFvYQqEm1KffM32GMdA0Pi8U-xcG8ALf
  priority: 102
  providerName: ProQuest
Title Modelling mobile-based technology adoption among people with dementia
URI https://link.springer.com/article/10.1007/s00779-021-01572-x
https://www.ncbi.nlm.nih.gov/pubmed/35368316
https://www.proquest.com/docview/2640565322
https://www.proquest.com/docview/2646941348
https://pubmed.ncbi.nlm.nih.gov/PMC8933362
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9uKL90t1jgi-aaFtLuse59gcikPEwXwqaZriQDtxG_jzPUkvMqeCfQk06S2nX86X5FwAzjVPGE0ZRwkgmhhveW6sEO5C8DRphzgC2gX9u6EYjNjNmI8Lp7BZae1ebknakbpydjORZ9quMSlAFdYKXGSOdY5zdwPHUdCp9g5aIvcpQt3ssrbXLlxlfr7Hsjpa4ZirppLf9kutGupvw2bBH0knF_gOrOlsF7bK3AykgOoe9EySMxtvm7xOY4S-a_RVQubVUjqRydSOF8QmHCK5LTkxC7MksYuGE7kPo37vsTtwi5QJrkLw4WyQI0FCSqbCmMc6NXwk8WPFtK8QiJpjQVWShlIqPHyFBfc0YhI1uZQ6oAdQy6aZPgKCwPY9JUSaeimTVCIVT6UJV0QTxj2qHPDLnotUEU_cpLV4iapIyLa3I-ztyPZ29OHARXXNWx5N48_WjVIgUYGsWYQEDjkbfmbgwFlVjZgwGx0y09OFbWP8cykLHTjM5Vc9jnIqQuoLB1pLkq0amHjbyzXZ5NnG3UZqR1HfO3BZ_gNfr_X7Vxz_r_kJbATGw8IaBzWgNn9f6FPkPfO4Ceth_7oJ9c71020Py6ve8P4Bz3ZFt2kh8AnnZf6p
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5dBeoJQC4VUjtacSkaztbPaAKqCLlgKrqgKJW3BsRyC1CY9FhT_Hb-uM4wRtUblxyiHOZjNvj2e-AfhkpRG8EBI5gNokZC8Kc43qniSyMP0ULaBL6B-PkuGp-H4mz6bgsemFobLKxiY6Q20qTTnyLXTc6Kslyt_Xq-uQpkbR6WozQkP50Qpm20GM-caOQ_vwB7dwt9sH35Dfn7vd_cHJ3jD0UwZCjfKKGyj8TYFRjE5zmduCXLiJcy1srFF2rcQL16ZIFb5D61jjRUYWxRidn1KWgA_QBUwL6nDtwPTuYPTjZ3uO0Uvq_iaME0LRj_q-bcc17xGSTj-kEgl0yb1ueD_pGp_Fu8_LNv85u3Uucf8dzPhYlu3UwjcHU7Z8D7PNnAjmzcY8DGjgmsP-Zr-rHM1QSL7TsHGb1mfKVM52MTf8iNV17YySxMy4BOal-gCnr0LYBeiUVWmXgKGRiSOdJEURFUJxhduCQhF0EjdCRlwHEDeUy7THNqcRG7-yFpXZUTtDameO2tl9AF_aZ65qZI8XV682DMm8lt9mTzIZwEZ7G_WTDl1Uaas7t4Z6hblIA1is-de-jkuepDxOAuhNcLZdQNjfk3fKywuHAY5hJsfYI4DNRgae_tb_v2L55a_4CG-GJ8dH2dHB6HAF3nap08MVKa1CZ3xzZ9cw_hrn617IGZy_tl79BRPKQL4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-QIyG-KOIHRZQ10SdtaG93294DMSp3AdELMZLwVrf7EUmgBTkC_ov-Vc5styUHkTee-tDt9TrfOzvzG4A3VhrBnZDIAdQmIfMkrjSqe5ZJZ0YFWkCf0P82zXYOxJdDebgAf7teGCqr7GyiN9Sm0ZQj30THjb5aovxtulAWsb89-XB6FtMEKTpp7cZpqDBmwWx5uLHQ5LFn_1zidu58a3cbef92OJyMf3zeicPEgVij7OJmCn9fYESji0pW1pE7N2mlhU01yrGVeOHauELhO7RONV5kYlGk0REqZQkEAd3BYo5eUgxg8dN4uv-9P9PIs7bXCWOGWIySUWjh8Y18hKoziqlcAt1zPoyv5t3krdj3dgnnjXNc7x4ny_AwxLXsYyuIj2HB1ivwqJsZwYIJeQJjGr7mccDZSVOhSYrJjxo261P8TJnG2zHmByGxtsadUcKYGZ_MPFJP4eBeCPsMBnVT21VgaHDSRGeZc4kTiivcIjhFMErcCJlwHUHaUa7UAeecxm0clz1Cs6d2idQuPbXLqwje9c-ctigfd65e7xhSBo0_L6_lM4LX_W3UVTqAUbVtLvwa6hvmoojgecu__nVc8qzgaRZBPsfZfgHhgM_fqY9-eTxwDDk5xiERvO9k4Ppv_f8r1u7-ig1YQv0qv-5O917AgyE1ffh6pXUYzH5f2JcYis2qV0HGGfy8b7X6B-f0ROo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+mobile-based+technology+adoption+among+people+with+dementia&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Chaurasia%2C+Priyanka&rft.au=McClean%2C+Sally&rft.au=Nugent%2C+Chris+D.&rft.au=Cleland%2C+Ian&rft.date=2022-04-01&rft.pub=Springer+London&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=26&rft.issue=2&rft.spage=365&rft.epage=384&rft_id=info:doi/10.1007%2Fs00779-021-01572-x&rft.externalDocID=10_1007_s00779_021_01572_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon