Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms
The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resol...
        Saved in:
      
    
          | Published in | Remote sensing of environment Vol. 239; p. 111616 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Elsevier Inc
    
        15.03.2020
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0034-4257 1879-0704  | 
| DOI | 10.1016/j.rse.2019.111616 | 
Cover
| Abstract | The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications.
•A novel machine learning algorithm to retrieve cloud top height using Himawari-8•Significant improvements in cloud top height product from machine learning algorithm•A joint algorithm further reduces uncertainty in cloud top height. | 
    
|---|---|
| AbstractList | The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications.
•A novel machine learning algorithm to retrieve cloud top height using Himawari-8•Significant improvements in cloud top height product from machine learning algorithm•A joint algorithm further reduces uncertainty in cloud top height. The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) provides CTH parameters with high accuracy, but with limited temporal-spatial resolution. Recently, the Advanced Himawari Imager (AHI) onboard Japanese Himawari-8/-9, provides high temporal (every 10 min) and high spatial (2 km at nadir) resolution measurements with 16 spectral bands. This paper reports on a study to derive the CTH from combined AHI and CALIPSO using advanced machine learning (ML) algorithms with better accuracy than that from the traditional physical (TRA) algorithms. We find significant CTH improvements (1.54–2.72 km for mean absolute error, MAE) from four different machine learning algorithms (original MAE from TRA method is about 3.24 km based on CALIPSO data validation), particularly in high and optically thin clouds. In addition, we also develop a joint algorithm to combine optimal machine learning and traditional physical (TRA) algorithms of CTH to further reduce MAE to 1.53 km and enhance the layered accuracy (CTH < 18 km). While the ML-based algorithm improves CTH retrieval over the TRA algorithm, the lower or higher clouds still exhibit relatively large uncertainty. Combining both methods provides the better CTH than either alone. The combined approach could be used to process data from advanced geostationary imagers for climate and weather applications.  | 
    
| ArticleNumber | 111616 | 
    
| Author | Li, Jun Liu, Zijing Wang, Fu Menzel, W. Paul Min, Min  | 
    
| Author_xml | – sequence: 1 givenname: Min surname: Min fullname: Min, Min organization: School of Atmospheric Sciences and Guangdong Province Key laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University and Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519082, China – sequence: 2 givenname: Jun surname: Li fullname: Li, Jun email: Jun.Li@ssec.wisc.edu organization: Cooperative Institute for Meteorological Satellite Study (CIMSS), University of Wisconsin-Madison, Madison, WI, USA – sequence: 3 givenname: Fu surname: Wang fullname: Wang, Fu organization: Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES/CMA), National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing 100081, China – sequence: 4 givenname: Zijing surname: Liu fullname: Liu, Zijing organization: Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites (LRCVES/CMA), National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA), Beijing 100081, China – sequence: 5 givenname: W. Paul surname: Menzel fullname: Menzel, W. Paul organization: Cooperative Institute for Meteorological Satellite Study (CIMSS), University of Wisconsin-Madison, Madison, WI, USA  | 
    
| BookMark | eNp9kT1rHDEQhkVwIGcnPyCdIE2aPetzpSVVMPkCgyEktZjTzp117EoXSXvgLj89OjaVC1cD4n3EzPtck6uYIhLynrMtZ7y_PW5zwa1gfNhyznvevyIbbs3QMcPUFdkwJlWnhDZvyHUpR8a4toZvyN-fWHPAM0w07amf0jLSmk70lNMJcw1Y6D6nmcJ4huhxpAdMpUINKUJ-ogUqTlOoSMMMB8x0RihLxhljLXQHpREp0hn8Y4hIJ4QcQzxQmA4ph_o4l7fk9R6mgu_-zxvy--uXX3ffu_uHbz_uPt93XglVO-mFxh33ApRVwnvhFdfCStvz9qhA6R0CaKn6XlnNYDAa5a4f-wEHJsZB3pCP67_tsj8LlurmUHxbHiKmpTghrTXa2F616Idn0WNacmzbtZQxUio76JYya8rnVErGvfNhLaZmCJPjzF3MuKNrZtzFjFvNNJI_I0-51ZefXmQ-rQy2js4Bsys-4MVIyOirG1N4gf4HfXeqLg | 
    
| CitedBy_id | crossref_primary_10_1109_TGRS_2024_3461733 crossref_primary_10_1016_j_rse_2022_113425 crossref_primary_10_1364_OE_482762 crossref_primary_10_1007_s13351_024_3138_6 crossref_primary_10_3390_rs15020498 crossref_primary_10_1016_j_rse_2023_113548 crossref_primary_10_1175_JAS_D_20_0198_1 crossref_primary_10_1007_s13351_025_4107_4 crossref_primary_10_1109_TGRS_2023_3252023 crossref_primary_10_3390_atmos14030493 crossref_primary_10_1109_TGRS_2022_3153129 crossref_primary_10_1007_s00376_021_1088_9 crossref_primary_10_1080_17538947_2022_2130460 crossref_primary_10_3390_rs15133424 crossref_primary_10_1016_j_asr_2024_03_047 crossref_primary_10_1016_j_rse_2020_111842 crossref_primary_10_1016_j_rse_2023_113622 crossref_primary_10_1016_j_rse_2022_112971 crossref_primary_10_1016_j_rse_2022_113026 crossref_primary_10_1016_j_rse_2022_112970 crossref_primary_10_1029_2020JD032683 crossref_primary_10_1080_01431161_2022_2099770 crossref_primary_10_3390_rs13112229 crossref_primary_10_1109_TGRS_2022_3160450 crossref_primary_10_5194_amt_17_7129_2024 crossref_primary_10_1109_TGRS_2024_3369621 crossref_primary_10_1016_j_atmosres_2023_106899 crossref_primary_10_1038_s41597_025_04659_9 crossref_primary_10_1109_TGRS_2022_3170054 crossref_primary_10_1109_TGRS_2022_3140348 crossref_primary_10_1109_TGRS_2023_3256365 crossref_primary_10_3390_rs14246367 crossref_primary_10_3390_rs13163120 crossref_primary_10_3390_s20082394 crossref_primary_10_1029_2024GL112252 crossref_primary_10_1029_2024GL109772 crossref_primary_10_1038_s41467_023_44666_1 crossref_primary_10_1109_TGRS_2023_3318374 crossref_primary_10_3390_rs13122251 crossref_primary_10_1016_j_rse_2025_114622 crossref_primary_10_3390_rs17061083 crossref_primary_10_3788_AOS230605 crossref_primary_10_1016_j_rse_2022_113079 crossref_primary_10_1029_2024JD041032 crossref_primary_10_1126_sciadv_abn3488 crossref_primary_10_3390_atmos12020173 crossref_primary_10_3390_rs17020337 crossref_primary_10_3390_rs13152855 crossref_primary_10_3389_fclim_2021_656505 crossref_primary_10_1016_j_envint_2023_107941 crossref_primary_10_3788_AOS220957 crossref_primary_10_1109_JSTARS_2025_3535762 crossref_primary_10_1007_s00382_021_05991_7 crossref_primary_10_1016_j_atmosenv_2022_119065 crossref_primary_10_1109_LGRS_2021_3081920 crossref_primary_10_5194_acp_21_17003_2021 crossref_primary_10_1007_s00376_021_0431_5 crossref_primary_10_1029_2022JD037216 crossref_primary_10_1109_TGRS_2024_3353373 crossref_primary_10_1109_TGRS_2022_3172228 crossref_primary_10_1029_2023JD039491 crossref_primary_10_5194_essd_16_4949_2024 crossref_primary_10_1029_2022JD036760 crossref_primary_10_3390_s24020541 crossref_primary_10_1109_LGRS_2024_3422976 crossref_primary_10_3390_rs13081418 crossref_primary_10_1016_j_solener_2022_01_004 crossref_primary_10_3788_AOS241024 crossref_primary_10_1016_j_earscirev_2023_104633 crossref_primary_10_1109_TGRS_2024_3458052 crossref_primary_10_3390_atmos14020228 crossref_primary_10_1007_s13351_024_3089_y crossref_primary_10_1007_s00376_024_4206_7 crossref_primary_10_3390_rs15041141 crossref_primary_10_1007_s00376_023_2382_5 crossref_primary_10_3389_fclim_2021_656479 crossref_primary_10_5194_amt_16_5953_2023 crossref_primary_10_1109_TGRS_2024_3494743 crossref_primary_10_1016_j_phycom_2020_101215 crossref_primary_10_5194_acp_24_14239_2024 crossref_primary_10_1109_JSTARS_2020_3014136 crossref_primary_10_1007_s00376_021_0425_3 crossref_primary_10_1080_01431161_2020_1854891 crossref_primary_10_1016_j_rse_2025_114600 crossref_primary_10_1016_j_rse_2023_113633  | 
    
| Cites_doi | 10.1175/JAMC-D-11-0203.1 10.1175/2009JTECHA1248.1 10.1002/2016JD026273 10.5194/amt-12-703-2019 10.5194/amt-11-6107-2018 10.1007/s13351-017-6161-z 10.1175/2008JAMC1882.1 10.1126/science.276.5315.1072 10.1016/S0167-9473(01)00065-2 10.1175/2010BAMS3009.1 10.1016/j.jqsrt.2018.01.034 10.1175/JAMC-D-11-02.1 10.1175/JAMC-D-14-0082.1 10.1029/RG014i004p00609 10.1016/j.isprsjprs.2010.11.001 10.1175/BAMS-86-8-1079 10.1175/2007JAMC1705.1 10.1364/AO.44.005512 10.1090/qam/10666 10.1016/S0925-2312(02)00577-5 10.1175/JAS3949.1 10.1364/AO.27.003244 10.1175/2009JTECHA1281.1 10.5194/amt-11-3177-2018 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1016/j.rse.2018.05.011 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 10.1109/TGRS.2018.2874950 10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2 10.3390/rs11040383 10.1029/2007GL032591 10.1016/S0003-2670(01)95359-0 10.1109/LGRS.2018.2876895 10.1175/BAMS-D-16-0065.1 10.1109/TGRS.2018.2882803 10.1029/2007GL030676 10.1080/00031305.1992.10475879 10.1109/TGRS.2019.2923247 10.1002/grl.50836 10.1016/j.jqsrt.2014.03.014 10.1175/BAMS-83-12-1771 10.1016/j.rse.2013.10.026 10.1175/JAS-D-12-039.1 10.1080/01431161.2013.871393  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Copyright Elsevier BV Mar 15, 2020  | 
    
| Copyright_xml | – notice: 2019 – notice: Copyright Elsevier BV Mar 15, 2020  | 
    
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6  | 
    
| DOI | 10.1016/j.rse.2019.111616 | 
    
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Meteorological & Geoastrophysical Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Meteorological & Geoastrophysical Abstracts Biotechnology Research Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Materials Research Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology Environmental Sciences  | 
    
| EISSN | 1879-0704 | 
    
| ExternalDocumentID | 10_1016_j_rse_2019_111616 S0034425719306364  | 
    
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABPPZ ABQEM ABQYD ABYKQ ACDAQ ACGFS ACIWK ACLVX ACPRK ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KCYFY KOM LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSE SSJ SSZ T5K TN5 TWZ WH7 ZCA ZMT ~02 ~G- ~KM 29P 41~ 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FA8 FEDTE FGOYB G-2 HMA HMC HVGLF HZ~ H~9 OHT R2- SEN SEP SEW VOH WUQ XOL ~HD 7QF 7QO 7QQ 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7TG 7U5 8BQ 8FD AGCQF C1K F28 FR3 H8D H8G JG9 JQ2 KL. KR7 L7M L~C L~D P64 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c424t-3c25eb1c2a4842cc2c4152838611c24a45beaa534664850a975e3b6d69e902d93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0034-4257 | 
    
| IngestDate | Thu Oct 02 06:55:44 EDT 2025 Wed Aug 13 04:30:29 EDT 2025 Wed Oct 01 05:16:37 EDT 2025 Thu Apr 24 22:57:31 EDT 2025 Fri Feb 23 02:48:03 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Cloud top height Himawari-8 CALIPSO Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c424t-3c25eb1c2a4842cc2c4152838611c24a45beaa534664850a975e3b6d69e902d93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2377334895 | 
    
| PQPubID | 2045405 | 
    
| ParticipantIDs | proquest_miscellaneous_2388757864 proquest_journals_2377334895 crossref_citationtrail_10_1016_j_rse_2019_111616 crossref_primary_10_1016_j_rse_2019_111616 elsevier_sciencedirect_doi_10_1016_j_rse_2019_111616  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2020-03-15 | 
    
| PublicationDateYYYYMMDD | 2020-03-15 | 
    
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Remote sensing of environment | 
    
| PublicationYear | 2020 | 
    
| Publisher | Elsevier Inc Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV  | 
    
| References | Weisz, Li, Menzel, Heidinger, Kahn, Liu (bb0240) 2007; 34 Håkansson, Adok, Thoss, Scheirer, Hörnquist (bb0065) 2018; 11 Eyre, Woolf (bb0055) 1988; 27 Holz, Ackerman, Nagle, Frey, Dutcher, Kuehn, Vaughan, Baum (bb0090) 2008; 113 Min, Zhang (bb0165) 2014; 142 Sassen, Wang, David, Starr, Comstock, Quante (bb0210) 2007; 64 Cao (bb0035) 2003; 51 Altman (bb0005) 1992; 46 Kühnlein, Appelhans, Thies, Nauß (bb0115) 2014; 53 Min, Bai, Guo, Sun, Liu, Wang, Xu, Tang, Li, Di, Dong, Li (bb0185) 2019; 57 Li, Menzel, Schreiner (bb0130) 2001; 40 Rodgers (bb0195) 1976; 60 Yao, Wang, Min, Zhang, Guo, Yu, Chen, Zhao, Wang (bb0270) 2018; 210 Min, Wang, Campbell, Zong, Li (bb0170) 2010; 115 Coomans, Massart (bb0045) 1982; 136 Heidinger (bb0070) 2011 Friedman (bb0060) 2002; 38 Li, Jian, Huang, Hu, Zhao, Kawamoto, Liao, Wu (bb0145) 2018; 213 Li, Yi, Stamnes, Ding, Wang, Jin, Wang (bb0135) 2013; 40 Baum, Menzel, Frey, Tobin, Holz, Ackerman (bb0015) 2012; 51 Sassen, Wang (bb0205) 2008; 35 Kanamitsu (bb0105) 1989; 4 Heidinger, Pavolonis, Holz, Baum, Berthier (bb0080) 2010; 115 Min, Wu, Li, Liu, Xu, Wu, Chen, Wang, Sun, Qin, Wang, Li, Zheng, Cao, Dong (bb0180) 2017; 31 Wang, Min, Wang, Guo, Li, Tang (bb0235) 2019; 57 Yang, Wei, Huang, Baum, Hu, Kattawar, Mishchenko, Fu (bb0255) 2005; 44 Mountrakis, Im, Ogole (bb0190) 2011; 66 Schmit, Gunshor, Menzel, Li, Bachmeier (bb0215) 2005; 86 Kalnay, Kanamitsu, Kistler, Collins, Deaven, Gandin, Iredell, Saha, White, Woollen (bb0100) 1996; 77 Schmit, Li, Ackerman, Gurka (bb0220) 2009; 26 Levenberg (bb0125) 1944; 2 Winker, Pelon, Coakley, Ackerman, Charlson, Colarco, Flamant, Fu, Hoff, Kittaka (bb0250) 2010; 91 Yang, Zhang, Wei, Lu, Guo (bb0265) 2017; 98 Kühnlein, Appelhans, Thies, Nauss (bb0120) 2014; 141 Sun, Min, Qin, Wang, Hu (bb0230) 2019; 16 Liu, Min, Li, Sun, Di, Ai, Li, Qin, Li, Lin, Zhang (bb0155) 2019; 11 Li, Li, Wang, Schmit, Bai, Atlas (bb0140) 2017; 122 Heidinger, Evan, Foster, Walther (bb0085) 2012; 51 Winker, Vaughan, Omar, Hu, Powell, Liu, Hunt, Young (bb0245) 2009; 26 Breiman (bb0025) 2001; 45 Baker (bb0010) 1997; 267 Heidinger, Pavolonis (bb0075) 2009; 48 Breiman, Cutler (bb0030) 2013 Husi, Nagao, Nakajima, Riedi, Ishimoto, Baran, Shang, Sekiguchi, Kikuchi (bb0095) 2019; 57 Kim, Omar, Tackett, Vaughan, Winker, Trepte, Hu, Liu, Poole, Pitts, Kar, Magill (bb0110) 2018; 11 Drucker, Burges, Kaufman, Smola, Vapnik (bb0050) 1997 Baum, Menzel, Frey, Tobin, Holz, Ackerman, Heidinger, Yang (bb0020) 2012; 51 Menzel, Frey, Zhang, Wylie, Moeller, Holz, Maddux, Baum, Strabala, Gumley (bb0160) 2008; 47 Rodgers (bb0200) 2000 Chen, Guo, Wang, Li, Min, Zhao, Yao (bb0040) 2018; 123 Liu, Kar, Zeng, Tackett, Vaughan, Avery, Pelon, Getzewich, Lee, Magill, Omar, Lucker, Trepte, Winker (bb0150) 2019; 12 Yang, Bi, Baum, Liou, Kattawar, Mishchenko, Cole (bb0260) 2013; 70 Min, Zhang, Rong, Dong (bb0175) 2014; 35 Stephens, Vane, Boain, Mace, Sassen (bb0225) 2002; 83 Heidinger (10.1016/j.rse.2019.111616_bb0080) 2010; 115 Håkansson (10.1016/j.rse.2019.111616_bb0065) 2018; 11 Holz (10.1016/j.rse.2019.111616_bb0090) 2008; 113 Sassen (10.1016/j.rse.2019.111616_bb0210) 2007; 64 Breiman (10.1016/j.rse.2019.111616_bb0025) 2001; 45 Yao (10.1016/j.rse.2019.111616_bb0270) 2018; 210 Menzel (10.1016/j.rse.2019.111616_bb0160) 2008; 47 Kühnlein (10.1016/j.rse.2019.111616_bb0115) 2014; 53 Friedman (10.1016/j.rse.2019.111616_bb0060) 2002; 38 Schmit (10.1016/j.rse.2019.111616_bb0215) 2005; 86 Yang (10.1016/j.rse.2019.111616_bb0260) 2013; 70 Yang (10.1016/j.rse.2019.111616_bb0265) 2017; 98 Li (10.1016/j.rse.2019.111616_bb0135) 2013; 40 Min (10.1016/j.rse.2019.111616_bb0180) 2017; 31 Kim (10.1016/j.rse.2019.111616_bb0110) 2018; 11 Schmit (10.1016/j.rse.2019.111616_bb0220) 2009; 26 Wang (10.1016/j.rse.2019.111616_bb0235) 2019; 57 Min (10.1016/j.rse.2019.111616_bb0170) 2010; 115 Mountrakis (10.1016/j.rse.2019.111616_bb0190) 2011; 66 Min (10.1016/j.rse.2019.111616_bb0185) 2019; 57 Winker (10.1016/j.rse.2019.111616_bb0250) 2010; 91 Li (10.1016/j.rse.2019.111616_bb0130) 2001; 40 Chen (10.1016/j.rse.2019.111616_bb0040) 2018; 123 Li (10.1016/j.rse.2019.111616_bb0145) 2018; 213 Min (10.1016/j.rse.2019.111616_bb0165) 2014; 142 Min (10.1016/j.rse.2019.111616_bb0175) 2014; 35 Weisz (10.1016/j.rse.2019.111616_bb0240) 2007; 34 Coomans (10.1016/j.rse.2019.111616_bb0045) 1982; 136 Rodgers (10.1016/j.rse.2019.111616_bb0200) 2000 Sun (10.1016/j.rse.2019.111616_bb0230) 2019; 16 Stephens (10.1016/j.rse.2019.111616_bb0225) 2002; 83 Liu (10.1016/j.rse.2019.111616_bb0155) 2019; 11 Winker (10.1016/j.rse.2019.111616_bb0245) 2009; 26 Sassen (10.1016/j.rse.2019.111616_bb0205) 2008; 35 Cao (10.1016/j.rse.2019.111616_bb0035) 2003; 51 Heidinger (10.1016/j.rse.2019.111616_bb0075) 2009; 48 Altman (10.1016/j.rse.2019.111616_bb0005) 1992; 46 Baum (10.1016/j.rse.2019.111616_bb0015) 2012; 51 Baker (10.1016/j.rse.2019.111616_bb0010) 1997; 267 Levenberg (10.1016/j.rse.2019.111616_bb0125) 1944; 2 Kühnlein (10.1016/j.rse.2019.111616_bb0120) 2014; 141 Kalnay (10.1016/j.rse.2019.111616_bb0100) 1996; 77 Drucker (10.1016/j.rse.2019.111616_bb0050) 1997 Baum (10.1016/j.rse.2019.111616_bb0020) 2012; 51 Rodgers (10.1016/j.rse.2019.111616_bb0195) 1976; 60 Breiman (10.1016/j.rse.2019.111616_bb0030) Heidinger (10.1016/j.rse.2019.111616_bb0070) 2011 Liu (10.1016/j.rse.2019.111616_bb0150) 2019; 12 Heidinger (10.1016/j.rse.2019.111616_bb0085) 2012; 51 Husi (10.1016/j.rse.2019.111616_bb0095) 2019; 57 Yang (10.1016/j.rse.2019.111616_bb0255) 2005; 44 Li (10.1016/j.rse.2019.111616_bb0140) 2017; 122 Kanamitsu (10.1016/j.rse.2019.111616_bb0105) 1989; 4 Eyre (10.1016/j.rse.2019.111616_bb0055) 1988; 27  | 
    
| References_xml | – start-page: 1 year: 2011 end-page: 77 ident: bb0070 article-title: ABI cloud height publication-title: GOES-R Algorithm Theoretical Basis Document (ATBD) – volume: 47 start-page: 1175 year: 2008 end-page: 1198 ident: bb0160 article-title: MODIS global cloud-top pressure and amount estimation: algorithm description and results publication-title: J. Appl. Meteorol. Climatol. – volume: 53 start-page: 2457 year: 2014 end-page: 2480 ident: bb0115 article-title: Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests publication-title: J. Appl. Meteorol. Climatol. – volume: 38 year: 2002 ident: bb0060 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. – volume: 115 start-page: D00H20 year: 2010 ident: bb0080 article-title: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI publication-title: J. Geophys. Res. – volume: 210 start-page: 180 year: 2018 end-page: 188 ident: bb0270 article-title: Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 51 start-page: 321 year: 2003 end-page: 339 ident: bb0035 article-title: Support vector machines experts for time series forecasting publication-title: Neurocomputing – volume: 77 start-page: 437 year: 1996 end-page: 471 ident: bb0100 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. – volume: 51 start-page: 1129 year: 2012 end-page: 1144 ident: bb0085 article-title: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x publication-title: J. Appl. Meteorol. Climatol. – volume: 141 start-page: 129 year: 2014 end-page: 143 ident: bb0120 article-title: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — a random forests-based approach applied to MSG SEVIRI publication-title: Remote Sens. Environ. – volume: 51 start-page: 1145 year: 2012 end-page: 1163 ident: bb0020 article-title: MODIS cloud top property refinements for Collection 6 publication-title: J. Appl. Meteorol. Climatol. – volume: 11 start-page: 383 year: 2019 end-page: 402 ident: bb0155 article-title: Local severe storm tracking and warning in pre-convection stage from the new generation geostationary weather satellite measurements publication-title: Remote Sens. – volume: 4 start-page: 335 year: 1989 end-page: 342 ident: bb0105 article-title: Description of the NMC global data assimilation and forecast system publication-title: Weather Forecast. – volume: 40 start-page: 312 year: 2001 end-page: 330 ident: bb0130 article-title: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements publication-title: J. Appl. Meteorol. – volume: 57 start-page: 8827 year: 2019 end-page: 8839 ident: bb0235 article-title: Intercomparisons of cloud mask product among Fengyun-4A, Himawari-8 and MODIS publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2013 ident: bb0030 article-title: Random Forests–Classification Manual – volume: 31 start-page: 708 year: 2017 end-page: 719 ident: bb0180 article-title: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series publication-title: J. Meteorol. Res. – volume: 46 start-page: 175 year: 1992 end-page: 185 ident: bb0005 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. – volume: 11 start-page: 6107 year: 2018 end-page: 6135 ident: bb0110 article-title: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm publication-title: Atmos. Meas. Tech. – volume: 35 start-page: 1 year: 2008 end-page: 5 ident: bb0205 article-title: Classifying clouds around the globe with the CloudSat radar: 1-year of results publication-title: Geophys. Res. Lett. – volume: 86 start-page: 1079 year: 2005 end-page: 1096 ident: bb0215 article-title: Introducting the next-generation advanced baseline imager (ABI) on GOES-R publication-title: Bull. Am. Meteorol. Soc. – start-page: 155 year: 1997 end-page: 161 ident: bb0050 article-title: Support vector regression machines publication-title: Advances in Neural Information Processing Systems 9, NIPS 1996 – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: bb0190 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 12 start-page: 703 year: 2019 end-page: 734 ident: bb0150 article-title: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products publication-title: Atmos. Meas. Tech. – volume: 70 start-page: 330 year: 2013 end-page: 347 ident: bb0260 article-title: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm publication-title: J. Atmos. Sci. – volume: 142 start-page: 25 year: 2014 end-page: 36 ident: bb0165 article-title: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing publication-title: J. Quant. Spectrosc. Radiat. Transf. – volume: 26 start-page: 2273 year: 2009 end-page: 2292 ident: bb0220 article-title: High spectral and high temporal resolution infrared measurements from geostationary orbit publication-title: J. Atmos. Ocean. Technol. – volume: 48 start-page: 1110 year: 2009 end-page: 1116 ident: bb0075 article-title: Gazing at cirrus clouds for 25 years through a split window, part 1: methodology publication-title: J. Appl. Meteorol. Climatol. – volume: 44 start-page: 5512 year: 2005 end-page: 5523 ident: bb0255 article-title: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region publication-title: Appl. Opt. – volume: 267 start-page: 1072 year: 1997 end-page: 1078 ident: bb0010 article-title: Cloud microphysics and climate publication-title: Science – volume: 27 start-page: 3244 year: 1988 end-page: 3249 ident: bb0055 article-title: Transmittance of atmospheric gases in the microwave region: a fast model publication-title: Appl. Opt. – volume: 11 start-page: 3177 year: 2018 end-page: 3196 ident: bb0065 article-title: Neural network cloud top pressure and height for MODIS publication-title: Atmos. Meas. Tech. – volume: 123 start-page: 1 year: 2018 end-page: 14 ident: bb0040 article-title: The cloud top distribution and diurnal variation of clouds over East Asia: preliminary results from Advanced Himawari Imager publication-title: J. Geophys. Res. – volume: 60 start-page: 609 year: 1976 end-page: 624 ident: bb0195 article-title: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation publication-title: Rev. Geophys. Space Phys. – volume: 35 start-page: 382 year: 2014 end-page: 400 ident: bb0175 article-title: A method for monitoring the on-orbit performance of a satellite sensor infrared window band by using oceanic drifters publication-title: Int. J. Remote Sens. – volume: 57 start-page: 3229 year: 2019 end-page: 3239 ident: bb0095 article-title: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: capability of the AHI to monitor the DC cloud generation process publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 115 year: 2010 ident: bb0170 article-title: Midlatitude cirrus cloud radiative forcing over China publication-title: J. Geophys. Res. – volume: 213 start-page: 144 year: 2018 end-page: 161 ident: bb0145 article-title: Long-term variation of cloud droplet number concentrations from space-based Lidar publication-title: Remote Sens. Environ. – volume: 51 start-page: 1145 year: 2012 end-page: 1163 ident: bb0015 article-title: MODIS cloud top property refinements for Collection 6 publication-title: J. Appl. Meteorol. Climatol. – volume: 136 start-page: 15 year: 1982 end-page: 27 ident: bb0045 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules publication-title: Anal. Chim. Acta – volume: 98 start-page: 1637 year: 2017 end-page: 1658 ident: bb0265 article-title: Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 publication-title: Bull. Am. Meteorol. Soc. – volume: 83 start-page: 1771 year: 2002 end-page: 1790 ident: bb0225 article-title: The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation publication-title: Bull. Am. Meteorol. Soc. – volume: 122 start-page: 7600 year: 2017 end-page: 7613 ident: bb0140 article-title: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy sky conditions publication-title: J. Geophys. Res. – volume: 91 start-page: 1211 year: 2010 end-page: 1229 ident: bb0250 article-title: The CALIPSO mission: a global 3D view of aerosols and clouds publication-title: Bull. Am. Meteorol. Soc. – volume: 57 start-page: 2557 year: 2019 end-page: 2570 ident: bb0185 article-title: Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bb0025 article-title: Random forests publication-title: Machine Learning – volume: 26 start-page: 2310 year: 2009 end-page: 2323 ident: bb0245 article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms publication-title: J. Atmos. Ocean. Technol. – volume: 16 start-page: 499 year: 2019 end-page: 503 ident: bb0230 article-title: Refined typhoon geometric center derived from a high spatiotemporal resolution geostationary satellite imaging system publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 34 start-page: 1 year: 2007 end-page: 5 ident: bb0240 article-title: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals publication-title: Geophys. Res. Lett. – volume: 40 start-page: 4448 year: 2013 end-page: 4453 ident: bb0135 article-title: A new approach to retrieve cloud base height of marine boundary layer clouds publication-title: Geophys. Res. Lett. – year: 2000 ident: bb0200 article-title: Inverse Methods for Atmospheric Sounding – volume: 113 year: 2008 ident: bb0090 article-title: Global Moderate resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP publication-title: J. Geophys. Res. – volume: 2 start-page: 164 year: 1944 end-page: 168 ident: bb0125 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. – volume: 64 start-page: 2483 year: 2007 end-page: 2501 ident: bb0210 article-title: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V: cloud structural properties publication-title: J. Atmos. Sci. – volume: 51 start-page: 1145 year: 2012 ident: 10.1016/j.rse.2019.111616_bb0020 article-title: MODIS cloud top property refinements for Collection 6 publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-0203.1 – volume: 26 start-page: 2273 year: 2009 ident: 10.1016/j.rse.2019.111616_bb0220 article-title: High spectral and high temporal resolution infrared measurements from geostationary orbit publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1248.1 – volume: 122 start-page: 7600 year: 2017 ident: 10.1016/j.rse.2019.111616_bb0140 article-title: An efficient radiative transfer model for hyperspectral IR radiance simulation and applications under cloudy sky conditions publication-title: J. Geophys. Res. doi: 10.1002/2016JD026273 – volume: 12 start-page: 703 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0150 article-title: Discriminating between clouds and aerosols in the CALIOP version 4.1 data products publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-12-703-2019 – volume: 11 start-page: 6107 year: 2018 ident: 10.1016/j.rse.2019.111616_bb0110 article-title: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-6107-2018 – volume: 31 start-page: 708 year: 2017 ident: 10.1016/j.rse.2019.111616_bb0180 article-title: Developing the science product algorithm testbed for Chinese next-generation geostationary meteorological satellites: Fengyun-4 series publication-title: J. Meteorol. Res. doi: 10.1007/s13351-017-6161-z – volume: 48 start-page: 1110 year: 2009 ident: 10.1016/j.rse.2019.111616_bb0075 article-title: Gazing at cirrus clouds for 25 years through a split window, part 1: methodology publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2008JAMC1882.1 – volume: 267 start-page: 1072 year: 1997 ident: 10.1016/j.rse.2019.111616_bb0010 article-title: Cloud microphysics and climate publication-title: Science doi: 10.1126/science.276.5315.1072 – volume: 38 year: 2002 ident: 10.1016/j.rse.2019.111616_bb0060 article-title: Stochastic gradient boosting publication-title: Comput. Stat. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – volume: 91 start-page: 1211 year: 2010 ident: 10.1016/j.rse.2019.111616_bb0250 article-title: The CALIPSO mission: a global 3D view of aerosols and clouds publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/2010BAMS3009.1 – volume: 210 start-page: 180 year: 2018 ident: 10.1016/j.rse.2019.111616_bb0270 article-title: Extinction effects of atmospheric compositions on return signals of space-based lidar from numerical simulation publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2018.01.034 – year: 2000 ident: 10.1016/j.rse.2019.111616_bb0200 – volume: 51 start-page: 1129 year: 2012 ident: 10.1016/j.rse.2019.111616_bb0085 article-title: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-02.1 – volume: 53 start-page: 2457 year: 2014 ident: 10.1016/j.rse.2019.111616_bb0115 article-title: Precipitation estimates from MSG SEVIRI daytime, nighttime, and twilight data with random forests publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-14-0082.1 – volume: 60 start-page: 609 year: 1976 ident: 10.1016/j.rse.2019.111616_bb0195 article-title: Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation publication-title: Rev. Geophys. Space Phys. doi: 10.1029/RG014i004p00609 – volume: 123 start-page: 1 year: 2018 ident: 10.1016/j.rse.2019.111616_bb0040 article-title: The cloud top distribution and diurnal variation of clouds over East Asia: preliminary results from Advanced Himawari Imager publication-title: J. Geophys. Res. – volume: 66 start-page: 247 year: 2011 ident: 10.1016/j.rse.2019.111616_bb0190 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 86 start-page: 1079 year: 2005 ident: 10.1016/j.rse.2019.111616_bb0215 article-title: Introducting the next-generation advanced baseline imager (ABI) on GOES-R publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-86-8-1079 – volume: 115 start-page: D00H20 year: 2010 ident: 10.1016/j.rse.2019.111616_bb0080 article-title: Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES-R/ABI publication-title: J. Geophys. Res. – volume: 47 start-page: 1175 year: 2008 ident: 10.1016/j.rse.2019.111616_bb0160 article-title: MODIS global cloud-top pressure and amount estimation: algorithm description and results publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/2007JAMC1705.1 – volume: 44 start-page: 5512 year: 2005 ident: 10.1016/j.rse.2019.111616_bb0255 article-title: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region publication-title: Appl. Opt. doi: 10.1364/AO.44.005512 – volume: 51 start-page: 1145 year: 2012 ident: 10.1016/j.rse.2019.111616_bb0015 article-title: MODIS cloud top property refinements for Collection 6 publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-11-0203.1 – volume: 2 start-page: 164 year: 1944 ident: 10.1016/j.rse.2019.111616_bb0125 article-title: A method for the solution of certain non-linear problems in least squares publication-title: Q. Appl. Math. doi: 10.1090/qam/10666 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rse.2019.111616_bb0025 article-title: Random forests – volume: 51 start-page: 321 year: 2003 ident: 10.1016/j.rse.2019.111616_bb0035 article-title: Support vector machines experts for time series forecasting publication-title: Neurocomputing doi: 10.1016/S0925-2312(02)00577-5 – volume: 64 start-page: 2483 year: 2007 ident: 10.1016/j.rse.2019.111616_bb0210 article-title: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part V: cloud structural properties publication-title: J. Atmos. Sci. doi: 10.1175/JAS3949.1 – volume: 27 start-page: 3244 year: 1988 ident: 10.1016/j.rse.2019.111616_bb0055 article-title: Transmittance of atmospheric gases in the microwave region: a fast model publication-title: Appl. Opt. doi: 10.1364/AO.27.003244 – volume: 26 start-page: 2310 year: 2009 ident: 10.1016/j.rse.2019.111616_bb0245 article-title: Overview of the CALIPSO mission and CALIOP data processing algorithms publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/2009JTECHA1281.1 – start-page: 155 year: 1997 ident: 10.1016/j.rse.2019.111616_bb0050 article-title: Support vector regression machines – volume: 11 start-page: 3177 year: 2018 ident: 10.1016/j.rse.2019.111616_bb0065 article-title: Neural network cloud top pressure and height for MODIS publication-title: Atmos. Meas. Tech. doi: 10.5194/amt-11-3177-2018 – volume: 77 start-page: 437 year: 1996 ident: 10.1016/j.rse.2019.111616_bb0100 article-title: The NCEP/NCAR 40-year reanalysis project publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – start-page: 1 year: 2011 ident: 10.1016/j.rse.2019.111616_bb0070 article-title: ABI cloud height – volume: 213 start-page: 144 year: 2018 ident: 10.1016/j.rse.2019.111616_bb0145 article-title: Long-term variation of cloud droplet number concentrations from space-based Lidar publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.05.011 – volume: 4 start-page: 335 year: 1989 ident: 10.1016/j.rse.2019.111616_bb0105 article-title: Description of the NMC global data assimilation and forecast system publication-title: Weather Forecast. doi: 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2 – volume: 57 start-page: 2557 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0185 article-title: Estimating summertime precipitation from Himawari-8 and global forecast system based on machine learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2874950 – volume: 40 start-page: 312 year: 2001 ident: 10.1016/j.rse.2019.111616_bb0130 article-title: Variational retrieval of cloud parameters from GOES sounder longwave cloudy radiance measurements publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(2001)040<0312:VROCPF>2.0.CO;2 – volume: 115 year: 2010 ident: 10.1016/j.rse.2019.111616_bb0170 article-title: Midlatitude cirrus cloud radiative forcing over China publication-title: J. Geophys. Res. – volume: 11 start-page: 383 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0155 article-title: Local severe storm tracking and warning in pre-convection stage from the new generation geostationary weather satellite measurements publication-title: Remote Sens. doi: 10.3390/rs11040383 – volume: 35 start-page: 1 year: 2008 ident: 10.1016/j.rse.2019.111616_bb0205 article-title: Classifying clouds around the globe with the CloudSat radar: 1-year of results publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL032591 – volume: 136 start-page: 15 year: 1982 ident: 10.1016/j.rse.2019.111616_bb0045 article-title: Alternative k-nearest neighbour rules in supervised pattern recognition: part 1. k-Nearest neighbour classification by using alternative voting rules publication-title: Anal. Chim. Acta doi: 10.1016/S0003-2670(01)95359-0 – volume: 16 start-page: 499 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0230 article-title: Refined typhoon geometric center derived from a high spatiotemporal resolution geostationary satellite imaging system publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2876895 – volume: 98 start-page: 1637 year: 2017 ident: 10.1016/j.rse.2019.111616_bb0265 article-title: Introducing the new generation of Chinese geostationary weather satellites, FengYun-4 publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-D-16-0065.1 – volume: 57 start-page: 3229 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0095 article-title: Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: capability of the AHI to monitor the DC cloud generation process publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2882803 – volume: 113 year: 2008 ident: 10.1016/j.rse.2019.111616_bb0090 article-title: Global Moderate resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP publication-title: J. Geophys. Res. – volume: 34 start-page: 1 year: 2007 ident: 10.1016/j.rse.2019.111616_bb0240 article-title: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals publication-title: Geophys. Res. Lett. doi: 10.1029/2007GL030676 – volume: 46 start-page: 175 year: 1992 ident: 10.1016/j.rse.2019.111616_bb0005 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 57 start-page: 8827 issue: 11 year: 2019 ident: 10.1016/j.rse.2019.111616_bb0235 article-title: Intercomparisons of cloud mask product among Fengyun-4A, Himawari-8 and MODIS publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2923247 – ident: 10.1016/j.rse.2019.111616_bb0030 – volume: 40 start-page: 4448 year: 2013 ident: 10.1016/j.rse.2019.111616_bb0135 article-title: A new approach to retrieve cloud base height of marine boundary layer clouds publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50836 – volume: 142 start-page: 25 year: 2014 ident: 10.1016/j.rse.2019.111616_bb0165 article-title: On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing publication-title: J. Quant. Spectrosc. Radiat. Transf. doi: 10.1016/j.jqsrt.2014.03.014 – volume: 83 start-page: 1771 year: 2002 ident: 10.1016/j.rse.2019.111616_bb0225 article-title: The CloudSat mission and the A-Train: a new dimension of space-based observations of clouds and precipitation publication-title: Bull. Am. Meteorol. Soc. doi: 10.1175/BAMS-83-12-1771 – volume: 141 start-page: 129 year: 2014 ident: 10.1016/j.rse.2019.111616_bb0120 article-title: Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — a random forests-based approach applied to MSG SEVIRI publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.10.026 – volume: 70 start-page: 330 year: 2013 ident: 10.1016/j.rse.2019.111616_bb0260 article-title: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm publication-title: J. Atmos. Sci. doi: 10.1175/JAS-D-12-039.1 – volume: 35 start-page: 382 year: 2014 ident: 10.1016/j.rse.2019.111616_bb0175 article-title: A method for monitoring the on-orbit performance of a satellite sensor infrared window band by using oceanic drifters publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2013.871393  | 
    
| SSID | ssj0015871 | 
    
| Score | 2.6041803 | 
    
| Snippet | The cloud-top height (CTH) product derived from passive satellite instrument measurements is often used to make climate data records (CDR). CALIPSO... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 111616 | 
    
| SubjectTerms | Accuracy Algorithms artificial intelligence CALIPSO CALIPSO (Pathfinder satellite) climate Climate and weather Climatic data Cloud top height Clouds Himawari-8 Learning algorithms Lidar Machine learning Measuring instruments meteorological data Meteorological satellites Passive satellites remote sensing Retrieval Satellite imagery Satellite instruments Satellite observation Satellites Spatial discrimination Spatial resolution Spectral bands Synchronous satellites uncertainty Weather  | 
    
| Title | Retrieval of cloud top properties from advanced geostationary satellite imager measurements based on machine learning algorithms | 
    
| URI | https://dx.doi.org/10.1016/j.rse.2019.111616 https://www.proquest.com/docview/2377334895 https://www.proquest.com/docview/2388757864  | 
    
| Volume | 239 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0704 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015871 issn: 0034-4257 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBalY2yXsmYrS9cVDXYaeHX0y9KxlLbZBj2MFXoTsqSkGYkdbOeQS9mfPj1ZTtkYPeyqH9joPb0nW9_7PoQ-hhNFrkLaykKyKTLmjM-UmJmMWGoIDzFTlRHleyOmt-zrHb_bQxdDLQzAKlPs72N6jNap5Syt5tl6sYAaX8rA48IRJORZAZygjBWgYvD5YQfzmHBZ9Kp5lGUwerjZjBivpgWmzImCwCFA8vzfuemvKB1Tz9UrdJDOjPi8f61DtOerETq6fCxRC51pj7Yj9CLpmt9vR-j5dRTu3b5Gv75H6azgV7ieYbusNw539Rqv4Wd8A6yqGCpN8IAJwHNft_01vWm2uDWRubPzeLEC1gu8evy32GJIhQ7XFV5FaKbHSYtijs1yXjeL7n7VvkG3V5c_LqZZUl_ILCOsy6glPARySwyTjFhLLOR6SaWYhEZmGC-9MZwCP73kuVEF97QUTiivcuIUPUL7VV35twhzm8tZmOEKKVhuQhQpZ9Y5cBInhRJjlA_rrm2iJgeFjKUeMGg_dTCVBlPp3lRj9Gk3Zd3zcjw1mA3G1H84lw5546lpJ4PhddrZrSa0KKB6WfEx-rDrDnsSLlpM5esNjJFRJ0Cw4_978jv0ksB3PeAG-Qna75qNfx8OP115Gr37FD07__JtevMbXaoEEA | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIlQuCBYqFgoYiRNSaNaxnfiIqpYFSg-olXqzHNu7XbSbrJLsYS-In47HcbYCoR64-kOJPON5Y3tmHsA771Gk0sNW4sEmT5jVLpFiphNqMk25t5myDFG-F2J6xb5c8-s9OBlyYTCsMtr-3qYHax1bjuNqHq8XC8zxzRhqnHdBPM4Kdg_uM05zPIF9-LmL85jwIu9p8zKW4PDhaTMEeTUtlsqcSLQcAjnP_w1Of5npgD1nj-FRdBrJx_6_nsCeq0ZweHqbo-Y74yZtR3AQic1vtiN48Ckw926fwq_vgTvLKxapZ8Qs640lXb0ma7yNb7CsKsFUEzIEBZC5q9v-nV43W9LqULqzc2SxwrIXZHV7udgSxEJL6oqsQmymI5GMYk70cl43i-5m1T6Dq7PTy5NpEukXEsMo65LMUO4tuaGaFYwaQw2CfZEVYuIbmWa8dFrzDAvUFzzVMucuK4UV0smUWpkdwn5VV-45EG7SYuZn2LwQLNXejJQzYy1qiS2EFGNIh3VXJtYmR4qMpRqC0H4oLyqFolK9qMbwfjdl3RfmuGswG4Sp_tAu5YHjrmlHg-BV3NqtolmeY_qy5GN4u-v2mxJfWnTl6g2OKQJRgGAv_u_Lb-BgevntXJ1_vvj6Eh5SPORjECE_gv2u2bhX3hPqytdB038DTl4FpQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Retrieval+of+cloud+top+properties+from+advanced+geostationary+satellite+imager+measurements+based+on+machine+learning+algorithms&rft.jtitle=Remote+sensing+of+environment&rft.au=Min%2C+Min&rft.au=Li%2C+Jun&rft.au=Wang%2C+Fu&rft.au=Liu%2C+Zijing&rft.date=2020-03-15&rft.issn=0034-4257&rft.volume=239&rft.spage=111616&rft_id=info:doi/10.1016%2Fj.rse.2019.111616&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rse_2019_111616 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon |