Heterogeneous sensor location model for path reconstruction

•A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated an...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 91; pp. 77 - 97
Main Authors Fu, Chenyi, Zhu, Ning, Ling, Shuai, Ma, Shoufeng, Huang, Yongxi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2016
Subjects
Online AccessGet full text
ISSN0191-2615
1879-2367
DOI10.1016/j.trb.2016.04.013

Cover

Abstract •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows.•Maximum clique theory is used to determine the upper bound of feasible replacement scheme.•A polynomial-time algorithm is proposed to solve this problem. A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths.
AbstractList •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows.•Maximum clique theory is used to determine the upper bound of feasible replacement scheme.•A polynomial-time algorithm is proposed to solve this problem. A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths.
A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths.
Author Zhu, Ning
Huang, Yongxi
Ling, Shuai
Ma, Shoufeng
Fu, Chenyi
Author_xml – sequence: 1
  givenname: Chenyi
  surname: Fu
  fullname: Fu, Chenyi
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China
– sequence: 2
  givenname: Ning
  surname: Zhu
  fullname: Zhu, Ning
  email: zhuning@tju.edu.cn
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China
– sequence: 3
  givenname: Shuai
  surname: Ling
  fullname: Ling, Shuai
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China
– sequence: 4
  givenname: Shoufeng
  surname: Ma
  fullname: Ma, Shoufeng
  organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China
– sequence: 5
  givenname: Yongxi
  surname: Huang
  fullname: Huang, Yongxi
  organization: Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, United States
BookMark eNqNkM1OAyEURompia36AO5m6WZG7sAM07gyjX9JEze6JgxclGY6VKAmvr20deWicQWB79x898zIZPQjEnIFtAIK7c2qSqGv6nytKK8osBMyhU7My5q1YkKmFOZQ1i00Z2QW44pSyjiFKbl9woTBv-OIfhuLiGP0oRi8Vsn5sVh7g0Nh89NGpY8ioPZjTGGrd78X5NSqIeLl73lO3h7uXxdP5fLl8Xlxtyw1r3kqe4rMUq4Y9oKaGpVqTC4qWqOR9txizzHXE20LTFsUxjYMLHDRGwaN6tk5uT7M3QT_ucWY5NpFjcOg9qUldKxpRUM7-EcUoOuEYHWOikNUBx9jQCu1S_utU1BukEDlzqxcyWxW7sxKymU2m0n4Q26CW6vwfZS5PTCYRX05DDJqh6NG47LUJI13R-gfFZCTwg
CitedBy_id crossref_primary_10_1109_TITS_2022_3189770
crossref_primary_10_1016_j_trb_2017_08_007
crossref_primary_10_1016_j_trb_2023_102849
crossref_primary_10_1016_j_trb_2024_103099
crossref_primary_10_1109_TITS_2023_3344533
crossref_primary_10_1155_2019_6520818
crossref_primary_10_1177_0361198120968824
crossref_primary_10_1109_ACCESS_2024_3509523
crossref_primary_10_1109_ACCESS_2023_3323203
crossref_primary_10_1007_s40999_020_00537_0
crossref_primary_10_1016_j_trc_2018_01_021
crossref_primary_10_1016_j_trc_2020_102855
crossref_primary_10_1016_j_eswa_2021_114727
crossref_primary_10_1007_s40534_016_0121_7
crossref_primary_10_1016_j_trc_2022_103625
crossref_primary_10_1016_j_eswa_2024_123448
crossref_primary_10_1061_JTEPBS_0000290
crossref_primary_10_1016_j_trc_2024_104838
crossref_primary_10_1016_j_eswa_2022_118134
crossref_primary_10_1016_j_tre_2021_102555
crossref_primary_10_1016_j_trc_2025_105103
crossref_primary_10_1016_j_orp_2019_100100
crossref_primary_10_3390_app14020536
crossref_primary_10_3390_s25051416
crossref_primary_10_1016_j_ejtl_2024_100129
crossref_primary_10_1016_j_trc_2021_103367
crossref_primary_10_1016_j_trb_2018_12_005
crossref_primary_10_1080_15472450_2023_2247329
crossref_primary_10_3390_s18072286
crossref_primary_10_1007_s11081_023_09789_w
crossref_primary_10_1061_JTEPBS_TEENG_8915
crossref_primary_10_1016_j_cities_2022_103833
crossref_primary_10_1016_j_trb_2017_05_013
crossref_primary_10_1016_j_omega_2024_103094
crossref_primary_10_1111_mice_12490
crossref_primary_10_1016_j_eswa_2020_114554
crossref_primary_10_1016_j_tre_2016_12_003
crossref_primary_10_1080_23302674_2017_1309085
crossref_primary_10_1016_j_trb_2018_05_009
crossref_primary_10_1016_j_trc_2021_103551
crossref_primary_10_1016_j_trc_2023_104283
crossref_primary_10_3390_su14159474
crossref_primary_10_1016_j_trb_2019_01_004
crossref_primary_10_3390_s16111790
crossref_primary_10_1007_s40996_021_00614_x
crossref_primary_10_1016_j_trb_2024_103090
crossref_primary_10_3390_su15139881
crossref_primary_10_1016_j_ejor_2021_10_038
crossref_primary_10_1016_j_trb_2022_10_006
crossref_primary_10_1049_iet_its_2016_0297
crossref_primary_10_1007_s11116_019_09999_1
crossref_primary_10_1080_15472450_2018_1506339
crossref_primary_10_1016_j_eswa_2025_127000
crossref_primary_10_1016_j_trc_2025_105045
crossref_primary_10_1007_s00500_023_09228_z
Cites_doi 10.1016/j.trc.2013.01.004
10.1109/59.76691
10.1111/j.1467-8667.2008.00531.x
10.4153/CJM-1970-125-1
10.1016/j.trb.2010.04.005
10.1016/j.trb.2012.02.001
10.1016/j.trb.2013.09.007
10.1016/j.trb.2007.09.004
10.1109/TITS.2012.2233474
10.1016/j.ejor.2015.05.070
10.1016/j.trb.2009.02.008
10.1287/trsc.35.1.50.10140
10.1145/362342.362367
10.1016/j.trb.2005.06.001
10.1061/(ASCE)0733-9496(2008)134:5(395)
10.1016/S0360-8352(02)00076-1
10.1016/S0191-2615(97)00016-7
10.1007/s11116-012-9390-0
10.3141/2039-01
10.1016/0965-9978(95)00020-W
10.1016/j.cor.2004.08.011
10.1109/TITS.2014.2314732
10.1016/j.trc.2010.07.001
10.1016/j.trb.2014.06.015
10.1016/j.trb.2014.08.002
10.1061/(ASCE)0733-9429(2000)126:1(56)
10.1016/j.trb.2015.04.010
10.1155/2015/903563
10.1016/j.trc.2015.03.023
10.1016/j.trc.2012.01.004
10.3141/2049-12
10.1016/j.trc.2014.01.004
10.1007/s10479-005-2047-z
10.1016/j.trb.2013.02.006
10.1016/j.trb.2012.08.007
10.1016/j.tre.2012.12.002
10.1287/trsc.1100.0319
10.1049/iet-its.2014.0023
10.1016/j.trb.2009.07.008
10.1049/iet-its.2008.0074
10.1016/j.trc.2015.01.012
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
8FD
FR3
KR7
DOI 10.1016/j.trb.2016.04.013
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Environment Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
EndPage 97
ExternalDocumentID 10_1016_j_trb_2016_04_013
S0191261515302496
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
C1K
SOI
8FD
FR3
KR7
ID FETCH-LOGICAL-c424t-b0e3f04a3eb70d2eaa5d20176dce0b4feb4e01976613cfe7df531f147bd315ab3
IEDL.DBID .~1
ISSN 0191-2615
IngestDate Sun Sep 28 03:18:27 EDT 2025
Tue Oct 07 08:05:50 EDT 2025
Wed Oct 01 04:27:16 EDT 2025
Thu Apr 24 23:09:56 EDT 2025
Fri Feb 23 02:33:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sensor replacement scheme
Heterogeneous sensor location model
Maximum clique problem
Two-stage optimization model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-b0e3f04a3eb70d2eaa5d20176dce0b4feb4e01976613cfe7df531f147bd315ab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1811887732
PQPubID 23462
PageCount 21
ParticipantIDs proquest_miscellaneous_1835675081
proquest_miscellaneous_1811887732
crossref_citationtrail_10_1016_j_trb_2016_04_013
crossref_primary_10_1016_j_trb_2016_04_013
elsevier_sciencedirect_doi_10_1016_j_trb_2016_04_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, List (bib0042) 2010; 44
Yang, Yang, Gan (bib0038) 2006; 33
Ng (bib0028) 2012; 46
Hu, Peeta, Chu (bib0019) 2009; 43
Mimbela L., Klein L.A., 2000. Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. Report to Federal Highway Administrations (FHWA) Intelligent Transportation Systems Joint Program Office.
Castillo, Grande, Calviño, Szeto, Lo (bib0006) 2015; 2015
Hu, Liou (bib0018) 2014; 40
Fei, Mahmassani, Eisenman (bib0012) 2007; 2039
Mori, Tsuzuki (bib0027) 1991; 6
Zangui, Yin, Lawphongpanich (bib0041) 2015; 55
Fei, Mahmassani (bib0011) 2011; 19
Gentili, Mirchandani (bib0015) 2012; 24
Mirchandani, Gentili, He (bib0026) 2009; 3
Fei, Mahmassani, Murray-Tuite (bib0013) 2013; 29
Xing, Zhou, Taylor (bib0037) 2013; 57
Zhu, Liu, Ma, He (bib0043) 2014; 15
Rahal (bib0031) 1995; 22
Syarif, Yun, Gen (bib0034) 2002; 43
Park, Haghani (bib0030) 2015; 55
Castillo, Menndez, Jimnez (bib0007) 2008; 42
Sang-Moon, Corne, Byung-Ha (bib0032) 2005; 88
Simonelli, Marzano, Papola, Vitiello (bib0033) 2012; 46
Li, Ouyang (bib0022) 2011; 45
Gentili, Mirchandani (bib0014) 2005; 136
Yang, Zhou (bib0039) 1998; 32
Ehlert, Bell, Grosso (bib0010) 2006; 40
Mínguez, Sánchez-Cambronero, Castillo, Jiménez (bib0025) 2010; 44
Bron, Kerbosch (bib0002) 1973; 16
He (bib0017) 2013; 51
Viti, Rinaldi, Corman, Tampère (bib0035) 2014; 70
Bianco, Confessore, Reverberi (bib0001) 2001; 35
Castillo, Calviño, Lo, Menéndez, Grande (bib0003) 2014; 68
Liu, Zhu, Ma, Jia (bib0023) 2014; 9
Castillo, Rivas, Jiménez, Menéndez (bib0008) 2012; 39
Lick, White (bib0021) 1970; 22
Ng (bib0029) 2013; 51
Yang, Fan (bib0040) 2015; 78
Viti, Verbeke, Tampère (bib0036) 2008; 2049
Castillo, Calviño, Menéndez, Jiménez, Rivas (bib0004) 2013; 14
Gupta, Prasad (bib0016) 2000; 126
Kumar, Narasimhan, Bhallamudi (bib0020) 2008; 134
Castillo, Conejo (bib0005) 2008; 23
Cerrone, Cerulli, Gentili (bib0009) 2015
Kumar (10.1016/j.trb.2016.04.013_bib0020) 2008; 134
Simonelli (10.1016/j.trb.2016.04.013_bib0033) 2012; 46
Yang (10.1016/j.trb.2016.04.013_bib0039) 1998; 32
Castillo (10.1016/j.trb.2016.04.013_bib0005) 2008; 23
Ng (10.1016/j.trb.2016.04.013_bib0029) 2013; 51
Viti (10.1016/j.trb.2016.04.013_bib0036) 2008; 2049
Xing (10.1016/j.trb.2016.04.013_bib0037) 2013; 57
Bianco (10.1016/j.trb.2016.04.013_bib0001) 2001; 35
Gupta (10.1016/j.trb.2016.04.013_bib0016) 2000; 126
Fei (10.1016/j.trb.2016.04.013_bib0011) 2011; 19
Park (10.1016/j.trb.2016.04.013_bib0030) 2015; 55
Lick (10.1016/j.trb.2016.04.013_bib0021) 1970; 22
Fei (10.1016/j.trb.2016.04.013_bib0013) 2013; 29
Cerrone (10.1016/j.trb.2016.04.013_bib0009) 2015
Castillo (10.1016/j.trb.2016.04.013_bib0008) 2012; 39
Syarif (10.1016/j.trb.2016.04.013_bib0034) 2002; 43
Viti (10.1016/j.trb.2016.04.013_bib0035) 2014; 70
Liu (10.1016/j.trb.2016.04.013_bib0023) 2014; 9
Gentili (10.1016/j.trb.2016.04.013_bib0015) 2012; 24
Zhou (10.1016/j.trb.2016.04.013_bib0042) 2010; 44
Mínguez (10.1016/j.trb.2016.04.013_bib0025) 2010; 44
Hu (10.1016/j.trb.2016.04.013_bib0018) 2014; 40
Sang-Moon (10.1016/j.trb.2016.04.013_bib0032) 2005; 88
He (10.1016/j.trb.2016.04.013_bib0017) 2013; 51
Mirchandani (10.1016/j.trb.2016.04.013_bib0026) 2009; 3
Zangui (10.1016/j.trb.2016.04.013_bib0041) 2015; 55
Bron (10.1016/j.trb.2016.04.013_bib0002) 1973; 16
Castillo (10.1016/j.trb.2016.04.013_bib0003) 2014; 68
Castillo (10.1016/j.trb.2016.04.013_bib0004) 2013; 14
Yang (10.1016/j.trb.2016.04.013_bib0040) 2015; 78
Yang (10.1016/j.trb.2016.04.013_bib0038) 2006; 33
Castillo (10.1016/j.trb.2016.04.013_bib0007) 2008; 42
Castillo (10.1016/j.trb.2016.04.013_bib0006) 2015; 2015
10.1016/j.trb.2016.04.013_bib0024
Ehlert (10.1016/j.trb.2016.04.013_bib0010) 2006; 40
Fei (10.1016/j.trb.2016.04.013_bib0012) 2007; 2039
Ng (10.1016/j.trb.2016.04.013_bib0028) 2012; 46
Rahal (10.1016/j.trb.2016.04.013_bib0031) 1995; 22
Hu (10.1016/j.trb.2016.04.013_bib0019) 2009; 43
Mori (10.1016/j.trb.2016.04.013_bib0027) 1991; 6
Zhu (10.1016/j.trb.2016.04.013_bib0043) 2014; 15
Li (10.1016/j.trb.2016.04.013_bib0022) 2011; 45
Gentili (10.1016/j.trb.2016.04.013_bib0014) 2005; 136
References_xml – volume: 29
  start-page: 14
  year: 2013
  end-page: 31
  ident: bib0013
  article-title: Vehicular network sensor placement optimization under uncertainty
  publication-title: Transportation Research Part C
– volume: 24
  start-page: 227
  year: 2012
  end-page: 255
  ident: bib0015
  article-title: Locating sensors on traffic networks: Models, challenges and research opportunities
  publication-title: Transportation Research Part C
– volume: 42
  start-page: 455
  year: 2008
  end-page: 481
  ident: bib0007
  article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations
  publication-title: Transportation Research Part B
– volume: 33
  start-page: 836
  year: 2006
  end-page: 858
  ident: bib0038
  article-title: Models and algorithms for the screen line-based traffic-counting location problems
  publication-title: Computers & Operations Research
– volume: 134
  start-page: 395
  year: 2008
  end-page: 403
  ident: bib0020
  article-title: State estimation in water distribution networks using graph-theoretic reduction strategy
  publication-title: Journal of Water Resources Planning and Management
– reference: Mimbela L., Klein L.A., 2000. Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. Report to Federal Highway Administrations (FHWA) Intelligent Transportation Systems Joint Program Office.
– volume: 15
  start-page: 2273
  year: 2014
  end-page: 2285
  ident: bib0043
  article-title: Mobile traffic sensor routing in dynamic transportation systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 68
  start-page: 239
  year: 2014
  end-page: 261
  ident: bib0003
  article-title: Non-planar hole-generated networks and link flow observability based on link counters
  publication-title: Transportation Research Part B
– volume: 78
  start-page: 385
  year: 2015
  end-page: 403
  ident: bib0040
  article-title: Data dependent input control for origin-destination demand estimation using observability analysis
  publication-title: Transportation Research Part B
– volume: 19
  start-page: 440
  year: 2011
  end-page: 453
  ident: bib0011
  article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network
  publication-title: Transportation Research Part C
– volume: 9
  start-page: 184
  year: 2014
  end-page: 192
  ident: bib0023
  article-title: Traffic sensor location approach for flow inference
  publication-title: IET Intelligent Transport Systems
– volume: 45
  start-page: 218
  year: 2011
  end-page: 231
  ident: bib0022
  article-title: Reliable sensor deployment for network traffic surveillance
  publication-title: Transportation Research Part B
– volume: 70
  start-page: 65
  year: 2014
  end-page: 89
  ident: bib0035
  article-title: Assessing partial observability in network sensor location problems
  publication-title: Transportation Research Part B
– volume: 44
  start-page: 254
  year: 2010
  end-page: 273
  ident: bib0042
  article-title: An information-theoretic sensor location model for traffic origin-destination demand estimation applications
  publication-title: Transportation Science
– volume: 16
  start-page: 575
  year: 1973
  end-page: 577
  ident: bib0002
  article-title: Algorithm 457: finding all cliques of an undirected graph
  publication-title: Communications of the ACM
– volume: 22
  start-page: 1082
  year: 1970
  end-page: 1096
  ident: bib0021
  article-title: K-degenerate graphs
  publication-title: Canadian Journal of Mathematics
– volume: 57
  start-page: 66
  year: 2013
  end-page: 90
  ident: bib0037
  article-title: Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach
  publication-title: Transportation Research Part B
– volume: 46
  start-page: 781
  year: 2012
  end-page: 788
  ident: bib0028
  article-title: Synergistic sensor location for link flow inference without path enumeration: a node-based approach
  publication-title: Transportation Research Part B
– volume: 2049
  start-page: 103
  year: 2008
  end-page: 110
  ident: bib0036
  article-title: Sensor locations for reliable travel time prediction and dynamic management of traffic networks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
– volume: 2039
  start-page: 1
  year: 2007
  end-page: 15
  ident: bib0012
  article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks
  publication-title: Transportation Research Record
– year: 2015
  ident: bib0009
  article-title: Vehicle-ID sensor location for route flow recognition: models and Algorithms
  publication-title: European Journal of Operational Research
– volume: 40
  start-page: 460
  year: 2006
  end-page: 479
  ident: bib0010
  article-title: The optimisation of traffic count locations in road networks
  publication-title: Transportation Research Part B
– volume: 126
  start-page: 56
  year: 2000
  end-page: 62
  ident: bib0016
  article-title: Extended use of linear graph theory for analysis of pipe networks
  publication-title: Journal of Hydraulic Engineering
– volume: 55
  start-page: 203
  year: 2015
  end-page: 216
  ident: bib0030
  article-title: Optimal number and location of Bluetooth sensors considering stochastic travel time prediction
  publication-title: Transportation Research Part C
– volume: 40
  start-page: 93
  year: 2014
  end-page: 110
  ident: bib0018
  article-title: A generalized sensor location model for the estimation of network origin–destination matrices
  publication-title: Transportation Research Part C
– volume: 35
  start-page: 50
  year: 2001
  end-page: 60
  ident: bib0001
  article-title: A network based model for traffic sensor location with implications on OD matrix estimates
  publication-title: Transportation Science
– volume: 136
  start-page: 229
  year: 2005
  end-page: 257
  ident: bib0014
  article-title: Location of active sensors on traffic network
  publication-title: Annals of Operations Research
– volume: 55
  start-page: 217
  year: 2015
  end-page: 230
  ident: bib0041
  article-title: Sensor location problems in path-differentiated congestion pricing
  publication-title: Transportation Research Part C
– volume: 51
  start-page: 65
  year: 2013
  end-page: 76
  ident: bib0017
  article-title: A graphical approach to identify sensor locations for link flow inference
  publication-title: Transportation Research Part B
– volume: 51
  start-page: 62
  year: 2013
  end-page: 66
  ident: bib0029
  article-title: Partial link flow observability in the presence of initial sensors: Solution without path enumeration
  publication-title: Transportation Research Part E
– volume: 46
  start-page: 1624
  year: 2012
  end-page: 1638
  ident: bib0033
  article-title: A network sensor location procedure accounting for o–d matrix estimate variability
  publication-title: Transportation Research Part B
– volume: 32
  start-page: 109
  year: 1998
  end-page: 126
  ident: bib0039
  article-title: Optimal traffic counting location for origin-destination matrix estimation
  publication-title: Transportation Research Part B
– volume: 43
  start-page: 299
  year: 2002
  end-page: 314
  ident: bib0034
  article-title: Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach
  publication-title: Computers & Industrial Engineering
– volume: 14
  start-page: 761
  year: 2013
  end-page: 771
  ident: bib0004
  article-title: Deriving the upper bound of the number of sensors required to know all link flows in a traffic network
  publication-title: IEEE Transactions on Intelligent Transportation Systems,
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 26
  ident: bib0006
  article-title: A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks
  publication-title: Journal of Sensors
– volume: 39
  start-page: 1301
  year: 2012
  end-page: 1333
  ident: bib0008
  article-title: Observability in traffic networks. Plate scanning added by counting information
  publication-title: Transportation
– volume: 44
  start-page: 282
  year: 2010
  end-page: 298
  ident: bib0025
  article-title: Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks
  publication-title: Transportation Research Part B
– volume: 43
  start-page: 873
  year: 2009
  end-page: 894
  ident: bib0019
  article-title: Identification of vehicle sensor locations for link-based network
  publication-title: Transportation Research Part B
– volume: 22
  start-page: 169
  year: 1995
  end-page: 178
  ident: bib0031
  article-title: A co-tree flows formulation for steady state in water distribution networks
  publication-title: Advances in Engineering Software
– volume: 3
  start-page: 289
  year: 2009
  end-page: 303
  ident: bib0026
  article-title: Location of vehicle identification sensors to monitor travel-time performance
  publication-title: Intelligent Transport Systems
– volume: 6
  start-page: 491
  year: 1991
  end-page: 500
  ident: bib0027
  article-title: A fast method for topological observability analysis using a minimum spanning tree technique
  publication-title: IEEE Transactions on Power Systems
– volume: 23
  start-page: 208
  year: 2008
  end-page: 222
  ident: bib0005
  article-title: The observability problem in traffic network models
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 88
  start-page: 4090
  year: 2005
  end-page: 4093
  ident: bib0032
  article-title: A new evolutionary algorithm for spanning-tree based communication network design
  publication-title: IEICE transactions on communications
– volume: 29
  start-page: 14
  year: 2013
  ident: 10.1016/j.trb.2016.04.013_bib0013
  article-title: Vehicular network sensor placement optimization under uncertainty
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2013.01.004
– volume: 6
  start-page: 491
  issue: 2
  year: 1991
  ident: 10.1016/j.trb.2016.04.013_bib0027
  article-title: A fast method for topological observability analysis using a minimum spanning tree technique
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/59.76691
– volume: 23
  start-page: 208
  year: 2008
  ident: 10.1016/j.trb.2016.04.013_bib0005
  article-title: The observability problem in traffic network models
  publication-title: Computer-Aided Civil and Infrastructure Engineering
  doi: 10.1111/j.1467-8667.2008.00531.x
– volume: 22
  start-page: 1082
  year: 1970
  ident: 10.1016/j.trb.2016.04.013_bib0021
  article-title: K-degenerate graphs
  publication-title: Canadian Journal of Mathematics
  doi: 10.4153/CJM-1970-125-1
– volume: 45
  start-page: 218
  year: 2011
  ident: 10.1016/j.trb.2016.04.013_bib0022
  article-title: Reliable sensor deployment for network traffic surveillance
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2010.04.005
– volume: 46
  start-page: 781
  issue: 6
  year: 2012
  ident: 10.1016/j.trb.2016.04.013_bib0028
  article-title: Synergistic sensor location for link flow inference without path enumeration: a node-based approach
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2012.02.001
– volume: 57
  start-page: 66
  year: 2013
  ident: 10.1016/j.trb.2016.04.013_bib0037
  article-title: Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2013.09.007
– volume: 88
  start-page: 4090
  issue: 10
  year: 2005
  ident: 10.1016/j.trb.2016.04.013_bib0032
  article-title: A new evolutionary algorithm for spanning-tree based communication network design
  publication-title: IEICE transactions on communications
– volume: 42
  start-page: 455
  issue: 5
  year: 2008
  ident: 10.1016/j.trb.2016.04.013_bib0007
  article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2007.09.004
– volume: 14
  start-page: 761
  issue: 2
  year: 2013
  ident: 10.1016/j.trb.2016.04.013_bib0004
  article-title: Deriving the upper bound of the number of sensors required to know all link flows in a traffic network
  publication-title: IEEE Transactions on Intelligent Transportation Systems,
  doi: 10.1109/TITS.2012.2233474
– year: 2015
  ident: 10.1016/j.trb.2016.04.013_bib0009
  article-title: Vehicle-ID sensor location for route flow recognition: models and Algorithms
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.05.070
– volume: 43
  start-page: 873
  year: 2009
  ident: 10.1016/j.trb.2016.04.013_bib0019
  article-title: Identification of vehicle sensor locations for link-based network
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2009.02.008
– volume: 35
  start-page: 50
  issue: 1
  year: 2001
  ident: 10.1016/j.trb.2016.04.013_bib0001
  article-title: A network based model for traffic sensor location with implications on OD matrix estimates
  publication-title: Transportation Science
  doi: 10.1287/trsc.35.1.50.10140
– volume: 16
  start-page: 575
  issue: 9
  year: 1973
  ident: 10.1016/j.trb.2016.04.013_bib0002
  article-title: Algorithm 457: finding all cliques of an undirected graph
  publication-title: Communications of the ACM
  doi: 10.1145/362342.362367
– volume: 40
  start-page: 460
  year: 2006
  ident: 10.1016/j.trb.2016.04.013_bib0010
  article-title: The optimisation of traffic count locations in road networks
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2005.06.001
– volume: 134
  start-page: 395
  issue: 5
  year: 2008
  ident: 10.1016/j.trb.2016.04.013_bib0020
  article-title: State estimation in water distribution networks using graph-theoretic reduction strategy
  publication-title: Journal of Water Resources Planning and Management
  doi: 10.1061/(ASCE)0733-9496(2008)134:5(395)
– volume: 43
  start-page: 299
  issue: 1
  year: 2002
  ident: 10.1016/j.trb.2016.04.013_bib0034
  article-title: Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/S0360-8352(02)00076-1
– volume: 32
  start-page: 109
  year: 1998
  ident: 10.1016/j.trb.2016.04.013_bib0039
  article-title: Optimal traffic counting location for origin-destination matrix estimation
  publication-title: Transportation Research Part B
  doi: 10.1016/S0191-2615(97)00016-7
– volume: 39
  start-page: 1301
  year: 2012
  ident: 10.1016/j.trb.2016.04.013_bib0008
  article-title: Observability in traffic networks. Plate scanning added by counting information
  publication-title: Transportation
  doi: 10.1007/s11116-012-9390-0
– volume: 2039
  start-page: 1
  year: 2007
  ident: 10.1016/j.trb.2016.04.013_bib0012
  article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks
  publication-title: Transportation Research Record
  doi: 10.3141/2039-01
– volume: 22
  start-page: 169
  issue: 3
  year: 1995
  ident: 10.1016/j.trb.2016.04.013_bib0031
  article-title: A co-tree flows formulation for steady state in water distribution networks
  publication-title: Advances in Engineering Software
  doi: 10.1016/0965-9978(95)00020-W
– volume: 33
  start-page: 836
  year: 2006
  ident: 10.1016/j.trb.2016.04.013_bib0038
  article-title: Models and algorithms for the screen line-based traffic-counting location problems
  publication-title: Computers & Operations Research
  doi: 10.1016/j.cor.2004.08.011
– volume: 15
  start-page: 2273
  issue: 5
  year: 2014
  ident: 10.1016/j.trb.2016.04.013_bib0043
  article-title: Mobile traffic sensor routing in dynamic transportation systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2314732
– volume: 19
  start-page: 440
  year: 2011
  ident: 10.1016/j.trb.2016.04.013_bib0011
  article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2010.07.001
– volume: 68
  start-page: 239
  year: 2014
  ident: 10.1016/j.trb.2016.04.013_bib0003
  article-title: Non-planar hole-generated networks and link flow observability based on link counters
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2014.06.015
– volume: 70
  start-page: 65
  year: 2014
  ident: 10.1016/j.trb.2016.04.013_bib0035
  article-title: Assessing partial observability in network sensor location problems
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2014.08.002
– ident: 10.1016/j.trb.2016.04.013_bib0024
– volume: 126
  start-page: 56
  year: 2000
  ident: 10.1016/j.trb.2016.04.013_bib0016
  article-title: Extended use of linear graph theory for analysis of pipe networks
  publication-title: Journal of Hydraulic Engineering
  doi: 10.1061/(ASCE)0733-9429(2000)126:1(56)
– volume: 78
  start-page: 385
  year: 2015
  ident: 10.1016/j.trb.2016.04.013_bib0040
  article-title: Data dependent input control for origin-destination demand estimation using observability analysis
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2015.04.010
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.trb.2016.04.013_bib0006
  article-title: A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks
  publication-title: Journal of Sensors
  doi: 10.1155/2015/903563
– volume: 55
  start-page: 203
  year: 2015
  ident: 10.1016/j.trb.2016.04.013_bib0030
  article-title: Optimal number and location of Bluetooth sensors considering stochastic travel time prediction
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2015.03.023
– volume: 24
  start-page: 227
  year: 2012
  ident: 10.1016/j.trb.2016.04.013_bib0015
  article-title: Locating sensors on traffic networks: Models, challenges and research opportunities
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2012.01.004
– volume: 2049
  start-page: 103
  year: 2008
  ident: 10.1016/j.trb.2016.04.013_bib0036
  article-title: Sensor locations for reliable travel time prediction and dynamic management of traffic networks
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.3141/2049-12
– volume: 40
  start-page: 93
  year: 2014
  ident: 10.1016/j.trb.2016.04.013_bib0018
  article-title: A generalized sensor location model for the estimation of network origin–destination matrices
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2014.01.004
– volume: 136
  start-page: 229
  year: 2005
  ident: 10.1016/j.trb.2016.04.013_bib0014
  article-title: Location of active sensors on traffic network
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-005-2047-z
– volume: 51
  start-page: 65
  year: 2013
  ident: 10.1016/j.trb.2016.04.013_bib0017
  article-title: A graphical approach to identify sensor locations for link flow inference
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2013.02.006
– volume: 46
  start-page: 1624
  year: 2012
  ident: 10.1016/j.trb.2016.04.013_bib0033
  article-title: A network sensor location procedure accounting for o–d matrix estimate variability
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2012.08.007
– volume: 51
  start-page: 62
  year: 2013
  ident: 10.1016/j.trb.2016.04.013_bib0029
  article-title: Partial link flow observability in the presence of initial sensors: Solution without path enumeration
  publication-title: Transportation Research Part E
  doi: 10.1016/j.tre.2012.12.002
– volume: 44
  start-page: 254
  issue: 2
  year: 2010
  ident: 10.1016/j.trb.2016.04.013_bib0042
  article-title: An information-theoretic sensor location model for traffic origin-destination demand estimation applications
  publication-title: Transportation Science
  doi: 10.1287/trsc.1100.0319
– volume: 9
  start-page: 184
  issue: 2
  year: 2014
  ident: 10.1016/j.trb.2016.04.013_bib0023
  article-title: Traffic sensor location approach for flow inference
  publication-title: IET Intelligent Transport Systems
  doi: 10.1049/iet-its.2014.0023
– volume: 44
  start-page: 282
  issue: 2
  year: 2010
  ident: 10.1016/j.trb.2016.04.013_bib0025
  article-title: Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2009.07.008
– volume: 3
  start-page: 289
  issue: 3
  year: 2009
  ident: 10.1016/j.trb.2016.04.013_bib0026
  article-title: Location of vehicle identification sensors to monitor travel-time performance
  publication-title: Intelligent Transport Systems
  doi: 10.1049/iet-its.2008.0074
– volume: 55
  start-page: 217
  year: 2015
  ident: 10.1016/j.trb.2016.04.013_bib0041
  article-title: Sensor location problems in path-differentiated congestion pricing
  publication-title: Transportation Research Part C
  doi: 10.1016/j.trc.2015.01.012
SSID ssj0003401
Score 2.427321
Snippet •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path...
A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 77
SubjectTerms Algebra
Heterogeneous sensor location model
Mathematical models
Maximum clique problem
Optimization
Reconstruction
Sensor replacement scheme
Sensors
Transportation
Two-stage optimization model
Upper bounds
Vehicles
Title Heterogeneous sensor location model for path reconstruction
URI https://dx.doi.org/10.1016/j.trb.2016.04.013
https://www.proquest.com/docview/1811887732
https://www.proquest.com/docview/1835675081
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jHtSD6FScX0TwJNQlzdt2xdMYjqq4iw52C0mawkS2se3sb_dN2s4PcAePLQltniTvB3nyvIRcs7RrwzS0uL-ZCkBpE6TAwyA2gudGG1VYd9_5eRhnI3gcR-MG6dd3YRytsrL9pU331rp606nQ7Mwnk84LBic89A5ZON07J7sNkLgqBrcfXzQPAayqScgD17o-2fQcr9VCO3ZX7NVOufjLN_2y0t71DPbJXhUz0l75WwekYactsl1fKV62yO43VcFDcpc5issMV4bFtJ4uMVGdLahzWm4SqK99QzFWpa4aMfUZ8VpF9oiMBvev_SyoaiQEBkJYBZpZUTBQwuqE5aFVKspxREmcG8s0FFaDxbEn6IaFKWySF7jpCg6JzgWPlBbHpDmdTe0JocpAGhqR5LFNAZjqCqHSGPONFGJteNomrEZHmkpA3NWxeJc1U-xNIqDSASoZSAS0TW7WXealesamxlBDLn8sAYnWfVO3q3p6JG4Nd96hPL4SgxeONjQR4aY2IsKcCQOj0_99_ozsuKeSdnZOmjhf9gLjlJW-9Avxkmz1Hp6y4Scw4-dR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4ineBIkJKdSPS9KICVWgAqULILFZtuNIRaitSmd-O2c34SXRgTWxlfjzPeXPdwCnLG87kQtH-s10jNrYOEcu4tRKXlhjden8fef7ftp9wtvn5LkBnfoujKdVVrZ_ZtODta6etCo0W-PBoPVAwQkXwSFLX_cuXYBFTETmM7Dz9y-eh0RWNSXksR9eH20Gktd0Yjy9Kw3lTrn8yzn9MtPB91yvwWoVNEaXs_9ah4YbbsBSfaf4bQNWvpUV3ISLrue4jEg0HOX10RtlqqNJ5L2W34UoNL-JKFiNfDviKKTEn2Vkt-Dp-uqx042rJgmxRYHT2DAnS4ZaOpOxQjitk4JWlKWFdcxg6Qw6WntGflja0mVFSVpXcsxMIXmijdyG5nA0dDsQaYu5sDIrUpcjMt2WUucpJRw5psbyfBdYjY6yVQVx38jiVdVUsRdFgCoPqGKoCNBdOPucMp6Vz5g3GGvI1Q8ZUGTe5007qbdHkW74Aw8d8FUUvXAyopkU88bIhJImioz2_vf5Y1jqPt73VO-mf7cPy_7NjIN2AE3aO3dIQcvUHAWh_ACczujm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+sensor+location+model+for+path+reconstruction&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Fu%2C+Chenyi&rft.au=Zhu%2C+Ning&rft.au=Ling%2C+Shuai&rft.au=Ma%2C+Shoufeng&rft.date=2016-09-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.eissn=1879-2367&rft.volume=91&rft.spage=77&rft.epage=97&rft_id=info:doi/10.1016%2Fj.trb.2016.04.013&rft.externalDocID=S0191261515302496
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon