A Multi-Functional Genetic Algorithm-Neural Network Model for Predicting Suspended Sediment Loads
The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impac...
Saved in:
| Published in | Water resources management Vol. 39; no. 5; pp. 2033 - 2048 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Dordrecht
Springer Netherlands
01.03.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0920-4741 1573-1650 |
| DOI | 10.1007/s11269-024-04054-w |
Cover
| Abstract | The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R
2
) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions. |
|---|---|
| AbstractList | The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R²) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions. The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R 2 ) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions. The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R2) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions. |
| Author | Kamel, Ammar Hatem Wan Mohtar, Wan Hanna Melini Khan, Md Munir Hayet Khaleel, Faidhalrahman Aksoy, Muammer Sherif, Mohsen Afan, Haitham Abdulmohsin Ahmed, Ali Najah El-Shafie, Ahmed |
| Author_xml | – sequence: 1 givenname: Haitham Abdulmohsin orcidid: 0000-0002-4957-756X surname: Afan fullname: Afan, Haitham Abdulmohsin email: haitham.afan@uoanbar.edu.iq, haitham.afan@gmail.com organization: Upper Euphrates Basin Developing Center, University of Anbar – sequence: 2 givenname: Wan Hanna Melini surname: Wan Mohtar fullname: Wan Mohtar, Wan Hanna Melini organization: Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM – sequence: 3 givenname: Muammer surname: Aksoy fullname: Aksoy, Muammer organization: Cyber Security Department, College of Sciences, Al-Mustaqbal University, Computer Information Systems Department, Ahmed Bin Mohammed Military College – sequence: 4 givenname: Ali Najah surname: Ahmed fullname: Ahmed, Ali Najah organization: Department of Engineering, School of Engineering and Technology, Sunway University – sequence: 5 givenname: Faidhalrahman surname: Khaleel fullname: Khaleel, Faidhalrahman organization: Department of Computer Sciences, College of Science, University of Al Maarif – sequence: 6 givenname: Md Munir Hayet surname: Khan fullname: Khan, Md Munir Hayet organization: Faculty of Engineering & Quantity Surveying (FEQS), INTI International University (INTI-IU), Persiaran Perdana BBN – sequence: 7 givenname: Ammar Hatem surname: Kamel fullname: Kamel, Ammar Hatem organization: Upper Euphrates Basin Developing Center, University of Anbar, Dams and Water Resources Engineering Department, College of Engineering, University of Anbar – sequence: 8 givenname: Mohsen surname: Sherif fullname: Sherif, Mohsen organization: National Water and Energy Center, United Arab Emirates University – sequence: 9 givenname: Ahmed surname: El-Shafie fullname: El-Shafie, Ahmed organization: National Water and Energy Center, United Arab Emirates University |
| BookMark | eNp9kEFrHCEUgKUk0E3SP9CTkEsuNk_HcdbjEppNYbMtbHsWM77Zms7qVh2W_PuabKCQQ06C7_vE952RkxADEvKZwxcO0F1nzoXSDIRkIKGV7PCBzHjbNYyrFk7IDLQAJjvJP5KznB8BqqZhRuyC3k9j8ex2Cn3xMdiRLjFg8T1djNuYfPm9Y2ucUh2ssRxi-kPvo8ORDjHRHwmdr17Y0s2U9xgcOrqpdzsMha6idfmCnA52zPjp9Twnv26__ry5Y6vvy283ixXrpZCFWWwsbwHsXEDvUGrN505ZrrsBhFWSOyVly1334ISq8wcNA7dNL1Arq7RrzsnV8d19in8nzMXsfO5xHG3AOGXTCFCCQyfail6-QR_jlOrqleJzKRreiq5S8yPVp5hzwsH0vtjnRiVZPxoO5rm9ObY3tb15aW8OVRVv1H3yO5ue3peao5QrHLaY_v_qHesfSjKY-Q |
| CitedBy_id | crossref_primary_10_1007_s11269_025_04108_7 crossref_primary_10_1007_s11269_025_04112_x |
| Cites_doi | 10.1007/s11270-021-04989-5 10.1016/j.suscom.2021.100514 10.1016/j.eswa.2023.120844 10.1016/j.jhydrol.2017.07.008 10.1109/ICCTD.2009.130 10.1016/j.heliyon.2023.e18506 10.1016/j.heliyon.2023.e19426 10.1038/s41598-020-61355-x 10.1038/s41598-021-04419-w 10.1007/s13762-020-02967-8 10.3390/w10060807 10.1007/s00500-020-05058-5 10.1007/s00521-012-0940-3 10.1007/s11269-023-03552-7 10.1007/s11356-020-09876-w 10.1007/s12145-021-00689-0 10.1080/19942060.2023.2243090 10.1038/s41598-024-61339-1 10.37650/ijce.2022.160201 10.1007/s11269-023-03722-7 10.1016/j.aej.2021.04.100 10.1007/s00521-015-1952-6 10.3390/w14182815 10.1007/s12665-020-08949-w 10.1016/j.jenvman.2024.121660 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Mar 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Mar 2025 |
| DBID | AAYXX CITATION 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 |
| DOI | 10.1007/s11269-024-04054-w |
| DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1573-1650 |
| EndPage | 2048 |
| ExternalDocumentID | 10_1007_s11269_024_04054_w |
| GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~A9 ~EX ~KM AAYXX ABBRH ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION PHGZM PQGLB PUEGO 7QH 7ST 7UA 8FD C1K F1W FR3 H97 KR7 L.G SOI 7S9 L.6 |
| ID | FETCH-LOGICAL-c424t-ae3a1500a820cde49918d6a197f02a641d64451d7bd26de4b90f1a3c2e96a69d3 |
| IEDL.DBID | AGYKE |
| ISSN | 0920-4741 |
| IngestDate | Fri Jul 11 17:30:10 EDT 2025 Fri Jul 25 19:07:15 EDT 2025 Wed Oct 01 06:36:13 EDT 2025 Thu Apr 24 22:54:32 EDT 2025 Tue Apr 01 01:16:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | Sediment Load Prediction Neural Network Johor River Artificial Intelligence Genetic Algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c424t-ae3a1500a820cde49918d6a197f02a641d64451d7bd26de4b90f1a3c2e96a69d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4957-756X |
| PQID | 3184231527 |
| PQPubID | 54174 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_3206210725 proquest_journals_3184231527 crossref_citationtrail_10_1007_s11269_024_04054_w crossref_primary_10_1007_s11269_024_04054_w springer_journals_10_1007_s11269_024_04054_w |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) |
| PublicationTitle | Water resources management |
| PublicationTitleAbbrev | Water Resour Manage |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | BB Sahoo (4054_CR23) 2023; 37 B Joshi (4054_CR17) 2024; 14 BB Hazarika (4054_CR12) 2023; 232 HA Afan (4054_CR2) 2017; 552 4054_CR25 D Gupta (4054_CR10) 2021 4054_CR22 BB Hazarika (4054_CR14) 2020; 79 ZMZM Yaseen (4054_CR26) 2015; 27 A Moradinejad (4054_CR20) 2024; 38 KSMH Ibrahim (4054_CR16) 2022; 61 4054_CR1 MF Allawi (4054_CR5) 2023; 9 Y Essam (4054_CR9) 2022; 12 BB Hazarika (4054_CR13) 2021; 18 4054_CR4 A Ali (4054_CR3) 2022; 16 4054_CR8 A Najah (4054_CR21) 2012; 22 T Matos (4054_CR19) 2024; 365 M Ehteram (4054_CR7) 2018; 10 MS Hanoon (4054_CR11) 2021; 15 AH Kamel (4054_CR18) 2021; 30 A Yadav (4054_CR24) 2022; 14 NA Hazrin (4054_CR15) 2023; 9 FB Banadkooki (4054_CR6) 2020; 27 |
| References_xml | – ident: 4054_CR25 doi: 10.1007/s11270-021-04989-5 – volume: 30 start-page: 100514 year: 2021 ident: 4054_CR18 publication-title: Sustain Comput Informatics Syst doi: 10.1016/j.suscom.2021.100514 – volume: 232 start-page: 120844 year: 2023 ident: 4054_CR12 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120844 – volume: 552 start-page: 366 year: 2017 ident: 4054_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.07.008 – ident: 4054_CR8 doi: 10.1109/ICCTD.2009.130 – volume: 9 start-page: e18506 year: 2023 ident: 4054_CR5 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e18506 – volume: 9 start-page: e19426 year: 2023 ident: 4054_CR15 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e19426 – ident: 4054_CR1 doi: 10.1038/s41598-020-61355-x – volume: 12 start-page: 302 year: 2022 ident: 4054_CR9 publication-title: Sci Rep doi: 10.1038/s41598-021-04419-w – volume: 18 start-page: 2675 year: 2021 ident: 4054_CR13 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-020-02967-8 – volume: 10 start-page: 807 year: 2018 ident: 4054_CR7 publication-title: Water doi: 10.3390/w10060807 – ident: 4054_CR22 doi: 10.1007/s00500-020-05058-5 – volume: 22 start-page: 187 year: 2012 ident: 4054_CR21 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-0940-3 – volume: 37 start-page: 4271 year: 2023 ident: 4054_CR23 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03552-7 – volume: 27 start-page: 38094 year: 2020 ident: 4054_CR6 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09876-w – volume: 15 start-page: 91 year: 2021 ident: 4054_CR11 publication-title: Earth Sci Informatics doi: 10.1007/s12145-021-00689-0 – ident: 4054_CR4 doi: 10.1080/19942060.2023.2243090 – volume-title: Artificial intelligence for suspended sediment load prediction: a review year: 2021 ident: 4054_CR10 – volume: 14 start-page: 10638 year: 2024 ident: 4054_CR17 publication-title: Sci Rep doi: 10.1038/s41598-024-61339-1 – volume: 16 start-page: 1 year: 2022 ident: 4054_CR3 publication-title: Iraqi J Civ Eng doi: 10.37650/ijce.2022.160201 – volume: 38 start-page: 1965 year: 2024 ident: 4054_CR20 publication-title: Water Resour Manag doi: 10.1007/s11269-023-03722-7 – volume: 61 start-page: 279 year: 2022 ident: 4054_CR16 publication-title: Alexandria Eng J doi: 10.1016/j.aej.2021.04.100 – volume: 27 start-page: 1533 year: 2015 ident: 4054_CR26 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1952-6 – volume: 14 start-page: 2815 year: 2022 ident: 4054_CR24 publication-title: Water doi: 10.3390/w14182815 – volume: 79 start-page: 1 year: 2020 ident: 4054_CR14 publication-title: Environ Earth Sci doi: 10.1007/s12665-020-08949-w – volume: 365 start-page: 121660 year: 2024 ident: 4054_CR19 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2024.121660 |
| SSID | ssj0010090 |
| Score | 2.430639 |
| Snippet | The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2033 |
| SubjectTerms | Accuracy Algorithms Atmospheric Sciences Civil Engineering Drought Earth and Environmental Science Earth Sciences Environment Genetic algorithms Geotechnical Engineering & Applied Earth Sciences Hydrogeology Hydrology/Water Resources Neural networks Optimization prediction River discharge River flow Rivers Root-mean-square errors Sediment sediment contamination Sediment load Sediments stakeholders Statistical analysis Suspended load suspended sediment Suspended sediments system optimization water Water discharge |
| Title | A Multi-Functional Genetic Algorithm-Neural Network Model for Predicting Suspended Sediment Loads |
| URI | https://link.springer.com/article/10.1007/s11269-024-04054-w https://www.proquest.com/docview/3184231527 https://www.proquest.com/docview/3206210725 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jIeYGNDdHzIk3hjRrHrOvgxQnSIL02CSuwpusQOIEo7takq7a_f2UlaQAyJ1_jsJP66n313vwPYK1w3E0WseCSzQ65QSW505jhGaIquKXRmfOzwxaU-6avTm-5NHRQ2abzdG5Nk2KkXwW5CakNtescJAhp8tgTLgW-rBcvJz99nx3PrAeGGcLdi6GikSGXWwTKvt_JcIS1Q5gvDaNA3vTXoN19auZk8HEzL7CD_-4LE8b2_8glWawDKkmrGfIYPbrgOK09oCb8AJizE5fIeKb3qrpB5emqqwZLB7Wh8X949BloPKris_MiZT6o2YASB2a-xN_54d2p2NZ2EHLuWXdEzfxHJzkdoJ1-h3zu-PjrhdSoGniupSo6ugwQdIyTAkFtHxyRxaDUKExeRRK2E1Z7pzMaZlZrKMxMVAju5dEajNrazAa3haOg2gdGAKSdFLmIUysYKXY6SWtUxkngRtUE045HmNU-5T5cxSBcMy777Uuq-NHRfOmvD_rzOn4ql403p7WaY03rFTlLa2whZ-iS_bfg-L6a15g0oOHSjKcnISNMROZbdNvxoRnbRxP_f-O194lvwUfo0w8HVbRta5Xjqdgj7lNluPdV3Yakvk3895vr_ |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIAD4inGM0jcIFKTZelynBDTgDEhwSRuldukcBgb2kP8fZys3QABEtfGcaWkqT_H9meAs9zVUpHHikcyrXOFSnKjU8cxQpPXTK5T42uH7zq61VU3T7WnoihsVGa7lyHJ8KeeF7sJqQ3p9IkTBDT4-yIsewIrz5jflY1Z7IBQQ7hZMeQYKTKYRanMzzq-mqM5xvwWFg3WprkB6wVMZI3pvm7Cgutvwdon8sBtwAYL1bO8SaZpeqPHPIk0zWCN3vOAvP6X10C-QQOdabY3863PeoyAKrsf-hCNT3pmD5NR6IRr2QM989eFrD1AO9qBbvPq8bLFi4YJPFNSjTm6KhLAi5DMemYdOTOibjUKE-eRRK2E1Z6PzMaplZrGUxPlAquZdEajNra6C0v9Qd_tAYtNXTkpMhGjUDZW6DKUpFXHSOJ5VAFRrluSFWzivqlFL5nzIPu1Tmitk7DWyXsFzmdz3qZcGn9KH5bbkRTnapTQH4jwn2_FW4HT2TCdCB_mwL4bTEhGRpoc2VjWKnBRbuNcxe9v3P-f-AmstB7v2kn7unN7AKvSNwYOyWmHsDQeTtwRoZVxehw-zg_OKd_A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xkNB4QLCBKD89ibdhEbuuUz9WQAWMVUhQibfoEjsbUkmrNhX_PmcnbdkESLzG54t0dnKffXffARznrpWKPFY8kmmbK1SSG506jhGavGVynRpfO_y7py_76vqh9fCqij9ku89CklVNg2dpKsrTkc1PF4VvQmpD-n0SBYEO_vwFVpQnSqAd3ZedeRyBEES4ZTF0SFLkPOuymbd1_OuaFnjzvxBp8DzdDVivISPrVGu8CUuu-AZrr4gEvwN2WKik5V1yU9XtHvOE0jSDdQZ_huPH8u9TIOKggV6V-c18G7QBI9DKbsc-XOMToNnddBK64lp2R8_81SG7GaKdbEG_e3F_dsnr5gk8U1KVHF0TCexFSC4-s44ONqJtNQoT55FErYTVnpvMxqmVmsZTE-UCm5l0RqM2trkNy8WwcDvAYtNWTopMxCiUjRW6DCVp1TGSeB41QMzslmQ1s7hvcDFIFpzI3tYJ2ToJtk6eG_BzPmdU8Wp8KL0_W46k_sYmCf2NCAv6trwN-DEfpq_DhzywcMMpychI06E2lq0GnMyWcaHi_Tfufk78CFZvz7vJzVXv1x58lb5HcMhT24flcjx1BwRcyvQw7M0X0Sjj_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Functional+Genetic+Algorithm-Neural+Network+Model+for+Predicting+Suspended+Sediment+Loads&rft.jtitle=Water+resources+management&rft.au=Afan%2C+Haitham+Abdulmohsin&rft.au=Wan+Mohtar%2C+Wan+Hanna+Melini&rft.au=Aksoy%2C+Muammer&rft.au=Ahmed%2C+Ali+Najah&rft.date=2025-03-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=39&rft.issue=5&rft.spage=2033&rft.epage=2048&rft_id=info:doi/10.1007%2Fs11269-024-04054-w&rft.externalDocID=10_1007_s11269_024_04054_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |