Selection of Candidate Support Vectors in incremental SVM for network intrusion detection
In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush–Kuhn–Tucker (KKT) condition. This paper proposes Half-partit...
Saved in:
| Published in | Computers & security Vol. 45; pp. 231 - 241 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.09.2014
Elsevier Elsevier Sequoia S.A |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-4048 1872-6208 |
| DOI | 10.1016/j.cose.2014.06.006 |
Cover
| Abstract | In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush–Kuhn–Tucker (KKT) condition. This paper proposes Half-partition strategy of selecting and retaining non-support vectors of the current increment of classification – named as Candidate Support Vectors (CSV) – which are likely to become support vectors in the next increment of classification. This research work also designs an algorithm named the Candidate Support Vector based Incremental SVM (CSV-ISVM) algorithm that implements the proposed strategy and materializes the whole process of incremental SVM classification. This work also suggests modifications to the previously proposed concentric-ring method and reserved set strategy. Performance of the proposed method is evaluated with experiments and also by comparing it with other ISVM techniques. Experimental results and performance analyses show that the proposed algorithm CSV-ISVM is better than general ISVM classifications for real-time network intrusion detection. |
|---|---|
| AbstractList | In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush-Kuhn-Tucker (KKT) condition. This paper proposes Half-partition strategy of selecting and retaining non-support vectors of the current increment of classification - named as Candidate Support Vectors (CSV) - which are likely to become support vectors in the next increment of classification. This research work also designs an algorithm named the Candidate Support Vector based Incremental SVM (CSV-ISVM) algorithm that implements the proposed strategy and materializes the whole process of incremental SVM classification. This work also suggests modifications to the previously proposed concentric-ring method and reserved set strategy. Performance of the proposed method is evaluated with experiments and also by comparing it with other ISVM techniques. Experimental results and performance analyses show that the proposed algorithm CSV-ISVM is better than general ISVM classifications for real-time network intrusion detection. |
| Author | Chitrakar, Roshan Huang, Chuanhe |
| Author_xml | – sequence: 1 givenname: Roshan surname: Chitrakar fullname: Chitrakar, Roshan email: roshanchi@gmail.com, roshanchi@whu.edu.cn – sequence: 2 givenname: Chuanhe surname: Huang fullname: Huang, Chuanhe email: huangch@whu.edu.cn |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28680036$$DView record in Pascal Francis |
| BookMark | eNqNkU1r3DAQhkVJoJukf6AnQyn0YldfK8vQS1n6EUjJYUMgJzErjUFbr7SV5Ib--8pseskhFARCzPO-o5n3gpyFGJCQt4x2jDL1cd_ZmLHjlMmOqo5S9YqsmO55qzjVZ2RVob6VVOrX5CLnPaWsV1qvyMMWJ7TFx9DEsdlAcN5BwWY7H48xlea-FmPKjQ_12IQHDAWmZnv_oxljagKWx5h-1lpJc15cHJaT3xU5H2HK-ObpviR3X7_cbb63N7ffrjefb1oruSztDmEQg1gPzPZiUENP-Y7vBHcglQTJxxHX2u24cIPQ1NWX4CCgRwbacSEuyYeT7THFXzPmYg4-W5wmCBjnbOrcmlI5SPUfKK8f0Yrrir57hu7jnEKdw7D1WvRSD2wxfP9EQbYwjQmC9dkckz9A-mO4VrW1WDh94myKOSccjfUFliWVBH4yjJolRbM3S4pmSdFQZWqKVcqfSf-5vyj6dBJh3ftvj8lk6zFYdD7VcIyL_iX5XwMnt0Y |
| CODEN | CPSEDU |
| CitedBy_id | crossref_primary_10_1007_s10207_020_00508_5 crossref_primary_10_1186_s13638_019_1567_1 crossref_primary_10_1007_s12652_020_02629_0 crossref_primary_10_1002_int_22397 crossref_primary_10_1016_j_jmapro_2021_08_013 crossref_primary_10_1016_j_knosys_2017_03_012 crossref_primary_10_1109_ACCESS_2018_2872784 crossref_primary_10_1007_s11771_019_4233_1 crossref_primary_10_1007_s11801_018_7254_3 crossref_primary_10_3390_s23218788 crossref_primary_10_1109_TC_2016_2519914 crossref_primary_10_1186_s40537_019_0248_6 crossref_primary_10_1016_j_eswa_2021_116089 crossref_primary_10_1007_s10462_017_9567_1 crossref_primary_10_1016_j_jnca_2021_102983 crossref_primary_10_32604_cmc_2025_060357 crossref_primary_10_1007_s11227_021_03729_0 crossref_primary_10_1016_j_compeleceng_2017_09_028 crossref_primary_10_1155_2016_5869238 crossref_primary_10_3390_s21134294 crossref_primary_10_1002_sec_1398 crossref_primary_10_1007_s11276_022_02988_w crossref_primary_10_3390_electronics12112427 crossref_primary_10_1016_j_neunet_2022_05_018 crossref_primary_10_1108_K_02_2014_0036 crossref_primary_10_2478_jaiscr_2019_0002 crossref_primary_10_1109_ACCESS_2023_3289405 crossref_primary_10_1038_s41598_023_36304_z crossref_primary_10_1016_j_knosys_2019_04_008 crossref_primary_10_1080_21681015_2014_975163 crossref_primary_10_1142_S1469026819500019 crossref_primary_10_1007_s11042_022_14132_z crossref_primary_10_1186_s40537_020_00346_1 crossref_primary_10_1109_JIOT_2023_3290557 crossref_primary_10_35414_akufemubid_1455995 crossref_primary_10_12688_f1000research_127732_1 crossref_primary_10_1155_2022_4872230 crossref_primary_10_3390_info15100583 crossref_primary_10_1007_s10489_021_02385_4 crossref_primary_10_1007_s11416_021_00410_1 crossref_primary_10_1177_1550147719846052 crossref_primary_10_1007_s00607_022_01124_y crossref_primary_10_1016_j_neucom_2016_03_031 crossref_primary_10_1049_iet_ifs_2014_0353 |
| Cites_doi | 10.1109/TNN.2010.2048039 10.3844/jcssp.2011.1560.1564 10.1016/j.fusengdes.2012.11.024 10.3923/itj.2012.200.208 10.1016/j.eswa.2010.12.141 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS Copyright Elsevier Sequoia S.A. Sep 2014 |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright Elsevier Sequoia S.A. Sep 2014 |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 K7. L7M L~C L~D |
| DOI | 10.1016/j.cose.2014.06.006 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection ProQuest Criminal Justice (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef ProQuest Criminal Justice (Alumni) Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts ProQuest Criminal Justice (Alumni) Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1872-6208 |
| EndPage | 241 |
| ExternalDocumentID | 3405589681 28680036 10_1016_j_cose_2014_06_006 S0167404814000996 |
| Genre | Feature |
| GrantInformation_xml | – fundername: National Science Foundation of China grantid: 61373040; 61173137 – fundername: Ph.D. Programs Foundation of Ministry of Education of China grantid: 20120141110073 – fundername: Key Project of Natural Science Foundation of Hubei Province grantid: 2010CDA004 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFSI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADHUB ADJOM ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLX HLZ HVGLF HZ~ IHE J1W KOM LG8 LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SBM SDF SDG SDP SES SEW SPC SPCBC SSV SSZ T5K TAE TN5 TWZ WH7 WUQ XJE XPP XSW YK3 ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD BNPGV IQODW SSH 7SC 8FD AFXIZ AGCQF AGRNS JQ2 K7. L7M L~C L~D |
| ID | FETCH-LOGICAL-c424t-bea9393591c73969702b2b32da464a42ffe58db23d9380dfe532a3a7e1a8d233 |
| IEDL.DBID | .~1 |
| ISSN | 0167-4048 |
| IngestDate | Sun Sep 28 11:55:19 EDT 2025 Wed Oct 01 14:19:53 EDT 2025 Fri Jul 25 07:20:55 EDT 2025 Wed Apr 02 07:17:41 EDT 2025 Thu Apr 24 23:01:31 EDT 2025 Thu Oct 02 04:25:57 EDT 2025 Fri Feb 23 02:33:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Candidate Support Vector Karush–Kuhn–Tucker condition Half-partition strategy Network intrusion detection Incremental support vector machine Performance evaluation Reuse Karush-Kuhn-Tucker condition Online algorithm Intruder detector Real time Experimental result Ring Vector support machine Kuhn Tucker condition Computer security Intrusion detection systems |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-bea9393591c73969702b2b32da464a42ffe58db23d9380dfe532a3a7e1a8d233 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1553748916 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1678004946 proquest_miscellaneous_1629358628 proquest_journals_1553748916 pascalfrancis_primary_28680036 crossref_citationtrail_10_1016_j_cose_2014_06_006 crossref_primary_10_1016_j_cose_2014_06_006 elsevier_sciencedirect_doi_10_1016_j_cose_2014_06_006 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & security |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier Elsevier Sequoia S.A |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier – name: Elsevier Sequoia S.A |
| References | Liu, He, Chen (bib12) 2004 Chitrakar, Huang (bib3) 2012 Kobayashi, Otsu (bib9) 2009 Du, Teng, Fu, Zhang, Pu (bib4) 2009 Bhavsar, Panchal, Patel (bib1) 2013; 2 UCI KDD (bib19) 1999 Yao, Feng, Jin, Chen (bib23) 2012; 11 Tao (bib18) 2006; 18 Wen-Hua, Jian (bib22) 2001; 9 Zhang, Wang, Zhai (bib25) 2009; vol. 5908 Karasuyama, Takeuchi (bib8) 2010; 21 Wang, Zheng, Wu, Zhang (bib21) 2006; 26 Manning, Raghavan, Schütze (bib14) 2008 Makili, Vega, Dormido-Canto (bib13) 2013; 88 Yi, Wu, Xu (bib24) 2011 Wang (bib20) 2008 Sun, Guo (bib17) 2012 Mohammad, Sulaiman, Khalaf (bib15) 2011; 7 Joachims (bib7) 1998 Habib, Inglada, Mercier, Chanussot (bib6) 2009; 6 Du, Teng, Yang, Zhu (bib5) 2009 Chitrakar, Huang (bib2) 2012 Kyoto+ Data (bib10) 2009 Platt (bib16) 1998 Le, Nguyen (bib11) 2011 Du (10.1016/j.cose.2014.06.006_bib5) 2009 Zhang (10.1016/j.cose.2014.06.006_bib25) 2009; vol. 5908 Chitrakar (10.1016/j.cose.2014.06.006_bib3) 2012 Platt (10.1016/j.cose.2014.06.006_bib16) 1998 Sun (10.1016/j.cose.2014.06.006_bib17) 2012 Tao (10.1016/j.cose.2014.06.006_bib18) 2006; 18 Le (10.1016/j.cose.2014.06.006_bib11) 2011 Yi (10.1016/j.cose.2014.06.006_bib24) 2011 Mohammad (10.1016/j.cose.2014.06.006_bib15) 2011; 7 UCI KDD (10.1016/j.cose.2014.06.006_bib19) Joachims (10.1016/j.cose.2014.06.006_bib7) 1998 Manning (10.1016/j.cose.2014.06.006_bib14) 2008 Wang (10.1016/j.cose.2014.06.006_bib21) 2006; 26 Habib (10.1016/j.cose.2014.06.006_bib6) 2009; 6 Chitrakar (10.1016/j.cose.2014.06.006_bib2) 2012 Kyoto+ Data (10.1016/j.cose.2014.06.006_bib10) Kobayashi (10.1016/j.cose.2014.06.006_bib9) 2009 Liu (10.1016/j.cose.2014.06.006_bib12) 2004 Karasuyama (10.1016/j.cose.2014.06.006_bib8) 2010; 21 Bhavsar (10.1016/j.cose.2014.06.006_bib1) 2013; 2 Wang (10.1016/j.cose.2014.06.006_bib20) 2008 Wen-Hua (10.1016/j.cose.2014.06.006_bib22) 2001; 9 Yao (10.1016/j.cose.2014.06.006_bib23) 2012; 11 Du (10.1016/j.cose.2014.06.006_bib4) 2009 Makili (10.1016/j.cose.2014.06.006_bib13) 2013; 88 |
| References_xml | – year: 2012 ident: bib3 article-title: Anomaly detection using support vector machine classification with k-medoids clustering publication-title: Proceedings of the third Asian Himalayan international conference on internet (AH-ICI) – year: 1998 ident: bib16 article-title: Fast training of support vector machines using sequential minimal optimization publication-title: Advances in kernel methods: support vector machines – volume: 88 start-page: 1170 year: 2013 end-page: 1173 ident: bib13 article-title: Incremental support vector machines for fast reliable image recognition publication-title: Fusion Engineering and Design – start-page: 734 year: 2008 end-page: 738 ident: bib20 article-title: A redundant incremental learning algorithm for SVM publication-title: Proceedings of the seventh international conference on machine learning and cybernetics – year: 2009 ident: bib5 article-title: Intrusion detection system based on improved SVM incremental learning publication-title: Proceedings of international conference on artificial intelligence and computational intelligence – volume: 2 year: 2013 ident: bib1 article-title: A comprehensive study on RBF kernel in SVM for multiclsss using OAA publication-title: Int J Comput Sci Manag Res – year: 2009 ident: bib4 article-title: A cooperative intrusion detection system based on improved parallel SVM publication-title: Proceedings of Joint conferences on pervasive computing (JCPC) – year: 2011 ident: bib11 article-title: Machine learning with informative samples for large and imbalanced data sets – year: 1999 ident: bib19 article-title: The third international knowledge discovery and data mining tools competition dataset KDD Cup 1999 data – volume: 6 year: 2009 ident: bib6 article-title: Support vector reduction in SVM algorithm for abrupt change detection in remote sensing publication-title: Proc IEEE Geosci Remote Sens Lett – volume: vol. 5908 start-page: 382 year: 2009 end-page: 389 ident: bib25 article-title: A fast support vector machine classification algorithm based on Karush–Kuhn–Tucker conditions publication-title: Rough sets, fuzzy sets, data mining and granular computing – start-page: 7698 year: 2011 end-page: 7707 ident: bib24 article-title: Incremental SVM based on reserved set for network intrusion detection publication-title: Expert Syst Appl – start-page: 1857 year: 2004 end-page: 1861 ident: bib12 article-title: Incremental batch learning with support vector machines publication-title: Proceedings of the 5th world congress on intelligent control and automation – year: 2009 ident: bib10 article-title: Traffic data from Kyoto University's Honeypots – volume: 26 start-page: 2440 year: 2006 end-page: 2443 ident: bib21 article-title: New algorithm for SVM-based incremental learning publication-title: Comput Appl – year: 2008 ident: bib14 article-title: Introduction to information retrieval – volume: 9 start-page: 144 year: 2001 end-page: 148 ident: bib22 article-title: An incremental learning algorithm for support vector machine and its application publication-title: Comput Integr Manuf Syst Spec Mag – volume: 21 year: 2010 ident: bib8 article-title: Multiple incremental decremental learning of support vector machines publication-title: IEEE Trans Neural Netw – volume: 11 start-page: 200 year: 2012 end-page: 208 ident: bib23 article-title: An incremental learning approach with support vector machine for network data stream classification problem publication-title: Proc Inf Technol J – year: 2012 ident: bib17 article-title: A modified incremental learning approach for data stream classification publication-title: Sixth international conference on internet computing for science and engineering – start-page: 2077 year: 2009 end-page: 2080 ident: bib9 article-title: Efficient reduction of support vectors in kernel-based methods publication-title: Proceedings of IEEE international conference on image processing – volume: 18 start-page: 3305 year: 2006 end-page: 3308 ident: bib18 article-title: Fast incremental SVM learning algorithm based on active set iteration publication-title: Chin J Syst Simul – year: 2012 ident: bib2 article-title: Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naïve Bayes classification publication-title: Proceedings of the 8th international conference on wireless communication, networking and mobile computing – volume: 7 start-page: 1560 year: 2011 end-page: 1564 ident: bib15 article-title: A novel local network intrusion detection system based on support vector machine publication-title: J Comput Sci – year: 1998 ident: bib7 article-title: Making large-scale support vector machine learning practical publication-title: Advances in kernel methods: support vector machines – year: 1998 ident: 10.1016/j.cose.2014.06.006_bib16 article-title: Fast training of support vector machines using sequential minimal optimization – volume: 18 start-page: 3305 issue: 11 year: 2006 ident: 10.1016/j.cose.2014.06.006_bib18 article-title: Fast incremental SVM learning algorithm based on active set iteration publication-title: Chin J Syst Simul – year: 1998 ident: 10.1016/j.cose.2014.06.006_bib7 article-title: Making large-scale support vector machine learning practical – start-page: 1857 year: 2004 ident: 10.1016/j.cose.2014.06.006_bib12 article-title: Incremental batch learning with support vector machines – year: 2008 ident: 10.1016/j.cose.2014.06.006_bib14 – volume: 2 issue: 5 year: 2013 ident: 10.1016/j.cose.2014.06.006_bib1 article-title: A comprehensive study on RBF kernel in SVM for multiclsss using OAA publication-title: Int J Comput Sci Manag Res – ident: 10.1016/j.cose.2014.06.006_bib19 – year: 2012 ident: 10.1016/j.cose.2014.06.006_bib17 article-title: A modified incremental learning approach for data stream classification – year: 2012 ident: 10.1016/j.cose.2014.06.006_bib2 article-title: Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naïve Bayes classification – year: 2009 ident: 10.1016/j.cose.2014.06.006_bib5 article-title: Intrusion detection system based on improved SVM incremental learning – year: 2011 ident: 10.1016/j.cose.2014.06.006_bib11 – volume: 21 issue: 7 year: 2010 ident: 10.1016/j.cose.2014.06.006_bib8 article-title: Multiple incremental decremental learning of support vector machines publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2010.2048039 – start-page: 2077 year: 2009 ident: 10.1016/j.cose.2014.06.006_bib9 article-title: Efficient reduction of support vectors in kernel-based methods – ident: 10.1016/j.cose.2014.06.006_bib10 – year: 2012 ident: 10.1016/j.cose.2014.06.006_bib3 article-title: Anomaly detection using support vector machine classification with k-medoids clustering – year: 2009 ident: 10.1016/j.cose.2014.06.006_bib4 article-title: A cooperative intrusion detection system based on improved parallel SVM – volume: 9 start-page: 144 year: 2001 ident: 10.1016/j.cose.2014.06.006_bib22 article-title: An incremental learning algorithm for support vector machine and its application publication-title: Comput Integr Manuf Syst Spec Mag – start-page: 734 year: 2008 ident: 10.1016/j.cose.2014.06.006_bib20 article-title: A redundant incremental learning algorithm for SVM – volume: 26 start-page: 2440 issue: 10 year: 2006 ident: 10.1016/j.cose.2014.06.006_bib21 article-title: New algorithm for SVM-based incremental learning publication-title: Comput Appl – volume: 7 start-page: 1560 issue: 10 year: 2011 ident: 10.1016/j.cose.2014.06.006_bib15 article-title: A novel local network intrusion detection system based on support vector machine publication-title: J Comput Sci doi: 10.3844/jcssp.2011.1560.1564 – volume: 88 start-page: 1170 year: 2013 ident: 10.1016/j.cose.2014.06.006_bib13 article-title: Incremental support vector machines for fast reliable image recognition publication-title: Fusion Engineering and Design doi: 10.1016/j.fusengdes.2012.11.024 – volume: 11 start-page: 200 year: 2012 ident: 10.1016/j.cose.2014.06.006_bib23 article-title: An incremental learning approach with support vector machine for network data stream classification problem publication-title: Proc Inf Technol J doi: 10.3923/itj.2012.200.208 – volume: 6 issue: 3 year: 2009 ident: 10.1016/j.cose.2014.06.006_bib6 article-title: Support vector reduction in SVM algorithm for abrupt change detection in remote sensing publication-title: Proc IEEE Geosci Remote Sens Lett – volume: vol. 5908 start-page: 382 year: 2009 ident: 10.1016/j.cose.2014.06.006_bib25 article-title: A fast support vector machine classification algorithm based on Karush–Kuhn–Tucker conditions – start-page: 7698 year: 2011 ident: 10.1016/j.cose.2014.06.006_bib24 article-title: Incremental SVM based on reserved set for network intrusion detection publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2010.12.141 |
| SSID | ssj0017688 |
| Score | 2.385058 |
| Snippet | In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 231 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial intelligence Candidate Support Vector Classification Computer information security Computer science; control theory; systems Data processing. List processing. Character string processing Exact sciences and technology Half-partition strategy Incremental support vector machine Intrusion Intrusion detection systems Karush–Kuhn–Tucker condition Mathematical analysis Memory and file management (including protection and security) Memory organisation. Data processing Network intrusion detection Optimization algorithms Software Strategy Studies Support vector machines Theoretical computing Vectors (mathematics) |
| Title | Selection of Candidate Support Vectors in incremental SVM for network intrusion detection |
| URI | https://dx.doi.org/10.1016/j.cose.2014.06.006 https://www.proquest.com/docview/1553748916 https://www.proquest.com/docview/1629358628 https://www.proquest.com/docview/1678004946 |
| Volume | 45 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6208 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017688 issn: 0167-4048 databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFBahvRRK164rzdYFDXorXmpJluVjCCvpRnpJW9qTkCwZUooTSHbdb997kmwoKzkMDMaRrJj3LOlJ_t73EXJZ1a7iooGOVBdFJrwymZWKZyUsHoyTNVcWtwbmd3L2IH4-FU8DMu1yYRBWmcb-OKaH0Tr9Mk7WHK-Xy_EiAOiR7kSEOAdpt4UoUcXg-58e5pFDOK16fm-onRJnIsYLMeEI7xKBwxNVj96fnA7XZgMma6LWxT_DdpiLbo7JUQoi6SQ-5wkZ-PYj-dAJNNDUX0_J8yKo3IDp6aqhU8xgwQU-RSlPCLvpY9iy39BlC0cddwqh3cXjnEIsS9sIEYcyzMzAVpzfxvY-kfubH_fTWZa0FLJaMLHNrDdVyMLN65JXsiqvmWWWM2eEFEawpvGFcpZxcJ26dnDFmeGm9LlRjnF-RvbaVevPCRWNayCMUQJWKsKqStVM2cI60Vg48WpI8s6Guk484yh38ao7QNmLRrtrtLsOqDo5JFf9PevIsrGzdtG5Rr95VzRMAzvvG73xY_9XTEmFxDxDctE5VqeuvNEorIQUPTkUf-uLoRPilxXT-tVvqCMZfk-WTO2qU6rAxiM__-fzfyEHeBURbhdkD3zvv0JItLWj8M6PyP7k9tfs7i-QyAtE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_O80FB_BZXzzOCb1L3mqRp-iiLx6q397LrcT6FpElhD-ku7Prq3-5MkhYOZR-EQmknTcNMPmaS38wAvG9a3wjZ4UBqq6qQQdvCKS2KGo0H61UrtKOtgcWlmn-XX6-r6yOYDb4wBKvMc3-a0-Nsnd9MMzen2_V6uowAegp3IqOeo-7AXVnxmiywj79HnEeJ-rQeA3xj8ew5k0BeBAonfJeMQTwp7dG_V6cHW7tDnnUp2cVf83ZcjM4fw8OsRbJPqaFP4Cj0T-HRkKGB5QH7DH4sY5ob5D3bdGxGLixk4TPK5Yl6N7uKe_Y7tu7xatNWIda7vFowVGZZnzDiSCPXDKrFh32q7zmszj-vZvMiJ1MoWsnlvnDBNtENt2xr0aimPuOOO8G9lUpaybsuVNo7LlB2-szjk-BW2DqUVnsuxAs47jd9eAlMdr5DPUZLNFWk041uuXaV87JzeBPNBMqBh6bNgcYp38VPMyDKbgzx3RDfTYTVqQl8GL_ZpjAbB0tXg2jMrc5icB04-N3pLTmOv-JaaYrMM4GTQbAmj-WdocxKFKOnRPK7kYyjkI5WbB82v7CM4nSgrLg-VKbWMRyPevWf7X8L9-arxYW5-HL57TXcJ0qCu53AMfaD8Ab1o707jf3_D6OqDNk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Candidate+Support+Vectors+in+incremental+SVM+for+network+intrusion+detection&rft.jtitle=Computers+%26+security&rft.au=Chitrakar%2C+Roshan&rft.au=Huang%2C+Chuanhe&rft.date=2014-09-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=45&rft.spage=231&rft_id=info:doi/10.1016%2Fj.cose.2014.06.006&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3405589681 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon |