Heterogeneous sensor location model for path reconstruction
•A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated an...
Saved in:
| Published in | Transportation research. Part B: methodological Vol. 91; pp. 77 - 97 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.09.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0191-2615 1879-2367 |
| DOI | 10.1016/j.trb.2016.04.013 |
Cover
| Abstract | •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows.•Maximum clique theory is used to determine the upper bound of feasible replacement scheme.•A polynomial-time algorithm is proposed to solve this problem.
A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths. |
|---|---|
| AbstractList | •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction.•A scalar product operator is introduced to calculate path flows within algebraic framework.•An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows.•Maximum clique theory is used to determine the upper bound of feasible replacement scheme.•A polynomial-time algorithm is proposed to solve this problem.
A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths. A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path reconstruction. Passive sensors simply count vehicles, while active sensors can recognize vehicle plates but are more expensive. We developed a two-stage heterogeneous sensor location model to determine the most cost-effective strategies for sensor deployment. The first stage of the model adopts the path reconstruction model defined by Castillo et al. (2008b) to determine the optimal locations of active sensors in the network. In the second stage, an algebraic framework is developed to strategically replace active sensors so that the total installation cost can be reduced while maintaining path flow observation quality. Within the algebraic framework, a scalar product operator is introduced to calculate path flows. An extension matrix is generated and used to determine if a replacement scheme is able to reconstruct all path flows. A graph model is then constructed to determine feasible replacement schemes. The problem of finding the optimal replacement scheme is addressed by utilizing the theory of maximum clique to obtain the upper bound of the number of replaced sensors and then revising this upper bound to generate the optimal replacement scheme. A polynomial-time algorithm is proposed to solve the maximum clique problem, and the optimal replacement scheme can be obtained accordingly. Three numerical experiments show that our proposed two-stage method can reduce the total costs of transportation surveillance systems without affecting the system monitor quality. The locations of the active sensors play a more critical role than the locations of the passive sensors in the number of reconstructed paths. |
| Author | Zhu, Ning Huang, Yongxi Ling, Shuai Ma, Shoufeng Fu, Chenyi |
| Author_xml | – sequence: 1 givenname: Chenyi surname: Fu fullname: Fu, Chenyi organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China – sequence: 2 givenname: Ning surname: Zhu fullname: Zhu, Ning email: zhuning@tju.edu.cn organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China – sequence: 3 givenname: Shuai surname: Ling fullname: Ling, Shuai organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China – sequence: 4 givenname: Shoufeng surname: Ma fullname: Ma, Shoufeng organization: College of Management and Economics, Tianjin University, Tianjin 300072, People's Republic of China – sequence: 5 givenname: Yongxi surname: Huang fullname: Huang, Yongxi organization: Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, United States |
| BookMark | eNqNkM1OAyEURompia36AO5m6WZG7sAM07gyjX9JEze6JgxclGY6VKAmvr20deWicQWB79x898zIZPQjEnIFtAIK7c2qSqGv6nytKK8osBMyhU7My5q1YkKmFOZQ1i00Z2QW44pSyjiFKbl9woTBv-OIfhuLiGP0oRi8Vsn5sVh7g0Nh89NGpY8ioPZjTGGrd78X5NSqIeLl73lO3h7uXxdP5fLl8Xlxtyw1r3kqe4rMUq4Y9oKaGpVqTC4qWqOR9txizzHXE20LTFsUxjYMLHDRGwaN6tk5uT7M3QT_ucWY5NpFjcOg9qUldKxpRUM7-EcUoOuEYHWOikNUBx9jQCu1S_utU1BukEDlzqxcyWxW7sxKymU2m0n4Q26CW6vwfZS5PTCYRX05DDJqh6NG47LUJI13R-gfFZCTwg |
| CitedBy_id | crossref_primary_10_1109_TITS_2022_3189770 crossref_primary_10_1016_j_trb_2017_08_007 crossref_primary_10_1016_j_trb_2023_102849 crossref_primary_10_1016_j_trb_2024_103099 crossref_primary_10_1109_TITS_2023_3344533 crossref_primary_10_1155_2019_6520818 crossref_primary_10_1177_0361198120968824 crossref_primary_10_1109_ACCESS_2024_3509523 crossref_primary_10_1109_ACCESS_2023_3323203 crossref_primary_10_1007_s40999_020_00537_0 crossref_primary_10_1016_j_trc_2018_01_021 crossref_primary_10_1016_j_trc_2020_102855 crossref_primary_10_1016_j_eswa_2021_114727 crossref_primary_10_1007_s40534_016_0121_7 crossref_primary_10_1016_j_trc_2022_103625 crossref_primary_10_1016_j_eswa_2024_123448 crossref_primary_10_1061_JTEPBS_0000290 crossref_primary_10_1016_j_trc_2024_104838 crossref_primary_10_1016_j_eswa_2022_118134 crossref_primary_10_1016_j_tre_2021_102555 crossref_primary_10_1016_j_trc_2025_105103 crossref_primary_10_1016_j_orp_2019_100100 crossref_primary_10_3390_app14020536 crossref_primary_10_3390_s25051416 crossref_primary_10_1016_j_ejtl_2024_100129 crossref_primary_10_1016_j_trc_2021_103367 crossref_primary_10_1016_j_trb_2018_12_005 crossref_primary_10_1080_15472450_2023_2247329 crossref_primary_10_3390_s18072286 crossref_primary_10_1007_s11081_023_09789_w crossref_primary_10_1061_JTEPBS_TEENG_8915 crossref_primary_10_1016_j_cities_2022_103833 crossref_primary_10_1016_j_trb_2017_05_013 crossref_primary_10_1016_j_omega_2024_103094 crossref_primary_10_1111_mice_12490 crossref_primary_10_1016_j_eswa_2020_114554 crossref_primary_10_1016_j_tre_2016_12_003 crossref_primary_10_1080_23302674_2017_1309085 crossref_primary_10_1016_j_trb_2018_05_009 crossref_primary_10_1016_j_trc_2021_103551 crossref_primary_10_1016_j_trc_2023_104283 crossref_primary_10_3390_su14159474 crossref_primary_10_1016_j_trb_2019_01_004 crossref_primary_10_3390_s16111790 crossref_primary_10_1007_s40996_021_00614_x crossref_primary_10_1016_j_trb_2024_103090 crossref_primary_10_3390_su15139881 crossref_primary_10_1016_j_ejor_2021_10_038 crossref_primary_10_1016_j_trb_2022_10_006 crossref_primary_10_1049_iet_its_2016_0297 crossref_primary_10_1007_s11116_019_09999_1 crossref_primary_10_1080_15472450_2018_1506339 crossref_primary_10_1016_j_eswa_2025_127000 crossref_primary_10_1016_j_trc_2025_105045 crossref_primary_10_1007_s00500_023_09228_z |
| Cites_doi | 10.1016/j.trc.2013.01.004 10.1109/59.76691 10.1111/j.1467-8667.2008.00531.x 10.4153/CJM-1970-125-1 10.1016/j.trb.2010.04.005 10.1016/j.trb.2012.02.001 10.1016/j.trb.2013.09.007 10.1016/j.trb.2007.09.004 10.1109/TITS.2012.2233474 10.1016/j.ejor.2015.05.070 10.1016/j.trb.2009.02.008 10.1287/trsc.35.1.50.10140 10.1145/362342.362367 10.1016/j.trb.2005.06.001 10.1061/(ASCE)0733-9496(2008)134:5(395) 10.1016/S0360-8352(02)00076-1 10.1016/S0191-2615(97)00016-7 10.1007/s11116-012-9390-0 10.3141/2039-01 10.1016/0965-9978(95)00020-W 10.1016/j.cor.2004.08.011 10.1109/TITS.2014.2314732 10.1016/j.trc.2010.07.001 10.1016/j.trb.2014.06.015 10.1016/j.trb.2014.08.002 10.1061/(ASCE)0733-9429(2000)126:1(56) 10.1016/j.trb.2015.04.010 10.1155/2015/903563 10.1016/j.trc.2015.03.023 10.1016/j.trc.2012.01.004 10.3141/2049-12 10.1016/j.trc.2014.01.004 10.1007/s10479-005-2047-z 10.1016/j.trb.2013.02.006 10.1016/j.trb.2012.08.007 10.1016/j.tre.2012.12.002 10.1287/trsc.1100.0319 10.1049/iet-its.2014.0023 10.1016/j.trb.2009.07.008 10.1049/iet-its.2008.0074 10.1016/j.trc.2015.01.012 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7ST C1K SOI 8FD FR3 KR7 |
| DOI | 10.1016/j.trb.2016.04.013 |
| DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Environment Abstracts Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-2367 |
| EndPage | 97 |
| ExternalDocumentID | 10_1016_j_trb_2016_04_013 S0191261515302496 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7ST C1K SOI 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c424t-b0e3f04a3eb70d2eaa5d20176dce0b4feb4e01976613cfe7df531f147bd315ab3 |
| IEDL.DBID | .~1 |
| ISSN | 0191-2615 |
| IngestDate | Sun Sep 28 03:18:27 EDT 2025 Tue Oct 07 08:05:50 EDT 2025 Wed Oct 01 04:27:16 EDT 2025 Thu Apr 24 23:09:56 EDT 2025 Fri Feb 23 02:33:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sensor replacement scheme Heterogeneous sensor location model Maximum clique problem Two-stage optimization model |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-b0e3f04a3eb70d2eaa5d20176dce0b4feb4e01976613cfe7df531f147bd315ab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1811887732 |
| PQPubID | 23462 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1835675081 proquest_miscellaneous_1811887732 crossref_citationtrail_10_1016_j_trb_2016_04_013 crossref_primary_10_1016_j_trb_2016_04_013 elsevier_sciencedirect_doi_10_1016_j_trb_2016_04_013 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-09-01 |
| PublicationDateYYYYMMDD | 2016-09-01 |
| PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Transportation research. Part B: methodological |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhou, List (bib0042) 2010; 44 Yang, Yang, Gan (bib0038) 2006; 33 Ng (bib0028) 2012; 46 Hu, Peeta, Chu (bib0019) 2009; 43 Mimbela L., Klein L.A., 2000. Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. Report to Federal Highway Administrations (FHWA) Intelligent Transportation Systems Joint Program Office. Castillo, Grande, Calviño, Szeto, Lo (bib0006) 2015; 2015 Hu, Liou (bib0018) 2014; 40 Fei, Mahmassani, Eisenman (bib0012) 2007; 2039 Mori, Tsuzuki (bib0027) 1991; 6 Zangui, Yin, Lawphongpanich (bib0041) 2015; 55 Fei, Mahmassani (bib0011) 2011; 19 Gentili, Mirchandani (bib0015) 2012; 24 Mirchandani, Gentili, He (bib0026) 2009; 3 Fei, Mahmassani, Murray-Tuite (bib0013) 2013; 29 Xing, Zhou, Taylor (bib0037) 2013; 57 Zhu, Liu, Ma, He (bib0043) 2014; 15 Rahal (bib0031) 1995; 22 Syarif, Yun, Gen (bib0034) 2002; 43 Park, Haghani (bib0030) 2015; 55 Castillo, Menndez, Jimnez (bib0007) 2008; 42 Sang-Moon, Corne, Byung-Ha (bib0032) 2005; 88 Simonelli, Marzano, Papola, Vitiello (bib0033) 2012; 46 Li, Ouyang (bib0022) 2011; 45 Gentili, Mirchandani (bib0014) 2005; 136 Yang, Zhou (bib0039) 1998; 32 Ehlert, Bell, Grosso (bib0010) 2006; 40 Mínguez, Sánchez-Cambronero, Castillo, Jiménez (bib0025) 2010; 44 Bron, Kerbosch (bib0002) 1973; 16 He (bib0017) 2013; 51 Viti, Rinaldi, Corman, Tampère (bib0035) 2014; 70 Bianco, Confessore, Reverberi (bib0001) 2001; 35 Castillo, Calviño, Lo, Menéndez, Grande (bib0003) 2014; 68 Liu, Zhu, Ma, Jia (bib0023) 2014; 9 Castillo, Rivas, Jiménez, Menéndez (bib0008) 2012; 39 Lick, White (bib0021) 1970; 22 Ng (bib0029) 2013; 51 Yang, Fan (bib0040) 2015; 78 Viti, Verbeke, Tampère (bib0036) 2008; 2049 Castillo, Calviño, Menéndez, Jiménez, Rivas (bib0004) 2013; 14 Gupta, Prasad (bib0016) 2000; 126 Kumar, Narasimhan, Bhallamudi (bib0020) 2008; 134 Castillo, Conejo (bib0005) 2008; 23 Cerrone, Cerulli, Gentili (bib0009) 2015 Kumar (10.1016/j.trb.2016.04.013_bib0020) 2008; 134 Simonelli (10.1016/j.trb.2016.04.013_bib0033) 2012; 46 Yang (10.1016/j.trb.2016.04.013_bib0039) 1998; 32 Castillo (10.1016/j.trb.2016.04.013_bib0005) 2008; 23 Ng (10.1016/j.trb.2016.04.013_bib0029) 2013; 51 Viti (10.1016/j.trb.2016.04.013_bib0036) 2008; 2049 Xing (10.1016/j.trb.2016.04.013_bib0037) 2013; 57 Bianco (10.1016/j.trb.2016.04.013_bib0001) 2001; 35 Gupta (10.1016/j.trb.2016.04.013_bib0016) 2000; 126 Fei (10.1016/j.trb.2016.04.013_bib0011) 2011; 19 Park (10.1016/j.trb.2016.04.013_bib0030) 2015; 55 Lick (10.1016/j.trb.2016.04.013_bib0021) 1970; 22 Fei (10.1016/j.trb.2016.04.013_bib0013) 2013; 29 Cerrone (10.1016/j.trb.2016.04.013_bib0009) 2015 Castillo (10.1016/j.trb.2016.04.013_bib0008) 2012; 39 Syarif (10.1016/j.trb.2016.04.013_bib0034) 2002; 43 Viti (10.1016/j.trb.2016.04.013_bib0035) 2014; 70 Liu (10.1016/j.trb.2016.04.013_bib0023) 2014; 9 Gentili (10.1016/j.trb.2016.04.013_bib0015) 2012; 24 Zhou (10.1016/j.trb.2016.04.013_bib0042) 2010; 44 Mínguez (10.1016/j.trb.2016.04.013_bib0025) 2010; 44 Hu (10.1016/j.trb.2016.04.013_bib0018) 2014; 40 Sang-Moon (10.1016/j.trb.2016.04.013_bib0032) 2005; 88 He (10.1016/j.trb.2016.04.013_bib0017) 2013; 51 Mirchandani (10.1016/j.trb.2016.04.013_bib0026) 2009; 3 Zangui (10.1016/j.trb.2016.04.013_bib0041) 2015; 55 Bron (10.1016/j.trb.2016.04.013_bib0002) 1973; 16 Castillo (10.1016/j.trb.2016.04.013_bib0003) 2014; 68 Castillo (10.1016/j.trb.2016.04.013_bib0004) 2013; 14 Yang (10.1016/j.trb.2016.04.013_bib0040) 2015; 78 Yang (10.1016/j.trb.2016.04.013_bib0038) 2006; 33 Castillo (10.1016/j.trb.2016.04.013_bib0007) 2008; 42 Castillo (10.1016/j.trb.2016.04.013_bib0006) 2015; 2015 10.1016/j.trb.2016.04.013_bib0024 Ehlert (10.1016/j.trb.2016.04.013_bib0010) 2006; 40 Fei (10.1016/j.trb.2016.04.013_bib0012) 2007; 2039 Ng (10.1016/j.trb.2016.04.013_bib0028) 2012; 46 Rahal (10.1016/j.trb.2016.04.013_bib0031) 1995; 22 Hu (10.1016/j.trb.2016.04.013_bib0019) 2009; 43 Mori (10.1016/j.trb.2016.04.013_bib0027) 1991; 6 Zhu (10.1016/j.trb.2016.04.013_bib0043) 2014; 15 Li (10.1016/j.trb.2016.04.013_bib0022) 2011; 45 Gentili (10.1016/j.trb.2016.04.013_bib0014) 2005; 136 |
| References_xml | – volume: 29 start-page: 14 year: 2013 end-page: 31 ident: bib0013 article-title: Vehicular network sensor placement optimization under uncertainty publication-title: Transportation Research Part C – volume: 24 start-page: 227 year: 2012 end-page: 255 ident: bib0015 article-title: Locating sensors on traffic networks: Models, challenges and research opportunities publication-title: Transportation Research Part C – volume: 42 start-page: 455 year: 2008 end-page: 481 ident: bib0007 article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations publication-title: Transportation Research Part B – volume: 33 start-page: 836 year: 2006 end-page: 858 ident: bib0038 article-title: Models and algorithms for the screen line-based traffic-counting location problems publication-title: Computers & Operations Research – volume: 134 start-page: 395 year: 2008 end-page: 403 ident: bib0020 article-title: State estimation in water distribution networks using graph-theoretic reduction strategy publication-title: Journal of Water Resources Planning and Management – reference: Mimbela L., Klein L.A., 2000. Summary of vehicle detection and surveillance technologies used in intelligent transportation systems. Report to Federal Highway Administrations (FHWA) Intelligent Transportation Systems Joint Program Office. – volume: 15 start-page: 2273 year: 2014 end-page: 2285 ident: bib0043 article-title: Mobile traffic sensor routing in dynamic transportation systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 68 start-page: 239 year: 2014 end-page: 261 ident: bib0003 article-title: Non-planar hole-generated networks and link flow observability based on link counters publication-title: Transportation Research Part B – volume: 78 start-page: 385 year: 2015 end-page: 403 ident: bib0040 article-title: Data dependent input control for origin-destination demand estimation using observability analysis publication-title: Transportation Research Part B – volume: 19 start-page: 440 year: 2011 end-page: 453 ident: bib0011 article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network publication-title: Transportation Research Part C – volume: 9 start-page: 184 year: 2014 end-page: 192 ident: bib0023 article-title: Traffic sensor location approach for flow inference publication-title: IET Intelligent Transport Systems – volume: 45 start-page: 218 year: 2011 end-page: 231 ident: bib0022 article-title: Reliable sensor deployment for network traffic surveillance publication-title: Transportation Research Part B – volume: 70 start-page: 65 year: 2014 end-page: 89 ident: bib0035 article-title: Assessing partial observability in network sensor location problems publication-title: Transportation Research Part B – volume: 44 start-page: 254 year: 2010 end-page: 273 ident: bib0042 article-title: An information-theoretic sensor location model for traffic origin-destination demand estimation applications publication-title: Transportation Science – volume: 16 start-page: 575 year: 1973 end-page: 577 ident: bib0002 article-title: Algorithm 457: finding all cliques of an undirected graph publication-title: Communications of the ACM – volume: 22 start-page: 1082 year: 1970 end-page: 1096 ident: bib0021 article-title: K-degenerate graphs publication-title: Canadian Journal of Mathematics – volume: 57 start-page: 66 year: 2013 end-page: 90 ident: bib0037 article-title: Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach publication-title: Transportation Research Part B – volume: 46 start-page: 781 year: 2012 end-page: 788 ident: bib0028 article-title: Synergistic sensor location for link flow inference without path enumeration: a node-based approach publication-title: Transportation Research Part B – volume: 2049 start-page: 103 year: 2008 end-page: 110 ident: bib0036 article-title: Sensor locations for reliable travel time prediction and dynamic management of traffic networks publication-title: Transportation Research Record: Journal of the Transportation Research Board – volume: 2039 start-page: 1 year: 2007 end-page: 15 ident: bib0012 article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks publication-title: Transportation Research Record – year: 2015 ident: bib0009 article-title: Vehicle-ID sensor location for route flow recognition: models and Algorithms publication-title: European Journal of Operational Research – volume: 40 start-page: 460 year: 2006 end-page: 479 ident: bib0010 article-title: The optimisation of traffic count locations in road networks publication-title: Transportation Research Part B – volume: 126 start-page: 56 year: 2000 end-page: 62 ident: bib0016 article-title: Extended use of linear graph theory for analysis of pipe networks publication-title: Journal of Hydraulic Engineering – volume: 55 start-page: 203 year: 2015 end-page: 216 ident: bib0030 article-title: Optimal number and location of Bluetooth sensors considering stochastic travel time prediction publication-title: Transportation Research Part C – volume: 40 start-page: 93 year: 2014 end-page: 110 ident: bib0018 article-title: A generalized sensor location model for the estimation of network origin–destination matrices publication-title: Transportation Research Part C – volume: 35 start-page: 50 year: 2001 end-page: 60 ident: bib0001 article-title: A network based model for traffic sensor location with implications on OD matrix estimates publication-title: Transportation Science – volume: 136 start-page: 229 year: 2005 end-page: 257 ident: bib0014 article-title: Location of active sensors on traffic network publication-title: Annals of Operations Research – volume: 55 start-page: 217 year: 2015 end-page: 230 ident: bib0041 article-title: Sensor location problems in path-differentiated congestion pricing publication-title: Transportation Research Part C – volume: 51 start-page: 65 year: 2013 end-page: 76 ident: bib0017 article-title: A graphical approach to identify sensor locations for link flow inference publication-title: Transportation Research Part B – volume: 51 start-page: 62 year: 2013 end-page: 66 ident: bib0029 article-title: Partial link flow observability in the presence of initial sensors: Solution without path enumeration publication-title: Transportation Research Part E – volume: 46 start-page: 1624 year: 2012 end-page: 1638 ident: bib0033 article-title: A network sensor location procedure accounting for o–d matrix estimate variability publication-title: Transportation Research Part B – volume: 32 start-page: 109 year: 1998 end-page: 126 ident: bib0039 article-title: Optimal traffic counting location for origin-destination matrix estimation publication-title: Transportation Research Part B – volume: 43 start-page: 299 year: 2002 end-page: 314 ident: bib0034 article-title: Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach publication-title: Computers & Industrial Engineering – volume: 14 start-page: 761 year: 2013 end-page: 771 ident: bib0004 article-title: Deriving the upper bound of the number of sensors required to know all link flows in a traffic network publication-title: IEEE Transactions on Intelligent Transportation Systems, – volume: 2015 start-page: 1 year: 2015 end-page: 26 ident: bib0006 article-title: A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks publication-title: Journal of Sensors – volume: 39 start-page: 1301 year: 2012 end-page: 1333 ident: bib0008 article-title: Observability in traffic networks. Plate scanning added by counting information publication-title: Transportation – volume: 44 start-page: 282 year: 2010 end-page: 298 ident: bib0025 article-title: Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks publication-title: Transportation Research Part B – volume: 43 start-page: 873 year: 2009 end-page: 894 ident: bib0019 article-title: Identification of vehicle sensor locations for link-based network publication-title: Transportation Research Part B – volume: 22 start-page: 169 year: 1995 end-page: 178 ident: bib0031 article-title: A co-tree flows formulation for steady state in water distribution networks publication-title: Advances in Engineering Software – volume: 3 start-page: 289 year: 2009 end-page: 303 ident: bib0026 article-title: Location of vehicle identification sensors to monitor travel-time performance publication-title: Intelligent Transport Systems – volume: 6 start-page: 491 year: 1991 end-page: 500 ident: bib0027 article-title: A fast method for topological observability analysis using a minimum spanning tree technique publication-title: IEEE Transactions on Power Systems – volume: 23 start-page: 208 year: 2008 end-page: 222 ident: bib0005 article-title: The observability problem in traffic network models publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 88 start-page: 4090 year: 2005 end-page: 4093 ident: bib0032 article-title: A new evolutionary algorithm for spanning-tree based communication network design publication-title: IEICE transactions on communications – volume: 29 start-page: 14 year: 2013 ident: 10.1016/j.trb.2016.04.013_bib0013 article-title: Vehicular network sensor placement optimization under uncertainty publication-title: Transportation Research Part C doi: 10.1016/j.trc.2013.01.004 – volume: 6 start-page: 491 issue: 2 year: 1991 ident: 10.1016/j.trb.2016.04.013_bib0027 article-title: A fast method for topological observability analysis using a minimum spanning tree technique publication-title: IEEE Transactions on Power Systems doi: 10.1109/59.76691 – volume: 23 start-page: 208 year: 2008 ident: 10.1016/j.trb.2016.04.013_bib0005 article-title: The observability problem in traffic network models publication-title: Computer-Aided Civil and Infrastructure Engineering doi: 10.1111/j.1467-8667.2008.00531.x – volume: 22 start-page: 1082 year: 1970 ident: 10.1016/j.trb.2016.04.013_bib0021 article-title: K-degenerate graphs publication-title: Canadian Journal of Mathematics doi: 10.4153/CJM-1970-125-1 – volume: 45 start-page: 218 year: 2011 ident: 10.1016/j.trb.2016.04.013_bib0022 article-title: Reliable sensor deployment for network traffic surveillance publication-title: Transportation Research Part B doi: 10.1016/j.trb.2010.04.005 – volume: 46 start-page: 781 issue: 6 year: 2012 ident: 10.1016/j.trb.2016.04.013_bib0028 article-title: Synergistic sensor location for link flow inference without path enumeration: a node-based approach publication-title: Transportation Research Part B doi: 10.1016/j.trb.2012.02.001 – volume: 57 start-page: 66 year: 2013 ident: 10.1016/j.trb.2016.04.013_bib0037 article-title: Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach publication-title: Transportation Research Part B doi: 10.1016/j.trb.2013.09.007 – volume: 88 start-page: 4090 issue: 10 year: 2005 ident: 10.1016/j.trb.2016.04.013_bib0032 article-title: A new evolutionary algorithm for spanning-tree based communication network design publication-title: IEICE transactions on communications – volume: 42 start-page: 455 issue: 5 year: 2008 ident: 10.1016/j.trb.2016.04.013_bib0007 article-title: Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations publication-title: Transportation Research Part B doi: 10.1016/j.trb.2007.09.004 – volume: 14 start-page: 761 issue: 2 year: 2013 ident: 10.1016/j.trb.2016.04.013_bib0004 article-title: Deriving the upper bound of the number of sensors required to know all link flows in a traffic network publication-title: IEEE Transactions on Intelligent Transportation Systems, doi: 10.1109/TITS.2012.2233474 – year: 2015 ident: 10.1016/j.trb.2016.04.013_bib0009 article-title: Vehicle-ID sensor location for route flow recognition: models and Algorithms publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.05.070 – volume: 43 start-page: 873 year: 2009 ident: 10.1016/j.trb.2016.04.013_bib0019 article-title: Identification of vehicle sensor locations for link-based network publication-title: Transportation Research Part B doi: 10.1016/j.trb.2009.02.008 – volume: 35 start-page: 50 issue: 1 year: 2001 ident: 10.1016/j.trb.2016.04.013_bib0001 article-title: A network based model for traffic sensor location with implications on OD matrix estimates publication-title: Transportation Science doi: 10.1287/trsc.35.1.50.10140 – volume: 16 start-page: 575 issue: 9 year: 1973 ident: 10.1016/j.trb.2016.04.013_bib0002 article-title: Algorithm 457: finding all cliques of an undirected graph publication-title: Communications of the ACM doi: 10.1145/362342.362367 – volume: 40 start-page: 460 year: 2006 ident: 10.1016/j.trb.2016.04.013_bib0010 article-title: The optimisation of traffic count locations in road networks publication-title: Transportation Research Part B doi: 10.1016/j.trb.2005.06.001 – volume: 134 start-page: 395 issue: 5 year: 2008 ident: 10.1016/j.trb.2016.04.013_bib0020 article-title: State estimation in water distribution networks using graph-theoretic reduction strategy publication-title: Journal of Water Resources Planning and Management doi: 10.1061/(ASCE)0733-9496(2008)134:5(395) – volume: 43 start-page: 299 issue: 1 year: 2002 ident: 10.1016/j.trb.2016.04.013_bib0034 article-title: Study on multi-stage logistic chain network: a spanning tree-based genetic algorithm approach publication-title: Computers & Industrial Engineering doi: 10.1016/S0360-8352(02)00076-1 – volume: 32 start-page: 109 year: 1998 ident: 10.1016/j.trb.2016.04.013_bib0039 article-title: Optimal traffic counting location for origin-destination matrix estimation publication-title: Transportation Research Part B doi: 10.1016/S0191-2615(97)00016-7 – volume: 39 start-page: 1301 year: 2012 ident: 10.1016/j.trb.2016.04.013_bib0008 article-title: Observability in traffic networks. Plate scanning added by counting information publication-title: Transportation doi: 10.1007/s11116-012-9390-0 – volume: 2039 start-page: 1 year: 2007 ident: 10.1016/j.trb.2016.04.013_bib0012 article-title: Sensor coverage and location for real-time traffic prediction in large-scale networks publication-title: Transportation Research Record doi: 10.3141/2039-01 – volume: 22 start-page: 169 issue: 3 year: 1995 ident: 10.1016/j.trb.2016.04.013_bib0031 article-title: A co-tree flows formulation for steady state in water distribution networks publication-title: Advances in Engineering Software doi: 10.1016/0965-9978(95)00020-W – volume: 33 start-page: 836 year: 2006 ident: 10.1016/j.trb.2016.04.013_bib0038 article-title: Models and algorithms for the screen line-based traffic-counting location problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2004.08.011 – volume: 15 start-page: 2273 issue: 5 year: 2014 ident: 10.1016/j.trb.2016.04.013_bib0043 article-title: Mobile traffic sensor routing in dynamic transportation systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2314732 – volume: 19 start-page: 440 year: 2011 ident: 10.1016/j.trb.2016.04.013_bib0011 article-title: Structural analysis of near-optimal sensor locations for a stochastic large-scale network publication-title: Transportation Research Part C doi: 10.1016/j.trc.2010.07.001 – volume: 68 start-page: 239 year: 2014 ident: 10.1016/j.trb.2016.04.013_bib0003 article-title: Non-planar hole-generated networks and link flow observability based on link counters publication-title: Transportation Research Part B doi: 10.1016/j.trb.2014.06.015 – volume: 70 start-page: 65 year: 2014 ident: 10.1016/j.trb.2016.04.013_bib0035 article-title: Assessing partial observability in network sensor location problems publication-title: Transportation Research Part B doi: 10.1016/j.trb.2014.08.002 – ident: 10.1016/j.trb.2016.04.013_bib0024 – volume: 126 start-page: 56 year: 2000 ident: 10.1016/j.trb.2016.04.013_bib0016 article-title: Extended use of linear graph theory for analysis of pipe networks publication-title: Journal of Hydraulic Engineering doi: 10.1061/(ASCE)0733-9429(2000)126:1(56) – volume: 78 start-page: 385 year: 2015 ident: 10.1016/j.trb.2016.04.013_bib0040 article-title: Data dependent input control for origin-destination demand estimation using observability analysis publication-title: Transportation Research Part B doi: 10.1016/j.trb.2015.04.010 – volume: 2015 start-page: 1 year: 2015 ident: 10.1016/j.trb.2016.04.013_bib0006 article-title: A state-of-the-art review of the sensor location, flow observability, estimation, and prediction problems in traffic networks publication-title: Journal of Sensors doi: 10.1155/2015/903563 – volume: 55 start-page: 203 year: 2015 ident: 10.1016/j.trb.2016.04.013_bib0030 article-title: Optimal number and location of Bluetooth sensors considering stochastic travel time prediction publication-title: Transportation Research Part C doi: 10.1016/j.trc.2015.03.023 – volume: 24 start-page: 227 year: 2012 ident: 10.1016/j.trb.2016.04.013_bib0015 article-title: Locating sensors on traffic networks: Models, challenges and research opportunities publication-title: Transportation Research Part C doi: 10.1016/j.trc.2012.01.004 – volume: 2049 start-page: 103 year: 2008 ident: 10.1016/j.trb.2016.04.013_bib0036 article-title: Sensor locations for reliable travel time prediction and dynamic management of traffic networks publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.3141/2049-12 – volume: 40 start-page: 93 year: 2014 ident: 10.1016/j.trb.2016.04.013_bib0018 article-title: A generalized sensor location model for the estimation of network origin–destination matrices publication-title: Transportation Research Part C doi: 10.1016/j.trc.2014.01.004 – volume: 136 start-page: 229 year: 2005 ident: 10.1016/j.trb.2016.04.013_bib0014 article-title: Location of active sensors on traffic network publication-title: Annals of Operations Research doi: 10.1007/s10479-005-2047-z – volume: 51 start-page: 65 year: 2013 ident: 10.1016/j.trb.2016.04.013_bib0017 article-title: A graphical approach to identify sensor locations for link flow inference publication-title: Transportation Research Part B doi: 10.1016/j.trb.2013.02.006 – volume: 46 start-page: 1624 year: 2012 ident: 10.1016/j.trb.2016.04.013_bib0033 article-title: A network sensor location procedure accounting for o–d matrix estimate variability publication-title: Transportation Research Part B doi: 10.1016/j.trb.2012.08.007 – volume: 51 start-page: 62 year: 2013 ident: 10.1016/j.trb.2016.04.013_bib0029 article-title: Partial link flow observability in the presence of initial sensors: Solution without path enumeration publication-title: Transportation Research Part E doi: 10.1016/j.tre.2012.12.002 – volume: 44 start-page: 254 issue: 2 year: 2010 ident: 10.1016/j.trb.2016.04.013_bib0042 article-title: An information-theoretic sensor location model for traffic origin-destination demand estimation applications publication-title: Transportation Science doi: 10.1287/trsc.1100.0319 – volume: 9 start-page: 184 issue: 2 year: 2014 ident: 10.1016/j.trb.2016.04.013_bib0023 article-title: Traffic sensor location approach for flow inference publication-title: IET Intelligent Transport Systems doi: 10.1049/iet-its.2014.0023 – volume: 44 start-page: 282 issue: 2 year: 2010 ident: 10.1016/j.trb.2016.04.013_bib0025 article-title: Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks publication-title: Transportation Research Part B doi: 10.1016/j.trb.2009.07.008 – volume: 3 start-page: 289 issue: 3 year: 2009 ident: 10.1016/j.trb.2016.04.013_bib0026 article-title: Location of vehicle identification sensors to monitor travel-time performance publication-title: Intelligent Transport Systems doi: 10.1049/iet-its.2008.0074 – volume: 55 start-page: 217 year: 2015 ident: 10.1016/j.trb.2016.04.013_bib0041 article-title: Sensor location problems in path-differentiated congestion pricing publication-title: Transportation Research Part C doi: 10.1016/j.trc.2015.01.012 |
| SSID | ssj0003401 |
| Score | 2.427321 |
| Snippet | •A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path... A new traffic sensor location problem is developed and solved by strategically placing both passive and active sensors in a transportation network for path... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 77 |
| SubjectTerms | Algebra Heterogeneous sensor location model Mathematical models Maximum clique problem Optimization Reconstruction Sensor replacement scheme Sensors Transportation Two-stage optimization model Upper bounds Vehicles |
| Title | Heterogeneous sensor location model for path reconstruction |
| URI | https://dx.doi.org/10.1016/j.trb.2016.04.013 https://www.proquest.com/docview/1811887732 https://www.proquest.com/docview/1835675081 |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA5jHtSD6FScX0TwJNQlzdt2xdMYjqq4iw52C0mawkS2se3sb_dN2s4PcAePLQltniTvB3nyvIRcs7RrwzS0uL-ZCkBpE6TAwyA2gudGG1VYd9_5eRhnI3gcR-MG6dd3YRytsrL9pU331rp606nQ7Mwnk84LBic89A5ZON07J7sNkLgqBrcfXzQPAayqScgD17o-2fQcr9VCO3ZX7NVOufjLN_2y0t71DPbJXhUz0l75WwekYactsl1fKV62yO43VcFDcpc5issMV4bFtJ4uMVGdLahzWm4SqK99QzFWpa4aMfUZ8VpF9oiMBvev_SyoaiQEBkJYBZpZUTBQwuqE5aFVKspxREmcG8s0FFaDxbEn6IaFKWySF7jpCg6JzgWPlBbHpDmdTe0JocpAGhqR5LFNAZjqCqHSGPONFGJteNomrEZHmkpA3NWxeJc1U-xNIqDSASoZSAS0TW7WXealesamxlBDLn8sAYnWfVO3q3p6JG4Nd96hPL4SgxeONjQR4aY2IsKcCQOj0_99_ozsuKeSdnZOmjhf9gLjlJW-9Avxkmz1Hp6y4Scw4-dR |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VMgAD4ineBIkJKdSPS9KICVWgAqULILFZtuNIRaitSmd-O2c34SXRgTWxlfjzPeXPdwCnLG87kQtH-s10jNrYOEcu4tRKXlhjden8fef7ftp9wtvn5LkBnfoujKdVVrZ_ZtODta6etCo0W-PBoPVAwQkXwSFLX_cuXYBFTETmM7Dz9y-eh0RWNSXksR9eH20Gktd0Yjy9Kw3lTrn8yzn9MtPB91yvwWoVNEaXs_9ah4YbbsBSfaf4bQNWvpUV3ISLrue4jEg0HOX10RtlqqNJ5L2W34UoNL-JKFiNfDviKKTEn2Vkt-Dp-uqx042rJgmxRYHT2DAnS4ZaOpOxQjitk4JWlKWFdcxg6Qw6WntGflja0mVFSVpXcsxMIXmijdyG5nA0dDsQaYu5sDIrUpcjMt2WUucpJRw5psbyfBdYjY6yVQVx38jiVdVUsRdFgCoPqGKoCNBdOPucMp6Vz5g3GGvI1Q8ZUGTe5007qbdHkW74Aw8d8FUUvXAyopkU88bIhJImioz2_vf5Y1jqPt73VO-mf7cPy_7NjIN2AE3aO3dIQcvUHAWh_ACczujm |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+sensor+location+model+for+path+reconstruction&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Fu%2C+Chenyi&rft.au=Zhu%2C+Ning&rft.au=Ling%2C+Shuai&rft.au=Ma%2C+Shoufeng&rft.date=2016-09-01&rft.pub=Elsevier+Ltd&rft.issn=0191-2615&rft.eissn=1879-2367&rft.volume=91&rft.spage=77&rft.epage=97&rft_id=info:doi/10.1016%2Fj.trb.2016.04.013&rft.externalDocID=S0191261515302496 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |