In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair
Methacrylated gellan gum (GGMA) formulation is proposed as a second‐generation hydrogel for controlled delivery of cartilage‐forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic...
Saved in:
Published in | Journal of biomedical materials research. Part A Vol. 106; no. 7; pp. 1987 - 1996 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.07.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-3296 1552-4965 1552-4965 |
DOI | 10.1002/jbm.a.36406 |
Cover
Abstract | Methacrylated gellan gum (GGMA) formulation is proposed as a second‐generation hydrogel for controlled delivery of cartilage‐forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof‐of‐concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non‐treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non‐treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno‐free biomaterial to be used with chondrogenic cells for a cost‐effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987–1996, 2018 |
---|---|
AbstractList | Methacrylated gellan gum (GGMA) formulation is proposed as a second-generation hydrogel for controlled delivery of cartilage-forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof-of-concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non-treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non-treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno-free biomaterial to be used with chondrogenic cells for a cost-effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987-1996, 2018.Methacrylated gellan gum (GGMA) formulation is proposed as a second-generation hydrogel for controlled delivery of cartilage-forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof-of-concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non-treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non-treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno-free biomaterial to be used with chondrogenic cells for a cost-effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987-1996, 2018. Methacrylated gellan gum (GGMA) formulation is proposed as a second-generation hydrogel for controlled delivery of cartilage-forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof-of-concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non-treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non-treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno-free biomaterial to be used with chondrogenic cells for a cost-effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987-1996, 2018. Methacrylated gellan gum (GGMA) formulation is proposed as a second‐generation hydrogel for controlled delivery of cartilage‐forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof‐of‐concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non‐treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo, this formulation promoted significantly superior de novo cartilage formation compared with the non‐treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo, positioning itself as an attractive xeno‐free biomaterial to be used with chondrogenic cells for a cost‐effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987–1996, 2018 Methacrylated gellan gum (GGMA) formulation is proposed as a second‐generation hydrogel for controlled delivery of cartilage‐forming cells into focal chondral lesions, allowing immediate in situ retention of cells and 3D filling of lesion volume, such approach deemed compatible with an arthroscopic procedure. Formulation optimization was carried out in vitro using chondrocytes and adipose mesenchymal stromal/stem cells (ASCs). A proof‐of‐concept in vivo study was conducted using a rabbit model with induced chondral lesions. Outcomes were compared with microfracture or non‐treated control. Three grading scores were used to evaluate tissue repair after 8 weeks by macroscopic, histological and immunohistochemical analysis. Intense collagen type II and low collagen type I gene and protein expression were achieved in vitro by the ASC + GGMA formulation, in light with development of healthy chondral tissue. In vivo , this formulation promoted significantly superior de novo cartilage formation compared with the non‐treated group. Maintenance of chondral height and integration with native tissue was further accomplished. The physicochemical properties of the proposed GGMA hydrogel exhibited highly favorable characteristics and biological performance both in vitro and in vivo , positioning itself as an attractive xeno‐free biomaterial to be used with chondrogenic cells for a cost‐effective treatment of focal chondral lesions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1987–1996, 2018 |
Author | da Silva Morais, Alain Reis, Rui L. Learmonth, David A. Oliveira, Pedro Moreira, Elsa S. Gertrudes, Ana C. Oliveira, Joaquim M. Santos, Tírcia C. Espregueira‐Mendes, João D. Vilela, Carlos A. Correia, Cristina Sousa, Rui A. Frias, Ana M. |
Author_xml | – sequence: 1 givenname: Carlos A. orcidid: 0000-0002-1680-4498 surname: Vilela fullname: Vilela, Carlos A. email: cvilelagomes@gmail.com organization: Hospital da Senhora da Oliveira Guimarães EPE – sequence: 2 givenname: Cristina surname: Correia fullname: Correia, Cristina organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 3 givenname: Alain surname: da Silva Morais fullname: da Silva Morais, Alain organization: ICVS/3Bs–PT Government Associate Laboratory – sequence: 4 givenname: Tírcia C. orcidid: 0000-0002-5365-4863 surname: Santos fullname: Santos, Tírcia C. organization: ICVS/3Bs–PT Government Associate Laboratory – sequence: 5 givenname: Ana C. surname: Gertrudes fullname: Gertrudes, Ana C. organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 6 givenname: Elsa S. surname: Moreira fullname: Moreira, Elsa S. organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 7 givenname: Ana M. surname: Frias fullname: Frias, Ana M. organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 8 givenname: David A. surname: Learmonth fullname: Learmonth, David A. organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 9 givenname: Pedro surname: Oliveira fullname: Oliveira, Pedro organization: ISUP‐EPI Unit, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto – sequence: 10 givenname: Joaquim M. surname: Oliveira fullname: Oliveira, Joaquim M. organization: ICVS/3Bs–PT Government Associate Laboratory – sequence: 11 givenname: Rui A. surname: Sousa fullname: Sousa, Rui A. organization: Stemmatters, Biotecnologia e Medicina Regenerativa SA – sequence: 12 givenname: João D. surname: Espregueira‐Mendes fullname: Espregueira‐Mendes, João D. organization: Clínica do Dragão, Espregueira‐Mendes Sports Centre, FIFA Medical Centre of Excellence and D. Henrique Research Centre – sequence: 13 givenname: Rui L. surname: Reis fullname: Reis, Rui L. organization: ICVS/3Bs–PT Government Associate Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29569326$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1PGzEQxa0KVAhw6r2y1AtStcHfxEca9QME4gJny_GOE0e769Tepcp_jzeBS1Rxsmf8e0_jeRN01MUOEPpCyZQSwq7Wi3Zqp1wJoj6hUyolq4RW8mi8C11xptUJmuS8LrAikn1GJ0xLpTlTp2h52-GX0KeIbVfjMBYvEW8g-Zha2znA0eMW-pV1advYHmq8hKaxHV4OLV5t6xRLjUd6KM8hdnkssLOpD41dAk6wsSGdo2NvmwwXb-cZev7182n-p7p__H07v7mvnGBCVYoSCVC-RZz3HGBRg9KOcApiBlpISmfS10xaTyyQa0G455raWmkJpcX5Gbrc-25S_DtA7k0bsttNDHHIhhE6I1RzQgr67QBdxyF1ZbpCiWuuKBej4dc3ali0UJtNCq1NW_O-wgLQPeBSzDmBNy70u030yYbGUGLGmEyJyVizi6lovh9o3m3_T7M9_S80sP0INXc_Hm72olcoW6Oa |
CitedBy_id | crossref_primary_10_1016_j_ijbiomac_2019_08_176 crossref_primary_10_1016_j_colsurfb_2022_112859 crossref_primary_10_3390_polym13193281 crossref_primary_10_1016_j_carbpol_2021_118382 crossref_primary_10_1021_acsami_0c10415 crossref_primary_10_1002_mame_202000188 crossref_primary_10_48175_IJARSCT_1406 crossref_primary_10_1089_ten_teb_2022_0114 crossref_primary_10_1016_j_carbpol_2020_116033 crossref_primary_10_1016_j_bioadv_2022_213185 crossref_primary_10_1186_s12951_022_01505_7 crossref_primary_10_3390_polym13193317 crossref_primary_10_1016_j_ijbiomac_2020_01_164 crossref_primary_10_1039_D0BM00286K crossref_primary_10_1016_j_bioactmat_2024_05_023 crossref_primary_10_1016_j_actbio_2019_01_053 crossref_primary_10_3390_coatings14010028 crossref_primary_10_1016_j_actbio_2022_08_062 crossref_primary_10_1016_j_carpta_2023_100382 crossref_primary_10_3390_molecules24244514 crossref_primary_10_3390_pharmaceutics14081578 crossref_primary_10_1016_j_actbio_2021_01_017 crossref_primary_10_1186_s12951_021_01228_1 crossref_primary_10_1016_j_mser_2020_100543 crossref_primary_10_1016_j_reactfunctpolym_2024_106016 crossref_primary_10_1016_j_cej_2024_154993 crossref_primary_10_3389_fbioe_2022_1058355 crossref_primary_10_3390_polym12010176 crossref_primary_10_3390_molecules28166030 crossref_primary_10_1089_ten_teb_2020_0244 crossref_primary_10_1016_j_msec_2021_112611 |
Cites_doi | 10.1177/0363546508322131 10.1002/jbm.a.34650 10.1177/0363546517716631 10.1007/978-3-319-44785-8_3 10.1016/S0144-8617(96)00168-3 10.1016/j.joca.2009.08.009 10.1177/1947603511401905 10.1002/term.363 10.1007/s40883-015-0005-0 10.1016/j.jcot.2016.06.015 10.1056/NEJM199410063311401 10.1021/acsbiomaterials.5b00245 10.1016/j.joca.2013.08.024 10.2106/JBJS.L.01695 10.1177/2325967114550781 10.1002/jbm.a.32574 10.1016/j.biomaterials.2016.04.018 10.1016/S0020-1383(13)70004-4 10.1016/j.joca.2008.11.008 10.1186/s13287-016-0314-3 10.1089/107632701300062859 10.1016/j.biomaterials.2016.09.002 10.1016/j.arthro.2013.07.271 10.1016/j.pmrj.2013.08.612 10.1089/ten.tea.2013.0531 10.1016/j.joca.2014.05.019 10.1098/rstb.2014.0369 10.1089/ten.tea.2012.0083 10.1007/978-3-319-45457-3_11 10.1089/ten.teb.2009.0452 10.3390/polym8060219 10.1007/s00167-014-2843-6 10.1177/0363546509332258 10.1002/jor.21114 10.1177/0363546516663711 10.2106/JBJS.J.00049 10.3310/hta21060 10.3390/ma6020637 10.1155/2016/6969726 10.2106/00004623-199304000-00009 |
ContentType | Journal Article |
Copyright | 2018 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1002/jbm.a.36406 |
DatabaseName | CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1552-4965 |
EndPage | 1996 |
ExternalDocumentID | 29569326 10_1002_jbm_a_36406 JBMA36406 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Portuguese National Innovation Agency funderid: QREN‐13/SI/2011‐23189 |
GroupedDBID | --- -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 1ZS 31~ 33P 4.4 4ZD 50Z 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AZBYB AZFZN BAFTC BDRZF BFHJK BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ J0M JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O9- OIG P2P P2W P2X P4D PQQKQ Q.N QB0 QRW R.K RNS ROL RWI RYL SUPJJ SV3 UB1 V2E W8V W99 WIH WIK WJL WQJ WRC WXSBR XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 1OB 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c4246-6105ee1000cff3eebde69c031e48e9451185fd25af0ae07403f391ad695ef0a33 |
IEDL.DBID | DR2 |
ISSN | 1549-3296 1552-4965 |
IngestDate | Tue Aug 05 10:46:58 EDT 2025 Wed Aug 13 04:13:39 EDT 2025 Thu Apr 03 07:07:01 EDT 2025 Thu Apr 24 23:06:45 EDT 2025 Tue Jul 01 00:57:44 EDT 2025 Wed Jan 22 16:28:44 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | chondrocytes adipose stromal/stem cells cartilage repair hydrogel methacrylated gellan gum |
Language | English |
License | 2018 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4246-6105ee1000cff3eebde69c031e48e9451185fd25af0ae07403f391ad695ef0a33 |
Notes | The author, or one or more of the authors, has received or will receive remuneration or other prequisites for personal or professional use from a commercial or industrial agent in direct or indirect relationship to their authorship. * ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1680-4498 0000-0002-5365-4863 |
OpenAccessLink | http://hdl.handle.net/10216/113053 |
PMID | 29569326 |
PQID | 2047361343 |
PQPubID | 2034572 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2018019300 proquest_journals_2047361343 pubmed_primary_29569326 crossref_citationtrail_10_1002_jbm_a_36406 crossref_primary_10_1002_jbm_a_36406 wiley_primary_10_1002_jbm_a_36406_JBMA36406 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2018 |
PublicationDateYYYYMMDD | 2018-07-01 |
PublicationDate_xml | – month: 07 year: 2018 text: July 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Mount Laurel |
PublicationTitle | Journal of biomedical materials research. Part A |
PublicationTitleAlternate | J Biomed Mater Res A |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2013; 29 2015; 1 1994; 331 2010; 16 2011; 2 2013; 44 2013; 21 2010 2010; 18 2016; 108 2017; 21 2017; 45 2008; 36 2016; 98 2013; 101 2012; 18 2016; 2016 2013; 6 2011; 5 2014; 22 2014; 20 2015; 370 2016; 7 2014; 2 2001; 7 1997; 32 2010; 28 1993; 75 2017 2016; 951 2014; 96 2010; 92 2014; 6 2016; 8 2009; 37 2016; 9 2010; 93 2009; 17 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_24_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 Oliveira JT (e_1_2_5_20_1) 2010; 93 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 Gracitelli GC (e_1_2_5_38_1) 2016; 9 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – volume: 22 start-page: 1207 year: 2014 end-page: 1215 article-title: Microfracture technique versus osteochondral autologous transplantation mosaicplasty in patients with articular chondral lesions of the knee: A prospective randomized trial with long‐term follow‐up publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 331 start-page: 889 year: 1994 end-page: 895 article-title: Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation publication-title: N Engl J Med – volume: 6 start-page: 637 year: 2013 end-page: 668 article-title: Advanced strategies for articular cartilage defect repair publication-title: Materials (Basel) – volume: 93 start-page: 852 year: 2010 end-page: 863 article-title: Gellan gum: A new biomaterial for cartilage tissue engineering applications publication-title: J Biomed Mater Res A – volume: 36 start-page: 2091 year: 2008 end-page: 2099 article-title: Characteristic complications after autologous chondrocyte implantation for cartilage defects of the knee joint publication-title: Am J Sports Med – volume: 28 start-page: 1193 year: 2010 end-page: 1199 article-title: Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects publication-title: J Orthop Res – volume: 37 start-page: 1344 year: 2009 end-page: 1350 article-title: Outcomes of autologous chondrocyte implantation in a diverse patient population publication-title: Am J Sports Med – volume: 1 start-page: 42 year: 2015 end-page: 49 article-title: Regenerative engineering of cartilage using adipose‐derived stem cells publication-title: Regen Eng Transl Med – volume: 32 start-page: 245 year: 1997 end-page: 247 article-title: Rapid purification of commercial gellan gum to highly soluble and gellable monovalent cation salts publication-title: Carbohydr Polym – volume: 75 start-page: 532 year: 1993 end-page: 553 article-title: Cell origin and differentiation in the repair of full‐thickness defects of articular cartilage publication-title: J Bone Joint Surg Am – volume: 6 start-page: 70 year: 2014 end-page: 77 article-title: Clinical challenges and opportunities of mesenchymal stem cells in musculoskeletal medicine publication-title: PM R – volume: 2 start-page: 232596711455078 year: 2014 article-title: Clinical outcome 3 years after autologous chondrocyte implantation does not correlate with the expression of a predefined gene marker set in chondrocytes prior to implantation but is associated with critical signaling pathways publication-title: Orthop J Sports Med – volume: 20 start-page: 2131 year: 2014 end-page: 2139 article-title: Chondrogenic differentiation of adipose‐derived stromal cells in combinatorial hydrogels containing cartilage matrix proteins with decoupled mechanical stiffness publication-title: Tissue Eng A – volume: 21 start-page: 1 year: 2017 end-page: 294 article-title: Autologous chondrocyte implantation in the knee: Systematic review and economic evaluation publication-title: Health Technol Assess – volume: 29 start-page: 1872 year: 2013 end-page: 1878 article-title: Evidence‐based status of second‐ and third‐generation autologous chondrocyte implantation over first generation: A systematic review of level I and II studies publication-title: Arthroscopy – volume: 370 start-page: 20140369 year: 2015 article-title: From gristle to chondrocyte transplantation: Treatment of cartilage injuries publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 1 start-page: 726 year: 2015 end-page: 739 article-title: Cartilage repair using hydrogels: A critical review of in vivo experimental designs publication-title: Acs Biomater Sci Eng – volume: 21 start-page: 1824 year: 2013 end-page: 1833 article-title: The clinical status of cartilage tissue regeneration in humans publication-title: Osteoarthritis Cartilage – volume: 22 start-page: 1148 year: 2014 end-page: 1157 article-title: Functional cartilage repair capacity of de‐differentiated, chondrocyte‐ and mesenchymal stem cell‐laden hydrogels in vitro publication-title: Osteoarthritis Cartilage – volume: 2016 start-page: 6969726 year: 2016 article-title: Chondrogenic potency analyses of donor‐matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat publication-title: Stem Cells Int – volume: 951 start-page: 137 year: 2016 end-page: 146 article-title: Cryopreserved adipose tissue‐derived stromal/stem cells: Potential for applications in clinic and therapy publication-title: Adv Exp Med Biol – year: 2010 – volume: 17 start-page: 705 year: 2009 end-page: 713 article-title: Preclinical animal models in single site cartilage defect testing: A systematic review publication-title: Osteoarthritis Cartilage – volume: 5 start-page: e97 year: 2011 end-page: 107 article-title: Gellan gum‐based hydrogels for intervertebral disc tissue‐engineering applications publication-title: J Tissue Eng Regen Med – volume: 44 start-page: S11 year: 2013 end-page: S15 article-title: Treatment of cartilage lesions: What works and why? publication-title: Injury – volume: 18 start-page: 12 year: 2010 end-page: 23 article-title: Evaluation of histological scoring systems for tissue‐engineered, repaired and osteoarthritic cartilage publication-title: Osteoarthritis Cartilage – volume: 2 start-page: 137 year: 2011 end-page: 152 article-title: Preclinical studies for cartilage repair: Recommendations from the international cartilage repair society publication-title: Cartilage – volume: 7 start-page: 145 year: 2016 end-page: 152 article-title: Microfracture for the treatment of cartilage defects in the knee joint ‐ A golden standard? publication-title: J Clin Orthop Trauma – volume: 45 start-page: 70 year: 2017 end-page: 76 article-title: Autologous chondrocyte implantation improves knee‐specific functional outcomes and health‐related quality of life in adolescent patients publication-title: Am J Sports Med – volume: 101 start-page: 3438 year: 2013 end-page: 3446 article-title: Rheological and mechanical properties of acellular and cell‐laden methacrylated gellan gum hydrogels publication-title: J Biomed Mater Res A – volume: 7 start-page: 56 year: 2016 article-title: Should we use cells, biomaterials, or tissue engineering for cartilage regeneration? publication-title: Stem Cell Res Ther – start-page: 2953 year: 2017 – volume: 9 start-page: CD010675 year: 2016 article-title: Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults publication-title: Cochrane Database Syst Rev – volume: 108 start-page: 157 year: 2016 end-page: 167 article-title: Transplantation of allogenic chondrocytes with chitosan hydrogel‐demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury publication-title: Biomaterials – volume: 8 start-page: 219 year: 2016 article-title: Polymers in cartilage defect repair of the knee: Current status and future prospects publication-title: Polymers – volume: 16 start-page: 105 year: 2010 end-page: 115 article-title: Animal models for cartilage regeneration and repair publication-title: Tissue Eng B Rev – volume: 98 start-page: 1 year: 2016 end-page: 22 article-title: Cell‐based tissue engineering strategies used in the clinical repair of articular cartilage publication-title: Biomaterials – volume: 18 start-page: 1979 year: 2012 end-page: 1991 article-title: Dynamic culturing of cartilage tissue: The significance of hydrostatic pressure. Tissue publication-title: Eng Part A – volume: 45 start-page: 2751 year: 2017 end-page: 2761 article-title: A 20‐year follow‐up after first‐generation autologous chondrocyte implantation publication-title: Am J Sports Med – volume: 7 start-page: 211 year: 2001 end-page: 228 article-title: Multilineage cells from human adipose tissue: Implications for cell‐based therapies publication-title: Tissue Eng – volume: 96 start-page: 824 year: 2014 end-page: 830 article-title: Autologous chondrocyte implantation in the knee: Mid‐term to long‐term results publication-title: J Bone Joint Surg Am – volume: 92 start-page: 2220 year: 2010 end-page: 2233 article-title: Autologous chondrocyte implantation: A systematic review publication-title: J Bone Joint Surg Am – ident: e_1_2_5_11_1 doi: 10.1177/0363546508322131 – ident: e_1_2_5_21_1 doi: 10.1002/jbm.a.34650 – ident: e_1_2_5_5_1 doi: 10.1177/0363546517716631 – ident: e_1_2_5_2_1 doi: 10.1007/978-3-319-44785-8_3 – ident: e_1_2_5_32_1 doi: 10.1016/S0144-8617(96)00168-3 – ident: e_1_2_5_35_1 doi: 10.1016/j.joca.2009.08.009 – ident: e_1_2_5_33_1 doi: 10.1177/1947603511401905 – ident: e_1_2_5_23_1 doi: 10.1002/term.363 – ident: e_1_2_5_28_1 doi: 10.1007/s40883-015-0005-0 – ident: e_1_2_5_37_1 doi: 10.1016/j.jcot.2016.06.015 – ident: e_1_2_5_3_1 doi: 10.1056/NEJM199410063311401 – ident: e_1_2_5_15_1 doi: 10.1021/acsbiomaterials.5b00245 – ident: e_1_2_5_34_1 – ident: e_1_2_5_16_1 doi: 10.1016/j.joca.2013.08.024 – ident: e_1_2_5_6_1 doi: 10.2106/JBJS.L.01695 – ident: e_1_2_5_27_1 doi: 10.1177/2325967114550781 – volume: 93 start-page: 852 year: 2010 ident: e_1_2_5_20_1 article-title: Gellan gum: A new biomaterial for cartilage tissue engineering applications publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.32574 – ident: e_1_2_5_22_1 – ident: e_1_2_5_13_1 doi: 10.1016/j.biomaterials.2016.04.018 – ident: e_1_2_5_40_1 doi: 10.1016/S0020-1383(13)70004-4 – ident: e_1_2_5_44_1 doi: 10.1016/j.joca.2008.11.008 – ident: e_1_2_5_25_1 doi: 10.1186/s13287-016-0314-3 – ident: e_1_2_5_29_1 doi: 10.1089/107632701300062859 – ident: e_1_2_5_41_1 doi: 10.1016/j.biomaterials.2016.09.002 – ident: e_1_2_5_14_1 doi: 10.1016/j.arthro.2013.07.271 – ident: e_1_2_5_30_1 doi: 10.1016/j.pmrj.2013.08.612 – ident: e_1_2_5_36_1 doi: 10.1089/ten.tea.2013.0531 – ident: e_1_2_5_24_1 doi: 10.1016/j.joca.2014.05.019 – ident: e_1_2_5_4_1 doi: 10.1098/rstb.2014.0369 – ident: e_1_2_5_18_1 doi: 10.1089/ten.tea.2012.0083 – volume: 9 start-page: CD010675 year: 2016 ident: e_1_2_5_38_1 article-title: Surgical interventions (microfracture, drilling, mosaicplasty, and allograft transplantation) for treating isolated cartilage defects of the knee in adults publication-title: Cochrane Database Syst Rev – ident: e_1_2_5_31_1 doi: 10.1007/978-3-319-45457-3_11 – ident: e_1_2_5_42_1 doi: 10.1089/ten.teb.2009.0452 – ident: e_1_2_5_17_1 doi: 10.3390/polym8060219 – ident: e_1_2_5_39_1 doi: 10.1007/s00167-014-2843-6 – ident: e_1_2_5_8_1 doi: 10.1177/0363546509332258 – ident: e_1_2_5_19_1 doi: 10.1002/jor.21114 – ident: e_1_2_5_7_1 doi: 10.1177/0363546516663711 – ident: e_1_2_5_10_1 doi: 10.2106/JBJS.J.00049 – ident: e_1_2_5_9_1 doi: 10.3310/hta21060 – ident: e_1_2_5_12_1 doi: 10.3390/ma6020637 – ident: e_1_2_5_26_1 doi: 10.1155/2016/6969726 – ident: e_1_2_5_43_1 doi: 10.2106/00004623-199304000-00009 |
SSID | ssj0026052 |
Score | 2.4378805 |
Snippet | Methacrylated gellan gum (GGMA) formulation is proposed as a second‐generation hydrogel for controlled delivery of cartilage‐forming cells into focal chondral... Methacrylated gellan gum (GGMA) formulation is proposed as a second-generation hydrogel for controlled delivery of cartilage-forming cells into focal chondral... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1987 |
SubjectTerms | adipose stromal/stem cells Biomaterials Cartilage cartilage repair Chondrocytes Collagen Collagen (type I) Collagen (type II) Evaluation Formulations Gellan gum Gene expression hydrogel Hydrogels In vivo methods and tests Lesions Mesenchyme methacrylated gellan gum Microfracture Physicochemical properties Proteins Repair Stem cells |
Title | In vitro and in vivo performance of methacrylated gellan gum hydrogel formulations for cartilage repair |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjbm.a.36406 https://www.ncbi.nlm.nih.gov/pubmed/29569326 https://www.proquest.com/docview/2047361343 https://www.proquest.com/docview/2018019300 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG6MJz34fuArNfGkYe22pQtHNRo10YPRxBsppayru2DYXRP99c4UxGdM9EbpEEo7035Dp98QsqMjZrJMh75SoMGgIcpPuEl9LgEey4SZttvRvbhUpzfy_Da4rWNz8CxMxQ_R_HBDy3DzNRq4Tob776Sh98mgpVtCSUe43YYLhERXDXkUAnW31wkekC94pOrTeVCz_-HZz-vRN5D5GbO6RedktsqsOnRchRhr8tAaj5KWefnC5Pjv75kjMzUcpQeV_syTCZsvkOkPJIWLpHuW06feqCyozlPaw8JTQR_fDxzQIqOYiFqb8rkP0DWlXQypyml3PKB3z2lZQJmidJ0qbIgFalBp-zCd0RKWxF65RG5Ojq-PTv06PYNvJJcKnE4WWIv7AzDawtoktSoyMElYGdoIec_CIEt5oDOmLSAVJjIRtXWqosDCLSGWyWRe5HaVUPBSTWik4sx2pAWPMYiygHdCAJsZzMjaI7tvgxSbmrscU2j044p1mcfQe7GOXe95ZKcRfqwoO34W23gb7bi222HMmewIQDhSeGS7qQaLM67jbDFGmTYs65FgzCMrlZY07-HgbiIi9sieG-vfGhCfH14cuKu1P0mvkylsQhUzvEEmR-XYbgIyGiVbzgBeAQv9CFE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2hcgAO5RtSChipJ1C2XtvxJseCqLal2wNqpd4sx3G2C9ukSncrlV_PjJNNW0BIcIuTieJ4Zuw3HvsZYMtm3JWlTWOt0YLRQnScC1fEQiE8Vjl3w5DRnRzq8bHaP0lOugk32gvT8kP0E27kGaG_JgenCenta9bQb_nZwA6kVsS4fTdk6AgUfe3powiqh2wnxkCxFJnu9ufhk-0bL98ekX6DmbdRaxh2dh-CWVW4XW3yfbBc5AP34xcux___o0ew3iFSttOa0GO446sn8OAGT-FTmO5V7HK2aGpmq4LNqHBZs_PrPQesLhmdRW1dczVH9FqwKa2qqth0ecZOr4qmxjIj6e60sAsqMEd2O8cejTU4Ks6aZ3C8-_no0zjuTmiInRJKY9zJE-8pRYAKl97nhdeZw37Cq9RnRH2WJmUhElty6xGscFnKbGgLnSUeb0n5HNaquvIvgWGg6lKntOB-pDwGjUlWJmKUIt4ssVO2Ebxfacm4jr6cTtGYm5Z4WRhsPWNNaL0Itnrh85a1489imyt1m851L4zgaiQR5CgZwbv-MTqdCw3n6yXJDHFkzyTnEbxozaT_jsCIk0BxBB-Csv9WAbP_cbITrjb-Sfot3BsfTQ7Mwd7hl1dwn6rTLiHehLVFs_SvESgt8jfBG34CjbMMbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3_T9QwFG8IJkR_UPALThFrwk-aHb22620_AnIBFGKMJPzWdF17nh7bZXdHgn8973VjgBgT_W1d37Kufa_v89b28wjZMhmz3ps0Vgo0GDRExTm3RcwlwGOZM9sPK7rHJ-rgVB6dJWft3hw8C9PwQ3Q_3NAywnyNBj4t_PYNaeiP_LxnekJJJNx-IBU4SsREXzv2KETqYbETQqBY8Ey1x_OgZvvWw3cd0j2UeRe0Bq8zfNKkVp0FskLcbPKzt5jnPfvrNyrH__6gVfK4xaN0p1GgNbLkyqfk0S2WwmdkdFjSi_G8rqgpCzrGwkVFpzcnDmjlKWaiNra-nAB2LegI91SVdLQ4p98vi7qCMkXpNlfYDAvUotZOYD6jNfjEcf2cnA73v-0dxG1-hthKLhVEnSxxDhcIYLiFc3nhVGZhlnAydRkSn6WJL3hiPDMOoAoTXmR9U6gscXBLiBdkuaxK95JQCFNtaqXizA2kg5AxyXzCBymgTQ9TsonI--tB0rYlL8ccGhPd0C5zDb2njQ69F5GtTnjacHb8WWzjerR1a7gzzZkcCIA4UkTkXVcNJmdDx7lqgTJ98OuZYCwi642WdO_hEG8iJI7IhzDWf2uAPto93glXr_5J-i1Z-fJxqD8fnnx6TR5ia5r9wxtkeV4v3BtASfN8M9jCFWF5Cx4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vitro+and+in+vivo+performance+of+methacrylated+gellan+gum+hydrogel+formulations+for+cartilage+repair&rft.jtitle=Journal+of+biomedical+materials+research.+Part+A&rft.au=Vilela%2C+Carlos+A&rft.au=Correia%2C+Cristina&rft.au=da+Silva+Morais%2C+Alain&rft.au=Santos%2C+T%C3%ADrcia+C&rft.date=2018-07-01&rft.eissn=1552-4965&rft.volume=106&rft.issue=7&rft.spage=1987&rft_id=info:doi/10.1002%2Fjbm.a.36406&rft_id=info%3Apmid%2F29569326&rft.externalDocID=29569326 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-3296&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-3296&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-3296&client=summon |