Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection
•A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models. Gait event detectio...
        Saved in:
      
    
          | Published in | Gait & posture Vol. 74; pp. 128 - 134 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          Elsevier B.V
    
        01.10.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0966-6362 1879-2219 1879-2219  | 
| DOI | 10.1016/j.gaitpost.2019.09.007 | 
Cover
| Abstract | •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models.
Gait event detection (GED) is an important aspect in identifying and interpret a user’s gait to assess gait abnormalities and design intelligent assistive devices.
There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.
This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user’s gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.
Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.
This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions. | 
    
|---|---|
| AbstractList | •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite accelerations, extra hidden layers and oversampling.•The model performed better than the 6 other state-of-the-art gait models.
Gait event detection (GED) is an important aspect in identifying and interpret a user’s gait to assess gait abnormalities and design intelligent assistive devices.
There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.
This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user’s gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.
Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.
This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions. Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices. There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments. This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made. Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment. This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions. Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices.BACKGROUNDGait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive devices.There is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.RESEARCH QUESTIONThere is a need to develop robust GED models that can accurately detect various gait instances in different scenarios and environments.This paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.METHODSThis paper presents a novel method of detecting heel strikes (HS) and toe offs (TO) during the user's gait cycle using a modified Long Short-Term Memory (LSTM) networks approach. The method was tested on a database from Movement Analysis in Real-world Environments using Accelerometers (MAREA) (n = 20 healthy subjects) that consisted of walking and running in indoor and outdoor environments with accelerometers positioned on waist, wrist and both ankles. Modifications include oversampling, composite accelerations and optimizing the LSTM network architecture were made.Performance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.RESULTSPerformance of our modified model was found to be better than six state-of-the-art GED algorithms, with a median F1 score of 0.98 for Heel Strikes and 0.98 for Toe Offs in the scenario of steady walking in an indoor environment, and a median F1 score of 0.94 for Heel Strikes and 0.68 for Toe-offs in the scenario of walking and running in an outdoor environment.This paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.SIGNIFICANCEThis paper highlights the potential of the single proposed model to be an alternative to the six GED models in gait detection under various conditions.  | 
    
| Author | Tian, Jing Tan, Hui Xing Aung, Nway Nway Chua, Matthew Chin Heng Yang, Youheng Ou  | 
    
| Author_xml | – sequence: 1 givenname: Hui Xing surname: Tan fullname: Tan, Hui Xing organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore – sequence: 2 givenname: Nway Nway surname: Aung fullname: Aung, Nway Nway organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore – sequence: 3 givenname: Jing surname: Tian fullname: Tian, Jing organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore – sequence: 4 givenname: Matthew Chin Heng surname: Chua fullname: Chua, Matthew Chin Heng email: isscchm@nus.edu.sg organization: Institute of Systems Science, National University of Singapore, 25 Heng Mui Keng Terrace, Singapore, 119615, Singapore – sequence: 5 givenname: Youheng Ou surname: Yang fullname: Yang, Youheng Ou organization: Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, 169608, Singapore  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31518859$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNUcFu1DAQtVAR3RZ-ofKRSxbbyXpthBBVBS3SIg7s3ZrYk-IliYPtVNoP6H_jZVsOvRRppBlZ770Zv3dGTsYwIiEXnC054_LdbnkLPk8h5aVgXC9ZKbZ-QRZcrXUlBNcnZMG0lJWspTglZyntGGNNrcQrclrzFVdqpRfkfusHpAmjx0RtDyn5zlvIPox0Tn68pUCH4MojOrr5sf1GYZpiAPuTdjEMFKzFHsuEGWPVQiowBxne00tqwzBBLFp3ZUOe3Z52IdLD3dTubY_UFZI9rHpNXnbQJ3zz0M_J9svn7dVNtfl-_fXqclPZRtS56pQCIQRDy11bay6UFoBS1q0UXAm5Rm6dUlKBQ15L2-Cq063ABkE0TNfn5O1Rtvzg94wpm8Gncn8PI4Y5GSE0U8UuJgr04gE6twM6M0U_QNybR-cKQB4BNoaUInb_IJyZQ0RmZx4jMoeIDCvF1oX44QnR-vzX8BzB98_TPx3pWHy68xhNsh5Hi87HYqZxwT8v8fGJhO39WFLvf-H-fwT-ALoLyM8 | 
    
| CitedBy_id | crossref_primary_10_1155_2020_8024789 crossref_primary_10_1007_s11063_022_10741_9 crossref_primary_10_1109_JBHI_2021_3137413 crossref_primary_10_1007_s12652_019_01659_7 crossref_primary_10_3390_jmse10050577 crossref_primary_10_1016_j_gaitpost_2021_06_015 crossref_primary_10_3390_math11061432 crossref_primary_10_1007_s40279_021_01443_8 crossref_primary_10_1016_j_bspc_2021_103321 crossref_primary_10_1109_JBHI_2020_3025049 crossref_primary_10_1007_s10723_021_09595_7 crossref_primary_10_3390_math11183942 crossref_primary_10_3390_s22030984 crossref_primary_10_1109_JSEN_2024_3399697 crossref_primary_10_3390_s21216974 crossref_primary_10_1016_j_neucom_2020_08_079 crossref_primary_10_14801_jkiit_2021_19_8_27 crossref_primary_10_1016_j_dsp_2021_103120 crossref_primary_10_3389_fspor_2022_1037438 crossref_primary_10_3390_s20247127 crossref_primary_10_1007_s11042_023_16177_0 crossref_primary_10_21603_2308_4057_2026_1_657 crossref_primary_10_1016_j_aei_2024_102729 crossref_primary_10_1155_2023_4086380 crossref_primary_10_1016_j_compbiomed_2024_108016 crossref_primary_10_1117_1_JBO_27_6_067002 crossref_primary_10_1016_j_knosys_2022_109351 crossref_primary_10_3389_fnbot_2022_913052 crossref_primary_10_1016_j_bspc_2020_102279 crossref_primary_10_1007_s12652_020_02503_z crossref_primary_10_1109_ACCESS_2024_3422256 crossref_primary_10_1007_s11063_022_10944_0 crossref_primary_10_1371_journal_pone_0255597 crossref_primary_10_3390_machines9120367 crossref_primary_10_3233_IDT_240127 crossref_primary_10_1007_s10994_021_06055_x crossref_primary_10_1080_10255842_2024_2370404 crossref_primary_10_1007_s11063_021_10448_3 crossref_primary_10_1519_JSC_0000000000004612 crossref_primary_10_1016_j_bspc_2021_103429 crossref_primary_10_1016_j_apacoust_2020_107346 crossref_primary_10_1007_s40279_022_01760_6  | 
    
| Cites_doi | 10.1016/j.gaitpost.2008.01.019 10.1109/TITB.2010.2047402 10.1109/ICMLA.2018.00163 10.1007/s11432-017-9359-x 10.1016/j.gaitpost.2007.10.010 10.1109/TNSRE.2015.2409123 10.1016/j.gaitpost.2007.03.018 10.1016/j.gaitpost.2007.07.007 10.3390/s140202776 10.1109/SII.2019.8700415 10.1109/TNSRE.2013.2239313 10.1016/j.clinbiomech.2004.04.005 10.1016/j.medengphy.2010.03.007 10.1007/s40846-017-0297-2 10.1016/j.gaitpost.2016.08.012 10.1038/s41598-018-28222-2 10.1109/LRA.2019.2895266 10.1109/TNSRE.2004.843176 10.1109/JBHI.2016.2636665 10.1049/el.2010.2118 10.1016/j.medengphy.2009.10.014 10.1109/TNSRE.2016.2536278 10.1016/j.medengphy.2017.12.006 10.1371/journal.pone.0179738 10.1016/j.gaitpost.2016.09.023 10.1016/j.medengphy.2013.10.004  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier B.V. Copyright © 2019 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright © 2019 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.gaitpost.2019.09.007 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine Anatomy & Physiology  | 
    
| EISSN | 1879-2219 | 
    
| EndPage | 134 | 
    
| ExternalDocumentID | 31518859 10_1016_j_gaitpost_2019_09_007 S0966636219306952  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29H 3O- 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEE HMK HMO HVGLF HZ~ IHE J1W KOM M29 M31 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K UPT UV1 WH7 WUQ YRY Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW LCYCR RIG YCJ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c423t-f88a2220ec1db3912892ae663b6218267e1cd8868ade136c4e5f9b2e4ea24093 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0966-6362 1879-2219  | 
    
| IngestDate | Wed Oct 01 15:06:06 EDT 2025 Wed Feb 19 02:32:04 EST 2025 Sat Oct 25 05:14:03 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 23 02:29:52 EST 2024 Tue Oct 14 19:30:20 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Gait event detection Inertial sensors LSTM Gait Long-short term memory models  | 
    
| Language | English | 
    
| License | Copyright © 2019 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c423t-f88a2220ec1db3912892ae663b6218267e1cd8868ade136c4e5f9b2e4ea24093 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 31518859 | 
    
| PQID | 2290836202 | 
    
| PQPubID | 23479 | 
    
| PageCount | 7 | 
    
| ParticipantIDs | proquest_miscellaneous_2290836202 pubmed_primary_31518859 crossref_primary_10_1016_j_gaitpost_2019_09_007 crossref_citationtrail_10_1016_j_gaitpost_2019_09_007 elsevier_sciencedirect_doi_10_1016_j_gaitpost_2019_09_007 elsevier_clinicalkey_doi_10_1016_j_gaitpost_2019_09_007  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | October 2019 2019-10-00 20191001  | 
    
| PublicationDateYYYYMMDD | 2019-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Gait & posture | 
    
| PublicationTitleAlternate | Gait Posture | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Khandelwal, Wickstrom (bib0090) 2016; 24 Rueterbories, Spaich, Larsen, Andersen (bib0050) 2010; 32 Malhotra, Vig, Shroff, Agarwal (bib0185) 2015 Torrealba, Cappelletto, Fermı́n-León, Grieco, Fernández-López (bib0120) 2010; 46 Khandelwal, Wickstrom (bib0060) 2017; 51 Phinyomark, Petri, Ibanez-Marcelo, Osis, Ferber (bib0150) 2018; 38 Zeni, Richards, Higginson (bib0200) 2008; 27 Kleanthous, Hussain, Keight, Lishoa, Hind, Haya (bib0010) 2018 Feng, Qin, Liu (bib0160) 2018; 61 Lipton, Kale, Elkan, Wetzel (bib0215) 2017; 1511.03677 Baker (bib0005) 2013 Zakria (bib0100) 2017 Qi, Soh, Gunawan, Low, Thomas (bib0105) 2016; 24 Catalfamo, Moser, Ghoussayni, Ewins (bib0070) 2008; 28 Figueiredo, Santos, Moreno (bib0140) 2018; 53 Schollhorn (bib0145) 2004; 19 Mun, Song, Chun, Kim (bib0220) 2018; 8 Kavanagh, Menz (bib0055) 2008; 28 Ferris, Sawicki, Daley (bib0045) 2007; 4 Graves, Schmidhuber (bib0155) 2015; 18 Yeung, Russakovsky, Jin, Andriluka, Mori, Fei-Fei (bib0210) 2017; 126 Zhou (bib0085) 2016; 16 Meng, Yu, Tham (bib0080) 2013 Horst, Eekhoff, Newell, Schollhorn (bib0065) 2017; 12 Gers, Schmidhuber, Cummins (bib0170) 1999 Gazit, Roggen, Hausdorff, Troster (bib0020) 2013; 7988 Storm, Buckley, Mazza (bib0190) 2016; 50 Sant’anna, Wickstrom (bib0135) 2010; 14 Lau, Tong (bib0075) 2008; 27 Vu, Gomez, Cherelle, Lefeber, Nowe, Vanderborght (bib0025) 2018; 18 Tang, Hoang, Chui, Lim, C. M. C. H (bib0165) 2019 Du, Vasudevan, Johnson-Roberson (bib0175) 2019; 4 Aung (bib0130) 2013; 21 Ikehara (bib0040) 2011 Gorsic (bib0095) 2014; 14 Ravi (bib0110) 2017; 21 Turner, Hayes (bib0180) 2019 Um (bib0195) 2017 Torvi, Bhattacharya, Chakraborty (bib0015) 2018 Kotiadis, Hermens, Veltink (bib0030) 2010; 32 Selles, Formanoy, Bussmann, Janssens, Stam (bib0125) 2005; 13 Srinivasan, Kidziński, Delp, Schwartz (bib0205) 2019; 14 Lugrís, Carlín, Luaces, Cuadrado (bib0035) 2013 Rueterbories, Spaich, Andersen (bib0115) 2014; 36 Turner (10.1016/j.gaitpost.2019.09.007_bib0180) 2019 Zhou (10.1016/j.gaitpost.2019.09.007_bib0085) 2016; 16 Zakria (10.1016/j.gaitpost.2019.09.007_bib0100) 2017 Kleanthous (10.1016/j.gaitpost.2019.09.007_bib0010) 2018 Ferris (10.1016/j.gaitpost.2019.09.007_bib0045) 2007; 4 Storm (10.1016/j.gaitpost.2019.09.007_bib0190) 2016; 50 Lugrís (10.1016/j.gaitpost.2019.09.007_bib0035) 2013 Ikehara (10.1016/j.gaitpost.2019.09.007_bib0040) 2011 Feng (10.1016/j.gaitpost.2019.09.007_bib0160) 2018; 61 Zeni (10.1016/j.gaitpost.2019.09.007_bib0200) 2008; 27 Selles (10.1016/j.gaitpost.2019.09.007_bib0125) 2005; 13 Du (10.1016/j.gaitpost.2019.09.007_bib0175) 2019; 4 Kavanagh (10.1016/j.gaitpost.2019.09.007_bib0055) 2008; 28 Srinivasan (10.1016/j.gaitpost.2019.09.007_bib0205) 2019; 14 Aung (10.1016/j.gaitpost.2019.09.007_bib0130) 2013; 21 Gorsic (10.1016/j.gaitpost.2019.09.007_bib0095) 2014; 14 Phinyomark (10.1016/j.gaitpost.2019.09.007_bib0150) 2018; 38 Catalfamo (10.1016/j.gaitpost.2019.09.007_bib0070) 2008; 28 Meng (10.1016/j.gaitpost.2019.09.007_bib0080) 2013 Graves (10.1016/j.gaitpost.2019.09.007_bib0155) 2015; 18 Kotiadis (10.1016/j.gaitpost.2019.09.007_bib0030) 2010; 32 Torvi (10.1016/j.gaitpost.2019.09.007_bib0015) 2018 Khandelwal (10.1016/j.gaitpost.2019.09.007_bib0060) 2017; 51 Vu (10.1016/j.gaitpost.2019.09.007_bib0025) 2018; 18 Ravi (10.1016/j.gaitpost.2019.09.007_bib0110) 2017; 21 Sant’anna (10.1016/j.gaitpost.2019.09.007_bib0135) 2010; 14 Figueiredo (10.1016/j.gaitpost.2019.09.007_bib0140) 2018; 53 Yeung (10.1016/j.gaitpost.2019.09.007_bib0210) 2017; 126 Schollhorn (10.1016/j.gaitpost.2019.09.007_bib0145) 2004; 19 Mun (10.1016/j.gaitpost.2019.09.007_bib0220) 2018; 8 Qi (10.1016/j.gaitpost.2019.09.007_bib0105) 2016; 24 Lau (10.1016/j.gaitpost.2019.09.007_bib0075) 2008; 27 Malhotra (10.1016/j.gaitpost.2019.09.007_bib0185) 2015 Um (10.1016/j.gaitpost.2019.09.007_bib0195) 2017 Gers (10.1016/j.gaitpost.2019.09.007_bib0170) 1999 Horst (10.1016/j.gaitpost.2019.09.007_bib0065) 2017; 12 Tang (10.1016/j.gaitpost.2019.09.007_bib0165) 2019 Lipton (10.1016/j.gaitpost.2019.09.007_bib0215) 2017; 1511.03677 Baker (10.1016/j.gaitpost.2019.09.007_bib0005) 2013 Rueterbories (10.1016/j.gaitpost.2019.09.007_bib0115) 2014; 36 Khandelwal (10.1016/j.gaitpost.2019.09.007_bib0090) 2016; 24 Torrealba (10.1016/j.gaitpost.2019.09.007_bib0120) 2010; 46 Rueterbories (10.1016/j.gaitpost.2019.09.007_bib0050) 2010; 32 Gazit (10.1016/j.gaitpost.2019.09.007_bib0020) 2013; 7988  | 
    
| References_xml | – year: 2017 ident: bib0100 article-title: Heuristic based gait event detection for human lower limb movement publication-title: Presented at the Proceedings of the 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) – volume: 28 start-page: 420 year: 2008 end-page: 426 ident: bib0070 article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system publication-title: Gait Posture – volume: 50 start-page: 42 year: 2016 end-page: 46 ident: bib0190 article-title: Gait event detection in laboratory and real life settings: accuracy of ankle and waist sensor based methods publication-title: Gait Posture – volume: 14 year: 2019 ident: bib0205 article-title: Automatic real-time gait event detection in children using deep neural networks publication-title: PLoS One – volume: 4 start-page: 507 year: 2007 end-page: 528 ident: bib0045 article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion publication-title: Int. J. HR – volume: 14 start-page: 2776 year: 2014 end-page: 2794 ident: bib0095 article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis publication-title: Sensors (Basel) – volume: 21 start-page: 908 year: 2013 end-page: 916 ident: bib0130 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 51 start-page: 84 year: 2017 end-page: 90 ident: bib0060 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture – volume: 19 start-page: 876 year: 2004 end-page: 898 ident: bib0145 article-title: Applications of artificial neural nets in clinical biomechanics publication-title: Clin. Biomech. (Bristol, Avon) – volume: 12 year: 2017 ident: bib0065 article-title: Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression publication-title: PLoS One – year: 2015 ident: bib0185 article-title: Long short term memory networks for anomaly detection in time series publication-title: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015) – volume: 18 start-page: 602 year: 2015 end-page: 610 ident: bib0155 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. – year: 2019 ident: bib0180 article-title: The classification of minor gait alterations using wearable sensors and deep learning publication-title: IEEE Trans. Biomed. Eng. – start-page: 626 year: 2019 end-page: 631 ident: bib0165 article-title: Development of wearable gait assistive device using recurrent neural network publication-title: 2019 IEEE/SICE International Symposium on System Integration (SII) – year: 2013 ident: bib0005 article-title: Measuring Walking: A Handbook of Clinical Gait Analysis – volume: 53 start-page: 1 year: 2018 end-page: 12 ident: bib0140 article-title: Automatic recognition of gait patterns in human motor disorders using machine learning: a review publication-title: Med. Eng. Phys. – year: 2013 ident: bib0035 article-title: Consideration of assistive devices in the gait analysis of spinal cord–injured subjects publication-title: Presented at the Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control – volume: 24 start-page: 1363 year: 2016 end-page: 1372 ident: bib0090 article-title: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2017 ident: bib0195 article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks publication-title: Presented at the Proceedings of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017 – volume: 1511.03677 year: 2017 ident: bib0215 article-title: Learning to diagnose with LSTM recurrent neural networks publication-title: arXiv Preprint – volume: 18 year: 2018 ident: bib0025 article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses publication-title: Sensors (Basel) – year: 2011 ident: bib0040 article-title: Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity publication-title: Presented at the 2011 IEEE International Conference on Rehabilitation Robotics – volume: 24 start-page: 88 year: 2016 end-page: 97 ident: bib0105 article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – year: 2013 ident: bib0080 article-title: Gait phase detection in able-bodied subjects and dementia patients publication-title: Presented at the Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society – volume: 14 start-page: 1180 year: 2010 end-page: 1187 ident: bib0135 article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 32 start-page: 287 year: 2010 end-page: 297 ident: bib0030 article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection publication-title: Med. Eng. Phys. – volume: 27 start-page: 248 year: 2008 end-page: 257 ident: bib0075 article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot publication-title: Gait Posture – year: 2018 ident: bib0015 article-title: Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease publication-title: Presented at the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) – volume: 27 start-page: 710 year: 2008 end-page: 714 ident: bib0200 article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data publication-title: Gait Posture – volume: 46 year: 2010 ident: bib0120 article-title: Statistics-based technique for automated detection of gait events from accelerometer signals publication-title: Electron. Lett. – volume: 7988 year: 2013 ident: bib0020 article-title: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease publication-title: Machine Learning and Data Mining in Patter Recognition. MLDM 2013. Lecture Notes in Computer Science – volume: 8 start-page: 9879 year: 2018 ident: bib0220 article-title: Gait estimation from anatomical foot parameters measured by a foot feature measurement system using a deep neural network model publication-title: Sci. Rep. – start-page: 1 year: 2018 end-page: 8 ident: bib0010 article-title: Predicting Freezing of Gait in Parkinsons Disease Patients Using Machine Learning – volume: 4 start-page: 1501 year: 2019 end-page: 1508 ident: bib0175 article-title: BioLSTM: a biomechanically inspired recurrent neural network for 3D pedestrian pose and gait prediction publication-title: IEEE Robot. Autom. Lett. – start-page: 850 year: 1999 end-page: 855 ident: bib0170 article-title: Learning to forget: continual prediction with LSTM publication-title: 9th International Conference on Artificial Neural Networks (ICANN’ 99) – volume: 126 start-page: 375 year: 2017 end-page: 389 ident: bib0210 article-title: Every moment counts: dense detailed labeling of actions in complex videos publication-title: Int. J. Comput. Vis. – volume: 21 start-page: 4 year: 2017 end-page: 21 ident: bib0110 article-title: Deep Learning for Health Informatics publication-title: IEEE J. Biomed. Health Inform. – volume: 13 start-page: 81 year: 2005 end-page: 88 ident: bib0125 article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. – volume: 36 start-page: 502 year: 2014 end-page: 508 ident: bib0115 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. – volume: 28 start-page: 1 year: 2008 end-page: 15 ident: bib0055 article-title: Accelerometry: a technique for quantifying movement patterns during walking publication-title: Gait Posture – volume: 32 start-page: 545 year: 2010 end-page: 552 ident: bib0050 article-title: Methods for gait event detection and analysis in ambulatory systems publication-title: Med. Eng. Phys. – volume: 61 year: 2018 ident: bib0160 article-title: A language-independent neural network for event detection publication-title: Sci. China Inf. Sci. – volume: 38 start-page: 244 year: 2018 end-page: 260 ident: bib0150 article-title: Analysis of big data in gait biomechanics: current trends and future directions publication-title: J. Med. Biol. Eng. – volume: 16 year: 2016 ident: bib0085 article-title: Towards real-time detection of gait events on different terrains using time-frequency analysis and peak heuristics algorithm publication-title: Sensors (Basel) – volume: 28 start-page: 420 issue: October (3) year: 2008 ident: 10.1016/j.gaitpost.2019.09.007_bib0070 article-title: Detection of gait events using an F-Scan in-shoe pressure measurement system publication-title: Gait Posture doi: 10.1016/j.gaitpost.2008.01.019 – volume: 14 start-page: 1180 issue: September (5) year: 2010 ident: 10.1016/j.gaitpost.2019.09.007_bib0135 article-title: A symbol-based approach to gait analysis from acceleration signals: identification and detection of gait events and a new measure of gait symmetry publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2010.2047402 – year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0015 article-title: Deep domain adaptation to predict freezing of gait in patients with Parkinson’s disease publication-title: Presented at the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA) doi: 10.1109/ICMLA.2018.00163 – start-page: 1 year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0010 – volume: 61 issue: 9 year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0160 article-title: A language-independent neural network for event detection publication-title: Sci. China Inf. Sci. doi: 10.1007/s11432-017-9359-x – volume: 14 issue: 1 year: 2019 ident: 10.1016/j.gaitpost.2019.09.007_bib0205 article-title: Automatic real-time gait event detection in children using deep neural networks publication-title: PLoS One – year: 2011 ident: 10.1016/j.gaitpost.2019.09.007_bib0040 article-title: Development of closed-fitting-type walking assistance device for legs and evaluation of muscle activity – volume: 28 start-page: 1 issue: July (1) year: 2008 ident: 10.1016/j.gaitpost.2019.09.007_bib0055 article-title: Accelerometry: a technique for quantifying movement patterns during walking publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.10.010 – volume: 24 start-page: 88 issue: January (1) year: 2016 ident: 10.1016/j.gaitpost.2019.09.007_bib0105 article-title: Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2409123 – volume: 27 start-page: 248 issue: February (2) year: 2008 ident: 10.1016/j.gaitpost.2019.09.007_bib0075 article-title: The reliability of using accelerometer and gyroscope for gait event identification on persons with dropped foot publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.03.018 – year: 2015 ident: 10.1016/j.gaitpost.2019.09.007_bib0185 article-title: Long short term memory networks for anomaly detection in time series – volume: 27 start-page: 710 issue: May (4) year: 2008 ident: 10.1016/j.gaitpost.2019.09.007_bib0200 article-title: Two simple methods for determining gait events during treadmill and overground walking using kinematic data publication-title: Gait Posture doi: 10.1016/j.gaitpost.2007.07.007 – volume: 18 issue: July (7) year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0025 article-title: ED-FNN: a new deep learning algorithm to detect percentage of the gait cycle for powered prostheses publication-title: Sensors (Basel) – volume: 14 start-page: 2776 issue: February (2) year: 2014 ident: 10.1016/j.gaitpost.2019.09.007_bib0095 article-title: Online phase detection using wearable sensors for walking with a robotic prosthesis publication-title: Sensors (Basel) doi: 10.3390/s140202776 – start-page: 626 year: 2019 ident: 10.1016/j.gaitpost.2019.09.007_bib0165 article-title: Development of wearable gait assistive device using recurrent neural network publication-title: 2019 IEEE/SICE International Symposium on System Integration (SII) doi: 10.1109/SII.2019.8700415 – year: 2013 ident: 10.1016/j.gaitpost.2019.09.007_bib0080 article-title: Gait phase detection in able-bodied subjects and dementia patients – volume: 21 start-page: 908 issue: November (6) year: 2013 ident: 10.1016/j.gaitpost.2019.09.007_bib0130 article-title: Automated detection of instantaneous gait events using time frequency analysis and manifold embedding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2239313 – volume: 7988 year: 2013 ident: 10.1016/j.gaitpost.2019.09.007_bib0020 article-title: Feature learning for detection and prediction of freezing of gait in Parkinson’s disease – year: 2013 ident: 10.1016/j.gaitpost.2019.09.007_bib0005 – issue: February (21) year: 2019 ident: 10.1016/j.gaitpost.2019.09.007_bib0180 article-title: The classification of minor gait alterations using wearable sensors and deep learning publication-title: IEEE Trans. Biomed. Eng. – volume: 19 start-page: 876 issue: November (9) year: 2004 ident: 10.1016/j.gaitpost.2019.09.007_bib0145 article-title: Applications of artificial neural nets in clinical biomechanics publication-title: Clin. Biomech. (Bristol, Avon) doi: 10.1016/j.clinbiomech.2004.04.005 – volume: 4 start-page: 507 issue: September (3) year: 2007 ident: 10.1016/j.gaitpost.2019.09.007_bib0045 article-title: A physiologist’s perspective on robotic exoskeletons for human locomotion publication-title: Int. J. HR – volume: 32 start-page: 545 issue: July (6) year: 2010 ident: 10.1016/j.gaitpost.2019.09.007_bib0050 article-title: Methods for gait event detection and analysis in ambulatory systems publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.03.007 – volume: 38 start-page: 244 issue: 2 year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0150 article-title: Analysis of big data in gait biomechanics: current trends and future directions publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0297-2 – volume: 50 start-page: 42 issue: October year: 2016 ident: 10.1016/j.gaitpost.2019.09.007_bib0190 article-title: Gait event detection in laboratory and real life settings: accuracy of ankle and waist sensor based methods publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.08.012 – volume: 8 start-page: 9879 issue: June (1) year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0220 article-title: Gait estimation from anatomical foot parameters measured by a foot feature measurement system using a deep neural network model publication-title: Sci. Rep. doi: 10.1038/s41598-018-28222-2 – year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0100 article-title: Heuristic based gait event detection for human lower limb movement – volume: 16 issue: October (10) year: 2016 ident: 10.1016/j.gaitpost.2019.09.007_bib0085 article-title: Towards real-time detection of gait events on different terrains using time-frequency analysis and peak heuristics algorithm publication-title: Sensors (Basel) – volume: 4 start-page: 1501 year: 2019 ident: 10.1016/j.gaitpost.2019.09.007_bib0175 article-title: BioLSTM: a biomechanically inspired recurrent neural network for 3D pedestrian pose and gait prediction publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2019.2895266 – volume: 13 start-page: 81 issue: March (1) year: 2005 ident: 10.1016/j.gaitpost.2019.09.007_bib0125 article-title: Automated estimation of initial and terminal contact timing using accelerometers; development and validation in transtibial amputees and controls publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2004.843176 – volume: 21 start-page: 4 issue: January (1) year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0110 article-title: Deep Learning for Health Informatics publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2016.2636665 – volume: 1511.03677 year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0215 article-title: Learning to diagnose with LSTM recurrent neural networks publication-title: arXiv Preprint – volume: 46 issue: 22 year: 2010 ident: 10.1016/j.gaitpost.2019.09.007_bib0120 article-title: Statistics-based technique for automated detection of gait events from accelerometer signals publication-title: Electron. Lett. doi: 10.1049/el.2010.2118 – volume: 18 start-page: 602 issue: 5–6 year: 2015 ident: 10.1016/j.gaitpost.2019.09.007_bib0155 article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures publication-title: Neural Netw. – volume: 32 start-page: 287 issue: May (4) year: 2010 ident: 10.1016/j.gaitpost.2019.09.007_bib0030 article-title: Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2009.10.014 – year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0195 article-title: Data augmentation of wearable sensor data for parkinson’s disease monitoring using convolutional neural networks publication-title: Presented at the Proceedings of the 19th ACM International Conference on Multimodal Interaction - ICMI 2017 – volume: 24 start-page: 1363 issue: December (12) year: 2016 ident: 10.1016/j.gaitpost.2019.09.007_bib0090 article-title: Gait event detection in real-world environment for long-term applications: incorporating domain knowledge into time-frequency analysis publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2536278 – volume: 53 start-page: 1 issue: March year: 2018 ident: 10.1016/j.gaitpost.2019.09.007_bib0140 article-title: Automatic recognition of gait patterns in human motor disorders using machine learning: a review publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.12.006 – volume: 12 issue: 6 year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0065 article-title: Intra-individual gait patterns across different time-scales as revealed by means of a supervised learning model using kernel-based discriminant regression publication-title: PLoS One doi: 10.1371/journal.pone.0179738 – start-page: 850 year: 1999 ident: 10.1016/j.gaitpost.2019.09.007_bib0170 article-title: Learning to forget: continual prediction with LSTM – year: 2013 ident: 10.1016/j.gaitpost.2019.09.007_bib0035 article-title: Consideration of assistive devices in the gait analysis of spinal cord–injured subjects publication-title: Presented at the Volume 7A: 9th International Conference on Multibody Systems, Nonlinear Dynamics, and Control – volume: 51 start-page: 84 issue: January year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0060 article-title: Evaluation of the performance of accelerometer-based gait event detection algorithms in different real-world scenarios using the MAREA gait database publication-title: Gait Posture doi: 10.1016/j.gaitpost.2016.09.023 – volume: 36 start-page: 502 year: 2014 ident: 10.1016/j.gaitpost.2019.09.007_bib0115 article-title: Gait event detection for use in FES rehabilitation by radial and tangential foot accelerations publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2013.10.004 – volume: 126 start-page: 375 issue: 2–4 year: 2017 ident: 10.1016/j.gaitpost.2019.09.007_bib0210 article-title: Every moment counts: dense detailed labeling of actions in complex videos publication-title: Int. J. Comput. Vis.  | 
    
| SSID | ssj0004382 | 
    
| Score | 2.5013697 | 
    
| Snippet | •A modified Long Short-Term Memory networks model was proposed.•Data from the MAREA database was used for the experiment.•Modifications include composite... Gait event detection (GED) is an important aspect in identifying and interpret a user's gait to assess gait abnormalities and design intelligent assistive...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 128 | 
    
| SubjectTerms | Accelerometry - methods Algorithms Databases, Factual Female Gait Gait - physiology Gait event detection Humans Inertial sensors Long-short term memory models LSTM Male Movement Disorders - diagnosis Movement Disorders - rehabilitation Walking  | 
    
| Title | Time series classification using a modified LSTM approach from accelerometer-based data: A comparative study for gait cycle detection | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0966636219306952 https://dx.doi.org/10.1016/j.gaitpost.2019.09.007 https://www.ncbi.nlm.nih.gov/pubmed/31518859 https://www.proquest.com/docview/2290836202  | 
    
| Volume | 74 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: ACRLP dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: AIKHN dateStart: 19950301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004382 issn: 0966-6362 databaseCode: AKRWK dateStart: 19930301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swEBelhbKX0Y99ZFvLFcbe1PhDlq29hdCSdk0ZawZ9E7KklJTVCY370Je99f_unWynG2x0MAiYmBy2dae7n6Pf_cTYR5-ZKDFC8dyqkoss9bxIcsexcgXImyeOupHH53L0XZxeZpdrbNj1whCtss39TU4P2bo9029Hs7-YzfoXCL6xXEqccgh7VUZ5WIicdjE4_PlE86CFrqC3JyWnX__SJXx9eGVm9WK-JE5lrILeKW0r--cC9TcAGgrR8RZ72SJIGDQ3uc3WfLXDdgcVvj3f3MMnCJzO8Gf5Dtsct0vnu-yBmj2AAs4vwRJmJpJQ8AsQ-f0KDNzMHZ70Ds4uJmPo5MaBWlDAWIsVisQN0BOcip8Dopd-hgHYJwlxCHq1gFAY6LHB3uNNgvN1oHxVr9jk-GgyHPF2DwZuEWjVfFoUBiFE5G3sylRhNVOJ8TjupSTtd5n72LqikIVxPk6lFT6bqjLxwhvECip9zdareeXfMkBsaAypHZnYCymVmsZWiKk0WRElpZM9lnXjrm2rT07bZPzQHRHtWnf-0uQvHeEnynusv7JbNAodz1rknVt113-KGVNjEXnWUq0sf4vSf7I96CJI4xSmdRlT-fndUpPkfoGhGSU99qYJrdWTpDEp5mXq3X9c-T17Qd8aCuIHtl7f3vk9hFJ1uR_myj7bGAy_nX2l48mX0fkjq_Ig6Q | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWqIgEXBC0fCwUGCXFzNx-2E_e2qlotsNtLF6k3y7G91VZtdsWmh1648b-ZcZItSFRFQtpTNqMknvHMS_zmmbGPQdoks0LzwumKC5kHXmaF51i5IuQtMk_dyNMTNf4mvpzJsy122PfCEK2yy_1tTo_Zujsy7EZzuFoshqcIvrFcKpxyCHu1xDz8QMisoDew_R-3PA9a6YqCe0pxOv23NuGL_XO7aFbLNZEqUx0FT2lf2b9XqLsQaKxEx0_Zkw5Cwqi9y2dsK9Q7bHdU4-vz1Q18gkjqjF_Ld9jDabd2vst-UrcHUMSFNTgCzcQSio4BYr-fg4WrpceDwcPkdDaFXm8cqAcFrHNYokjdAF3Bqfp5IH7pAYzA3WqIQxSsBcTCQI8N7gZvEnxoIuerfs5mx0ezwzHvNmHgDpFWw-dlaRFDJMGlvso1ljOd2YADXykSf1dFSJ0vS1VaH9JcORHkXFdZEMEiWND5C7ZdL-vwigGCQ2tJ7simQSil9Tx1QsyVlWWSVV4NmOzH3bhOoJz2ybg0PRPtwvT-MuQvk-AvKQZsuLFbtRId91oUvVtN34CKKdNgFbnXUm8s_wjTf7L90EeQwTlMCzO2DsvrtSHN_RJDM8kG7GUbWpsnyVOSzJP69X9c-T17NJ5NJ2by-eTrG_aY_mn5iHtsu_l-Hd4irmqqd3He_AIbKCDp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+classification+using+a+modified+LSTM+approach+from+accelerometer-based+data%3A+A+comparative+study+for+gait+cycle+detection&rft.jtitle=Gait+%26+posture&rft.au=Tan%2C+Hui+Xing&rft.au=Aung%2C+Nway+Nway&rft.au=Tian%2C+Jing&rft.au=Chua%2C+Matthew+Chin+Heng&rft.date=2019-10-01&rft.issn=0966-6362&rft.volume=74&rft.spage=128&rft.epage=134&rft_id=info:doi/10.1016%2Fj.gaitpost.2019.09.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_gaitpost_2019_09_007 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0966-6362&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0966-6362&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0966-6362&client=summon |