Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection

•A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models. Gait event detectio...

Full description

Saved in:
Bibliographic Details
Published inGait & posture Vol. 74; pp. 128 - 134
Main Authors Tan, Hui Xing, Aung, Nway Nway, Tian, Jing, Chua, Matthew Chin Heng, Yang, Youheng Ou
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text
ISSN0966-6362
1879-2219
1879-2219
DOI10.1016/j.gaitpost.2019.09.007

Cover

Abstract •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models. Gait event detection (GED) is an important aspect in identifying and interpret a user’s gait to assess gait abnormalities and design intelligent assistive devices. There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments. This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user’s gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made. Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment. This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.
AbstractList •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models. Gait event detection (GED) is an important aspect in identifying and interpret a user’s gait to assess gait abnormalities and design intelligent assistive devices. There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments. This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user’s gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made. Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment. This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.
Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices. There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments. This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made. Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment. This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.
Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices.BACKGROUNDGait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices.There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.RESEARCH QUESTIONThere is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.METHODSThis paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.RESULTSPerformance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.SIGNIFICANCEThis paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.
Author Tian, Jing
Tan, Hui Xing
Aung, Nway Nway
Chua, Matthew Chin Heng
Yang, Youheng Ou
Author_xml – sequence: 1
  givenname: Hui Xing
  surname: Tan
  fullname: Tan, Hui Xing
  organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore
– sequence: 2
  givenname: Nway Nway
  surname: Aung
  fullname: Aung, Nway Nway
  organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore
– sequence: 3
  givenname: Jing
  surname: Tian
  fullname: Tian, Jing
  organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore
– sequence: 4
  givenname: Matthew Chin Heng
  surname: Chua
  fullname: Chua, Matthew Chin Heng
  email: isscchm@nus.edu.sg
  organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore
– sequence: 5
  givenname: Youheng Ou
  surname: Yang
  fullname: Yang, Youheng Ou
  organization: Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, 169608, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31518859$$D View this record in MEDLINE/PubMed
BookMark eNqNUcFu1DAQtVAR3RZ-ofKRSxbbyXpthBBVBS3SIg7s3ZrYk-IliYPtVNoP6H_jZVsOvRRppBlZ770Zv3dGTsYwIiEXnC054_LdbnkLPk8h5aVgXC9ZKbZ-QRZcrXUlBNcnZMG0lJWspTglZyntGGNNrcQrclrzFVdqpRfkfusHpAmjx0RtDyn5zlvIPox0Tn68pUCH4MojOrr5sf1GYZpiAPuTdjEMFKzFHsuEGWPVQiowBxne00tqwzBBLFp3ZUOe3Z52IdLD3dTubY_UFZI9rHpNXnbQJ3zz0M_J9svn7dVNtfl-_fXqclPZRtS56pQCIQRDy11bay6UFoBS1q0UXAm5Rm6dUlKBQ15L2-Cq063ABkE0TNfn5O1Rtvzg94wpm8Gncn8PI4Y5GSE0U8UuJgr04gE6twM6M0U_QNybR-cKQB4BNoaUInb_IJyZQ0RmZx4jMoeIDCvF1oX44QnR-vzX8BzB98_TPx3pWHy68xhNsh5Hi87HYqZxwT8v8fGJhO39WFLvf-H-fwT-ALoLyM8
CitedBy_id crossref_primary_10_1155_2020_8024789
crossref_primary_10_1007_s11063_022_10741_9
crossref_primary_10_1109_JBHI_2021_3137413
crossref_primary_10_1007_s12652_019_01659_7
crossref_primary_10_3390_jmse10050577
crossref_primary_10_1016_j_gaitpost_2021_06_015
crossref_primary_10_3390_math11061432
crossref_primary_10_1007_s40279_021_01443_8
crossref_primary_10_1016_j_bspc_2021_103321
crossref_primary_10_1109_JBHI_2020_3025049
crossref_primary_10_1007_s10723_021_09595_7
crossref_primary_10_3390_math11183942
crossref_primary_10_3390_s22030984
crossref_primary_10_1109_JSEN_2024_3399697
crossref_primary_10_3390_s21216974
crossref_primary_10_1016_j_neucom_2020_08_079
crossref_primary_10_14801_jkiit_2021_19_8_27
crossref_primary_10_1016_j_dsp_2021_103120
crossref_primary_10_3389_fspor_2022_1037438
crossref_primary_10_3390_s20247127
crossref_primary_10_1007_s11042_023_16177_0
crossref_primary_10_21603_2308_4057_2026_1_657
crossref_primary_10_1016_j_aei_2024_102729
crossref_primary_10_1155_2023_4086380
crossref_primary_10_1016_j_compbiomed_2024_108016
crossref_primary_10_1117_1_JBO_27_6_067002
crossref_primary_10_1016_j_knosys_2022_109351
crossref_primary_10_3389_fnbot_2022_913052
crossref_primary_10_1016_j_bspc_2020_102279
crossref_primary_10_1007_s12652_020_02503_z
crossref_primary_10_1109_ACCESS_2024_3422256
crossref_primary_10_1007_s11063_022_10944_0
crossref_primary_10_1371_journal_pone_0255597
crossref_primary_10_3390_machines9120367
crossref_primary_10_3233_IDT_240127
crossref_primary_10_1007_s10994_021_06055_x
crossref_primary_10_1080_10255842_2024_2370404
crossref_primary_10_1007_s11063_021_10448_3
crossref_primary_10_1519_JSC_0000000000004612
crossref_primary_10_1016_j_bspc_2021_103429
crossref_primary_10_1016_j_apacoust_2020_107346
crossref_primary_10_1007_s40279_022_01760_6
Cites_doi 10.1016/j.gaitpost.2008.01.019
10.1109/TITB.2010.2047402
10.1109/ICMLA.2018.00163
10.1007/s11432-017-9359-x
10.1016/j.gaitpost.2007.10.010
10.1109/TNSRE.2015.2409123
10.1016/j.gaitpost.2007.03.018
10.1016/j.gaitpost.2007.07.007
10.3390/s140202776
10.1109/SII.2019.8700415
10.1109/TNSRE.2013.2239313
10.1016/j.clinbiomech.2004.04.005
10.1016/j.medengphy.2010.03.007
10.1007/s40846-017-0297-2
10.1016/j.gaitpost.2016.08.012
10.1038/s41598-018-28222-2
10.1109/LRA.2019.2895266
10.1109/TNSRE.2004.843176
10.1109/JBHI.2016.2636665
10.1049/el.2010.2118
10.1016/j.medengphy.2009.10.014
10.1109/TNSRE.2016.2536278
10.1016/j.medengphy.2017.12.006
10.1371/journal.pone.0179738
10.1016/j.gaitpost.2016.09.023
10.1016/j.medengphy.2013.10.004
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.gaitpost.2019.09.007
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1879-2219
EndPage 134
ExternalDocumentID 31518859
10_1016_j_gaitpost_2019_09_007
S0966636219306952
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
UPT
UV1
WH7
WUQ
YRY
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
YCJ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c423t-f88a2220ec1db3912892ae663b6218267e1cd8868ade136c4e5f9b2e4ea24093
IEDL.DBID .~1
ISSN 0966-6362
1879-2219
IngestDate Wed Oct 01 15:06:06 EDT 2025
Wed Feb 19 02:32:04 EST 2025
Sat Oct 25 05:14:03 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 23 02:29:52 EST 2024
Tue Oct 14 19:30:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Gait event detection
Inertial sensors
LSTM
Gait
Long-short term memory models
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-f88a2220ec1db3912892ae663b6218267e1cd8868ade136c4e5f9b2e4ea24093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31518859
PQID 2290836202
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2290836202
pubmed_primary_31518859
crossref_primary_10_1016_j_gaitpost_2019_09_007
crossref_citationtrail_10_1016_j_gaitpost_2019_09_007
elsevier_sciencedirect_doi_10_1016_j_gaitpost_2019_09_007
elsevier_clinicalkey_doi_10_1016_j_gaitpost_2019_09_007
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Gait & posture
PublicationTitleAlternate Gait Posture
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Khandelwal, Wickstrom (bib0090) 2016; 24
Rueterbories, Spaich, Larsen, Andersen (bib0050) 2010; 32
Malhotra, Vig, Shroff, Agarwal (bib0185) 2015
Torrealba, Cappelletto, Fermı́n-León, Grieco, Fernández-López (bib0120) 2010; 46
Khandelwal, Wickstrom (bib0060) 2017; 51
Phinyomark, Petri, Ibanez-Marcelo, Osis, Ferber (bib0150) 2018; 38
Zeni, Richards, Higginson (bib0200) 2008; 27
Kleanthous, Hussain, Keight, Lishoa, Hind, Haya (bib0010) 2018
Feng, Qin, Liu (bib0160) 2018; 61
Lipton, Kale, Elkan, Wetzel (bib0215) 2017; 1511.03677
Baker (bib0005) 2013
Zakria (bib0100) 2017
Qi, Soh, Gunawan, Low, Thomas (bib0105) 2016; 24
Catalfamo, Moser, Ghoussayni, Ewins (bib0070) 2008; 28
Figueiredo, Santos, Moreno (bib0140) 2018; 53
Schollhorn (bib0145) 2004; 19
Mun, Song, Chun, Kim (bib0220) 2018; 8
Kavanagh, Menz (bib0055) 2008; 28
Ferris, Sawicki, Daley (bib0045) 2007; 4
Graves, Schmidhuber (bib0155) 2015; 18
Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei (bib0210) 2017; 126
Zhou (bib0085) 2016; 16
Meng, Yu, Tham (bib0080) 2013
Horst, Eekhoff, Newell, Schollhorn (bib0065) 2017; 12
Gers, Schmidhuber, Cummins (bib0170) 1999
Gazit, Roggen, Hausdorff, Troster (bib0020) 2013; 7988
Storm, Buckley, Mazza (bib0190) 2016; 50
Sant’anna, Wickstrom (bib0135) 2010; 14
Lau, Tong (bib0075) 2008; 27
Vu, Gomez, Cherelle, Lefeber, Nowe, Vanderborght (bib0025) 2018; 18
Tang, Hoang, Chui, Lim, C. M. C. H (bib0165) 2019
Du, Vasudevan, Johnson-Roberson (bib0175) 2019; 4
Aung (bib0130) 2013; 21
Ikehara (bib0040) 2011
Gorsic (bib0095) 2014; 14
Ravi (bib0110) 2017; 21
Turner, Hayes (bib0180) 2019
Um (bib0195) 2017
Torvi, Bhattacharya, Chakraborty (bib0015) 2018
Kotiadis, Hermens, Veltink (bib0030) 2010; 32
Selles, Formanoy, Bussmann, Janssens, Stam (bib0125) 2005; 13
Srinivasan, Kidziński, Delp, Schwartz (bib0205) 2019; 14
Lugrís, Carlín, Luaces, Cuadrado (bib0035) 2013
Rueterbories, Spaich, Andersen (bib0115) 2014; 36
Turner (10.1016/j.gaitpost.2019.09.007_bib0180) 2019
Zhou (10.1016/j.gaitpost.2019.09.007_bib0085) 2016; 16
Zakria (10.1016/j.gaitpost.2019.09.007_bib0100) 2017
Kleanthous (10.1016/j.gaitpost.2019.09.007_bib0010) 2018
Ferris (10.1016/j.gaitpost.2019.09.007_bib0045) 2007; 4
Storm (10.1016/j.gaitpost.2019.09.007_bib0190) 2016; 50
Lugrís (10.1016/j.gaitpost.2019.09.007_bib0035) 2013
Ikehara (10.1016/j.gaitpost.2019.09.007_bib0040) 2011
Feng (10.1016/j.gaitpost.2019.09.007_bib0160) 2018; 61
Zeni (10.1016/j.gaitpost.2019.09.007_bib0200) 2008; 27
Selles (10.1016/j.gaitpost.2019.09.007_bib0125) 2005; 13
Du (10.1016/j.gaitpost.2019.09.007_bib0175) 2019; 4
Kavanagh (10.1016/j.gaitpost.2019.09.007_bib0055) 2008; 28
Srinivasan (10.1016/j.gaitpost.2019.09.007_bib0205) 2019; 14
Aung (10.1016/j.gaitpost.2019.09.007_bib0130) 2013; 21
Gorsic (10.1016/j.gaitpost.2019.09.007_bib0095) 2014; 14
Phinyomark (10.1016/j.gaitpost.2019.09.007_bib0150) 2018; 38
Catalfamo (10.1016/j.gaitpost.2019.09.007_bib0070) 2008; 28
Meng (10.1016/j.gaitpost.2019.09.007_bib0080) 2013
Graves (10.1016/j.gaitpost.2019.09.007_bib0155) 2015; 18
Kotiadis (10.1016/j.gaitpost.2019.09.007_bib0030) 2010; 32
Torvi (10.1016/j.gaitpost.2019.09.007_bib0015) 2018
Khandelwal (10.1016/j.gaitpost.2019.09.007_bib0060) 2017; 51
Vu (10.1016/j.gaitpost.2019.09.007_bib0025) 2018; 18
Ravi (10.1016/j.gaitpost.2019.09.007_bib0110) 2017; 21
Sant’anna (10.1016/j.gaitpost.2019.09.007_bib0135) 2010; 14
Figueiredo (10.1016/j.gaitpost.2019.09.007_bib0140) 2018; 53
Yeung (10.1016/j.gaitpost.2019.09.007_bib0210) 2017; 126
Schollhorn (10.1016/j.gaitpost.2019.09.007_bib0145) 2004; 19
Mun (10.1016/j.gaitpost.2019.09.007_bib0220) 2018; 8
Qi (10.1016/j.gaitpost.2019.09.007_bib0105) 2016; 24
Lau (10.1016/j.gaitpost.2019.09.007_bib0075) 2008; 27
Malhotra (10.1016/j.gaitpost.2019.09.007_bib0185) 2015
Um (10.1016/j.gaitpost.2019.09.007_bib0195) 2017
Gers (10.1016/j.gaitpost.2019.09.007_bib0170) 1999
Horst (10.1016/j.gaitpost.2019.09.007_bib0065) 2017; 12
Tang (10.1016/j.gaitpost.2019.09.007_bib0165) 2019
Lipton (10.1016/j.gaitpost.2019.09.007_bib0215) 2017; 1511.03677
Baker (10.1016/j.gaitpost.2019.09.007_bib0005) 2013
Rueterbories (10.1016/j.gaitpost.2019.09.007_bib0115) 2014; 36
Khandelwal (10.1016/j.gaitpost.2019.09.007_bib0090) 2016; 24
Torrealba (10.1016/j.gaitpost.2019.09.007_bib0120) 2010; 46
Rueterbories (10.1016/j.gaitpost.2019.09.007_bib0050) 2010; 32
Gazit (10.1016/j.gaitpost.2019.09.007_bib0020) 2013; 7988
References_xml – year: 2017
  ident: bib0100
  article-title: Heuristic based gait event detection for human lower limb movement
  publication-title: Presented at the Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI)
– volume: 28
  start-page: 420
  year: 2008
  end-page: 426
  ident: bib0070
  article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system
  publication-title: Gait Posture
– volume: 50
  start-page: 42
  year: 2016
  end-page: 46
  ident: bib0190
  article-title: Gait event detection in laboratory and real life settings: accuracy of ankle and waist sensor based methods
  publication-title: Gait Posture
– volume: 14
  year: 2019
  ident: bib0205
  article-title: Automatic real-time gait event detection in children using deep neural networks
  publication-title: PLoS One
– volume: 4
  start-page: 507
  year: 2007
  end-page: 528
  ident: bib0045
  article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion
  publication-title: Int. J. HR
– volume: 14
  start-page: 2776
  year: 2014
  end-page: 2794
  ident: bib0095
  article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis
  publication-title: Sensors (Basel)
– volume: 21
  start-page: 908
  year: 2013
  end-page: 916
  ident: bib0130
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 51
  start-page: 84
  year: 2017
  end-page: 90
  ident: bib0060
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
– volume: 19
  start-page: 876
  year: 2004
  end-page: 898
  ident: bib0145
  article-title: Applications of artificial neural nets in clinical biomechanics
  publication-title: Clin. Biomech. (Bristol, Avon)
– volume: 12
  year: 2017
  ident: bib0065
  article-title: Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression
  publication-title: PLoS One
– year: 2015
  ident: bib0185
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015)
– volume: 18
  start-page: 602
  year: 2015
  end-page: 610
  ident: bib0155
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
– year: 2019
  ident: bib0180
  article-title: The classification of minor gait alterations using wearable sensors and deep learning
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 626
  year: 2019
  end-page: 631
  ident: bib0165
  article-title: Development of wearable gait assistive device using recurrent neural network
  publication-title: 2019 IEEE/SICE International Symposium on System Integration (SII)
– year: 2013
  ident: bib0005
  article-title: Measuring Walking: A Handbook of Clinical Gait Analysis
– volume: 53
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib0140
  article-title: Automatic recognition of gait patterns in human motor disorders using machine learning: a review
  publication-title: Med. Eng. Phys.
– year: 2013
  ident: bib0035
  article-title: Consideration of assistive devices in the gait analysis of spinal cord–injured subjects
  publication-title: Presented at the Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
– volume: 24
  start-page: 1363
  year: 2016
  end-page: 1372
  ident: bib0090
  article-title: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2017
  ident: bib0195
  article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks
  publication-title: Presented at the Proceedings of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017
– volume: 1511.03677
  year: 2017
  ident: bib0215
  article-title: Learning to diagnose with LSTM recurrent neural networks
  publication-title: arXiv Preprint
– volume: 18
  year: 2018
  ident: bib0025
  article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses
  publication-title: Sensors (Basel)
– year: 2011
  ident: bib0040
  article-title: Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity
  publication-title: Presented at the 2011 IEEE International Conference on Rehabilitation Robotics
– volume: 24
  start-page: 88
  year: 2016
  end-page: 97
  ident: bib0105
  article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– year: 2013
  ident: bib0080
  article-title: Gait phase detection in able-bodied subjects and dementia patients
  publication-title: Presented at the Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
– volume: 14
  start-page: 1180
  year: 2010
  end-page: 1187
  ident: bib0135
  article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 32
  start-page: 287
  year: 2010
  end-page: 297
  ident: bib0030
  article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection
  publication-title: Med. Eng. Phys.
– volume: 27
  start-page: 248
  year: 2008
  end-page: 257
  ident: bib0075
  article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot
  publication-title: Gait Posture
– year: 2018
  ident: bib0015
  article-title: Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease
  publication-title: Presented at the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
– volume: 27
  start-page: 710
  year: 2008
  end-page: 714
  ident: bib0200
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
– volume: 46
  year: 2010
  ident: bib0120
  article-title: Statistics-based technique for automated detection of gait events from accelerometer signals
  publication-title: Electron. Lett.
– volume: 7988
  year: 2013
  ident: bib0020
  article-title: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease
  publication-title: Machine Learning and Data Mining in Patter Recognition. MLDM 2013. Lecture Notes in Computer Science
– volume: 8
  start-page: 9879
  year: 2018
  ident: bib0220
  article-title: Gait estimation from anatomical foot parameters measured by a foot feature measurement system using a deep neural network model
  publication-title: Sci. Rep.
– start-page: 1
  year: 2018
  end-page: 8
  ident: bib0010
  article-title: Predicting Freezing of Gait in Parkinsons Disease Patients Using Machine Learning
– volume: 4
  start-page: 1501
  year: 2019
  end-page: 1508
  ident: bib0175
  article-title: BioLSTM: a biomechanically inspired recurrent neural network for 3D pedestrian pose and gait prediction
  publication-title: IEEE Robot. Autom. Lett.
– start-page: 850
  year: 1999
  end-page: 855
  ident: bib0170
  article-title: Learning to forget: continual prediction with LSTM
  publication-title: 9th International Conference on Artificial Neural Networks (ICANN’ 99)
– volume: 126
  start-page: 375
  year: 2017
  end-page: 389
  ident: bib0210
  article-title: Every moment counts: dense detailed labeling of actions in complex videos
  publication-title: Int. J. Comput. Vis.
– volume: 21
  start-page: 4
  year: 2017
  end-page: 21
  ident: bib0110
  article-title: Deep Learning for Health Informatics
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 13
  start-page: 81
  year: 2005
  end-page: 88
  ident: bib0125
  article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
– volume: 36
  start-page: 502
  year: 2014
  end-page: 508
  ident: bib0115
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
– volume: 28
  start-page: 1
  year: 2008
  end-page: 15
  ident: bib0055
  article-title: Accelerometry: a technique for quantifying movement patterns during walking
  publication-title: Gait Posture
– volume: 32
  start-page: 545
  year: 2010
  end-page: 552
  ident: bib0050
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
– volume: 61
  year: 2018
  ident: bib0160
  article-title: A language-independent neural network for event detection
  publication-title: Sci. China Inf. Sci.
– volume: 38
  start-page: 244
  year: 2018
  end-page: 260
  ident: bib0150
  article-title: Analysis of big data in gait biomechanics: current trends and future directions
  publication-title: J. Med. Biol. Eng.
– volume: 16
  year: 2016
  ident: bib0085
  article-title: Towards real-time detection of gait events on different terrains using time-frequency analysis and peak heuristics algorithm
  publication-title: Sensors (Basel)
– volume: 28
  start-page: 420
  issue: October (3)
  year: 2008
  ident: 10.1016/j.gaitpost.2019.09.007_bib0070
  article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.01.019
– volume: 14
  start-page: 1180
  issue: September (5)
  year: 2010
  ident: 10.1016/j.gaitpost.2019.09.007_bib0135
  article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2010.2047402
– year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0015
  article-title: Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease
  publication-title: Presented at the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)
  doi: 10.1109/ICMLA.2018.00163
– start-page: 1
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0010
– volume: 61
  issue: 9
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0160
  article-title: A language-independent neural network for event detection
  publication-title: Sci. China Inf. Sci.
  doi: 10.1007/s11432-017-9359-x
– volume: 14
  issue: 1
  year: 2019
  ident: 10.1016/j.gaitpost.2019.09.007_bib0205
  article-title: Automatic real-time gait event detection in children using deep neural networks
  publication-title: PLoS One
– year: 2011
  ident: 10.1016/j.gaitpost.2019.09.007_bib0040
  article-title: Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity
– volume: 28
  start-page: 1
  issue: July (1)
  year: 2008
  ident: 10.1016/j.gaitpost.2019.09.007_bib0055
  article-title: Accelerometry: a technique for quantifying movement patterns during walking
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.10.010
– volume: 24
  start-page: 88
  issue: January (1)
  year: 2016
  ident: 10.1016/j.gaitpost.2019.09.007_bib0105
  article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2409123
– volume: 27
  start-page: 248
  issue: February (2)
  year: 2008
  ident: 10.1016/j.gaitpost.2019.09.007_bib0075
  article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.03.018
– year: 2015
  ident: 10.1016/j.gaitpost.2019.09.007_bib0185
  article-title: Long short term memory networks for anomaly detection in time series
– volume: 27
  start-page: 710
  issue: May (4)
  year: 2008
  ident: 10.1016/j.gaitpost.2019.09.007_bib0200
  article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2007.07.007
– volume: 18
  issue: July (7)
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0025
  article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses
  publication-title: Sensors (Basel)
– volume: 14
  start-page: 2776
  issue: February (2)
  year: 2014
  ident: 10.1016/j.gaitpost.2019.09.007_bib0095
  article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis
  publication-title: Sensors (Basel)
  doi: 10.3390/s140202776
– start-page: 626
  year: 2019
  ident: 10.1016/j.gaitpost.2019.09.007_bib0165
  article-title: Development of wearable gait assistive device using recurrent neural network
  publication-title: 2019 IEEE/SICE International Symposium on System Integration (SII)
  doi: 10.1109/SII.2019.8700415
– year: 2013
  ident: 10.1016/j.gaitpost.2019.09.007_bib0080
  article-title: Gait phase detection in able-bodied subjects and dementia patients
– volume: 21
  start-page: 908
  issue: November (6)
  year: 2013
  ident: 10.1016/j.gaitpost.2019.09.007_bib0130
  article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2239313
– volume: 7988
  year: 2013
  ident: 10.1016/j.gaitpost.2019.09.007_bib0020
  article-title: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease
– year: 2013
  ident: 10.1016/j.gaitpost.2019.09.007_bib0005
– issue: February (21)
  year: 2019
  ident: 10.1016/j.gaitpost.2019.09.007_bib0180
  article-title: The classification of minor gait alterations using wearable sensors and deep learning
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 19
  start-page: 876
  issue: November (9)
  year: 2004
  ident: 10.1016/j.gaitpost.2019.09.007_bib0145
  article-title: Applications of artificial neural nets in clinical biomechanics
  publication-title: Clin. Biomech. (Bristol, Avon)
  doi: 10.1016/j.clinbiomech.2004.04.005
– volume: 4
  start-page: 507
  issue: September (3)
  year: 2007
  ident: 10.1016/j.gaitpost.2019.09.007_bib0045
  article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion
  publication-title: Int. J. HR
– volume: 32
  start-page: 545
  issue: July (6)
  year: 2010
  ident: 10.1016/j.gaitpost.2019.09.007_bib0050
  article-title: Methods for gait event detection and analysis in ambulatory systems
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.03.007
– volume: 38
  start-page: 244
  issue: 2
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0150
  article-title: Analysis of big data in gait biomechanics: current trends and future directions
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0297-2
– volume: 50
  start-page: 42
  issue: October
  year: 2016
  ident: 10.1016/j.gaitpost.2019.09.007_bib0190
  article-title: Gait event detection in laboratory and real life settings: accuracy of ankle and waist sensor based methods
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.08.012
– volume: 8
  start-page: 9879
  issue: June (1)
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0220
  article-title: Gait estimation from anatomical foot parameters measured by a foot feature measurement system using a deep neural network model
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-28222-2
– year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0100
  article-title: Heuristic based gait event detection for human lower limb movement
– volume: 16
  issue: October (10)
  year: 2016
  ident: 10.1016/j.gaitpost.2019.09.007_bib0085
  article-title: Towards real-time detection of gait events on different terrains using time-frequency analysis and peak heuristics algorithm
  publication-title: Sensors (Basel)
– volume: 4
  start-page: 1501
  year: 2019
  ident: 10.1016/j.gaitpost.2019.09.007_bib0175
  article-title: BioLSTM: a biomechanically inspired recurrent neural network for 3D pedestrian pose and gait prediction
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2019.2895266
– volume: 13
  start-page: 81
  issue: March (1)
  year: 2005
  ident: 10.1016/j.gaitpost.2019.09.007_bib0125
  article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2004.843176
– volume: 21
  start-page: 4
  issue: January (1)
  year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0110
  article-title: Deep Learning for Health Informatics
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2016.2636665
– volume: 1511.03677
  year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0215
  article-title: Learning to diagnose with LSTM recurrent neural networks
  publication-title: arXiv Preprint
– volume: 46
  issue: 22
  year: 2010
  ident: 10.1016/j.gaitpost.2019.09.007_bib0120
  article-title: Statistics-based technique for automated detection of gait events from accelerometer signals
  publication-title: Electron. Lett.
  doi: 10.1049/el.2010.2118
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2015
  ident: 10.1016/j.gaitpost.2019.09.007_bib0155
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
– volume: 32
  start-page: 287
  issue: May (4)
  year: 2010
  ident: 10.1016/j.gaitpost.2019.09.007_bib0030
  article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2009.10.014
– year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0195
  article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks
  publication-title: Presented at the Proceedings of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017
– volume: 24
  start-page: 1363
  issue: December (12)
  year: 2016
  ident: 10.1016/j.gaitpost.2019.09.007_bib0090
  article-title: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2536278
– volume: 53
  start-page: 1
  issue: March
  year: 2018
  ident: 10.1016/j.gaitpost.2019.09.007_bib0140
  article-title: Automatic recognition of gait patterns in human motor disorders using machine learning: a review
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.12.006
– volume: 12
  issue: 6
  year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0065
  article-title: Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0179738
– start-page: 850
  year: 1999
  ident: 10.1016/j.gaitpost.2019.09.007_bib0170
  article-title: Learning to forget: continual prediction with LSTM
– year: 2013
  ident: 10.1016/j.gaitpost.2019.09.007_bib0035
  article-title: Consideration of assistive devices in the gait analysis of spinal cord–injured subjects
  publication-title: Presented at the Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
– volume: 51
  start-page: 84
  issue: January
  year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0060
  article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2016.09.023
– volume: 36
  start-page: 502
  year: 2014
  ident: 10.1016/j.gaitpost.2019.09.007_bib0115
  article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2013.10.004
– volume: 126
  start-page: 375
  issue: 2–4
  year: 2017
  ident: 10.1016/j.gaitpost.2019.09.007_bib0210
  article-title: Every moment counts: dense detailed labeling of actions in complex videos
  publication-title: Int. J. Comput. Vis.
SSID ssj0004382
Score 2.5013697
Snippet •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite...
Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms Accelerometry - methods
Algorithms
Databases, Factual
Female
Gait
Gait - physiology
Gait event detection
Humans
Inertial sensors
Long-short term memory models
LSTM
Male
Movement Disorders - diagnosis
Movement Disorders - rehabilitation
Walking
Title Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0966636219306952
https://dx.doi.org/10.1016/j.gaitpost.2019.09.007
https://www.ncbi.nlm.nih.gov/pubmed/31518859
https://www.proquest.com/docview/2290836202
Volume 74
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: ACRLP
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AIKHN
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004382
  issn: 0966-6362
  databaseCode: AKRWK
  dateStart: 19930301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKX0Y99ZFvLFcbe1PhDlq29hdCSdk0ZawZ9E7KklJTVCY370Je99f_unWynG2x0MAiYmBy2dae7n6Pf_cTYR5-ZKDFC8dyqkoss9bxIcsexcgXImyeOupHH53L0XZxeZpdrbNj1whCtss39TU4P2bo9029Hs7-YzfoXCL6xXEqccgh7VUZ5WIicdjE4_PlE86CFrqC3JyWnX__SJXx9eGVm9WK-JE5lrILeKW0r--cC9TcAGgrR8RZ72SJIGDQ3uc3WfLXDdgcVvj3f3MMnCJzO8Gf5Dtsct0vnu-yBmj2AAs4vwRJmJpJQ8AsQ-f0KDNzMHZ70Ds4uJmPo5MaBWlDAWIsVisQN0BOcip8Dopd-hgHYJwlxCHq1gFAY6LHB3uNNgvN1oHxVr9jk-GgyHPF2DwZuEWjVfFoUBiFE5G3sylRhNVOJ8TjupSTtd5n72LqikIVxPk6lFT6bqjLxwhvECip9zdareeXfMkBsaAypHZnYCymVmsZWiKk0WRElpZM9lnXjrm2rT07bZPzQHRHtWnf-0uQvHeEnynusv7JbNAodz1rknVt113-KGVNjEXnWUq0sf4vSf7I96CJI4xSmdRlT-fndUpPkfoGhGSU99qYJrdWTpDEp5mXq3X9c-T17Qd8aCuIHtl7f3vk9hFJ1uR_myj7bGAy_nX2l48mX0fkjq_Ig6Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIgEXBC0fCwUGCXFzNx-2E_e2qlotsNtLF6k3y7G91VZtdsWmh1648b-ZcZItSFRFQtpTNqMknvHMS_zmmbGPQdoks0LzwumKC5kHXmaF51i5IuQtMk_dyNMTNf4mvpzJsy122PfCEK2yy_1tTo_Zujsy7EZzuFoshqcIvrFcKpxyCHu1xDz8QMisoDew_R-3PA9a6YqCe0pxOv23NuGL_XO7aFbLNZEqUx0FT2lf2b9XqLsQaKxEx0_Zkw5Cwqi9y2dsK9Q7bHdU4-vz1Q18gkjqjF_Ld9jDabd2vst-UrcHUMSFNTgCzcQSio4BYr-fg4WrpceDwcPkdDaFXm8cqAcFrHNYokjdAF3Bqfp5IH7pAYzA3WqIQxSsBcTCQI8N7gZvEnxoIuerfs5mx0ezwzHvNmHgDpFWw-dlaRFDJMGlvso1ljOd2YADXykSf1dFSJ0vS1VaH9JcORHkXFdZEMEiWND5C7ZdL-vwigGCQ2tJ7simQSil9Tx1QsyVlWWSVV4NmOzH3bhOoJz2ybg0PRPtwvT-MuQvk-AvKQZsuLFbtRId91oUvVtN34CKKdNgFbnXUm8s_wjTf7L90EeQwTlMCzO2DsvrtSHN_RJDM8kG7GUbWpsnyVOSzJP69X9c-T17NJ5NJ2by-eTrG_aY_mn5iHtsu_l-Hd4irmqqd3He_AIbKCDp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+classification+using+a+modified+LSTM+approach+from+accelerometer-based+data%3A+A+comparative+study+for+gait+cycle+detection&rft.jtitle=Gait+%26+posture&rft.au=Tan%2C+Hui+Xing&rft.au=Aung%2C+Nway+Nway&rft.au=Tian%2C+Jing&rft.au=Chua%2C+Matthew+Chin+Heng&rft.date=2019-10-01&rft.issn=0966-6362&rft.volume=74&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1016%2Fj.gaitpost.2019.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gaitpost_2019_09_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-6362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-6362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-6362&client=summon