LigandRNA: computational predictor of RNA–ligand interactions
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically...
Saved in:
| Published in | RNA (Cambridge) Vol. 19; no. 12; pp. 1605 - 1616 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Cold Spring Harbor Laboratory Press
01.12.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1355-8382 1469-9001 1469-9001 |
| DOI | 10.1261/rna.039834.113 |
Cover
| Abstract | RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at
http://ligandrna.genesilico.pl
. |
|---|---|
| AbstractList | RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl . LigandRNA is a novel program for scoring and ranking ligand poses in RNA 3D structures, based on a statistical potential. It is available free of charge as a web server at http://ligandrna.genesilico.pl. It can be run for a single RNA–ligand complex as well as for a list of ligand poses generated by any third-party docking program. For ligand poses generated by Dock6, it is possible to obtain a consensus score (Dock6 + LigandRNA). RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA-small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA-ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a "meta-predictor" leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. |
| Author | Bujnicki, Janusz M. Philips, Anna Łach, Grzegorz Milanowska, Kaja |
| AuthorAffiliation | 2 Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland |
| AuthorAffiliation_xml | – name: 2 Laboratory of Structural Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland – name: 1 Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland |
| Author_xml | – sequence: 1 givenname: Anna surname: Philips fullname: Philips, Anna – sequence: 2 givenname: Kaja surname: Milanowska fullname: Milanowska, Kaja – sequence: 3 givenname: Grzegorz surname: Łach fullname: Łach, Grzegorz – sequence: 4 givenname: Janusz M. surname: Bujnicki fullname: Bujnicki, Janusz M. |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24145824$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkctKxDAUhoMo3rcupUs3ncmtaeNCGcQbDAqi65BJU410kpq0ijvfwTf0SczY8Qqiqxxyvv9c_rMGFq2zGoAtBAcIMzT0Vg4g4QWhA4TIAlhFlPGUQ4gWY0yyLC1IgVfAWgi38ZPE9DJYwRTRrMB0FeyPzbW05cXZaDdRbtp0rWyNs7JOGq9Lo1rnE1clMf_y9Fy_sYmxrfZSzbiwAZYqWQe9OX_XwdXR4eXBSTo-Pz49GI1TRTFpU0Zx7KwVl5xCnhOmWaXzUkEIC5whzcvJpMqxzDOWK6JxjiREPIOQUTKJGFkHw75uZxv5-CDrWjTeTKV_FAiKmRUiWiF6K0S0Iir2ekXTTaa6VNq2Xn6qnDTie8aaG3Ht7gUpGMRs1nJnXsC7u06HVkxNULqupdWuCwJRHjGOaPEPNOM8pxTjiG5_HetjnveTRGDQA8q7ELyu_l6U_hAo018xrmXq32Svt5mu0A |
| CitedBy_id | crossref_primary_10_1021_acs_jctc_3c00507 crossref_primary_10_1093_bib_bbae166 crossref_primary_10_1021_acsabm_4c00432 crossref_primary_10_1021_acs_jctc_3c01239 crossref_primary_10_1042_BST20160087 crossref_primary_10_1016_j_copbio_2019_10_010 crossref_primary_10_1021_acs_jcim_0c00974 crossref_primary_10_1093_bioinformatics_btae155 crossref_primary_10_1007_s12154_015_0142_4 crossref_primary_10_1002_wcms_1226 crossref_primary_10_1016_j_future_2024_05_029 crossref_primary_10_1177_2472555220922802 crossref_primary_10_1021_acs_jcim_9b00163 crossref_primary_10_1021_acs_jctc_2c00381 crossref_primary_10_1093_bioinformatics_btaa1092 crossref_primary_10_1093_nar_gkad404 crossref_primary_10_1038_s41467_025_57852_0 crossref_primary_10_3390_ijms18112442 crossref_primary_10_1063_1_4981207 crossref_primary_10_1093_nar_gkad929 crossref_primary_10_1371_journal_pone_0134262 crossref_primary_10_1093_bib_bbad187 crossref_primary_10_1016_j_compbiolchem_2025_108367 crossref_primary_10_1021_acs_jcim_1c00341 crossref_primary_10_1016_j_drudis_2021_10_013 crossref_primary_10_1016_j_bpj_2022_11_010 crossref_primary_10_1021_acs_jctc_4c00681 crossref_primary_10_1371_journal_pcbi_1009783 crossref_primary_10_3390_ijms23136903 crossref_primary_10_1093_nar_gkaa583 crossref_primary_10_1016_j_gene_2018_03_094 crossref_primary_10_1002_wcms_1571 crossref_primary_10_1039_D3CP04366E crossref_primary_10_1016_j_jmgm_2017_02_004 crossref_primary_10_1261_rna_078889_121 crossref_primary_10_3389_fmolb_2022_1044126 crossref_primary_10_1016_j_aichem_2024_100053 crossref_primary_10_1016_j_jphotobiol_2016_05_022 crossref_primary_10_1093_bioinformatics_bty345 crossref_primary_10_1002_ijch_202000021 crossref_primary_10_1042_EBC20200011 crossref_primary_10_1093_bib_bbac486 crossref_primary_10_1016_j_chempr_2021_05_021 crossref_primary_10_1038_s41467_024_49638_7 crossref_primary_10_1021_acs_biochem_8b01090 crossref_primary_10_1093_nar_gkx255 crossref_primary_10_1016_j_ijbiomac_2024_136987 crossref_primary_10_1016_j_ymeth_2021_01_009 crossref_primary_10_1261_rna_079497_122 crossref_primary_10_1146_annurev_biophys_070816_033920 crossref_primary_10_1080_17460441_2024_2313455 crossref_primary_10_1016_j_ejmech_2019_02_046 crossref_primary_10_1021_acs_jcim_4c00855 crossref_primary_10_1371_journal_pcbi_1008309 crossref_primary_10_1021_acs_jpcb_0c02322 crossref_primary_10_1021_acs_jcim_2c00751 crossref_primary_10_1016_j_cbpa_2015_05_018 crossref_primary_10_1186_s12859_021_04349_4 crossref_primary_10_1371_journal_pone_0178931 crossref_primary_10_1093_bib_bbab411 crossref_primary_10_1021_acs_jpcb_1c02702 crossref_primary_10_3390_antibiotics12030463 crossref_primary_10_1021_acs_jctc_0c00798 |
| Cites_doi | 10.1016/S0092-8674(02)01134-0 10.1006/jmbi.1999.3371 10.1128/JB.00040-07 10.1002/jcc.20084 10.1021/ci700134p 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W 10.1002/wrna.1147 10.1146/annurev.biophys.37.032807.130000 10.1093/bioinformatics/btr636 10.4155/fmc.09.149 10.1016/j.bmc.2003.12.004 10.1261/rna.1563609 10.1016/0022-2836(82)90153-X 10.1021/ci9004157 10.1021/ci8000327 10.1023/B:JCAM.0000035199.48747.1e 10.1111/j.1440-1746.1997.tb00500.x 10.1126/science.1218298 10.1038/nrmicro1265 10.1021/cr0681546 10.1126/science.1215063 10.1021/jm0508437 10.1093/nar/gkq1320 003510.001101/cshperspect.a003533 10.1002/jcc.20290 10.1006/bbrc.2000.2336 10.1038/nbt1268 10.1021/jm030650o 10.1016/S0092-8674(03)00391-X 10.1073/pnas.212628899 10.2174/092986711797189637 10.1093/nar/gkl317 10.2174/1570162052772924 10.2741/3854 10.1093/nar/gks1007 10.1002/jcc.21256 10.1186/1471-2105-2-8 10.1186/1471-2105-12-348 |
| ContentType | Journal Article |
| Copyright | 2013 |
| Copyright_xml | – notice: 2013 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 5PM ADTOC UNPAY |
| DOI | 10.1261/rna.039834.113 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts |
| DatabaseTitleList | MEDLINE CrossRef Nucleic Acids Abstracts MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| DocumentTitleAlternate | Philips et al |
| EISSN | 1469-9001 |
| EndPage | 1616 |
| ExternalDocumentID | 10.1261/rna.039834.113 PMC3860260 24145824 10_1261_rna_039834_113 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 AAYXX ABDIX ABDNZ ABGDZ ABVKB ACGFO ACLKE ACNCT ACQPF ACYGS ADBBV AENEX AFFNX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CITATION COF CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE KQ8 MV1 OK1 P2P RCA RCX RHI ROL RPM SJN TR2 W8F WOQ YKV ZGI ZWS AEILP CGR CUY CVF ECM EIF NPM RIG 7X8 7TM 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c423t-642146ec9a9409736e6fe7dc0008251e9dbbf72a7567c3e271a019500643bdc03 |
| IEDL.DBID | UNPAY |
| ISSN | 1355-8382 1469-9001 |
| IngestDate | Sun Oct 26 03:13:54 EDT 2025 Tue Sep 30 17:00:37 EDT 2025 Fri Sep 05 09:04:36 EDT 2025 Fri Sep 05 09:40:37 EDT 2025 Thu Apr 03 06:55:50 EDT 2025 Wed Oct 01 01:57:54 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | knowledge-based potential RNA–ligand docking bioinformatics |
| Language | English |
| License | This article, published in RNA, is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/. False |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-642146ec9a9409736e6fe7dc0008251e9dbbf72a7567c3e271a019500643bdc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://rnajournal.cshlp.org/content/19/12/1605.full.pdf |
| PMID | 24145824 |
| PQID | 1459974422 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1261_rna_039834_113 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3860260 proquest_miscellaneous_1492609148 proquest_miscellaneous_1459974422 pubmed_primary_24145824 crossref_primary_10_1261_rna_039834_113 crossref_citationtrail_10_1261_rna_039834_113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-12-00 2013-Dec 20131201 |
| PublicationDateYYYYMMDD | 2013-12-01 |
| PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-00 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | RNA (Cambridge) |
| PublicationTitleAlternate | RNA |
| PublicationYear | 2013 |
| Publisher | Cold Spring Harbor Laboratory Press |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press |
| References | 2021112105540662000_19.12.1605.7 2021112105540662000_19.12.1605.29 2021112105540662000_19.12.1605.6 2021112105540662000_19.12.1605.28 2021112105540662000_19.12.1605.5 2021112105540662000_19.12.1605.27 2021112105540662000_19.12.1605.4 2021112105540662000_19.12.1605.26 2021112105540662000_19.12.1605.9 2021112105540662000_19.12.1605.3 2021112105540662000_19.12.1605.2 2021112105540662000_19.12.1605.1 2021112105540662000_19.12.1605.21 2021112105540662000_19.12.1605.20 (2021112105540662000_19.12.1605.8) 1997; 12 2021112105540662000_19.12.1605.25 2021112105540662000_19.12.1605.24 2021112105540662000_19.12.1605.23 2021112105540662000_19.12.1605.22 2021112105540662000_19.12.1605.18 2021112105540662000_19.12.1605.17 2021112105540662000_19.12.1605.39 2021112105540662000_19.12.1605.16 2021112105540662000_19.12.1605.38 2021112105540662000_19.12.1605.15 2021112105540662000_19.12.1605.37 2021112105540662000_19.12.1605.19 (2021112105540662000_19.12.1605.12) 2010; 23 2021112105540662000_19.12.1605.10 2021112105540662000_19.12.1605.32 2021112105540662000_19.12.1605.31 2021112105540662000_19.12.1605.30 2021112105540662000_19.12.1605.14 2021112105540662000_19.12.1605.36 2021112105540662000_19.12.1605.13 2021112105540662000_19.12.1605.35 2021112105540662000_19.12.1605.34 2021112105540662000_19.12.1605.11 2021112105540662000_19.12.1605.33 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 20481574 - J Chem Inf Model. 2010 Jun 28;50(6):1134-46 16261170 - Nat Rev Microbiol. 2005 Nov;3(11):870-81 10708596 - Biochem Biophys Res Commun. 2000 Mar 16;269(2):574-9 17160062 - Nat Biotechnol. 2006 Dec;24(12):1558-64 19941322 - J Mol Recognit. 2010 Mar-Apr;23(2):220-31 21851628 - BMC Bioinformatics. 2011;12:348 12787499 - Cell. 2003 May 30;113(5):577-86 14980615 - Bioorg Med Chem. 2004 Mar 1;12(5):1023-8 21426048 - Future Med Chem. 2010 Jan;2(1):93-119 18573075 - Annu Rev Biophys. 2008;37:117-33 21838688 - Curr Med Chem. 2011;18(27):4175-84 17307844 - J Bacteriol. 2007 May;189(9):3655-9 17705464 - J Chem Inf Model. 2007 Sep-Oct;47(5):1868-76 20943759 - Cold Spring Harb Perspect Biol. 2011 Jun;3(6). pii: a003533. doi: 10.1101/cshperspect.a003533 12464185 - Cell. 2002 Nov 27;111(5):747-56 11801179 - BMC Bioinformatics. 2001;2:8 18510306 - J Chem Inf Model. 2008 Jun;48(6):1257-68 21300639 - Nucleic Acids Res. 2011 May;39(10):4007-22 19399780 - J Comput Chem. 2009 Dec;30(16):2785-91 22194412 - Science. 2012 Jan 13;335(6065):233-5 10623530 - J Mol Biol. 2000 Jan 14;295(2):337-56 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 9407337 - J Gastroenterol Hepatol. 1997 Oct;12(9-10):S188-92 22110243 - Bioinformatics. 2012 Jan 15;28(2):198-205 22403384 - Science. 2012 Mar 9;335(6073):1194 18361529 - Chem Rev. 2008 Apr;108(4):1171-224 15638724 - Curr HIV Res. 2005 Jan;3(1):61-71 16200636 - J Comput Chem. 2005 Dec;26(16):1668-88 16679451 - Nucleic Acids Res. 2006;34(8):2328-39 21622177 - Front Biosci (Landmark Ed). 2011;16:2289-306 23139167 - Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):107-20 15368919 - J Comput Aided Mol Des. 2004 Mar;18(3):189-208 7154081 - J Mol Biol. 1982 Oct 25;161(2):269-88 11754339 - Biopolymers. 2000-2001;56(4):257-65 19369428 - RNA. 2009 Jun;15(6):1219-30 23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7 16451068 - J Med Chem. 2006 Feb 9;49(3):1023-33 15293991 - J Med Chem. 2004 Aug 12;47(17):4188-201 |
| References_xml | – volume: 23 start-page: 220 year: 2010 ident: 2021112105540662000_19.12.1605.12 article-title: Molecular recognition of RNA: Challenges for modelling interactions and plasticity publication-title: J Mol Recognit – ident: 2021112105540662000_19.12.1605.22 doi: 10.1016/S0092-8674(02)01134-0 – ident: 2021112105540662000_19.12.1605.14 doi: 10.1006/jmbi.1999.3371 – ident: 2021112105540662000_19.12.1605.38 doi: 10.1128/JB.00040-07 – ident: 2021112105540662000_19.12.1605.29 doi: 10.1002/jcc.20084 – ident: 2021112105540662000_19.12.1605.30 doi: 10.1021/ci700134p – ident: 2021112105540662000_19.12.1605.20 doi: 10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W – ident: 2021112105540662000_19.12.1605.10 doi: 10.1002/wrna.1147 – ident: 2021112105540662000_19.12.1605.24 doi: 10.1146/annurev.biophys.37.032807.130000 – ident: 2021112105540662000_19.12.1605.31 doi: 10.1093/bioinformatics/btr636 – ident: 2021112105540662000_19.12.1605.1 doi: 10.4155/fmc.09.149 – ident: 2021112105540662000_19.12.1605.5 doi: 10.1016/j.bmc.2003.12.004 – ident: 2021112105540662000_19.12.1605.17 doi: 10.1261/rna.1563609 – ident: 2021112105540662000_19.12.1605.16 doi: 10.1016/0022-2836(82)90153-X – ident: 2021112105540662000_19.12.1605.18 doi: 10.1021/ci9004157 – ident: 2021112105540662000_19.12.1605.15 doi: 10.1021/ci8000327 – ident: 2021112105540662000_19.12.1605.25 doi: 10.1023/B:JCAM.0000035199.48747.1e – volume: 12 start-page: S188 year: 1997 ident: 2021112105540662000_19.12.1605.8 article-title: Molecular biology of hepatitis D virus: Research and potential for application publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.1997.tb00500.x – ident: 2021112105540662000_19.12.1605.27 doi: 10.1126/science.1218298 – ident: 2021112105540662000_19.12.1605.32 doi: 10.1038/nrmicro1265 – ident: 2021112105540662000_19.12.1605.35 doi: 10.1021/cr0681546 – ident: 2021112105540662000_19.12.1605.2 doi: 10.1126/science.1215063 – ident: 2021112105540662000_19.12.1605.23 doi: 10.1021/jm0508437 – ident: 2021112105540662000_19.12.1605.34 doi: 10.1093/nar/gkq1320 – ident: 2021112105540662000_19.12.1605.13 doi: 003510.001101/cshperspect.a003533 – ident: 2021112105540662000_19.12.1605.7 doi: 10.1002/jcc.20290 – ident: 2021112105540662000_19.12.1605.28 doi: 10.1006/bbrc.2000.2336 – ident: 2021112105540662000_19.12.1605.4 doi: 10.1038/nbt1268 – ident: 2021112105540662000_19.12.1605.9 doi: 10.1021/jm030650o – ident: 2021112105540662000_19.12.1605.21 doi: 10.1016/S0092-8674(03)00391-X – ident: 2021112105540662000_19.12.1605.39 doi: 10.1073/pnas.212628899 – ident: 2021112105540662000_19.12.1605.37 doi: 10.2174/092986711797189637 – ident: 2021112105540662000_19.12.1605.11 doi: 10.1093/nar/gkl317 – ident: 2021112105540662000_19.12.1605.3 doi: 10.2174/1570162052772924 – ident: 2021112105540662000_19.12.1605.6 doi: 10.2741/3854 – ident: 2021112105540662000_19.12.1605.19 doi: 10.1093/nar/gks1007 – ident: 2021112105540662000_19.12.1605.26 doi: 10.1002/jcc.21256 – ident: 2021112105540662000_19.12.1605.33 doi: 10.1186/1471-2105-2-8 – ident: 2021112105540662000_19.12.1605.36 doi: 10.1186/1471-2105-12-348 – reference: 7154081 - J Mol Biol. 1982 Oct 25;161(2):269-88 – reference: 16451068 - J Med Chem. 2006 Feb 9;49(3):1023-33 – reference: 21622177 - Front Biosci (Landmark Ed). 2011;16:2289-306 – reference: 16261170 - Nat Rev Microbiol. 2005 Nov;3(11):870-81 – reference: 11754339 - Biopolymers. 2000-2001;56(4):257-65 – reference: 18510306 - J Chem Inf Model. 2008 Jun;48(6):1257-68 – reference: 22110243 - Bioinformatics. 2012 Jan 15;28(2):198-205 – reference: 18573075 - Annu Rev Biophys. 2008;37:117-33 – reference: 19369428 - RNA. 2009 Jun;15(6):1219-30 – reference: 19941322 - J Mol Recognit. 2010 Mar-Apr;23(2):220-31 – reference: 17705464 - J Chem Inf Model. 2007 Sep-Oct;47(5):1868-76 – reference: 22194412 - Science. 2012 Jan 13;335(6065):233-5 – reference: 20481574 - J Chem Inf Model. 2010 Jun 28;50(6):1134-46 – reference: 23139167 - Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):107-20 – reference: 12456892 - Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15908-13 – reference: 17307844 - J Bacteriol. 2007 May;189(9):3655-9 – reference: 15264254 - J Comput Chem. 2004 Oct;25(13):1605-12 – reference: 15368919 - J Comput Aided Mol Des. 2004 Mar;18(3):189-208 – reference: 21426048 - Future Med Chem. 2010 Jan;2(1):93-119 – reference: 22403384 - Science. 2012 Mar 9;335(6073):1194 – reference: 19399780 - J Comput Chem. 2009 Dec;30(16):2785-91 – reference: 10623530 - J Mol Biol. 2000 Jan 14;295(2):337-56 – reference: 21838688 - Curr Med Chem. 2011;18(27):4175-84 – reference: 18361529 - Chem Rev. 2008 Apr;108(4):1171-224 – reference: 20943759 - Cold Spring Harb Perspect Biol. 2011 Jun;3(6). pii: a003533. doi: 10.1101/cshperspect.a003533 – reference: 9407337 - J Gastroenterol Hepatol. 1997 Oct;12(9-10):S188-92 – reference: 21851628 - BMC Bioinformatics. 2011;12:348 – reference: 10708596 - Biochem Biophys Res Commun. 2000 Mar 16;269(2):574-9 – reference: 21300639 - Nucleic Acids Res. 2011 May;39(10):4007-22 – reference: 15638724 - Curr HIV Res. 2005 Jan;3(1):61-71 – reference: 16200636 - J Comput Chem. 2005 Dec;26(16):1668-88 – reference: 17160062 - Nat Biotechnol. 2006 Dec;24(12):1558-64 – reference: 15293991 - J Med Chem. 2004 Aug 12;47(17):4188-201 – reference: 12464185 - Cell. 2002 Nov 27;111(5):747-56 – reference: 11801179 - BMC Bioinformatics. 2001;2:8 – reference: 12787499 - Cell. 2003 May 30;113(5):577-86 – reference: 23118484 - Nucleic Acids Res. 2013 Jan;41(Database issue):D262-7 – reference: 16679451 - Nucleic Acids Res. 2006;34(8):2328-39 – reference: 14980615 - Bioorg Med Chem. 2004 Mar 1;12(5):1023-8 |
| SSID | ssj0013146 |
| Score | 2.3846438 |
| Snippet | RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The... LigandRNA is a novel program for scoring and ranking ligand poses in RNA 3D structures, based on a statistical potential. It is available free of charge as a... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 1605 |
| SubjectTerms | Binding Sites Bioinformatics Computational Biology Drug Discovery - methods Knowledge Bases Ligands Molecular Docking Simulation RNA - chemistry Small Molecule Libraries - chemistry Software |
| Title | LigandRNA: computational predictor of RNA–ligand interactions |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24145824 https://www.proquest.com/docview/1459974422 https://www.proquest.com/docview/1492609148 https://pubmed.ncbi.nlm.nih.gov/PMC3860260 http://rnajournal.cshlp.org/content/19/12/1605.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1469-9001 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: HH5 dateStart: 19950101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: KQ8 dateStart: 19950301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1469-9001 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: RPM dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_WhNGnrevH5rEFDcraFzvxhyxrLyMNC2W0YZQGsidjy_Ja5jkmcRjd0_6H_Yf7S3aSP9oQtrVvBh0I3cnS73enuwM4RNAbJEwomsoT00uZbQaeRKqClz-SMeonuh3Q-cQ_nXofZ3R267pA7dU6tMTyKit0LF892sYTuG_zvu30bQTglvJNW0WSbkHXpwjCO9CdTj4NP2t6RakZuLpNFB4D3OR4EtflGpEuqCmsgcsD11P9TNavow2MuflUcnuVF9HN9yjL7txD46cwa7J5qucnX61VGVvix2Zxx4cucQee1NiUDKvN9AweyXwX9oY58vJvN-Qt0a9FtRt-Fx6fNF_bo6Zn3B68P7v-EuXJxWT4jgjdL6L2NZJioSJCSPDJPCU4_vvnr0zLElWwYlGlVyz3YTr-cDk6NesWDaZAHFaaKk3W86XgEVeFs1xf-qlkiaiopy15EscpcyJGfSZc6TA7UhmKGgjFKOYeQCef5_IFECnQPII5A-EjxaFepMBTzBIp6UDYATfAbCwVirp-uWqjkYWKx6BlQ9RRWFkWeY1rwFErX1SVO_4q-aYxfIj6UhGTKJfz1RJ5EeVIuDzH-ZcMR07IkVYa8LzaLO18CI9UXNIzgK1to1ZAFfdeH8mvr3SRb1c3BxsYcNxuuP8s4-X9RV9Bp1ys5GvEU2Xc0y6uXv0H_QErECAa |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD6sI-LTXrzsVlyJIOpLO9NLmsYXGWVFZB1EHBifSpumjmztlLmw6JP_wX_oL_EkbWd3GFzdt0IOhOScJt-X5HwHYAdBb5AwoWgqT0wvZbYZeBKpCm7-SMaon-hyQOcd_7TrnfVo78_RBc5eNYeWGPWzQt_lq0fbuAI3bd60naaNANxSZ9NWkaQLsOhTBOENWOx2LtrXml5RagauLhOFywA3Oa7ElVwj0gXVhdVyeeB6qp7J7HY0hzHnn0ouT_Iiuv8dZdlf-9DJJ-jV2Tzl85Nf1mQcW-JhXtzxf4f4GT5W2JS0y2D6Ah9kvgKr7Rx5-d092SX6tag-hl-BpaP6a_m4rhm3Coc_b2-iPLnstA-I0PUiqrNGUgzVjRASfDJICbY_Pz5l2pYowYphmV4xWoPuyY-r41OzKtFgCsRhY1OlyXq-FDziSjjL9aWfSpaIknrakidxnDInYtRnwpUOsyOVoaiBUIxm7jo08kEuvwGRAt0jmNMSPlIc6kUKPMUskZK2hB1wA8zaU6Go9MtVGY0sVDwGPRviHIWlZ5HXuAbsTe2LUrnjVcvt2vEhzpe6MYlyOZiMkBdRjoTLc5x_2XDkhBxppQFfy2CZ9ofwSN1LegawmTCaGihx79mW_LavRb5dXRysZcD-NODeGMbG-003oTEeTuR3xFPjeKv6d14Ab8IfCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LigandRNA%3A+computational+predictor+of+RNA%E2%80%93ligand+interactions&rft.jtitle=RNA+%28Cambridge%29&rft.au=Philips%2C+Anna&rft.au=Milanowska%2C+Kaja&rft.au=%C5%81ach%2C+Grzegorz&rft.au=Bujnicki%2C+Janusz+M.&rft.date=2013-12-01&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=19&rft.issue=12&rft.spage=1605&rft.epage=1616&rft_id=info:doi/10.1261%2Frna.039834.113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1261_rna_039834_113 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |