Modelling mobile-based technology adoption among people with dementia
The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed informa...
Saved in:
Published in | Personal and ubiquitous computing Vol. 26; no. 2; pp. 365 - 384 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1617-4909 1617-4917 |
DOI | 10.1007/s00779-021-01572-x |
Cover
Abstract | The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
k
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. |
---|---|
AbstractList | The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using
NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported.The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using k NN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models. With a more detailed set of features including psychosocial and medical history information, the developed adoption model, using kNN algorithm, achieved a prediction accuracy of 99.41% when tested on 173 participants. The second-best algorithm built, using NN, achieved 94.08% accuracy. Both these results have improved accuracy in comparison to the best accuracy achieved (92.48%) in our previous work, based on psychosocial and self-reported health data for the same cohort. It has been found that psychosocial data is better than medical data for predicting technology adoption. However, for the best results, we should use a combination of psychosocial and medical data where it is preferable that the latter is provided from reliable medical sources, rather than self-reported. |
Author | Donnelly, Mark P. Tschanz, JoAnn McClean, Sally Sanders, Chelsea Nugent, Chris D. Norton, Maria C. Zhang, Shuai Smith, Ken Cleland, Ian Chaurasia, Priyanka Scotney, Bryan W. |
Author_xml | – sequence: 1 givenname: Priyanka orcidid: 0000-0003-4249-3678 surname: Chaurasia fullname: Chaurasia, Priyanka email: p.chaurasia@ulster.ac.uk organization: School of Computing and Intelligent Systems, Ulster University – sequence: 2 givenname: Sally surname: McClean fullname: McClean, Sally organization: School of Computing, Ulster University – sequence: 3 givenname: Chris D. surname: Nugent fullname: Nugent, Chris D. organization: School of Computing, Ulster University – sequence: 4 givenname: Ian surname: Cleland fullname: Cleland, Ian organization: School of Computing, Ulster University – sequence: 5 givenname: Shuai surname: Zhang fullname: Zhang, Shuai organization: School of Computing, Ulster University – sequence: 6 givenname: Mark P. surname: Donnelly fullname: Donnelly, Mark P. organization: School of Computing, Ulster University – sequence: 7 givenname: Bryan W. surname: Scotney fullname: Scotney, Bryan W. organization: School of Computing, Ulster University – sequence: 8 givenname: Chelsea surname: Sanders fullname: Sanders, Chelsea organization: Department of Psychology, Utah State University – sequence: 9 givenname: Ken surname: Smith fullname: Smith, Ken organization: Department of Family and Consumer Studies, University of Utah – sequence: 10 givenname: Maria C. surname: Norton fullname: Norton, Maria C. organization: Department of Family, Consumer, and Human Development, Utah State University – sequence: 11 givenname: JoAnn surname: Tschanz fullname: Tschanz, JoAnn organization: Department of Psychology, Utah State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35368316$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UTtPwzAYtFARLYU_wIAisbAE_MprQUJVeUggFpgtx_naukrsEKdA_z0OgQId6sGfJd-dz3eHaGCsAYROCL4gGCeXzm9JFmJKQkyihIYfe2hEYpKEPCPJYHPG2RAdOrfEmCQxjw_QkEUsThmJR2j6aAsoS23mQWVzXUKYSwdF0IJaGFva-TqQha1bbU0gK-thNdi6hOBdt4uggApMq-UR2p_J0sHx9xyjl5vp8-QufHi6vZ9cP4SK04iEPGKUZ4yqNI9ymOGYpQXJFQeikoxB5AdTxSyVUvlFlB8RhiTjlHIpgbIxuup161VeQaH8440sRd3oSjZrYaUW_2-MXoi5fRNpxhiLO4Hzb4HGvq7AtaLSTvkApAG7coL6fDJOGE899GwLurSrxvjvdSgcxf4zneDpX0cbKz8Je0DaA1RjnWtgJpRuZZenN6hLQbDoyhR9mcKXKb7KFB-eSreoP-o7SawnOQ82c2h-be9gfQKQV7Mq |
CitedBy_id | crossref_primary_10_1007_s00779_021_01638_w crossref_primary_10_1177_20552076231162985 crossref_primary_10_2196_57940 crossref_primary_10_3390_ijerph19031133 crossref_primary_10_1007_s13755_023_00257_4 |
Cites_doi | 10.1016/j.socscimed.2009.02.010 10.1080/17483100600845414 10.1016/j.chb.2010.02.005 10.1037/0882-7974.21.2.333 10.3109/09540261.2013.849663 10.1016/j.pmcj.2009.04.001 10.1613/jair.953 10.1016/j.chb.2010.06.020 10.3233/THC-2012-0677 10.1109/JBHI.2013.2267549 10.1186/s12916-014-0192-4 10.1109/TNSRE.2004.828423 10.1207/s15327752jpa6803_3 10.1038/nrneurol.2012.263 10.1093/ageing/afu189 10.1093/iwc/iwt041 10.1016/j.jbi.2016.08.021 10.1016/S0895-4356(99)00103-1 10.2307/30036540 10.1258/135763307779701158 10.1002/9781118490082 10.1109/EMBC.2016.7591704 10.1007/978-3-319-13105-4_39 10.1145/1456659.1456684 10.4324/9781315787954 10.4017/gt.2011.10.01.006.00 10.1109/IEMBS.2011.6091310 10.1007/978-1-4615-5725-8_3 10.1007/978-3-319-48799-1_12 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7SC 7XB 8AL 8AO 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s00779-021-01572-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1617-4917 |
EndPage | 384 |
ExternalDocumentID | PMC8933362 35368316 10_1007_s00779_021_01572_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Alzheimer's Association grantid: ETAC-12-242841 funderid: http://dx.doi.org/10.13039/100000957 – fundername: ; grantid: ETAC-12-242841 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 199 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8AO 8FE 8FG 8FW 8TC 8UJ 8US 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AALFJ AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADL ADMLS ADPZR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AIKLT AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BDXCO BENPR BGLVJ BGNMA BPHCQ BSONS C6C CAG CCLIF CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HCIFZ HF~ HG5 HG6 HGAVV HLICF HMJXF HQYDN HRMNR HVGLF HZ~ I-F I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAS LLZTM M0N M4Y MA- MQGED N2Q NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RIG RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W7O WK8 XJE YLTOR YZZ Z45 Z7R Z7S Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEFXT AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT SJN NPM 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23 |
IEDL.DBID | U2A |
ISSN | 1617-4909 |
IngestDate | Thu Aug 21 18:21:00 EDT 2025 Fri Sep 05 07:11:23 EDT 2025 Sat Aug 23 13:58:17 EDT 2025 Wed Feb 19 02:26:13 EST 2025 Thu Apr 24 23:12:16 EDT 2025 Tue Jul 01 02:25:59 EDT 2025 Fri Feb 21 02:47:53 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Technology adoption Assistive technologies Medical history Dementia Reminder application |
Language | English |
License | The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4251-45324932c8b5bef0638d1bc4e1c793e51c73cdf8aacccc1cacc50e794224aae23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4249-3678 |
OpenAccessLink | https://link.springer.com/10.1007/s00779-021-01572-x |
PMID | 35368316 |
PQID | 2640565322 |
PQPubID | 25320 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8933362 proquest_miscellaneous_2646941348 proquest_journals_2640565322 pubmed_primary_35368316 crossref_citationtrail_10_1007_s00779_021_01572_x crossref_primary_10_1007_s00779_021_01572_x springer_journals_10_1007_s00779_021_01572_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Personal and ubiquitous computing |
PublicationTitleAbbrev | Pers Ubiquit Comput |
PublicationTitleAlternate | Pers Ubiquitous Comput |
PublicationYear | 2022 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Scherer, Jutai, Fuhrer, Demers, Deruyter (CR18) 2007; 2 Czaja, Charness, Fisk, Hertzog, Nair, Rogers, Sharit (CR24) 2006; 21 Davis, Offord (CR31) 1997; 68 Smith, Mineau, Garibotti, Kerber (CR28) 2009; 68 Cook, Augusto, Jakkula (CR3) 2009; 5 Chuttur (CR19) 2009; 9 Mitzner, Boron, Fausset, Adams, Charness, Czaja, Dijkstra, Fisk, Rogers, Sharit (CR23) 2010; 26 CR37 CR13 Wilkowska, Gaul, Ziefle (CR15) 2010; 6389 CR34 CR11 CR33 CR10 CR32 Chawla, Bowyer, Hall, Kegelmeyer (CR26) 2002; 16 Chaurasia, McClean, Nugent, Cleland, Zhang, Donnelly, Scotney, Sanders, Smith, Norton, Tschanz (CR4) 2016; 63 Hartin, Nugent, McClean, Cleland, Norton, Sanders, Tschanz (CR14) 2014; 2014 Stefanov, Bien, Bang (CR2) 2004; 12 Yen, Wu, Cheng, Huang (CR17) 2010; 26 Zhang, McClean, Nugent, Donnelly, Galway, Scotney, Cleland (CR8) 2014; 18 O’Neill, McClean, Donnelly, Nugent, Galway, Cleland, Zhang, Young, Scotney, Mason, Craig (CR9) 2014; 26 Bunn, Burn, Goodman, Rait, Norton, Robinson, Schoeman, Brayne (CR27) 2014; 12 Liu, Liu, Kanekiyo, Xu, Bu (CR36) 2013; 9 CR6 Sander, Oxlund, Jespersen, Krasnik, Mortensen, Westendorp, Rasmussen (CR1) 2015; 44 CR5 CR7 Steyerberg, Eijkemans, Habbema (CR30) 1999; 52 CR25 Tschanz, Norton, Zandi, Lyketsos (CR12) 2013; 25 CR22 Venkatesh, Morris, Gordon, Davis (CR20) 2003; 27 Chaurasia, McClean, Scotney, Nugent (CR29) 2012; 20 Stronge, Rogers, Fisk (CR21) 2007; 13 Esmaeilzadeh, Sambasivan, Nezakati H (CR38) 2012; 3 Day, Jutai (CR16) 1996; 9 Goldman (CR35) 2014 M Scherer (1572_CR18) 2007; 2 S Zhang (1572_CR8) 2014; 18 M Chuttur (1572_CR19) 2009; 9 1572_CR37 DJ Cook (1572_CR3) 2009; 5 1572_CR34 1572_CR13 PJ Hartin (1572_CR14) 2014; 2014 DH Stefanov (1572_CR2) 2004; 12 1572_CR10 1572_CR32 1572_CR11 A Stronge (1572_CR21) 2007; 13 1572_CR33 SJ Czaja (1572_CR24) 2006; 21 F Bunn (1572_CR27) 2014; 12 TL Mitzner (1572_CR23) 2010; 26 KR Smith (1572_CR28) 2009; 68 LJ Davis (1572_CR31) 1997; 68 P Chaurasia (1572_CR4) 2016; 63 M Sander (1572_CR1) 2015; 44 JT Tschanz (1572_CR12) 2013; 25 NV Chawla (1572_CR26) 2002; 16 1572_CR7 P Chaurasia (1572_CR29) 2012; 20 P Esmaeilzadeh (1572_CR38) 2012; 3 DC Yen (1572_CR17) 2010; 26 1572_CR25 SA O’Neill (1572_CR9) 2014; 26 V Venkatesh (1572_CR20) 2003; 27 1572_CR6 1572_CR5 H Day (1572_CR16) 1996; 9 EW Steyerberg (1572_CR30) 1999; 52 B Goldman (1572_CR35) 2014 W Wilkowska (1572_CR15) 2010; 6389 1572_CR22 C-C Liu (1572_CR36) 2013; 9 |
References_xml | – ident: CR22 – volume: 68 start-page: 1649 issue: 9 year: 2009 end-page: 1658 ident: CR28 article-title: “Effects of childhood and middle-adulthood family conditions on later-life mortality: evidence from the Utah Population Database”, 1850–2002 publication-title: Soc Sci Med doi: 10.1016/j.socscimed.2009.02.010 – volume: 2 start-page: 1 issue: 1 year: 2007 end-page: 8 ident: CR18 article-title: A framework for modelling the selection of assistive technology devices (ATDs) publication-title: Disabil Rehabil Assist Technol doi: 10.1080/17483100600845414 – volume: 26 start-page: 906 issue: 5 year: 2010 end-page: 915 ident: CR17 article-title: Determinants of users’ intention to adopt wireless technology: an empirical study by integrating TTF with TAM publication-title: Comput Hum Behav doi: 10.1016/j.chb.2010.02.005 – volume: 21 start-page: 333 issue: 2 year: 2006 end-page: 352 ident: CR24 article-title: Factors predicting the use of technology: findings from the Center for Research and Education on Aging and Technology Enhancement (CREATE) publication-title: Psychol Aging doi: 10.1037/0882-7974.21.2.333 – ident: CR37 – volume: 25 start-page: 673 issue: 6 year: 2013 end-page: 685 ident: CR12 article-title: The Cache County Study on Memory in Aging: factors affecting risk of Alzheimer’s disease and its progression after onset publication-title: Int Rev Psychiatry doi: 10.3109/09540261.2013.849663 – volume: 6389 start-page: 82 year: 2010 end-page: 100 ident: CR15 article-title: A small but significant difference - the role of gender on acceptance of medical assistive technologies publication-title: in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – ident: CR10 – volume: 3 start-page: 56 year: 2012 end-page: 68 ident: CR38 article-title: The limitations of using the existing tam in adoption of clinical decision support system in hospitals: an empirical study in Malaysia publication-title: Int J Res Bus Soc Sci – ident: CR33 – volume: 5 start-page: 277 issue: 4 year: 2009 end-page: 298 ident: CR3 article-title: Ambient intelligence: technologies, applications, and opportunities publication-title: Pervasive and Mobile Computing doi: 10.1016/j.pmcj.2009.04.001 – volume: 16 start-page: 321 issue: 1 year: 2002 end-page: 357 ident: CR26 article-title: SMOTE: Synthetic Minority Over-Sampling Technique publication-title: J Artif Intell Res doi: 10.1613/jair.953 – ident: CR6 – volume: 26 start-page: 1710 issue: 6 year: 2010 end-page: 1721 ident: CR23 article-title: Older adults talk technology: technology usage and attitudes publication-title: Comput Hum Behav doi: 10.1016/j.chb.2010.06.020 – volume: 20 start-page: 277 issue: 4 year: 2012 end-page: 295 ident: CR29 article-title: Duration discretisation for activity recognition publication-title: Technol Health Care doi: 10.3233/THC-2012-0677 – volume: 18 start-page: 375 issue: 1 year: 2014 end-page: 383 ident: CR8 article-title: A predictive model for assistive technology adoption for people with dementia publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/JBHI.2013.2267549 – volume: 2014 start-page: 5389 year: 2014 end-page: 5392 ident: CR14 article-title: A smartphone application to evaluate technology adoption and usage in persons with dementia publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf – volume: 12 start-page: 1 issue: 1 year: 2014 end-page: 15 ident: CR27 article-title: Comorbidity and dementia: a scoping review of the literature publication-title: BMC Med doi: 10.1186/s12916-014-0192-4 – ident: CR25 – year: 2014 ident: CR35 publication-title: Having a copy of ApoE4 gene variant doubles Alzheimer’s risk for women but not for men – volume: 9 start-page: 159 issue: 2 year: 1996 end-page: 168 ident: CR16 article-title: Measuring the psychosocial impact of assistive devices: the PIADS publication-title: Can J Rehabil – ident: CR13 – ident: CR11 – volume: 9 start-page: 290 year: 2009 ident: CR19 article-title: Overview of the technology acceptance model: origins , developments and future directions publication-title: All Sprouts Content – ident: CR32 – ident: CR34 – volume: 12 start-page: 228 issue: 2 year: 2004 end-page: 250 ident: CR2 article-title: The smart house for older persons and persons with physical disabilities: structure, technology arrangements, and perspectives publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2004.828423 – volume: 68 start-page: 497 issue: 3 year: 1997 end-page: 507 ident: CR31 article-title: Logistic regression publication-title: J Pers Assess doi: 10.1207/s15327752jpa6803_3 – volume: 9 start-page: 106 issue: 2 year: 2013 end-page: 118 ident: CR36 article-title: Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2012.263 – volume: 44 start-page: 185 issue: 2 year: 2015 end-page: 187 ident: CR1 article-title: The challenges of human population ageing publication-title: Age Ageing doi: 10.1093/ageing/afu189 – ident: CR5 – ident: CR7 – volume: 26 start-page: 169 year: 2014 end-page: 176 ident: CR9 article-title: Development of a technology adoption and usage prediction tool for assistive technology for people with dementia publication-title: Interact Comput doi: 10.1093/iwc/iwt041 – volume: 63 start-page: 235 year: 2016 end-page: 248 ident: CR4 article-title: Modelling assistive technology adoption for people with dementia publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.08.021 – volume: 52 start-page: 935 issue: 10 year: 1999 end-page: 942 ident: CR30 article-title: Stepwise selection in small data sets: a simulation study of bias in logistic regression analysis publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(99)00103-1 – volume: 27 start-page: 425 year: 2003 end-page: 478 ident: CR20 article-title: User acceptance of information technology: toward a unified view publication-title: MIS Q doi: 10.2307/30036540 – volume: 13 start-page: 1 year: 2007 end-page: 3 ident: CR21 article-title: Human factors considerations in implementing telemedicine systems to accommodate older adults publication-title: J Telemed Telecare doi: 10.1258/135763307779701158 – volume: 5 start-page: 277 issue: 4 year: 2009 ident: 1572_CR3 publication-title: Pervasive and Mobile Computing doi: 10.1016/j.pmcj.2009.04.001 – volume: 9 start-page: 290 year: 2009 ident: 1572_CR19 publication-title: All Sprouts Content – volume: 26 start-page: 906 issue: 5 year: 2010 ident: 1572_CR17 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2010.02.005 – ident: 1572_CR34 doi: 10.1002/9781118490082 – volume: 68 start-page: 1649 issue: 9 year: 2009 ident: 1572_CR28 publication-title: Soc Sci Med doi: 10.1016/j.socscimed.2009.02.010 – volume: 9 start-page: 159 issue: 2 year: 1996 ident: 1572_CR16 publication-title: Can J Rehabil – volume: 52 start-page: 935 issue: 10 year: 1999 ident: 1572_CR30 publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(99)00103-1 – ident: 1572_CR13 – ident: 1572_CR10 doi: 10.1109/EMBC.2016.7591704 – volume: 21 start-page: 333 issue: 2 year: 2006 ident: 1572_CR24 publication-title: Psychol Aging doi: 10.1037/0882-7974.21.2.333 – volume-title: Having a copy of ApoE4 gene variant doubles Alzheimer’s risk for women but not for men year: 2014 ident: 1572_CR35 – volume: 26 start-page: 169 year: 2014 ident: 1572_CR9 publication-title: Interact Comput doi: 10.1093/iwc/iwt041 – volume: 68 start-page: 497 issue: 3 year: 1997 ident: 1572_CR31 publication-title: J Pers Assess doi: 10.1207/s15327752jpa6803_3 – volume: 20 start-page: 277 issue: 4 year: 2012 ident: 1572_CR29 publication-title: Technol Health Care doi: 10.3233/THC-2012-0677 – volume: 44 start-page: 185 issue: 2 year: 2015 ident: 1572_CR1 publication-title: Age Ageing doi: 10.1093/ageing/afu189 – ident: 1572_CR11 doi: 10.1007/978-3-319-13105-4_39 – volume: 16 start-page: 321 issue: 1 year: 2002 ident: 1572_CR26 publication-title: J Artif Intell Res doi: 10.1613/jair.953 – ident: 1572_CR6 doi: 10.1145/1456659.1456684 – ident: 1572_CR33 doi: 10.4324/9781315787954 – volume: 9 start-page: 106 issue: 2 year: 2013 ident: 1572_CR36 publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2012.263 – volume: 63 start-page: 235 year: 2016 ident: 1572_CR4 publication-title: J Biomed Inform doi: 10.1016/j.jbi.2016.08.021 – volume: 26 start-page: 1710 issue: 6 year: 2010 ident: 1572_CR23 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2010.06.020 – ident: 1572_CR7 doi: 10.4017/gt.2011.10.01.006.00 – volume: 12 start-page: 228 issue: 2 year: 2004 ident: 1572_CR2 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2004.828423 – volume: 3 start-page: 56 year: 2012 ident: 1572_CR38 publication-title: Int J Res Bus Soc Sci – volume: 25 start-page: 673 issue: 6 year: 2013 ident: 1572_CR12 publication-title: Int Rev Psychiatry doi: 10.3109/09540261.2013.849663 – volume: 6389 start-page: 82 year: 2010 ident: 1572_CR15 publication-title: in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 2014 start-page: 5389 year: 2014 ident: 1572_CR14 publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf – ident: 1572_CR25 doi: 10.1109/IEMBS.2011.6091310 – ident: 1572_CR37 – volume: 2 start-page: 1 issue: 1 year: 2007 ident: 1572_CR18 publication-title: Disabil Rehabil Assist Technol doi: 10.1080/17483100600845414 – ident: 1572_CR32 doi: 10.1007/978-1-4615-5725-8_3 – volume: 12 start-page: 1 issue: 1 year: 2014 ident: 1572_CR27 publication-title: BMC Med doi: 10.1186/s12916-014-0192-4 – volume: 18 start-page: 375 issue: 1 year: 2014 ident: 1572_CR8 publication-title: IEEE J Biomed Heal Informatics doi: 10.1109/JBHI.2013.2267549 – volume: 13 start-page: 1 year: 2007 ident: 1572_CR21 publication-title: J Telemed Telecare doi: 10.1258/135763307779701158 – volume: 27 start-page: 425 year: 2003 ident: 1572_CR20 publication-title: MIS Q doi: 10.2307/30036540 – ident: 1572_CR22 – ident: 1572_CR5 doi: 10.1007/978-3-319-48799-1_12 |
SSID | ssj0017646 |
Score | 2.3693137 |
Snippet | The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 365 |
SubjectTerms | Accuracy Algorithms Computer Science Dementia Empirical analysis Mobile Computing Modelling Original Original Article Personal Computing Technology adoption Technology utilization User Interfaces and Human Computer Interaction |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB5qe_Hi-xGtsoI3DSbd3TQ9iKi0FMEiYqG3sNndYEGTqi305zu7eZRa7CmHbGkyO9_MZHbmG4BLzRWjCeO4A4gmxtueG0uEexDwRHVCtIA2of88CPpD9jTioxoMyl4YU1ZZ2kRrqFUmTY78Bh03-mqO-nc3-XLN1ChzulqO0BDFaAV1aynGNqCBJjlEvW88dAcvr9W5QjvI-43Qb7us43WKNhrbTGeYbTquKVlAF9luufNlV7USf66WUf45S7UuqrcDW0VsSe5zZdiFmk73YLuc20AKGO9D1wxAs1zc5DOL0Sy4xpcpMq3S7ESozNoSYocRkbzOnJikLVE2oTgWBzDsdd8e-24xTsGVCEz8UkThMQzXZBjzWCcmVlF-LJn2JYJUc7xQqZJQoDCl9CVeuKcRr-jlhdAtegj1NEv1MRAEve_JIEgSL2GCCgzTE2GojKhi3KPSAb-UXCQLrnEz8uIjqliSrbQjlHZkpR3NHbiqfjPJmTbWrm6WGxIVqPuJFjriwEV1G_FiDkFEqrOZXWN6dykLHTjK96_6O8ppEFI_cKC9tLPVAsPFvXwnHb9bTm4M-yjGAg5clzqweKz_3-Jk_VucwmbLdFvYQqEm1KffM32GMdA0Pi8U-xcG8ALf priority: 102 providerName: ProQuest |
Title | Modelling mobile-based technology adoption among people with dementia |
URI | https://link.springer.com/article/10.1007/s00779-021-01572-x https://www.ncbi.nlm.nih.gov/pubmed/35368316 https://www.proquest.com/docview/2640565322 https://www.proquest.com/docview/2646941348 https://pubmed.ncbi.nlm.nih.gov/PMC8933362 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7o9uKL90t1jgi-aaFtLuse59gcikPEwXwqaZriQDtxG_jzPUkvMqeCfQk06S2nX86X5FwAzjVPGE0ZRwkgmhhveW6sEO5C8DRphzgC2gX9u6EYjNjNmI8Lp7BZae1ebknakbpydjORZ9quMSlAFdYKXGSOdY5zdwPHUdCp9g5aIvcpQt3ssrbXLlxlfr7Hsjpa4ZirppLf9kutGupvw2bBH0knF_gOrOlsF7bK3AykgOoe9EySMxtvm7xOY4S-a_RVQubVUjqRydSOF8QmHCK5LTkxC7MksYuGE7kPo37vsTtwi5QJrkLw4WyQI0FCSqbCmMc6NXwk8WPFtK8QiJpjQVWShlIqPHyFBfc0YhI1uZQ6oAdQy6aZPgKCwPY9JUSaeimTVCIVT6UJV0QTxj2qHPDLnotUEU_cpLV4iapIyLa3I-ztyPZ29OHARXXNWx5N48_WjVIgUYGsWYQEDjkbfmbgwFlVjZgwGx0y09OFbWP8cykLHTjM5Vc9jnIqQuoLB1pLkq0amHjbyzXZ5NnG3UZqR1HfO3BZ_gNfr_X7Vxz_r_kJbATGw8IaBzWgNn9f6FPkPfO4Ceth_7oJ9c71020Py6ve8P4Bz3ZFt2kh8AnnZf6p |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5dBeoJQC4VUjtacSkaztbPaAKqCLlgKrqgKJW3BsRyC1CY9FhT_Hb-uM4wRtUblxyiHOZjNvj2e-AfhkpRG8EBI5gNokZC8Kc43qniSyMP0ULaBL6B-PkuGp-H4mz6bgsemFobLKxiY6Q20qTTnyLXTc6Kslyt_Xq-uQpkbR6WozQkP50Qpm20GM-caOQ_vwB7dwt9sH35Dfn7vd_cHJ3jD0UwZCjfKKGyj8TYFRjE5zmduCXLiJcy1srFF2rcQL16ZIFb5D61jjRUYWxRidn1KWgA_QBUwL6nDtwPTuYPTjZ3uO0Uvq_iaME0LRj_q-bcc17xGSTj-kEgl0yb1ueD_pGp_Fu8_LNv85u3Uucf8dzPhYlu3UwjcHU7Z8D7PNnAjmzcY8DGjgmsP-Zr-rHM1QSL7TsHGb1mfKVM52MTf8iNV17YySxMy4BOal-gCnr0LYBeiUVWmXgKGRiSOdJEURFUJxhduCQhF0EjdCRlwHEDeUy7THNqcRG7-yFpXZUTtDameO2tl9AF_aZ65qZI8XV682DMm8lt9mTzIZwEZ7G_WTDl1Uaas7t4Z6hblIA1is-de-jkuepDxOAuhNcLZdQNjfk3fKywuHAY5hJsfYI4DNRgae_tb_v2L55a_4CG-GJ8dH2dHB6HAF3nap08MVKa1CZ3xzZ9cw_hrn617IGZy_tl79BRPKQL4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-QIyG-KOIHRZQ10SdtaG93294DMSp3AdELMZLwVrf7EUmgBTkC_ov-Vc5styUHkTee-tDt9TrfOzvzG4A3VhrBnZDIAdQmIfMkrjSqe5ZJZ0YFWkCf0P82zXYOxJdDebgAf7teGCqr7GyiN9Sm0ZQj30THjb5aovxtulAWsb89-XB6FtMEKTpp7cZpqDBmwWx5uLHQ5LFn_1zidu58a3cbef92OJyMf3zeicPEgVij7OJmCn9fYESji0pW1pE7N2mlhU01yrGVeOHauELhO7RONV5kYlGk0REqZQkEAd3BYo5eUgxg8dN4uv-9P9PIs7bXCWOGWIySUWjh8Y18hKoziqlcAt1zPoyv5t3krdj3dgnnjXNc7x4ny_AwxLXsYyuIj2HB1ivwqJsZwYIJeQJjGr7mccDZSVOhSYrJjxo261P8TJnG2zHmByGxtsadUcKYGZ_MPFJP4eBeCPsMBnVT21VgaHDSRGeZc4kTiivcIjhFMErcCJlwHUHaUa7UAeecxm0clz1Cs6d2idQuPbXLqwje9c-ctigfd65e7xhSBo0_L6_lM4LX_W3UVTqAUbVtLvwa6hvmoojgecu__nVc8qzgaRZBPsfZfgHhgM_fqY9-eTxwDDk5xiERvO9k4Ppv_f8r1u7-ig1YQv0qv-5O917AgyE1ffh6pXUYzH5f2JcYis2qV0HGGfy8b7X6B-f0ROo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+mobile-based+technology+adoption+among+people+with+dementia&rft.jtitle=Personal+and+ubiquitous+computing&rft.au=Chaurasia%2C+Priyanka&rft.au=McClean%2C+Sally&rft.au=Nugent%2C+Chris+D.&rft.au=Cleland%2C+Ian&rft.date=2022-04-01&rft.pub=Springer+London&rft.issn=1617-4909&rft.eissn=1617-4917&rft.volume=26&rft.issue=2&rft.spage=365&rft.epage=384&rft_id=info:doi/10.1007%2Fs00779-021-01572-x&rft.externalDocID=10_1007_s00779_021_01572_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1617-4909&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1617-4909&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1617-4909&client=summon |