A Multi-Functional Genetic Algorithm-Neural Network Model for Predicting Suspended Sediment Loads

The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impac...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 39; no. 5; pp. 2033 - 2048
Main Authors Afan, Haitham Abdulmohsin, Wan Mohtar, Wan Hanna Melini, Aksoy, Muammer, Ahmed, Ali Najah, Khaleel, Faidhalrahman, Khan, Md Munir Hayet, Kamel, Ammar Hatem, Sherif, Mohsen, El-Shafie, Ahmed
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-024-04054-w

Cover

Abstract The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R 2 ) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions.
AbstractList The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R²) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions.
The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R 2 ) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions.
The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce the negative impacts of floods and droughts and help inform mitigation efforts for extreme environmental events that have a significant impact on the availability of clean water. In this regard, this study proposes a multifunctional Genetic Algorithm-Neural Network (GA-NN) model to predict the SSL using flow discharge and SSL data at Johor River. Furthermore, a comparison study was conducted between the results obtained with the proposed model and with traditional input selection, as well as another optimization method (GHS algorithm). The findings of this study indicate that the GA-NN model is a proficient instrument for forecasting Suspended Sediment Load (SSL) utilizing river discharge and sediment load data from the Johor River. Furthermore, a superior improvement in prediction accuracy was achieved using the GA algorithm, compared to the traditional input selection and GHS algorithm. Based on several statistical matrices and graphical appraisals, the optimum results were achieved within five inputs by providing low margins of errors in terms of Mean Absolute Error (MAE) of 14.366 and Root Mean Square Error (RMSE) of 24.560 and higher correlation accuracy in terms of coefficient of determination (R2) of 0.911. Thus, the Genetic Algorithm (GA) proved its ability to select input patterns, which is considered a critical step in modeling, as it helps to simplify the process of finding the optimal solution to obtain more accurate predictions.
Author Kamel, Ammar Hatem
Wan Mohtar, Wan Hanna Melini
Khan, Md Munir Hayet
Khaleel, Faidhalrahman
Aksoy, Muammer
Sherif, Mohsen
Afan, Haitham Abdulmohsin
Ahmed, Ali Najah
El-Shafie, Ahmed
Author_xml – sequence: 1
  givenname: Haitham Abdulmohsin
  orcidid: 0000-0002-4957-756X
  surname: Afan
  fullname: Afan, Haitham Abdulmohsin
  email: haitham.afan@uoanbar.edu.iq, haitham.afan@gmail.com
  organization: Upper Euphrates Basin Developing Center, University of Anbar
– sequence: 2
  givenname: Wan Hanna Melini
  surname: Wan Mohtar
  fullname: Wan Mohtar, Wan Hanna Melini
  organization: Department of Civil Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM
– sequence: 3
  givenname: Muammer
  surname: Aksoy
  fullname: Aksoy, Muammer
  organization: Cyber Security Department, College of Sciences, Al-Mustaqbal University, Computer Information Systems Department, Ahmed Bin Mohammed Military College
– sequence: 4
  givenname: Ali Najah
  surname: Ahmed
  fullname: Ahmed, Ali Najah
  organization: Department of Engineering, School of Engineering and Technology, Sunway University
– sequence: 5
  givenname: Faidhalrahman
  surname: Khaleel
  fullname: Khaleel, Faidhalrahman
  organization: Department of Computer Sciences, College of Science, University of Al Maarif
– sequence: 6
  givenname: Md Munir Hayet
  surname: Khan
  fullname: Khan, Md Munir Hayet
  organization: Faculty of Engineering & Quantity Surveying (FEQS), INTI International University (INTI-IU), Persiaran Perdana BBN
– sequence: 7
  givenname: Ammar Hatem
  surname: Kamel
  fullname: Kamel, Ammar Hatem
  organization: Upper Euphrates Basin Developing Center, University of Anbar, Dams and Water Resources Engineering Department, College of Engineering, University of Anbar
– sequence: 8
  givenname: Mohsen
  surname: Sherif
  fullname: Sherif, Mohsen
  organization: National Water and Energy Center, United Arab Emirates University
– sequence: 9
  givenname: Ahmed
  surname: El-Shafie
  fullname: El-Shafie, Ahmed
  organization: National Water and Energy Center, United Arab Emirates University
BookMark eNp9kEFrHCEUgKUk0E3SP9CTkEsuNk_HcdbjEppNYbMtbHsWM77Zms7qVh2W_PuabKCQQ06C7_vE952RkxADEvKZwxcO0F1nzoXSDIRkIKGV7PCBzHjbNYyrFk7IDLQAJjvJP5KznB8BqqZhRuyC3k9j8ex2Cn3xMdiRLjFg8T1djNuYfPm9Y2ucUh2ssRxi-kPvo8ORDjHRHwmdr17Y0s2U9xgcOrqpdzsMha6idfmCnA52zPjp9Twnv26__ry5Y6vvy283ixXrpZCFWWwsbwHsXEDvUGrN505ZrrsBhFWSOyVly1334ISq8wcNA7dNL1Arq7RrzsnV8d19in8nzMXsfO5xHG3AOGXTCFCCQyfail6-QR_jlOrqleJzKRreiq5S8yPVp5hzwsH0vtjnRiVZPxoO5rm9ObY3tb15aW8OVRVv1H3yO5ue3peao5QrHLaY_v_qHesfSjKY-Q
CitedBy_id crossref_primary_10_1007_s11269_025_04108_7
crossref_primary_10_1007_s11269_025_04112_x
Cites_doi 10.1007/s11270-021-04989-5
10.1016/j.suscom.2021.100514
10.1016/j.eswa.2023.120844
10.1016/j.jhydrol.2017.07.008
10.1109/ICCTD.2009.130
10.1016/j.heliyon.2023.e18506
10.1016/j.heliyon.2023.e19426
10.1038/s41598-020-61355-x
10.1038/s41598-021-04419-w
10.1007/s13762-020-02967-8
10.3390/w10060807
10.1007/s00500-020-05058-5
10.1007/s00521-012-0940-3
10.1007/s11269-023-03552-7
10.1007/s11356-020-09876-w
10.1007/s12145-021-00689-0
10.1080/19942060.2023.2243090
10.1038/s41598-024-61339-1
10.37650/ijce.2022.160201
10.1007/s11269-023-03722-7
10.1016/j.aej.2021.04.100
10.1007/s00521-015-1952-6
10.3390/w14182815
10.1007/s12665-020-08949-w
10.1016/j.jenvman.2024.121660
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
DOI 10.1007/s11269-024-04054-w
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 2048
ExternalDocumentID 10_1007_s11269_024_04054_w
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~A9
~EX
~KM
AAYXX
ABBRH
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c424t-ae3a1500a820cde49918d6a197f02a641d64451d7bd26de4b90f1a3c2e96a69d3
IEDL.DBID AGYKE
ISSN 0920-4741
IngestDate Fri Jul 11 17:30:10 EDT 2025
Fri Jul 25 19:07:15 EDT 2025
Wed Oct 01 06:36:13 EDT 2025
Thu Apr 24 22:54:32 EDT 2025
Tue Apr 01 01:16:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Sediment Load Prediction
Neural Network
Johor River
Artificial Intelligence
Genetic Algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-ae3a1500a820cde49918d6a197f02a641d64451d7bd26de4b90f1a3c2e96a69d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4957-756X
PQID 3184231527
PQPubID 54174
PageCount 16
ParticipantIDs proquest_miscellaneous_3206210725
proquest_journals_3184231527
crossref_citationtrail_10_1007_s11269_024_04054_w
crossref_primary_10_1007_s11269_024_04054_w
springer_journals_10_1007_s11269_024_04054_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References BB Sahoo (4054_CR23) 2023; 37
B Joshi (4054_CR17) 2024; 14
BB Hazarika (4054_CR12) 2023; 232
HA Afan (4054_CR2) 2017; 552
4054_CR25
D Gupta (4054_CR10) 2021
4054_CR22
BB Hazarika (4054_CR14) 2020; 79
ZMZM Yaseen (4054_CR26) 2015; 27
A Moradinejad (4054_CR20) 2024; 38
KSMH Ibrahim (4054_CR16) 2022; 61
4054_CR1
MF Allawi (4054_CR5) 2023; 9
Y Essam (4054_CR9) 2022; 12
BB Hazarika (4054_CR13) 2021; 18
4054_CR4
A Ali (4054_CR3) 2022; 16
4054_CR8
A Najah (4054_CR21) 2012; 22
T Matos (4054_CR19) 2024; 365
M Ehteram (4054_CR7) 2018; 10
MS Hanoon (4054_CR11) 2021; 15
AH Kamel (4054_CR18) 2021; 30
A Yadav (4054_CR24) 2022; 14
NA Hazrin (4054_CR15) 2023; 9
FB Banadkooki (4054_CR6) 2020; 27
References_xml – ident: 4054_CR25
  doi: 10.1007/s11270-021-04989-5
– volume: 30
  start-page: 100514
  year: 2021
  ident: 4054_CR18
  publication-title: Sustain Comput Informatics Syst
  doi: 10.1016/j.suscom.2021.100514
– volume: 232
  start-page: 120844
  year: 2023
  ident: 4054_CR12
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120844
– volume: 552
  start-page: 366
  year: 2017
  ident: 4054_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.07.008
– ident: 4054_CR8
  doi: 10.1109/ICCTD.2009.130
– volume: 9
  start-page: e18506
  year: 2023
  ident: 4054_CR5
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e18506
– volume: 9
  start-page: e19426
  year: 2023
  ident: 4054_CR15
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e19426
– ident: 4054_CR1
  doi: 10.1038/s41598-020-61355-x
– volume: 12
  start-page: 302
  year: 2022
  ident: 4054_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04419-w
– volume: 18
  start-page: 2675
  year: 2021
  ident: 4054_CR13
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-020-02967-8
– volume: 10
  start-page: 807
  year: 2018
  ident: 4054_CR7
  publication-title: Water
  doi: 10.3390/w10060807
– ident: 4054_CR22
  doi: 10.1007/s00500-020-05058-5
– volume: 22
  start-page: 187
  year: 2012
  ident: 4054_CR21
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-0940-3
– volume: 37
  start-page: 4271
  year: 2023
  ident: 4054_CR23
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03552-7
– volume: 27
  start-page: 38094
  year: 2020
  ident: 4054_CR6
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09876-w
– volume: 15
  start-page: 91
  year: 2021
  ident: 4054_CR11
  publication-title: Earth Sci Informatics
  doi: 10.1007/s12145-021-00689-0
– ident: 4054_CR4
  doi: 10.1080/19942060.2023.2243090
– volume-title: Artificial intelligence for suspended sediment load prediction: a review
  year: 2021
  ident: 4054_CR10
– volume: 14
  start-page: 10638
  year: 2024
  ident: 4054_CR17
  publication-title: Sci Rep
  doi: 10.1038/s41598-024-61339-1
– volume: 16
  start-page: 1
  year: 2022
  ident: 4054_CR3
  publication-title: Iraqi J Civ Eng
  doi: 10.37650/ijce.2022.160201
– volume: 38
  start-page: 1965
  year: 2024
  ident: 4054_CR20
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-023-03722-7
– volume: 61
  start-page: 279
  year: 2022
  ident: 4054_CR16
  publication-title: Alexandria Eng J
  doi: 10.1016/j.aej.2021.04.100
– volume: 27
  start-page: 1533
  year: 2015
  ident: 4054_CR26
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1952-6
– volume: 14
  start-page: 2815
  year: 2022
  ident: 4054_CR24
  publication-title: Water
  doi: 10.3390/w14182815
– volume: 79
  start-page: 1
  year: 2020
  ident: 4054_CR14
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-020-08949-w
– volume: 365
  start-page: 121660
  year: 2024
  ident: 4054_CR19
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2024.121660
SSID ssj0010090
Score 2.430639
Snippet The ability to accurately predict suspended sediment load (SSL) in a river is vital for various stakeholders. Predicting SSL can help inform efforts to reduce...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2033
SubjectTerms Accuracy
Algorithms
Atmospheric Sciences
Civil Engineering
Drought
Earth and Environmental Science
Earth Sciences
Environment
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrology/Water Resources
Neural networks
Optimization
prediction
River discharge
River flow
Rivers
Root-mean-square errors
Sediment
sediment contamination
Sediment load
Sediments
stakeholders
Statistical analysis
Suspended load
suspended sediment
Suspended sediments
system optimization
water
Water discharge
Title A Multi-Functional Genetic Algorithm-Neural Network Model for Predicting Suspended Sediment Loads
URI https://link.springer.com/article/10.1007/s11269-024-04054-w
https://www.proquest.com/docview/3184231527
https://www.proquest.com/docview/3206210725
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jIeYGNDdHzIk3hjRrHrOvgxQnSIL02CSuwpusQOIEo7takq7a_f2UlaQAyJ1_jsJP66n313vwPYK1w3E0WseCSzQ65QSW505jhGaIquKXRmfOzwxaU-6avTm-5NHRQ2abzdG5Nk2KkXwW5CakNtescJAhp8tgTLgW-rBcvJz99nx3PrAeGGcLdi6GikSGXWwTKvt_JcIS1Q5gvDaNA3vTXoN19auZk8HEzL7CD_-4LE8b2_8glWawDKkmrGfIYPbrgOK09oCb8AJizE5fIeKb3qrpB5emqqwZLB7Wh8X949BloPKris_MiZT6o2YASB2a-xN_54d2p2NZ2EHLuWXdEzfxHJzkdoJ1-h3zu-PjrhdSoGniupSo6ugwQdIyTAkFtHxyRxaDUKExeRRK2E1Z7pzMaZlZrKMxMVAju5dEajNrazAa3haOg2gdGAKSdFLmIUysYKXY6SWtUxkngRtUE045HmNU-5T5cxSBcMy777Uuq-NHRfOmvD_rzOn4ql403p7WaY03rFTlLa2whZ-iS_bfg-L6a15g0oOHSjKcnISNMROZbdNvxoRnbRxP_f-O194lvwUfo0w8HVbRta5Xjqdgj7lNluPdV3Yakvk3895vr_
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIAD4inGM0jcIFKTZelynBDTgDEhwSRuldukcBgb2kP8fZys3QABEtfGcaWkqT_H9meAs9zVUpHHikcyrXOFSnKjU8cxQpPXTK5T42uH7zq61VU3T7WnoihsVGa7lyHJ8KeeF7sJqQ3p9IkTBDT4-yIsewIrz5jflY1Z7IBQQ7hZMeQYKTKYRanMzzq-mqM5xvwWFg3WprkB6wVMZI3pvm7Cgutvwdon8sBtwAYL1bO8SaZpeqPHPIk0zWCN3vOAvP6X10C-QQOdabY3863PeoyAKrsf-hCNT3pmD5NR6IRr2QM989eFrD1AO9qBbvPq8bLFi4YJPFNSjTm6KhLAi5DMemYdOTOibjUKE-eRRK2E1Z6PzMaplZrGUxPlAquZdEajNra6C0v9Qd_tAYtNXTkpMhGjUDZW6DKUpFXHSOJ5VAFRrluSFWzivqlFL5nzIPu1Tmitk7DWyXsFzmdz3qZcGn9KH5bbkRTnapTQH4jwn2_FW4HT2TCdCB_mwL4bTEhGRpoc2VjWKnBRbuNcxe9v3P-f-AmstB7v2kn7unN7AKvSNwYOyWmHsDQeTtwRoZVxehw-zg_OKd_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xkNB4QLCBKD89ibdhEbuuUz9WQAWMVUhQibfoEjsbUkmrNhX_PmcnbdkESLzG54t0dnKffXffARznrpWKPFY8kmmbK1SSG506jhGavGVynRpfO_y7py_76vqh9fCqij9ku89CklVNg2dpKsrTkc1PF4VvQmpD-n0SBYEO_vwFVpQnSqAd3ZedeRyBEES4ZTF0SFLkPOuymbd1_OuaFnjzvxBp8DzdDVivISPrVGu8CUuu-AZrr4gEvwN2WKik5V1yU9XtHvOE0jSDdQZ_huPH8u9TIOKggV6V-c18G7QBI9DKbsc-XOMToNnddBK64lp2R8_81SG7GaKdbEG_e3F_dsnr5gk8U1KVHF0TCexFSC4-s44ONqJtNQoT55FErYTVnpvMxqmVmsZTE-UCm5l0RqM2trkNy8WwcDvAYtNWTopMxCiUjRW6DCVp1TGSeB41QMzslmQ1s7hvcDFIFpzI3tYJ2ToJtk6eG_BzPmdU8Wp8KL0_W46k_sYmCf2NCAv6trwN-DEfpq_DhzywcMMpychI06E2lq0GnMyWcaHi_Tfufk78CFZvz7vJzVXv1x58lb5HcMhT24flcjx1BwRcyvQw7M0X0Sjj_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Multi-Functional+Genetic+Algorithm-Neural+Network+Model+for+Predicting+Suspended+Sediment+Loads&rft.jtitle=Water+resources+management&rft.au=Afan%2C+Haitham+Abdulmohsin&rft.au=Wan+Mohtar%2C+Wan+Hanna+Melini&rft.au=Aksoy%2C+Muammer&rft.au=Ahmed%2C+Ali+Najah&rft.date=2025-03-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=39&rft.issue=5&rft.spage=2033&rft.epage=2048&rft_id=info:doi/10.1007%2Fs11269-024-04054-w&rft.externalDocID=10_1007_s11269_024_04054_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon