Selection of Candidate Support Vectors in incremental SVM for network intrusion detection

In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush–Kuhn–Tucker (KKT) condition. This paper proposes Half-partit...

Full description

Saved in:
Bibliographic Details
Published inComputers & security Vol. 45; pp. 231 - 241
Main Authors Chitrakar, Roshan, Huang, Chuanhe
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2014
Elsevier
Elsevier Sequoia S.A
Subjects
Online AccessGet full text
ISSN0167-4048
1872-6208
DOI10.1016/j.cose.2014.06.006

Cover

Abstract In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush–Kuhn–Tucker (KKT) condition. This paper proposes Half-partition strategy of selecting and retaining non-support vectors of the current increment of classification – named as Candidate Support Vectors (CSV) – which are likely to become support vectors in the next increment of classification. This research work also designs an algorithm named the Candidate Support Vector based Incremental SVM (CSV-ISVM) algorithm that implements the proposed strategy and materializes the whole process of incremental SVM classification. This work also suggests modifications to the previously proposed concentric-ring method and reserved set strategy. Performance of the proposed method is evaluated with experiments and also by comparing it with other ISVM techniques. Experimental results and performance analyses show that the proposed algorithm CSV-ISVM is better than general ISVM classifications for real-time network intrusion detection.
AbstractList In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as training data in the next classification along with new data samples verified by Karush-Kuhn-Tucker (KKT) condition. This paper proposes Half-partition strategy of selecting and retaining non-support vectors of the current increment of classification - named as Candidate Support Vectors (CSV) - which are likely to become support vectors in the next increment of classification. This research work also designs an algorithm named the Candidate Support Vector based Incremental SVM (CSV-ISVM) algorithm that implements the proposed strategy and materializes the whole process of incremental SVM classification. This work also suggests modifications to the previously proposed concentric-ring method and reserved set strategy. Performance of the proposed method is evaluated with experiments and also by comparing it with other ISVM techniques. Experimental results and performance analyses show that the proposed algorithm CSV-ISVM is better than general ISVM classifications for real-time network intrusion detection.
Author Chitrakar, Roshan
Huang, Chuanhe
Author_xml – sequence: 1
  givenname: Roshan
  surname: Chitrakar
  fullname: Chitrakar, Roshan
  email: roshanchi@gmail.com, roshanchi@whu.edu.cn
– sequence: 2
  givenname: Chuanhe
  surname: Huang
  fullname: Huang, Chuanhe
  email: huangch@whu.edu.cn
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28680036$$DView record in Pascal Francis
BookMark eNqNkU1r3DAQhkVJoJukf6AnQyn0YldfK8vQS1n6EUjJYUMgJzErjUFbr7SV5Ib--8pseskhFARCzPO-o5n3gpyFGJCQt4x2jDL1cd_ZmLHjlMmOqo5S9YqsmO55qzjVZ2RVob6VVOrX5CLnPaWsV1qvyMMWJ7TFx9DEsdlAcN5BwWY7H48xlea-FmPKjQ_12IQHDAWmZnv_oxljagKWx5h-1lpJc15cHJaT3xU5H2HK-ObpviR3X7_cbb63N7ffrjefb1oruSztDmEQg1gPzPZiUENP-Y7vBHcglQTJxxHX2u24cIPQ1NWX4CCgRwbacSEuyYeT7THFXzPmYg4-W5wmCBjnbOrcmlI5SPUfKK8f0Yrrir57hu7jnEKdw7D1WvRSD2wxfP9EQbYwjQmC9dkckz9A-mO4VrW1WDh94myKOSccjfUFliWVBH4yjJolRbM3S4pmSdFQZWqKVcqfSf-5vyj6dBJh3ftvj8lk6zFYdD7VcIyL_iX5XwMnt0Y
CODEN CPSEDU
CitedBy_id crossref_primary_10_1007_s10207_020_00508_5
crossref_primary_10_1186_s13638_019_1567_1
crossref_primary_10_1007_s12652_020_02629_0
crossref_primary_10_1002_int_22397
crossref_primary_10_1016_j_jmapro_2021_08_013
crossref_primary_10_1016_j_knosys_2017_03_012
crossref_primary_10_1109_ACCESS_2018_2872784
crossref_primary_10_1007_s11771_019_4233_1
crossref_primary_10_1007_s11801_018_7254_3
crossref_primary_10_3390_s23218788
crossref_primary_10_1109_TC_2016_2519914
crossref_primary_10_1186_s40537_019_0248_6
crossref_primary_10_1016_j_eswa_2021_116089
crossref_primary_10_1007_s10462_017_9567_1
crossref_primary_10_1016_j_jnca_2021_102983
crossref_primary_10_32604_cmc_2025_060357
crossref_primary_10_1007_s11227_021_03729_0
crossref_primary_10_1016_j_compeleceng_2017_09_028
crossref_primary_10_1155_2016_5869238
crossref_primary_10_3390_s21134294
crossref_primary_10_1002_sec_1398
crossref_primary_10_1007_s11276_022_02988_w
crossref_primary_10_3390_electronics12112427
crossref_primary_10_1016_j_neunet_2022_05_018
crossref_primary_10_1108_K_02_2014_0036
crossref_primary_10_2478_jaiscr_2019_0002
crossref_primary_10_1109_ACCESS_2023_3289405
crossref_primary_10_1038_s41598_023_36304_z
crossref_primary_10_1016_j_knosys_2019_04_008
crossref_primary_10_1080_21681015_2014_975163
crossref_primary_10_1142_S1469026819500019
crossref_primary_10_1007_s11042_022_14132_z
crossref_primary_10_1186_s40537_020_00346_1
crossref_primary_10_1109_JIOT_2023_3290557
crossref_primary_10_35414_akufemubid_1455995
crossref_primary_10_12688_f1000research_127732_1
crossref_primary_10_1155_2022_4872230
crossref_primary_10_3390_info15100583
crossref_primary_10_1007_s10489_021_02385_4
crossref_primary_10_1007_s11416_021_00410_1
crossref_primary_10_1177_1550147719846052
crossref_primary_10_1007_s00607_022_01124_y
crossref_primary_10_1016_j_neucom_2016_03_031
crossref_primary_10_1049_iet_ifs_2014_0353
Cites_doi 10.1109/TNN.2010.2048039
10.3844/jcssp.2011.1560.1564
10.1016/j.fusengdes.2012.11.024
10.3923/itj.2012.200.208
10.1016/j.eswa.2010.12.141
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright Elsevier Sequoia S.A. Sep 2014
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
– notice: Copyright Elsevier Sequoia S.A. Sep 2014
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
K7.
L7M
L~C
L~D
DOI 10.1016/j.cose.2014.06.006
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
ProQuest Criminal Justice (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
ProQuest Criminal Justice (Alumni)
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
ProQuest Criminal Justice (Alumni)

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1872-6208
EndPage 241
ExternalDocumentID 3405589681
28680036
10_1016_j_cose_2014_06_006
S0167404814000996
Genre Feature
GrantInformation_xml – fundername: National Science Foundation of China
  grantid: 61373040; 61173137
– fundername: Ph.D. Programs Foundation of Ministry of Education of China
  grantid: 20120141110073
– fundername: Key Project of Natural Science Foundation of Hubei Province
  grantid: 2010CDA004
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFSI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLX
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG8
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SBM
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
TAE
TN5
TWZ
WH7
WUQ
XJE
XPP
XSW
YK3
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
BNPGV
IQODW
SSH
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
K7.
L7M
L~C
L~D
ID FETCH-LOGICAL-c424t-bea9393591c73969702b2b32da464a42ffe58db23d9380dfe532a3a7e1a8d233
IEDL.DBID .~1
ISSN 0167-4048
IngestDate Sun Sep 28 11:55:19 EDT 2025
Wed Oct 01 14:19:53 EDT 2025
Fri Jul 25 07:20:55 EDT 2025
Wed Apr 02 07:17:41 EDT 2025
Thu Apr 24 23:01:31 EDT 2025
Thu Oct 02 04:25:57 EDT 2025
Fri Feb 23 02:33:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Candidate Support Vector
Karush–Kuhn–Tucker condition
Half-partition strategy
Network intrusion detection
Incremental support vector machine
Performance evaluation
Reuse
Karush-Kuhn-Tucker condition
Online algorithm
Intruder detector
Real time
Experimental result
Ring
Vector support machine
Kuhn Tucker condition
Computer security
Intrusion detection systems
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-bea9393591c73969702b2b32da464a42ffe58db23d9380dfe532a3a7e1a8d233
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1553748916
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1678004946
proquest_miscellaneous_1629358628
proquest_journals_1553748916
pascalfrancis_primary_28680036
crossref_citationtrail_10_1016_j_cose_2014_06_006
crossref_primary_10_1016_j_cose_2014_06_006
elsevier_sciencedirect_doi_10_1016_j_cose_2014_06_006
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & security
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
– name: Elsevier Sequoia S.A
References Liu, He, Chen (bib12) 2004
Chitrakar, Huang (bib3) 2012
Kobayashi, Otsu (bib9) 2009
Du, Teng, Fu, Zhang, Pu (bib4) 2009
Bhavsar, Panchal, Patel (bib1) 2013; 2
UCI KDD (bib19) 1999
Yao, Feng, Jin, Chen (bib23) 2012; 11
Tao (bib18) 2006; 18
Wen-Hua, Jian (bib22) 2001; 9
Zhang, Wang, Zhai (bib25) 2009; vol. 5908
Karasuyama, Takeuchi (bib8) 2010; 21
Wang, Zheng, Wu, Zhang (bib21) 2006; 26
Manning, Raghavan, Schütze (bib14) 2008
Makili, Vega, Dormido-Canto (bib13) 2013; 88
Yi, Wu, Xu (bib24) 2011
Wang (bib20) 2008
Sun, Guo (bib17) 2012
Mohammad, Sulaiman, Khalaf (bib15) 2011; 7
Joachims (bib7) 1998
Habib, Inglada, Mercier, Chanussot (bib6) 2009; 6
Du, Teng, Yang, Zhu (bib5) 2009
Chitrakar, Huang (bib2) 2012
Kyoto+ Data (bib10) 2009
Platt (bib16) 1998
Le, Nguyen (bib11) 2011
Du (10.1016/j.cose.2014.06.006_bib5) 2009
Zhang (10.1016/j.cose.2014.06.006_bib25) 2009; vol. 5908
Chitrakar (10.1016/j.cose.2014.06.006_bib3) 2012
Platt (10.1016/j.cose.2014.06.006_bib16) 1998
Sun (10.1016/j.cose.2014.06.006_bib17) 2012
Tao (10.1016/j.cose.2014.06.006_bib18) 2006; 18
Le (10.1016/j.cose.2014.06.006_bib11) 2011
Yi (10.1016/j.cose.2014.06.006_bib24) 2011
Mohammad (10.1016/j.cose.2014.06.006_bib15) 2011; 7
UCI KDD (10.1016/j.cose.2014.06.006_bib19)
Joachims (10.1016/j.cose.2014.06.006_bib7) 1998
Manning (10.1016/j.cose.2014.06.006_bib14) 2008
Wang (10.1016/j.cose.2014.06.006_bib21) 2006; 26
Habib (10.1016/j.cose.2014.06.006_bib6) 2009; 6
Chitrakar (10.1016/j.cose.2014.06.006_bib2) 2012
Kyoto+ Data (10.1016/j.cose.2014.06.006_bib10)
Kobayashi (10.1016/j.cose.2014.06.006_bib9) 2009
Liu (10.1016/j.cose.2014.06.006_bib12) 2004
Karasuyama (10.1016/j.cose.2014.06.006_bib8) 2010; 21
Bhavsar (10.1016/j.cose.2014.06.006_bib1) 2013; 2
Wang (10.1016/j.cose.2014.06.006_bib20) 2008
Wen-Hua (10.1016/j.cose.2014.06.006_bib22) 2001; 9
Yao (10.1016/j.cose.2014.06.006_bib23) 2012; 11
Du (10.1016/j.cose.2014.06.006_bib4) 2009
Makili (10.1016/j.cose.2014.06.006_bib13) 2013; 88
References_xml – year: 2012
  ident: bib3
  article-title: Anomaly detection using support vector machine classification with k-medoids clustering
  publication-title: Proceedings of the third Asian Himalayan international conference on internet (AH-ICI)
– year: 1998
  ident: bib16
  article-title: Fast training of support vector machines using sequential minimal optimization
  publication-title: Advances in kernel methods: support vector machines
– volume: 88
  start-page: 1170
  year: 2013
  end-page: 1173
  ident: bib13
  article-title: Incremental support vector machines for fast reliable image recognition
  publication-title: Fusion Engineering and Design
– start-page: 734
  year: 2008
  end-page: 738
  ident: bib20
  article-title: A redundant incremental learning algorithm for SVM
  publication-title: Proceedings of the seventh international conference on machine learning and cybernetics
– year: 2009
  ident: bib5
  article-title: Intrusion detection system based on improved SVM incremental learning
  publication-title: Proceedings of international conference on artificial intelligence and computational intelligence
– volume: 2
  year: 2013
  ident: bib1
  article-title: A comprehensive study on RBF kernel in SVM for multiclsss using OAA
  publication-title: Int J Comput Sci Manag Res
– year: 2009
  ident: bib4
  article-title: A cooperative intrusion detection system based on improved parallel SVM
  publication-title: Proceedings of Joint conferences on pervasive computing (JCPC)
– year: 2011
  ident: bib11
  article-title: Machine learning with informative samples for large and imbalanced data sets
– year: 1999
  ident: bib19
  article-title: The third international knowledge discovery and data mining tools competition dataset KDD Cup 1999 data
– volume: 6
  year: 2009
  ident: bib6
  article-title: Support vector reduction in SVM algorithm for abrupt change detection in remote sensing
  publication-title: Proc IEEE Geosci Remote Sens Lett
– volume: vol. 5908
  start-page: 382
  year: 2009
  end-page: 389
  ident: bib25
  article-title: A fast support vector machine classification algorithm based on Karush–Kuhn–Tucker conditions
  publication-title: Rough sets, fuzzy sets, data mining and granular computing
– start-page: 7698
  year: 2011
  end-page: 7707
  ident: bib24
  article-title: Incremental SVM based on reserved set for network intrusion detection
  publication-title: Expert Syst Appl
– start-page: 1857
  year: 2004
  end-page: 1861
  ident: bib12
  article-title: Incremental batch learning with support vector machines
  publication-title: Proceedings of the 5th world congress on intelligent control and automation
– year: 2009
  ident: bib10
  article-title: Traffic data from Kyoto University's Honeypots
– volume: 26
  start-page: 2440
  year: 2006
  end-page: 2443
  ident: bib21
  article-title: New algorithm for SVM-based incremental learning
  publication-title: Comput Appl
– year: 2008
  ident: bib14
  article-title: Introduction to information retrieval
– volume: 9
  start-page: 144
  year: 2001
  end-page: 148
  ident: bib22
  article-title: An incremental learning algorithm for support vector machine and its application
  publication-title: Comput Integr Manuf Syst Spec Mag
– volume: 21
  year: 2010
  ident: bib8
  article-title: Multiple incremental decremental learning of support vector machines
  publication-title: IEEE Trans Neural Netw
– volume: 11
  start-page: 200
  year: 2012
  end-page: 208
  ident: bib23
  article-title: An incremental learning approach with support vector machine for network data stream classification problem
  publication-title: Proc Inf Technol J
– year: 2012
  ident: bib17
  article-title: A modified incremental learning approach for data stream classification
  publication-title: Sixth international conference on internet computing for science and engineering
– start-page: 2077
  year: 2009
  end-page: 2080
  ident: bib9
  article-title: Efficient reduction of support vectors in kernel-based methods
  publication-title: Proceedings of IEEE international conference on image processing
– volume: 18
  start-page: 3305
  year: 2006
  end-page: 3308
  ident: bib18
  article-title: Fast incremental SVM learning algorithm based on active set iteration
  publication-title: Chin J Syst Simul
– year: 2012
  ident: bib2
  article-title: Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naïve Bayes classification
  publication-title: Proceedings of the 8th international conference on wireless communication, networking and mobile computing
– volume: 7
  start-page: 1560
  year: 2011
  end-page: 1564
  ident: bib15
  article-title: A novel local network intrusion detection system based on support vector machine
  publication-title: J Comput Sci
– year: 1998
  ident: bib7
  article-title: Making large-scale support vector machine learning practical
  publication-title: Advances in kernel methods: support vector machines
– year: 1998
  ident: 10.1016/j.cose.2014.06.006_bib16
  article-title: Fast training of support vector machines using sequential minimal optimization
– volume: 18
  start-page: 3305
  issue: 11
  year: 2006
  ident: 10.1016/j.cose.2014.06.006_bib18
  article-title: Fast incremental SVM learning algorithm based on active set iteration
  publication-title: Chin J Syst Simul
– year: 1998
  ident: 10.1016/j.cose.2014.06.006_bib7
  article-title: Making large-scale support vector machine learning practical
– start-page: 1857
  year: 2004
  ident: 10.1016/j.cose.2014.06.006_bib12
  article-title: Incremental batch learning with support vector machines
– year: 2008
  ident: 10.1016/j.cose.2014.06.006_bib14
– volume: 2
  issue: 5
  year: 2013
  ident: 10.1016/j.cose.2014.06.006_bib1
  article-title: A comprehensive study on RBF kernel in SVM for multiclsss using OAA
  publication-title: Int J Comput Sci Manag Res
– ident: 10.1016/j.cose.2014.06.006_bib19
– year: 2012
  ident: 10.1016/j.cose.2014.06.006_bib17
  article-title: A modified incremental learning approach for data stream classification
– year: 2012
  ident: 10.1016/j.cose.2014.06.006_bib2
  article-title: Anomaly based intrusion detection using hybrid learning approach of combining k-medoids clustering and Naïve Bayes classification
– year: 2009
  ident: 10.1016/j.cose.2014.06.006_bib5
  article-title: Intrusion detection system based on improved SVM incremental learning
– year: 2011
  ident: 10.1016/j.cose.2014.06.006_bib11
– volume: 21
  issue: 7
  year: 2010
  ident: 10.1016/j.cose.2014.06.006_bib8
  article-title: Multiple incremental decremental learning of support vector machines
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2010.2048039
– start-page: 2077
  year: 2009
  ident: 10.1016/j.cose.2014.06.006_bib9
  article-title: Efficient reduction of support vectors in kernel-based methods
– ident: 10.1016/j.cose.2014.06.006_bib10
– year: 2012
  ident: 10.1016/j.cose.2014.06.006_bib3
  article-title: Anomaly detection using support vector machine classification with k-medoids clustering
– year: 2009
  ident: 10.1016/j.cose.2014.06.006_bib4
  article-title: A cooperative intrusion detection system based on improved parallel SVM
– volume: 9
  start-page: 144
  year: 2001
  ident: 10.1016/j.cose.2014.06.006_bib22
  article-title: An incremental learning algorithm for support vector machine and its application
  publication-title: Comput Integr Manuf Syst Spec Mag
– start-page: 734
  year: 2008
  ident: 10.1016/j.cose.2014.06.006_bib20
  article-title: A redundant incremental learning algorithm for SVM
– volume: 26
  start-page: 2440
  issue: 10
  year: 2006
  ident: 10.1016/j.cose.2014.06.006_bib21
  article-title: New algorithm for SVM-based incremental learning
  publication-title: Comput Appl
– volume: 7
  start-page: 1560
  issue: 10
  year: 2011
  ident: 10.1016/j.cose.2014.06.006_bib15
  article-title: A novel local network intrusion detection system based on support vector machine
  publication-title: J Comput Sci
  doi: 10.3844/jcssp.2011.1560.1564
– volume: 88
  start-page: 1170
  year: 2013
  ident: 10.1016/j.cose.2014.06.006_bib13
  article-title: Incremental support vector machines for fast reliable image recognition
  publication-title: Fusion Engineering and Design
  doi: 10.1016/j.fusengdes.2012.11.024
– volume: 11
  start-page: 200
  year: 2012
  ident: 10.1016/j.cose.2014.06.006_bib23
  article-title: An incremental learning approach with support vector machine for network data stream classification problem
  publication-title: Proc Inf Technol J
  doi: 10.3923/itj.2012.200.208
– volume: 6
  issue: 3
  year: 2009
  ident: 10.1016/j.cose.2014.06.006_bib6
  article-title: Support vector reduction in SVM algorithm for abrupt change detection in remote sensing
  publication-title: Proc IEEE Geosci Remote Sens Lett
– volume: vol. 5908
  start-page: 382
  year: 2009
  ident: 10.1016/j.cose.2014.06.006_bib25
  article-title: A fast support vector machine classification algorithm based on Karush–Kuhn–Tucker conditions
– start-page: 7698
  year: 2011
  ident: 10.1016/j.cose.2014.06.006_bib24
  article-title: Incremental SVM based on reserved set for network intrusion detection
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2010.12.141
SSID ssj0017688
Score 2.385058
Snippet In an Incremental Support Vector Machine classification, the data objects labelled as non-support vectors by the previous classification are re-used as...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 231
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial intelligence
Candidate Support Vector
Classification
Computer information security
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Half-partition strategy
Incremental support vector machine
Intrusion
Intrusion detection systems
Karush–Kuhn–Tucker condition
Mathematical analysis
Memory and file management (including protection and security)
Memory organisation. Data processing
Network intrusion detection
Optimization algorithms
Software
Strategy
Studies
Support vector machines
Theoretical computing
Vectors (mathematics)
Title Selection of Candidate Support Vectors in incremental SVM for network intrusion detection
URI https://dx.doi.org/10.1016/j.cose.2014.06.006
https://www.proquest.com/docview/1553748916
https://www.proquest.com/docview/1629358628
https://www.proquest.com/docview/1678004946
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6208
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017688
  issn: 0167-4048
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ba9swFBahvRRK164rzdYFDXorXmpJluVjCCvpRnpJW9qTkCwZUooTSHbdb997kmwoKzkMDMaRrJj3LOlJ_t73EXJZ1a7iooGOVBdFJrwymZWKZyUsHoyTNVcWtwbmd3L2IH4-FU8DMu1yYRBWmcb-OKaH0Tr9Mk7WHK-Xy_EiAOiR7kSEOAdpt4UoUcXg-58e5pFDOK16fm-onRJnIsYLMeEI7xKBwxNVj96fnA7XZgMma6LWxT_DdpiLbo7JUQoi6SQ-5wkZ-PYj-dAJNNDUX0_J8yKo3IDp6aqhU8xgwQU-RSlPCLvpY9iy39BlC0cddwqh3cXjnEIsS9sIEYcyzMzAVpzfxvY-kfubH_fTWZa0FLJaMLHNrDdVyMLN65JXsiqvmWWWM2eEFEawpvGFcpZxcJ26dnDFmeGm9LlRjnF-RvbaVevPCRWNayCMUQJWKsKqStVM2cI60Vg48WpI8s6Guk484yh38ao7QNmLRrtrtLsOqDo5JFf9PevIsrGzdtG5Rr95VzRMAzvvG73xY_9XTEmFxDxDctE5VqeuvNEorIQUPTkUf-uLoRPilxXT-tVvqCMZfk-WTO2qU6rAxiM__-fzfyEHeBURbhdkD3zvv0JItLWj8M6PyP7k9tfs7i-QyAtE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_O80FB_BZXzzOCb1L3mqRp-iiLx6q397LrcT6FpElhD-ku7Prq3-5MkhYOZR-EQmknTcNMPmaS38wAvG9a3wjZ4UBqq6qQQdvCKS2KGo0H61UrtKOtgcWlmn-XX6-r6yOYDb4wBKvMc3-a0-Nsnd9MMzen2_V6uowAegp3IqOeo-7AXVnxmiywj79HnEeJ-rQeA3xj8ew5k0BeBAonfJeMQTwp7dG_V6cHW7tDnnUp2cVf83ZcjM4fw8OsRbJPqaFP4Cj0T-HRkKGB5QH7DH4sY5ob5D3bdGxGLixk4TPK5Yl6N7uKe_Y7tu7xatNWIda7vFowVGZZnzDiSCPXDKrFh32q7zmszj-vZvMiJ1MoWsnlvnDBNtENt2xr0aimPuOOO8G9lUpaybsuVNo7LlB2-szjk-BW2DqUVnsuxAs47jd9eAlMdr5DPUZLNFWk041uuXaV87JzeBPNBMqBh6bNgcYp38VPMyDKbgzx3RDfTYTVqQl8GL_ZpjAbB0tXg2jMrc5icB04-N3pLTmOv-JaaYrMM4GTQbAmj-WdocxKFKOnRPK7kYyjkI5WbB82v7CM4nSgrLg-VKbWMRyPevWf7X8L9-arxYW5-HL57TXcJ0qCu53AMfaD8Ab1o707jf3_D6OqDNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selection+of+Candidate+Support+Vectors+in+incremental+SVM+for+network+intrusion+detection&rft.jtitle=Computers+%26+security&rft.au=Chitrakar%2C+Roshan&rft.au=Huang%2C+Chuanhe&rft.date=2014-09-01&rft.pub=Elsevier+Sequoia+S.A&rft.issn=0167-4048&rft.eissn=1872-6208&rft.volume=45&rft.spage=231&rft_id=info:doi/10.1016%2Fj.cose.2014.06.006&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3405589681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-4048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-4048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-4048&client=summon