LigandRNA: computational predictor of RNA–ligand interactions

RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 19; no. 12; pp. 1605 - 1616
Main Authors Philips, Anna, Milanowska, Kaja, Łach, Grzegorz, Bujnicki, Janusz M.
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.12.2013
Subjects
Online AccessGet full text
ISSN1355-8382
1469-9001
1469-9001
DOI10.1261/rna.039834.113

Cover

Abstract RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl .
AbstractList RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl .
LigandRNA is a novel program for scoring and ranking ligand poses in RNA 3D structures, based on a statistical potential. It is available free of charge as a web server at http://ligandrna.genesilico.pl. It can be run for a single RNA–ligand complex as well as for a list of ligand poses generated by any third-party docking program. For ligand poses generated by Dock6, it is possible to obtain a consensus score (Dock6 + LigandRNA). RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.
Author Bujnicki, Janusz M.
Philips, Anna
Łach, Grzegorz
Milanowska, Kaja
AuthorAffiliation 2 Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
AuthorAffiliation_xml – name: 2 Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
– name: 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
Author_xml – sequence: 1
  givenname: Anna
  surname: Philips
  fullname: Philips, Anna
– sequence: 2
  givenname: Kaja
  surname: Milanowska
  fullname: Milanowska, Kaja
– sequence: 3
  givenname: Grzegorz
  surname: Łach
  fullname: Łach, Grzegorz
– sequence: 4
  givenname: Janusz M.
  surname: Bujnicki
  fullname: Bujnicki, Janusz M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24145824$$D View this record in MEDLINE/PubMed
BookMark eNqNkctKxDAUhoMo3rcupUs3ncmtaeNCGcQbDAqi65BJU410kpq0ijvfwTf0SczY8Qqiqxxyvv9c_rMGFq2zGoAtBAcIMzT0Vg4g4QWhA4TIAlhFlPGUQ4gWY0yyLC1IgVfAWgi38ZPE9DJYwRTRrMB0FeyPzbW05cXZaDdRbtp0rWyNs7JOGq9Lo1rnE1clMf_y9Fy_sYmxrfZSzbiwAZYqWQe9OX_XwdXR4eXBSTo-Pz49GI1TRTFpU0Zx7KwVl5xCnhOmWaXzUkEIC5whzcvJpMqxzDOWK6JxjiREPIOQUTKJGFkHw75uZxv5-CDrWjTeTKV_FAiKmRUiWiF6K0S0Iir2ekXTTaa6VNq2Xn6qnDTie8aaG3Ht7gUpGMRs1nJnXsC7u06HVkxNULqupdWuCwJRHjGOaPEPNOM8pxTjiG5_HetjnveTRGDQA8q7ELyu_l6U_hAo018xrmXq32Svt5mu0A
CitedBy_id crossref_primary_10_1021_acs_jctc_3c00507
crossref_primary_10_1093_bib_bbae166
crossref_primary_10_1021_acsabm_4c00432
crossref_primary_10_1021_acs_jctc_3c01239
crossref_primary_10_1042_BST20160087
crossref_primary_10_1016_j_copbio_2019_10_010
crossref_primary_10_1021_acs_jcim_0c00974
crossref_primary_10_1093_bioinformatics_btae155
crossref_primary_10_1007_s12154_015_0142_4
crossref_primary_10_1002_wcms_1226
crossref_primary_10_1016_j_future_2024_05_029
crossref_primary_10_1177_2472555220922802
crossref_primary_10_1021_acs_jcim_9b00163
crossref_primary_10_1021_acs_jctc_2c00381
crossref_primary_10_1093_bioinformatics_btaa1092
crossref_primary_10_1093_nar_gkad404
crossref_primary_10_1038_s41467_025_57852_0
crossref_primary_10_3390_ijms18112442
crossref_primary_10_1063_1_4981207
crossref_primary_10_1093_nar_gkad929
crossref_primary_10_1371_journal_pone_0134262
crossref_primary_10_1093_bib_bbad187
crossref_primary_10_1016_j_compbiolchem_2025_108367
crossref_primary_10_1021_acs_jcim_1c00341
crossref_primary_10_1016_j_drudis_2021_10_013
crossref_primary_10_1016_j_bpj_2022_11_010
crossref_primary_10_1021_acs_jctc_4c00681
crossref_primary_10_1371_journal_pcbi_1009783
crossref_primary_10_3390_ijms23136903
crossref_primary_10_1093_nar_gkaa583
crossref_primary_10_1016_j_gene_2018_03_094
crossref_primary_10_1002_wcms_1571
crossref_primary_10_1039_D3CP04366E
crossref_primary_10_1016_j_jmgm_2017_02_004
crossref_primary_10_1261_rna_078889_121
crossref_primary_10_3389_fmolb_2022_1044126
crossref_primary_10_1016_j_aichem_2024_100053
crossref_primary_10_1016_j_jphotobiol_2016_05_022
crossref_primary_10_1093_bioinformatics_bty345
crossref_primary_10_1002_ijch_202000021
crossref_primary_10_1042_EBC20200011
crossref_primary_10_1093_bib_bbac486
crossref_primary_10_1016_j_chempr_2021_05_021
crossref_primary_10_1038_s41467_024_49638_7
crossref_primary_10_1021_acs_biochem_8b01090
crossref_primary_10_1093_nar_gkx255
crossref_primary_10_1016_j_ijbiomac_2024_136987
crossref_primary_10_1016_j_ymeth_2021_01_009
crossref_primary_10_1261_rna_079497_122
crossref_primary_10_1146_annurev_biophys_070816_033920
crossref_primary_10_1080_17460441_2024_2313455
crossref_primary_10_1016_j_ejmech_2019_02_046
crossref_primary_10_1021_acs_jcim_4c00855
crossref_primary_10_1371_journal_pcbi_1008309
crossref_primary_10_1021_acs_jpcb_0c02322
crossref_primary_10_1021_acs_jcim_2c00751
crossref_primary_10_1016_j_cbpa_2015_05_018
crossref_primary_10_1186_s12859_021_04349_4
crossref_primary_10_1371_journal_pone_0178931
crossref_primary_10_1093_bib_bbab411
crossref_primary_10_1021_acs_jpcb_1c02702
crossref_primary_10_3390_antibiotics12030463
crossref_primary_10_1021_acs_jctc_0c00798
Cites_doi 10.1016/S0092-8674(02)01134-0
10.1006/jmbi.1999.3371
10.1128/JB.00040-07
10.1002/jcc.20084
10.1021/ci700134p
10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
10.1002/wrna.1147
10.1146/annurev.biophys.37.032807.130000
10.1093/bioinformatics/btr636
10.4155/fmc.09.149
10.1016/j.bmc.2003.12.004
10.1261/rna.1563609
10.1016/0022-2836(82)90153-X
10.1021/ci9004157
10.1021/ci8000327
10.1023/B:JCAM.0000035199.48747.1e
10.1111/j.1440-1746.1997.tb00500.x
10.1126/science.1218298
10.1038/nrmicro1265
10.1021/cr0681546
10.1126/science.1215063
10.1021/jm0508437
10.1093/nar/gkq1320
003510.001101/cshperspect.a003533
10.1002/jcc.20290
10.1006/bbrc.2000.2336
10.1038/nbt1268
10.1021/jm030650o
10.1016/S0092-8674(03)00391-X
10.1073/pnas.212628899
10.2174/092986711797189637
10.1093/nar/gkl317
10.2174/1570162052772924
10.2741/3854
10.1093/nar/gks1007
10.1002/jcc.21256
10.1186/1471-2105-2-8
10.1186/1471-2105-12-348
ContentType Journal Article
Copyright 2013
Copyright_xml – notice: 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
5PM
ADTOC
UNPAY
DOI 10.1261/rna.039834.113
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE
CrossRef

Nucleic Acids Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Philips et al
EISSN 1469-9001
EndPage 1616
ExternalDocumentID 10.1261/rna.039834.113
PMC3860260
24145824
10_1261_rna_039834_113
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.GJ
0VX
123
18M
29P
2WC
34G
39C
4.4
53G
5RE
5VS
8R4
8R5
AAYXX
ABDIX
ABDNZ
ABGDZ
ABVKB
ACGFO
ACLKE
ACNCT
ACQPF
ACYGS
ADBBV
AENEX
AFFNX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CAG
CITATION
COF
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
KQ8
MV1
OK1
P2P
RCA
RCX
RHI
ROL
RPM
SJN
TR2
W8F
WOQ
YKV
ZGI
ZWS
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
7TM
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c423t-642146ec9a9409736e6fe7dc0008251e9dbbf72a7567c3e271a019500643bdc03
IEDL.DBID UNPAY
ISSN 1355-8382
1469-9001
IngestDate Sun Oct 26 03:13:54 EDT 2025
Tue Sep 30 17:00:37 EDT 2025
Fri Sep 05 09:04:36 EDT 2025
Fri Sep 05 09:40:37 EDT 2025
Thu Apr 03 06:55:50 EDT 2025
Wed Oct 01 01:57:54 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords knowledge-based potential
RNA–ligand docking
bioinformatics
Language English
License This article, published in RNA, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.
False
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-642146ec9a9409736e6fe7dc0008251e9dbbf72a7567c3e271a019500643bdc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=http://rnajournal.cshlp.org/content/19/12/1605.full.pdf
PMID 24145824
PQID 1459974422
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1261_rna_039834_113
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3860260
proquest_miscellaneous_1492609148
proquest_miscellaneous_1459974422
pubmed_primary_24145824
crossref_primary_10_1261_rna_039834_113
crossref_citationtrail_10_1261_rna_039834_113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-12-00
2013-Dec
20131201
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA (Cambridge)
PublicationTitleAlternate RNA
PublicationYear 2013
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021112105540662000_19.12.1605.7
2021112105540662000_19.12.1605.29
2021112105540662000_19.12.1605.6
2021112105540662000_19.12.1605.28
2021112105540662000_19.12.1605.5
2021112105540662000_19.12.1605.27
2021112105540662000_19.12.1605.4
2021112105540662000_19.12.1605.26
2021112105540662000_19.12.1605.9
2021112105540662000_19.12.1605.3
2021112105540662000_19.12.1605.2
2021112105540662000_19.12.1605.1
2021112105540662000_19.12.1605.21
2021112105540662000_19.12.1605.20
(2021112105540662000_19.12.1605.8) 1997; 12
2021112105540662000_19.12.1605.25
2021112105540662000_19.12.1605.24
2021112105540662000_19.12.1605.23
2021112105540662000_19.12.1605.22
2021112105540662000_19.12.1605.18
2021112105540662000_19.12.1605.17
2021112105540662000_19.12.1605.39
2021112105540662000_19.12.1605.16
2021112105540662000_19.12.1605.38
2021112105540662000_19.12.1605.15
2021112105540662000_19.12.1605.37
2021112105540662000_19.12.1605.19
(2021112105540662000_19.12.1605.12) 2010; 23
2021112105540662000_19.12.1605.10
2021112105540662000_19.12.1605.32
2021112105540662000_19.12.1605.31
2021112105540662000_19.12.1605.30
2021112105540662000_19.12.1605.14
2021112105540662000_19.12.1605.36
2021112105540662000_19.12.1605.13
2021112105540662000_19.12.1605.35
2021112105540662000_19.12.1605.34
2021112105540662000_19.12.1605.11
2021112105540662000_19.12.1605.33
12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
20481574 - J Chem Inf Model. 2010 Jun 28;50(6):1134-46
16261170 - Nat Rev Microbiol. 2005 Nov;3(11):870-81
10708596 - Biochem Biophys Res Commun. 2000 Mar 16;269(2):574-9
17160062 - Nat Biotechnol. 2006 Dec;24(12):1558-64
19941322 - J Mol Recognit. 2010 Mar-Apr;23(2):220-31
21851628 - BMC Bioinformatics. 2011;12:348
12787499 - Cell. 2003 May 30;113(5):577-86
14980615 - Bioorg Med Chem. 2004 Mar 1;12(5):1023-8
21426048 - Future Med Chem. 2010 Jan;2(1):93-119
18573075 - Annu Rev Biophys. 2008;37:117-33
21838688 - Curr Med Chem. 2011;18(27):4175-84
17307844 - J Bacteriol. 2007 May;189(9):3655-9
17705464 - J Chem Inf Model. 2007 Sep-Oct;47(5):1868-76
20943759 - Cold Spring Harb Perspect Biol. 2011 Jun;3(6). pii: a003533. doi: 10.1101/cshperspect.a003533
12464185 - Cell. 2002 Nov 27;111(5):747-56
11801179 - BMC Bioinformatics. 2001;2:8
18510306 - J Chem Inf Model. 2008 Jun;48(6):1257-68
21300639 - Nucleic Acids Res. 2011 May;39(10):4007-22
19399780 - J Comput Chem. 2009 Dec;30(16):2785-91
22194412 - Science. 2012 Jan 13;335(6065):233-5
10623530 - J Mol Biol. 2000 Jan 14;295(2):337-56
15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
9407337 - J Gastroenterol Hepatol. 1997 Oct;12(9-10):S188-92
22110243 - Bioinformatics. 2012 Jan 15;28(2):198-205
22403384 - Science. 2012 Mar 9;335(6073):1194
18361529 - Chem Rev. 2008 Apr;108(4):1171-224
15638724 - Curr HIV Res. 2005 Jan;3(1):61-71
16200636 - J Comput Chem. 2005 Dec;26(16):1668-88
16679451 - Nucleic Acids Res. 2006;34(8):2328-39
21622177 - Front Biosci (Landmark Ed). 2011;16:2289-306
23139167 - Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):107-20
15368919 - J Comput Aided Mol Des. 2004 Mar;18(3):189-208
7154081 - J Mol Biol. 1982 Oct 25;161(2):269-88
11754339 - Biopolymers. 2000-2001;56(4):257-65
19369428 - RNA. 2009 Jun;15(6):1219-30
23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7
16451068 - J Med Chem. 2006 Feb 9;49(3):1023-33
15293991 - J Med Chem. 2004 Aug 12;47(17):4188-201
References_xml – volume: 23
  start-page: 220
  year: 2010
  ident: 2021112105540662000_19.12.1605.12
  article-title: Molecular recognition of RNA: Challenges for modelling interactions and plasticity
  publication-title: J Mol Recognit
– ident: 2021112105540662000_19.12.1605.22
  doi: 10.1016/S0092-8674(02)01134-0
– ident: 2021112105540662000_19.12.1605.14
  doi: 10.1006/jmbi.1999.3371
– ident: 2021112105540662000_19.12.1605.38
  doi: 10.1128/JB.00040-07
– ident: 2021112105540662000_19.12.1605.29
  doi: 10.1002/jcc.20084
– ident: 2021112105540662000_19.12.1605.30
  doi: 10.1021/ci700134p
– ident: 2021112105540662000_19.12.1605.20
  doi: 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
– ident: 2021112105540662000_19.12.1605.10
  doi: 10.1002/wrna.1147
– ident: 2021112105540662000_19.12.1605.24
  doi: 10.1146/annurev.biophys.37.032807.130000
– ident: 2021112105540662000_19.12.1605.31
  doi: 10.1093/bioinformatics/btr636
– ident: 2021112105540662000_19.12.1605.1
  doi: 10.4155/fmc.09.149
– ident: 2021112105540662000_19.12.1605.5
  doi: 10.1016/j.bmc.2003.12.004
– ident: 2021112105540662000_19.12.1605.17
  doi: 10.1261/rna.1563609
– ident: 2021112105540662000_19.12.1605.16
  doi: 10.1016/0022-2836(82)90153-X
– ident: 2021112105540662000_19.12.1605.18
  doi: 10.1021/ci9004157
– ident: 2021112105540662000_19.12.1605.15
  doi: 10.1021/ci8000327
– ident: 2021112105540662000_19.12.1605.25
  doi: 10.1023/B:JCAM.0000035199.48747.1e
– volume: 12
  start-page: S188
  year: 1997
  ident: 2021112105540662000_19.12.1605.8
  article-title: Molecular biology of hepatitis D virus: Research and potential for application
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/j.1440-1746.1997.tb00500.x
– ident: 2021112105540662000_19.12.1605.27
  doi: 10.1126/science.1218298
– ident: 2021112105540662000_19.12.1605.32
  doi: 10.1038/nrmicro1265
– ident: 2021112105540662000_19.12.1605.35
  doi: 10.1021/cr0681546
– ident: 2021112105540662000_19.12.1605.2
  doi: 10.1126/science.1215063
– ident: 2021112105540662000_19.12.1605.23
  doi: 10.1021/jm0508437
– ident: 2021112105540662000_19.12.1605.34
  doi: 10.1093/nar/gkq1320
– ident: 2021112105540662000_19.12.1605.13
  doi: 003510.001101/cshperspect.a003533
– ident: 2021112105540662000_19.12.1605.7
  doi: 10.1002/jcc.20290
– ident: 2021112105540662000_19.12.1605.28
  doi: 10.1006/bbrc.2000.2336
– ident: 2021112105540662000_19.12.1605.4
  doi: 10.1038/nbt1268
– ident: 2021112105540662000_19.12.1605.9
  doi: 10.1021/jm030650o
– ident: 2021112105540662000_19.12.1605.21
  doi: 10.1016/S0092-8674(03)00391-X
– ident: 2021112105540662000_19.12.1605.39
  doi: 10.1073/pnas.212628899
– ident: 2021112105540662000_19.12.1605.37
  doi: 10.2174/092986711797189637
– ident: 2021112105540662000_19.12.1605.11
  doi: 10.1093/nar/gkl317
– ident: 2021112105540662000_19.12.1605.3
  doi: 10.2174/1570162052772924
– ident: 2021112105540662000_19.12.1605.6
  doi: 10.2741/3854
– ident: 2021112105540662000_19.12.1605.19
  doi: 10.1093/nar/gks1007
– ident: 2021112105540662000_19.12.1605.26
  doi: 10.1002/jcc.21256
– ident: 2021112105540662000_19.12.1605.33
  doi: 10.1186/1471-2105-2-8
– ident: 2021112105540662000_19.12.1605.36
  doi: 10.1186/1471-2105-12-348
– reference: 7154081 - J Mol Biol. 1982 Oct 25;161(2):269-88
– reference: 16451068 - J Med Chem. 2006 Feb 9;49(3):1023-33
– reference: 21622177 - Front Biosci (Landmark Ed). 2011;16:2289-306
– reference: 16261170 - Nat Rev Microbiol. 2005 Nov;3(11):870-81
– reference: 11754339 - Biopolymers. 2000-2001;56(4):257-65
– reference: 18510306 - J Chem Inf Model. 2008 Jun;48(6):1257-68
– reference: 22110243 - Bioinformatics. 2012 Jan 15;28(2):198-205
– reference: 18573075 - Annu Rev Biophys. 2008;37:117-33
– reference: 19369428 - RNA. 2009 Jun;15(6):1219-30
– reference: 19941322 - J Mol Recognit. 2010 Mar-Apr;23(2):220-31
– reference: 17705464 - J Chem Inf Model. 2007 Sep-Oct;47(5):1868-76
– reference: 22194412 - Science. 2012 Jan 13;335(6065):233-5
– reference: 20481574 - J Chem Inf Model. 2010 Jun 28;50(6):1134-46
– reference: 23139167 - Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):107-20
– reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13
– reference: 17307844 - J Bacteriol. 2007 May;189(9):3655-9
– reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12
– reference: 15368919 - J Comput Aided Mol Des. 2004 Mar;18(3):189-208
– reference: 21426048 - Future Med Chem. 2010 Jan;2(1):93-119
– reference: 22403384 - Science. 2012 Mar 9;335(6073):1194
– reference: 19399780 - J Comput Chem. 2009 Dec;30(16):2785-91
– reference: 10623530 - J Mol Biol. 2000 Jan 14;295(2):337-56
– reference: 21838688 - Curr Med Chem. 2011;18(27):4175-84
– reference: 18361529 - Chem Rev. 2008 Apr;108(4):1171-224
– reference: 20943759 - Cold Spring Harb Perspect Biol. 2011 Jun;3(6). pii: a003533. doi: 10.1101/cshperspect.a003533
– reference: 9407337 - J Gastroenterol Hepatol. 1997 Oct;12(9-10):S188-92
– reference: 21851628 - BMC Bioinformatics. 2011;12:348
– reference: 10708596 - Biochem Biophys Res Commun. 2000 Mar 16;269(2):574-9
– reference: 21300639 - Nucleic Acids Res. 2011 May;39(10):4007-22
– reference: 15638724 - Curr HIV Res. 2005 Jan;3(1):61-71
– reference: 16200636 - J Comput Chem. 2005 Dec;26(16):1668-88
– reference: 17160062 - Nat Biotechnol. 2006 Dec;24(12):1558-64
– reference: 15293991 - J Med Chem. 2004 Aug 12;47(17):4188-201
– reference: 12464185 - Cell. 2002 Nov 27;111(5):747-56
– reference: 11801179 - BMC Bioinformatics. 2001;2:8
– reference: 12787499 - Cell. 2003 May 30;113(5):577-86
– reference: 23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7
– reference: 16679451 - Nucleic Acids Res. 2006;34(8):2328-39
– reference: 14980615 - Bioorg Med Chem. 2004 Mar 1;12(5):1023-8
SSID ssj0013146
Score 2.3846438
Snippet RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The...
LigandRNA is a novel program for scoring and ranking ligand poses in RNA 3D structures, based on a statistical potential. It is available free of charge as a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1605
SubjectTerms Binding Sites
Bioinformatics
Computational Biology
Drug Discovery - methods
Knowledge Bases
Ligands
Molecular Docking Simulation
RNA - chemistry
Small Molecule Libraries - chemistry
Software
Title LigandRNA: computational predictor of RNA–ligand interactions
URI https://www.ncbi.nlm.nih.gov/pubmed/24145824
https://www.proquest.com/docview/1459974422
https://www.proquest.com/docview/1492609148
https://pubmed.ncbi.nlm.nih.gov/PMC3860260
http://rnajournal.cshlp.org/content/19/12/1605.full.pdf
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: HH5
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: KQ8
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: RPM
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WhNGnrevH5rEFDcraFzvxhyxrLyMNC2W0YZQGsidjy_Ja5jkmcRjd0_6H_Yf7S3aSP9oQtrVvBh0I3cnS73enuwM4RNAbJEwomsoT00uZbQaeRKqClz-SMeonuh3Q-cQ_nXofZ3R267pA7dU6tMTyKit0LF892sYTuG_zvu30bQTglvJNW0WSbkHXpwjCO9CdTj4NP2t6RakZuLpNFB4D3OR4EtflGpEuqCmsgcsD11P9TNavow2MuflUcnuVF9HN9yjL7txD46cwa7J5qucnX61VGVvix2Zxx4cucQee1NiUDKvN9AweyXwX9oY58vJvN-Qt0a9FtRt-Fx6fNF_bo6Zn3B68P7v-EuXJxWT4jgjdL6L2NZJioSJCSPDJPCU4_vvnr0zLElWwYlGlVyz3YTr-cDk6NesWDaZAHFaaKk3W86XgEVeFs1xf-qlkiaiopy15EscpcyJGfSZc6TA7UhmKGgjFKOYeQCef5_IFECnQPII5A-EjxaFepMBTzBIp6UDYATfAbCwVirp-uWqjkYWKx6BlQ9RRWFkWeY1rwFErX1SVO_4q-aYxfIj6UhGTKJfz1RJ5EeVIuDzH-ZcMR07IkVYa8LzaLO18CI9UXNIzgK1to1ZAFfdeH8mvr3SRb1c3BxsYcNxuuP8s4-X9RV9Bp1ys5GvEU2Xc0y6uXv0H_QErECAa
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6sI-LTXrzsVlyJIOpLO9NLmsYXGWVFZB1EHBifSpumjmztlLmw6JP_wX_oL_EkbWd3GFzdt0IOhOScJt-X5HwHYAdBb5AwoWgqT0wvZbYZeBKpCm7-SMaon-hyQOcd_7TrnfVo78_RBc5eNYeWGPWzQt_lq0fbuAI3bd60naaNANxSZ9NWkaQLsOhTBOENWOx2LtrXml5RagauLhOFywA3Oa7ElVwj0gXVhdVyeeB6qp7J7HY0hzHnn0ouT_Iiuv8dZdlf-9DJJ-jV2Tzl85Nf1mQcW-JhXtzxf4f4GT5W2JS0y2D6Ah9kvgKr7Rx5-d092SX6tag-hl-BpaP6a_m4rhm3Coc_b2-iPLnstA-I0PUiqrNGUgzVjRASfDJICbY_Pz5l2pYowYphmV4xWoPuyY-r41OzKtFgCsRhY1OlyXq-FDziSjjL9aWfSpaIknrakidxnDInYtRnwpUOsyOVoaiBUIxm7jo08kEuvwGRAt0jmNMSPlIc6kUKPMUskZK2hB1wA8zaU6Go9MtVGY0sVDwGPRviHIWlZ5HXuAbsTe2LUrnjVcvt2vEhzpe6MYlyOZiMkBdRjoTLc5x_2XDkhBxppQFfy2CZ9ofwSN1LegawmTCaGihx79mW_LavRb5dXRysZcD-NODeGMbG-003oTEeTuR3xFPjeKv6d14Ab8IfCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LigandRNA%3A+computational+predictor+of+RNA%E2%80%93ligand+interactions&rft.jtitle=RNA+%28Cambridge%29&rft.au=Philips%2C+Anna&rft.au=Milanowska%2C+Kaja&rft.au=%C5%81ach%2C+Grzegorz&rft.au=Bujnicki%2C+Janusz+M.&rft.date=2013-12-01&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=19&rft.issue=12&rft.spage=1605&rft.epage=1616&rft_id=info:doi/10.1261%2Frna.039834.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1261_rna_039834_113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon