Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms

The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resol...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing of environment Vol. 239; p. 111616
Main Authors Min, Min, Li, Jun, Wang, Fu, Liu, Zijing, Menzel, W. Paul
Format Journal Article
LanguageEnglish
Published New York Elsevier Inc 15.03.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0034-4257
1879-0704
DOI10.1016/j.rse.2019.111616

Cover

Abstract The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications. •A novel machine learning algorithm to retrieve cloud top height using Himawari-8•Significant improvements in cloud top height product from machine learning algorithm•A joint algorithm further reduces uncertainty in cloud top height.
AbstractList The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications. •A novel machine learning algorithm to retrieve cloud top height using Himawari-8•Significant improvements in cloud top height product from machine learning algorithm•A joint algorithm further reduces uncertainty in cloud top height.
The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications.
ArticleNumber 111616
Author Li, Jun
Liu, Zijing
Wang, Fu
Menzel, W. Paul
Min, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Min
  fullname: Min, Min
  organization: School of Atmospheric Sciences and Guangdong Province Key laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China
– sequence: 2
  givenname: Jun
  surname: Li
  fullname: Li, Jun
  email: Jun.Li@ssec.wisc.edu
  organization: Cooperative Institute for Meteorological Satellite Study (CIMSS), University of Wisconsin-Madison, Madison, WI, USA
– sequence: 3
  givenname: Fu
  surname: Wang
  fullname: Wang, Fu
  organization: Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES/CMA), National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing 100081, China
– sequence: 4
  givenname: Zijing
  surname: Liu
  fullname: Liu, Zijing
  organization: Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES/CMA), National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing 100081, China
– sequence: 5
  givenname: W. Paul
  surname: Menzel
  fullname: Menzel, W. Paul
  organization: Cooperative Institute for Meteorological Satellite Study (CIMSS), University of Wisconsin-Madison, Madison, WI, USA
BookMark eNp9kT1rHDEQhkVwIGcnPyCdIE2aPetzpSVVMPkCgyEktZjTzp117EoXSXvgLj89OjaVC1cD4n3EzPtck6uYIhLynrMtZ7y_PW5zwa1gfNhyznvevyIbbs3QMcPUFdkwJlWnhDZvyHUpR8a4toZvyN-fWHPAM0w07amf0jLSmk70lNMJcw1Y6D6nmcJ4huhxpAdMpUINKUJ-ogUqTlOoSMMMB8x0RihLxhljLXQHpREp0hn8Y4hIJ4QcQzxQmA4ph_o4l7fk9R6mgu_-zxvy--uXX3ffu_uHbz_uPt93XglVO-mFxh33ApRVwnvhFdfCStvz9qhA6R0CaKn6XlnNYDAa5a4f-wEHJsZB3pCP67_tsj8LlurmUHxbHiKmpTghrTXa2F616Idn0WNacmzbtZQxUio76JYya8rnVErGvfNhLaZmCJPjzF3MuKNrZtzFjFvNNJI_I0-51ZefXmQ-rQy2js4Bsys-4MVIyOirG1N4gf4HfXeqLg
CitedBy_id crossref_primary_10_1109_TGRS_2024_3461733
crossref_primary_10_1016_j_rse_2022_113425
crossref_primary_10_1364_OE_482762
crossref_primary_10_1007_s13351_024_3138_6
crossref_primary_10_3390_rs15020498
crossref_primary_10_1016_j_rse_2023_113548
crossref_primary_10_1175_JAS_D_20_0198_1
crossref_primary_10_1007_s13351_025_4107_4
crossref_primary_10_1109_TGRS_2023_3252023
crossref_primary_10_3390_atmos14030493
crossref_primary_10_1109_TGRS_2022_3153129
crossref_primary_10_1007_s00376_021_1088_9
crossref_primary_10_1080_17538947_2022_2130460
crossref_primary_10_3390_rs15133424
crossref_primary_10_1016_j_asr_2024_03_047
crossref_primary_10_1016_j_rse_2020_111842
crossref_primary_10_1016_j_rse_2023_113622
crossref_primary_10_1016_j_rse_2022_112971
crossref_primary_10_1016_j_rse_2022_113026
crossref_primary_10_1016_j_rse_2022_112970
crossref_primary_10_1029_2020JD032683
crossref_primary_10_1080_01431161_2022_2099770
crossref_primary_10_3390_rs13112229
crossref_primary_10_1109_TGRS_2022_3160450
crossref_primary_10_5194_amt_17_7129_2024
crossref_primary_10_1109_TGRS_2024_3369621
crossref_primary_10_1016_j_atmosres_2023_106899
crossref_primary_10_1038_s41597_025_04659_9
crossref_primary_10_1109_TGRS_2022_3170054
crossref_primary_10_1109_TGRS_2022_3140348
crossref_primary_10_1109_TGRS_2023_3256365
crossref_primary_10_3390_rs14246367
crossref_primary_10_3390_rs13163120
crossref_primary_10_3390_s20082394
crossref_primary_10_1029_2024GL112252
crossref_primary_10_1029_2024GL109772
crossref_primary_10_1038_s41467_023_44666_1
crossref_primary_10_1109_TGRS_2023_3318374
crossref_primary_10_3390_rs13122251
crossref_primary_10_1016_j_rse_2025_114622
crossref_primary_10_3390_rs17061083
crossref_primary_10_3788_AOS230605
crossref_primary_10_1016_j_rse_2022_113079
crossref_primary_10_1029_2024JD041032
crossref_primary_10_1126_sciadv_abn3488
crossref_primary_10_3390_atmos12020173
crossref_primary_10_3390_rs17020337
crossref_primary_10_3390_rs13152855
crossref_primary_10_3389_fclim_2021_656505
crossref_primary_10_1016_j_envint_2023_107941
crossref_primary_10_3788_AOS220957
crossref_primary_10_1109_JSTARS_2025_3535762
crossref_primary_10_1007_s00382_021_05991_7
crossref_primary_10_1016_j_atmosenv_2022_119065
crossref_primary_10_1109_LGRS_2021_3081920
crossref_primary_10_5194_acp_21_17003_2021
crossref_primary_10_1007_s00376_021_0431_5
crossref_primary_10_1029_2022JD037216
crossref_primary_10_1109_TGRS_2024_3353373
crossref_primary_10_1109_TGRS_2022_3172228
crossref_primary_10_1029_2023JD039491
crossref_primary_10_5194_essd_16_4949_2024
crossref_primary_10_1029_2022JD036760
crossref_primary_10_3390_s24020541
crossref_primary_10_1109_LGRS_2024_3422976
crossref_primary_10_3390_rs13081418
crossref_primary_10_1016_j_solener_2022_01_004
crossref_primary_10_3788_AOS241024
crossref_primary_10_1016_j_earscirev_2023_104633
crossref_primary_10_1109_TGRS_2024_3458052
crossref_primary_10_3390_atmos14020228
crossref_primary_10_1007_s13351_024_3089_y
crossref_primary_10_1007_s00376_024_4206_7
crossref_primary_10_3390_rs15041141
crossref_primary_10_1007_s00376_023_2382_5
crossref_primary_10_3389_fclim_2021_656479
crossref_primary_10_5194_amt_16_5953_2023
crossref_primary_10_1109_TGRS_2024_3494743
crossref_primary_10_1016_j_phycom_2020_101215
crossref_primary_10_5194_acp_24_14239_2024
crossref_primary_10_1109_JSTARS_2020_3014136
crossref_primary_10_1007_s00376_021_0425_3
crossref_primary_10_1080_01431161_2020_1854891
crossref_primary_10_1016_j_rse_2025_114600
crossref_primary_10_1016_j_rse_2023_113633
Cites_doi 10.1175/JAMC-D-11-0203.1
10.1175/2009JTECHA1248.1
10.1002/2016JD026273
10.5194/amt-12-703-2019
10.5194/amt-11-6107-2018
10.1007/s13351-017-6161-z
10.1175/2008JAMC1882.1
10.1126/science.276.5315.1072
10.1016/S0167-9473(01)00065-2
10.1175/2010BAMS3009.1
10.1016/j.jqsrt.2018.01.034
10.1175/JAMC-D-11-02.1
10.1175/JAMC-D-14-0082.1
10.1029/RG014i004p00609
10.1016/j.isprsjprs.2010.11.001
10.1175/BAMS-86-8-1079
10.1175/2007JAMC1705.1
10.1364/AO.44.005512
10.1090/qam/10666
10.1016/S0925-2312(02)00577-5
10.1175/JAS3949.1
10.1364/AO.27.003244
10.1175/2009JTECHA1281.1
10.5194/amt-11-3177-2018
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1016/j.rse.2018.05.011
10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2
10.1109/TGRS.2018.2874950
10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2
10.3390/rs11040383
10.1029/2007GL032591
10.1016/S0003-2670(01)95359-0
10.1109/LGRS.2018.2876895
10.1175/BAMS-D-16-0065.1
10.1109/TGRS.2018.2882803
10.1029/2007GL030676
10.1080/00031305.1992.10475879
10.1109/TGRS.2019.2923247
10.1002/grl.50836
10.1016/j.jqsrt.2014.03.014
10.1175/BAMS-83-12-1771
10.1016/j.rse.2013.10.026
10.1175/JAS-D-12-039.1
10.1080/01431161.2013.871393
ContentType Journal Article
Copyright 2019
Copyright Elsevier BV Mar 15, 2020
Copyright_xml – notice: 2019
– notice: Copyright Elsevier BV Mar 15, 2020
DBID AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
DOI 10.1016/j.rse.2019.111616
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Meteorological & Geoastrophysical Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Meteorological & Geoastrophysical Abstracts
Biotechnology Research Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
EISSN 1879-0704
ExternalDocumentID 10_1016_j_rse_2019_111616
S0034425719306364
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
SEW
VOH
WUQ
XOL
~HD
7QF
7QO
7QQ
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7TG
7U5
8BQ
8FD
AGCQF
C1K
F28
FR3
H8D
H8G
JG9
JQ2
KL.
KR7
L7M
L~C
L~D
P64
7S9
L.6
ID FETCH-LOGICAL-c424t-3c25eb1c2a4842cc2c4152838611c24a45beaa534664850a975e3b6d69e902d93
IEDL.DBID .~1
ISSN 0034-4257
IngestDate Thu Oct 02 06:55:44 EDT 2025
Wed Aug 13 04:30:29 EDT 2025
Wed Oct 01 05:16:37 EDT 2025
Thu Apr 24 22:57:31 EDT 2025
Fri Feb 23 02:48:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cloud top height
Himawari-8
CALIPSO
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c424t-3c25eb1c2a4842cc2c4152838611c24a45beaa534664850a975e3b6d69e902d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2377334895
PQPubID 2045405
ParticipantIDs proquest_miscellaneous_2388757864
proquest_journals_2377334895
crossref_citationtrail_10_1016_j_rse_2019_111616
crossref_primary_10_1016_j_rse_2019_111616
elsevier_sciencedirect_doi_10_1016_j_rse_2019_111616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-15
PublicationDateYYYYMMDD 2020-03-15
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-15
  day: 15
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Remote sensing of environment
PublicationYear 2020
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Weisz, Li, Menzel, Heidinger, Kahn, Liu (bb0240) 2007; 34
Håkansson, Adok, Thoss, Scheirer, Hörnquist (bb0065) 2018; 11
Eyre, Woolf (bb0055) 1988; 27
Holz, Ackerman, Nagle, Frey, Dutcher, Kuehn, Vaughan, Baum (bb0090) 2008; 113
Min, Zhang (bb0165) 2014; 142
Sassen, Wang, David, Starr, Comstock, Quante (bb0210) 2007; 64
Cao (bb0035) 2003; 51
Altman (bb0005) 1992; 46
Kühnlein, Appelhans, Thies, Nauß (bb0115) 2014; 53
Min, Bai, Guo, Sun, Liu, Wang, Xu, Tang, Li, Di, Dong, Li (bb0185) 2019; 57
Li, Menzel, Schreiner (bb0130) 2001; 40
Rodgers (bb0195) 1976; 60
Yao, Wang, Min, Zhang, Guo, Yu, Chen, Zhao, Wang (bb0270) 2018; 210
Min, Wang, Campbell, Zong, Li (bb0170) 2010; 115
Coomans, Massart (bb0045) 1982; 136
Heidinger (bb0070) 2011
Friedman (bb0060) 2002; 38
Li, Jian, Huang, Hu, Zhao, Kawamoto, Liao, Wu (bb0145) 2018; 213
Li, Yi, Stamnes, Ding, Wang, Jin, Wang (bb0135) 2013; 40
Baum, Menzel, Frey, Tobin, Holz, Ackerman (bb0015) 2012; 51
Sassen, Wang (bb0205) 2008; 35
Kanamitsu (bb0105) 1989; 4
Heidinger, Pavolonis, Holz, Baum, Berthier (bb0080) 2010; 115
Min, Wu, Li, Liu, Xu, Wu, Chen, Wang, Sun, Qin, Wang, Li, Zheng, Cao, Dong (bb0180) 2017; 31
Wang, Min, Wang, Guo, Li, Tang (bb0235) 2019; 57
Yang, Wei, Huang, Baum, Hu, Kattawar, Mishchenko, Fu (bb0255) 2005; 44
Mountrakis, Im, Ogole (bb0190) 2011; 66
Schmit, Gunshor, Menzel, Li, Bachmeier (bb0215) 2005; 86
Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Iredell, Saha, White, Woollen (bb0100) 1996; 77
Schmit, Li, Ackerman, Gurka (bb0220) 2009; 26
Levenberg (bb0125) 1944; 2
Winker, Pelon, Coakley, Ackerman, Charlson, Colarco, Flamant, Fu, Hoff, Kittaka (bb0250) 2010; 91
Yang, Zhang, Wei, Lu, Guo (bb0265) 2017; 98
Kühnlein, Appelhans, Thies, Nauss (bb0120) 2014; 141
Sun, Min, Qin, Wang, Hu (bb0230) 2019; 16
Liu, Min, Li, Sun, Di, Ai, Li, Qin, Li, Lin, Zhang (bb0155) 2019; 11
Li, Li, Wang, Schmit, Bai, Atlas (bb0140) 2017; 122
Heidinger, Evan, Foster, Walther (bb0085) 2012; 51
Winker, Vaughan, Omar, Hu, Powell, Liu, Hunt, Young (bb0245) 2009; 26
Breiman (bb0025) 2001; 45
Baker (bb0010) 1997; 267
Heidinger, Pavolonis (bb0075) 2009; 48
Breiman, Cutler (bb0030) 2013
Husi, Nagao, Nakajima, Riedi, Ishimoto, Baran, Shang, Sekiguchi, Kikuchi (bb0095) 2019; 57
Kim, Omar, Tackett, Vaughan, Winker, Trepte, Hu, Liu, Poole, Pitts, Kar, Magill (bb0110) 2018; 11
Drucker, Burges, Kaufman, Smola, Vapnik (bb0050) 1997
Baum, Menzel, Frey, Tobin, Holz, Ackerman, Heidinger, Yang (bb0020) 2012; 51
Menzel, Frey, Zhang, Wylie, Moeller, Holz, Maddux, Baum, Strabala, Gumley (bb0160) 2008; 47
Rodgers (bb0200) 2000
Chen, Guo, Wang, Li, Min, Zhao, Yao (bb0040) 2018; 123
Liu, Kar, Zeng, Tackett, Vaughan, Avery, Pelon, Getzewich, Lee, Magill, Omar, Lucker, Trepte, Winker (bb0150) 2019; 12
Yang, Bi, Baum, Liou, Kattawar, Mishchenko, Cole (bb0260) 2013; 70
Min, Zhang, Rong, Dong (bb0175) 2014; 35
Stephens, Vane, Boain, Mace, Sassen (bb0225) 2002; 83
Heidinger (10.1016/j.rse.2019.111616_bb0080) 2010; 115
Håkansson (10.1016/j.rse.2019.111616_bb0065) 2018; 11
Holz (10.1016/j.rse.2019.111616_bb0090) 2008; 113
Sassen (10.1016/j.rse.2019.111616_bb0210) 2007; 64
Breiman (10.1016/j.rse.2019.111616_bb0025) 2001; 45
Yao (10.1016/j.rse.2019.111616_bb0270) 2018; 210
Menzel (10.1016/j.rse.2019.111616_bb0160) 2008; 47
Kühnlein (10.1016/j.rse.2019.111616_bb0115) 2014; 53
Friedman (10.1016/j.rse.2019.111616_bb0060) 2002; 38
Schmit (10.1016/j.rse.2019.111616_bb0215) 2005; 86
Yang (10.1016/j.rse.2019.111616_bb0260) 2013; 70
Yang (10.1016/j.rse.2019.111616_bb0265) 2017; 98
Li (10.1016/j.rse.2019.111616_bb0135) 2013; 40
Min (10.1016/j.rse.2019.111616_bb0180) 2017; 31
Kim (10.1016/j.rse.2019.111616_bb0110) 2018; 11
Schmit (10.1016/j.rse.2019.111616_bb0220) 2009; 26
Wang (10.1016/j.rse.2019.111616_bb0235) 2019; 57
Min (10.1016/j.rse.2019.111616_bb0170) 2010; 115
Mountrakis (10.1016/j.rse.2019.111616_bb0190) 2011; 66
Min (10.1016/j.rse.2019.111616_bb0185) 2019; 57
Winker (10.1016/j.rse.2019.111616_bb0250) 2010; 91
Li (10.1016/j.rse.2019.111616_bb0130) 2001; 40
Chen (10.1016/j.rse.2019.111616_bb0040) 2018; 123
Li (10.1016/j.rse.2019.111616_bb0145) 2018; 213
Min (10.1016/j.rse.2019.111616_bb0165) 2014; 142
Min (10.1016/j.rse.2019.111616_bb0175) 2014; 35
Weisz (10.1016/j.rse.2019.111616_bb0240) 2007; 34
Coomans (10.1016/j.rse.2019.111616_bb0045) 1982; 136
Rodgers (10.1016/j.rse.2019.111616_bb0200) 2000
Sun (10.1016/j.rse.2019.111616_bb0230) 2019; 16
Stephens (10.1016/j.rse.2019.111616_bb0225) 2002; 83
Liu (10.1016/j.rse.2019.111616_bb0155) 2019; 11
Winker (10.1016/j.rse.2019.111616_bb0245) 2009; 26
Sassen (10.1016/j.rse.2019.111616_bb0205) 2008; 35
Cao (10.1016/j.rse.2019.111616_bb0035) 2003; 51
Heidinger (10.1016/j.rse.2019.111616_bb0075) 2009; 48
Altman (10.1016/j.rse.2019.111616_bb0005) 1992; 46
Baum (10.1016/j.rse.2019.111616_bb0015) 2012; 51
Baker (10.1016/j.rse.2019.111616_bb0010) 1997; 267
Levenberg (10.1016/j.rse.2019.111616_bb0125) 1944; 2
Kühnlein (10.1016/j.rse.2019.111616_bb0120) 2014; 141
Kalnay (10.1016/j.rse.2019.111616_bb0100) 1996; 77
Drucker (10.1016/j.rse.2019.111616_bb0050) 1997
Baum (10.1016/j.rse.2019.111616_bb0020) 2012; 51
Rodgers (10.1016/j.rse.2019.111616_bb0195) 1976; 60
Breiman (10.1016/j.rse.2019.111616_bb0030)
Heidinger (10.1016/j.rse.2019.111616_bb0070) 2011
Liu (10.1016/j.rse.2019.111616_bb0150) 2019; 12
Heidinger (10.1016/j.rse.2019.111616_bb0085) 2012; 51
Husi (10.1016/j.rse.2019.111616_bb0095) 2019; 57
Yang (10.1016/j.rse.2019.111616_bb0255) 2005; 44
Li (10.1016/j.rse.2019.111616_bb0140) 2017; 122
Kanamitsu (10.1016/j.rse.2019.111616_bb0105) 1989; 4
Eyre (10.1016/j.rse.2019.111616_bb0055) 1988; 27
References_xml – start-page: 1
  year: 2011
  end-page: 77
  ident: bb0070
  article-title: ABI cloud height
  publication-title: GOES-R Algorithm Theoretical Basis Document (ATBD)
– volume: 47
  start-page: 1175
  year: 2008
  end-page: 1198
  ident: bb0160
  article-title: MODIS global cloud-top pressure and amount estimation: algorithm description and results
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 53
  start-page: 2457
  year: 2014
  end-page: 2480
  ident: bb0115
  article-title: Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 38
  year: 2002
  ident: bb0060
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
– volume: 115
  start-page: D00H20
  year: 2010
  ident: bb0080
  article-title: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI
  publication-title: J. Geophys. Res.
– volume: 210
  start-page: 180
  year: 2018
  end-page: 188
  ident: bb0270
  article-title: Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 51
  start-page: 321
  year: 2003
  end-page: 339
  ident: bb0035
  article-title: Support vector machines experts for time series forecasting
  publication-title: Neurocomputing
– volume: 77
  start-page: 437
  year: 1996
  end-page: 471
  ident: bb0100
  article-title: The NCEP/NCAR 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 51
  start-page: 1129
  year: 2012
  end-page: 1144
  ident: bb0085
  article-title: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 141
  start-page: 129
  year: 2014
  end-page: 143
  ident: bb0120
  article-title: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — a random forests-based approach applied to MSG SEVIRI
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 1145
  year: 2012
  end-page: 1163
  ident: bb0020
  article-title: MODIS cloud top property refinements for Collection 6
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 11
  start-page: 383
  year: 2019
  end-page: 402
  ident: bb0155
  article-title: Local severe storm tracking and warning in pre-convection stage from the new generation geostationary weather satellite measurements
  publication-title: Remote Sens.
– volume: 4
  start-page: 335
  year: 1989
  end-page: 342
  ident: bb0105
  article-title: Description of the NMC global data assimilation and forecast system
  publication-title: Weather Forecast.
– volume: 40
  start-page: 312
  year: 2001
  end-page: 330
  ident: bb0130
  article-title: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements
  publication-title: J. Appl. Meteorol.
– volume: 57
  start-page: 8827
  year: 2019
  end-page: 8839
  ident: bb0235
  article-title: Intercomparisons of cloud mask product among Fengyun-4A, Himawari-8 and MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2013
  ident: bb0030
  article-title: Random Forests–Classification Manual
– volume: 31
  start-page: 708
  year: 2017
  end-page: 719
  ident: bb0180
  article-title: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series
  publication-title: J. Meteorol. Res.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bb0005
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 11
  start-page: 6107
  year: 2018
  end-page: 6135
  ident: bb0110
  article-title: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm
  publication-title: Atmos. Meas. Tech.
– volume: 35
  start-page: 1
  year: 2008
  end-page: 5
  ident: bb0205
  article-title: Classifying clouds around the globe with the CloudSat radar: 1-year of results
  publication-title: Geophys. Res. Lett.
– volume: 86
  start-page: 1079
  year: 2005
  end-page: 1096
  ident: bb0215
  article-title: Introducting the next-generation advanced baseline imager (ABI) on GOES-R
  publication-title: Bull. Am. Meteorol. Soc.
– start-page: 155
  year: 1997
  end-page: 161
  ident: bb0050
  article-title: Support vector regression machines
  publication-title: Advances in Neural Information Processing Systems 9, NIPS 1996
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: bb0190
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 12
  start-page: 703
  year: 2019
  end-page: 734
  ident: bb0150
  article-title: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products
  publication-title: Atmos. Meas. Tech.
– volume: 70
  start-page: 330
  year: 2013
  end-page: 347
  ident: bb0260
  article-title: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm
  publication-title: J. Atmos. Sci.
– volume: 142
  start-page: 25
  year: 2014
  end-page: 36
  ident: bb0165
  article-title: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
– volume: 26
  start-page: 2273
  year: 2009
  end-page: 2292
  ident: bb0220
  article-title: High spectral and high temporal resolution infrared measurements from geostationary orbit
  publication-title: J. Atmos. Ocean. Technol.
– volume: 48
  start-page: 1110
  year: 2009
  end-page: 1116
  ident: bb0075
  article-title: Gazing at cirrus clouds for 25 years through a split window, part 1: methodology
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 44
  start-page: 5512
  year: 2005
  end-page: 5523
  ident: bb0255
  article-title: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region
  publication-title: Appl. Opt.
– volume: 267
  start-page: 1072
  year: 1997
  end-page: 1078
  ident: bb0010
  article-title: Cloud microphysics and climate
  publication-title: Science
– volume: 27
  start-page: 3244
  year: 1988
  end-page: 3249
  ident: bb0055
  article-title: Transmittance of atmospheric gases in the microwave region: a fast model
  publication-title: Appl. Opt.
– volume: 11
  start-page: 3177
  year: 2018
  end-page: 3196
  ident: bb0065
  article-title: Neural network cloud top pressure and height for MODIS
  publication-title: Atmos. Meas. Tech.
– volume: 123
  start-page: 1
  year: 2018
  end-page: 14
  ident: bb0040
  article-title: The cloud top distribution and diurnal variation of clouds over East Asia: preliminary results from Advanced Himawari Imager
  publication-title: J. Geophys. Res.
– volume: 60
  start-page: 609
  year: 1976
  end-page: 624
  ident: bb0195
  article-title: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation
  publication-title: Rev. Geophys. Space Phys.
– volume: 35
  start-page: 382
  year: 2014
  end-page: 400
  ident: bb0175
  article-title: A method for monitoring the on-orbit performance of a satellite sensor infrared window band by using oceanic drifters
  publication-title: Int. J. Remote Sens.
– volume: 57
  start-page: 3229
  year: 2019
  end-page: 3239
  ident: bb0095
  article-title: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: capability of the AHI to monitor the DC cloud generation process
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 115
  year: 2010
  ident: bb0170
  article-title: Midlatitude cirrus cloud radiative forcing over China
  publication-title: J. Geophys. Res.
– volume: 213
  start-page: 144
  year: 2018
  end-page: 161
  ident: bb0145
  article-title: Long-term variation of cloud droplet number concentrations from space-based Lidar
  publication-title: Remote Sens. Environ.
– volume: 51
  start-page: 1145
  year: 2012
  end-page: 1163
  ident: bb0015
  article-title: MODIS cloud top property refinements for Collection 6
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 136
  start-page: 15
  year: 1982
  end-page: 27
  ident: bb0045
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules
  publication-title: Anal. Chim. Acta
– volume: 98
  start-page: 1637
  year: 2017
  end-page: 1658
  ident: bb0265
  article-title: Introducing the new generation of Chinese geostationary weather satellites, FengYun-4
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 83
  start-page: 1771
  year: 2002
  end-page: 1790
  ident: bb0225
  article-title: The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 122
  start-page: 7600
  year: 2017
  end-page: 7613
  ident: bb0140
  article-title: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy sky conditions
  publication-title: J. Geophys. Res.
– volume: 91
  start-page: 1211
  year: 2010
  end-page: 1229
  ident: bb0250
  article-title: The CALIPSO mission: a global 3D view of aerosols and clouds
  publication-title: Bull. Am. Meteorol. Soc.
– volume: 57
  start-page: 2557
  year: 2019
  end-page: 2570
  ident: bb0185
  article-title: Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bb0025
  article-title: Random forests
  publication-title: Machine Learning
– volume: 26
  start-page: 2310
  year: 2009
  end-page: 2323
  ident: bb0245
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
– volume: 16
  start-page: 499
  year: 2019
  end-page: 503
  ident: bb0230
  article-title: Refined typhoon geometric center derived from a high spatiotemporal resolution geostationary satellite imaging system
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 34
  start-page: 1
  year: 2007
  end-page: 5
  ident: bb0240
  article-title: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals
  publication-title: Geophys. Res. Lett.
– volume: 40
  start-page: 4448
  year: 2013
  end-page: 4453
  ident: bb0135
  article-title: A new approach to retrieve cloud base height of marine boundary layer clouds
  publication-title: Geophys. Res. Lett.
– year: 2000
  ident: bb0200
  article-title: Inverse Methods for Atmospheric Sounding
– volume: 113
  year: 2008
  ident: bb0090
  article-title: Global Moderate resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 164
  year: 1944
  end-page: 168
  ident: bb0125
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
– volume: 64
  start-page: 2483
  year: 2007
  end-page: 2501
  ident: bb0210
  article-title: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V: cloud structural properties
  publication-title: J. Atmos. Sci.
– volume: 51
  start-page: 1145
  year: 2012
  ident: 10.1016/j.rse.2019.111616_bb0020
  article-title: MODIS cloud top property refinements for Collection 6
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-11-0203.1
– volume: 26
  start-page: 2273
  year: 2009
  ident: 10.1016/j.rse.2019.111616_bb0220
  article-title: High spectral and high temporal resolution infrared measurements from geostationary orbit
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1248.1
– volume: 122
  start-page: 7600
  year: 2017
  ident: 10.1016/j.rse.2019.111616_bb0140
  article-title: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy sky conditions
  publication-title: J. Geophys. Res.
  doi: 10.1002/2016JD026273
– volume: 12
  start-page: 703
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0150
  article-title: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-12-703-2019
– volume: 11
  start-page: 6107
  year: 2018
  ident: 10.1016/j.rse.2019.111616_bb0110
  article-title: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-6107-2018
– volume: 31
  start-page: 708
  year: 2017
  ident: 10.1016/j.rse.2019.111616_bb0180
  article-title: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-017-6161-z
– volume: 48
  start-page: 1110
  year: 2009
  ident: 10.1016/j.rse.2019.111616_bb0075
  article-title: Gazing at cirrus clouds for 25 years through a split window, part 1: methodology
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2008JAMC1882.1
– volume: 267
  start-page: 1072
  year: 1997
  ident: 10.1016/j.rse.2019.111616_bb0010
  article-title: Cloud microphysics and climate
  publication-title: Science
  doi: 10.1126/science.276.5315.1072
– volume: 38
  year: 2002
  ident: 10.1016/j.rse.2019.111616_bb0060
  article-title: Stochastic gradient boosting
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– volume: 91
  start-page: 1211
  year: 2010
  ident: 10.1016/j.rse.2019.111616_bb0250
  article-title: The CALIPSO mission: a global 3D view of aerosols and clouds
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/2010BAMS3009.1
– volume: 210
  start-page: 180
  year: 2018
  ident: 10.1016/j.rse.2019.111616_bb0270
  article-title: Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2018.01.034
– year: 2000
  ident: 10.1016/j.rse.2019.111616_bb0200
– volume: 51
  start-page: 1129
  year: 2012
  ident: 10.1016/j.rse.2019.111616_bb0085
  article-title: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-11-02.1
– volume: 53
  start-page: 2457
  year: 2014
  ident: 10.1016/j.rse.2019.111616_bb0115
  article-title: Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-14-0082.1
– volume: 60
  start-page: 609
  year: 1976
  ident: 10.1016/j.rse.2019.111616_bb0195
  article-title: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation
  publication-title: Rev. Geophys. Space Phys.
  doi: 10.1029/RG014i004p00609
– volume: 123
  start-page: 1
  year: 2018
  ident: 10.1016/j.rse.2019.111616_bb0040
  article-title: The cloud top distribution and diurnal variation of clouds over East Asia: preliminary results from Advanced Himawari Imager
  publication-title: J. Geophys. Res.
– volume: 66
  start-page: 247
  year: 2011
  ident: 10.1016/j.rse.2019.111616_bb0190
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 86
  start-page: 1079
  year: 2005
  ident: 10.1016/j.rse.2019.111616_bb0215
  article-title: Introducting the next-generation advanced baseline imager (ABI) on GOES-R
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-86-8-1079
– volume: 115
  start-page: D00H20
  year: 2010
  ident: 10.1016/j.rse.2019.111616_bb0080
  article-title: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI
  publication-title: J. Geophys. Res.
– volume: 47
  start-page: 1175
  year: 2008
  ident: 10.1016/j.rse.2019.111616_bb0160
  article-title: MODIS global cloud-top pressure and amount estimation: algorithm description and results
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2007JAMC1705.1
– volume: 44
  start-page: 5512
  year: 2005
  ident: 10.1016/j.rse.2019.111616_bb0255
  article-title: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.005512
– volume: 51
  start-page: 1145
  year: 2012
  ident: 10.1016/j.rse.2019.111616_bb0015
  article-title: MODIS cloud top property refinements for Collection 6
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-11-0203.1
– volume: 2
  start-page: 164
  year: 1944
  ident: 10.1016/j.rse.2019.111616_bb0125
  article-title: A method for the solution of certain non-linear problems in least squares
  publication-title: Q. Appl. Math.
  doi: 10.1090/qam/10666
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rse.2019.111616_bb0025
  article-title: Random forests
– volume: 51
  start-page: 321
  year: 2003
  ident: 10.1016/j.rse.2019.111616_bb0035
  article-title: Support vector machines experts for time series forecasting
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(02)00577-5
– volume: 64
  start-page: 2483
  year: 2007
  ident: 10.1016/j.rse.2019.111616_bb0210
  article-title: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V: cloud structural properties
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS3949.1
– volume: 27
  start-page: 3244
  year: 1988
  ident: 10.1016/j.rse.2019.111616_bb0055
  article-title: Transmittance of atmospheric gases in the microwave region: a fast model
  publication-title: Appl. Opt.
  doi: 10.1364/AO.27.003244
– volume: 26
  start-page: 2310
  year: 2009
  ident: 10.1016/j.rse.2019.111616_bb0245
  article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/2009JTECHA1281.1
– start-page: 155
  year: 1997
  ident: 10.1016/j.rse.2019.111616_bb0050
  article-title: Support vector regression machines
– volume: 11
  start-page: 3177
  year: 2018
  ident: 10.1016/j.rse.2019.111616_bb0065
  article-title: Neural network cloud top pressure and height for MODIS
  publication-title: Atmos. Meas. Tech.
  doi: 10.5194/amt-11-3177-2018
– volume: 77
  start-page: 437
  year: 1996
  ident: 10.1016/j.rse.2019.111616_bb0100
  article-title: The NCEP/NCAR 40-year reanalysis project
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– start-page: 1
  year: 2011
  ident: 10.1016/j.rse.2019.111616_bb0070
  article-title: ABI cloud height
– volume: 213
  start-page: 144
  year: 2018
  ident: 10.1016/j.rse.2019.111616_bb0145
  article-title: Long-term variation of cloud droplet number concentrations from space-based Lidar
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.05.011
– volume: 4
  start-page: 335
  year: 1989
  ident: 10.1016/j.rse.2019.111616_bb0105
  article-title: Description of the NMC global data assimilation and forecast system
  publication-title: Weather Forecast.
  doi: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2
– volume: 57
  start-page: 2557
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0185
  article-title: Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2874950
– volume: 40
  start-page: 312
  year: 2001
  ident: 10.1016/j.rse.2019.111616_bb0130
  article-title: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2
– volume: 115
  year: 2010
  ident: 10.1016/j.rse.2019.111616_bb0170
  article-title: Midlatitude cirrus cloud radiative forcing over China
  publication-title: J. Geophys. Res.
– volume: 11
  start-page: 383
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0155
  article-title: Local severe storm tracking and warning in pre-convection stage from the new generation geostationary weather satellite measurements
  publication-title: Remote Sens.
  doi: 10.3390/rs11040383
– volume: 35
  start-page: 1
  year: 2008
  ident: 10.1016/j.rse.2019.111616_bb0205
  article-title: Classifying clouds around the globe with the CloudSat radar: 1-year of results
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL032591
– volume: 136
  start-page: 15
  year: 1982
  ident: 10.1016/j.rse.2019.111616_bb0045
  article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules
  publication-title: Anal. Chim. Acta
  doi: 10.1016/S0003-2670(01)95359-0
– volume: 16
  start-page: 499
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0230
  article-title: Refined typhoon geometric center derived from a high spatiotemporal resolution geostationary satellite imaging system
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2876895
– volume: 98
  start-page: 1637
  year: 2017
  ident: 10.1016/j.rse.2019.111616_bb0265
  article-title: Introducing the new generation of Chinese geostationary weather satellites, FengYun-4
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-D-16-0065.1
– volume: 57
  start-page: 3229
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0095
  article-title: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: capability of the AHI to monitor the DC cloud generation process
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2882803
– volume: 113
  year: 2008
  ident: 10.1016/j.rse.2019.111616_bb0090
  article-title: Global Moderate resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP
  publication-title: J. Geophys. Res.
– volume: 34
  start-page: 1
  year: 2007
  ident: 10.1016/j.rse.2019.111616_bb0240
  article-title: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2007GL030676
– volume: 46
  start-page: 175
  year: 1992
  ident: 10.1016/j.rse.2019.111616_bb0005
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 57
  start-page: 8827
  issue: 11
  year: 2019
  ident: 10.1016/j.rse.2019.111616_bb0235
  article-title: Intercomparisons of cloud mask product among Fengyun-4A, Himawari-8 and MODIS
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2923247
– ident: 10.1016/j.rse.2019.111616_bb0030
– volume: 40
  start-page: 4448
  year: 2013
  ident: 10.1016/j.rse.2019.111616_bb0135
  article-title: A new approach to retrieve cloud base height of marine boundary layer clouds
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50836
– volume: 142
  start-page: 25
  year: 2014
  ident: 10.1016/j.rse.2019.111616_bb0165
  article-title: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing
  publication-title: J. Quant. Spectrosc. Radiat. Transf.
  doi: 10.1016/j.jqsrt.2014.03.014
– volume: 83
  start-page: 1771
  year: 2002
  ident: 10.1016/j.rse.2019.111616_bb0225
  article-title: The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation
  publication-title: Bull. Am. Meteorol. Soc.
  doi: 10.1175/BAMS-83-12-1771
– volume: 141
  start-page: 129
  year: 2014
  ident: 10.1016/j.rse.2019.111616_bb0120
  article-title: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — a random forests-based approach applied to MSG SEVIRI
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.10.026
– volume: 70
  start-page: 330
  year: 2013
  ident: 10.1016/j.rse.2019.111616_bb0260
  article-title: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm
  publication-title: J. Atmos. Sci.
  doi: 10.1175/JAS-D-12-039.1
– volume: 35
  start-page: 382
  year: 2014
  ident: 10.1016/j.rse.2019.111616_bb0175
  article-title: A method for monitoring the on-orbit performance of a satellite sensor infrared window band by using oceanic drifters
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2013.871393
SSID ssj0015871
Score 2.6041803
Snippet The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111616
SubjectTerms Accuracy
Algorithms
artificial intelligence
CALIPSO
CALIPSO (Pathfinder satellite)
climate
Climate and weather
Climatic data
Cloud top height
Clouds
Himawari-8
Learning algorithms
Lidar
Machine learning
Measuring instruments
meteorological data
Meteorological satellites
Passive satellites
remote sensing
Retrieval
Satellite imagery
Satellite instruments
Satellite observation
Satellites
Spatial discrimination
Spatial resolution
Spectral bands
Synchronous satellites
uncertainty
Weather
Title Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms
URI https://dx.doi.org/10.1016/j.rse.2019.111616
https://www.proquest.com/docview/2377334895
https://www.proquest.com/docview/2388757864
Volume 239
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBalY2yXsmYrS9cVDXYaeHX0y9KxlLbZBj2MFXoTsqSkGYkdbOeQS9mfPj1ZTtkYPeyqH9joPb0nW9_7PoQ-hhNFrkLaykKyKTLmjM-UmJmMWGoIDzFTlRHleyOmt-zrHb_bQxdDLQzAKlPs72N6jNap5Syt5tl6sYAaX8rA48IRJORZAZygjBWgYvD5YQfzmHBZ9Kp5lGUwerjZjBivpgWmzImCwCFA8vzfuemvKB1Tz9UrdJDOjPi8f61DtOerETq6fCxRC51pj7Yj9CLpmt9vR-j5dRTu3b5Gv75H6azgV7ieYbusNw539Rqv4Wd8A6yqGCpN8IAJwHNft_01vWm2uDWRubPzeLEC1gu8evy32GJIhQ7XFV5FaKbHSYtijs1yXjeL7n7VvkG3V5c_LqZZUl_ILCOsy6glPARySwyTjFhLLOR6SaWYhEZmGC-9MZwCP73kuVEF97QUTiivcuIUPUL7VV35twhzm8tZmOEKKVhuQhQpZ9Y5cBInhRJjlA_rrm2iJgeFjKUeMGg_dTCVBlPp3lRj9Gk3Zd3zcjw1mA3G1H84lw5546lpJ4PhddrZrSa0KKB6WfEx-rDrDnsSLlpM5esNjJFRJ0Cw4_978jv0ksB3PeAG-Qna75qNfx8OP115Gr37FD07__JtevMbXaoEEA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIlQuCBYqFgoYiRNSaNaxnfiIqpYFSg-olXqzHNu7XbSbrJLsYS-In47HcbYCoR64-kOJPON5Y3tmHsA771Gk0sNW4sEmT5jVLpFiphNqMk25t5myDFG-F2J6xb5c8-s9OBlyYTCsMtr-3qYHax1bjuNqHq8XC8zxzRhqnHdBPM4Kdg_uM05zPIF9-LmL85jwIu9p8zKW4PDhaTMEeTUtlsqcSLQcAjnP_w1Of5npgD1nj-FRdBrJx_6_nsCeq0ZweHqbo-Y74yZtR3AQic1vtiN48Ckw926fwq_vgTvLKxapZ8Qs640lXb0ma7yNb7CsKsFUEzIEBZC5q9v-nV43W9LqULqzc2SxwrIXZHV7udgSxEJL6oqsQmymI5GMYk70cl43i-5m1T6Dq7PTy5NpEukXEsMo65LMUO4tuaGaFYwaQw2CfZEVYuIbmWa8dFrzDAvUFzzVMucuK4UV0smUWpkdwn5VV-45EG7SYuZn2LwQLNXejJQzYy1qiS2EFGNIh3VXJtYmR4qMpRqC0H4oLyqFolK9qMbwfjdl3RfmuGswG4Sp_tAu5YHjrmlHg-BV3NqtolmeY_qy5GN4u-v2mxJfWnTl6g2OKQJRgGAv_u_Lb-BgevntXJ1_vvj6Eh5SPORjECE_gv2u2bhX3hPqytdB038DTl4FpQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+cloud+top+properties+from+advanced+geostationary+satellite+imager+measurements+based+on+machine+learning+algorithms&rft.jtitle=Remote+sensing+of+environment&rft.au=Min%2C+Min&rft.au=Li%2C+Jun&rft.au=Wang%2C+Fu&rft.au=Liu%2C+Zijing&rft.date=2020-03-15&rft.issn=0034-4257&rft.volume=239&rft.spage=111616&rft_id=info:doi/10.1016%2Fj.rse.2019.111616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2019_111616
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon