A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization
In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable...
        Saved in:
      
    
          | Published in | Neural networks Vol. 26; pp. 99 - 109 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Kidlington
          Elsevier Ltd
    
        01.02.2012
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0893-6080 1879-2782 1879-2782  | 
| DOI | 10.1016/j.neunet.2011.09.001 | 
Cover
| Abstract | In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. | 
    
|---|---|
| AbstractList | In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed.In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed.  | 
    
| Author | Wang, Jun Guo, Zhishan Liu, Qingshan  | 
    
| Author_xml | – sequence: 1 givenname: Qingshan surname: Liu fullname: Liu, Qingshan email: qsliu@seu.edu.cn organization: School of Automation, Southeast University, Nanjing 210096, China – sequence: 2 givenname: Zhishan surname: Guo fullname: Guo, Zhishan email: zsguo@cs.unc.edu organization: Department of Computer Science, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 3 givenname: Jun surname: Wang fullname: Wang, Jun email: jwang@mae.cuhk.edu.hk organization: Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25461957$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22019190$$D View this record in MEDLINE/PubMed  | 
    
| BookMark | eNqFkk2LFDEQhoOsuLOr_0AkF_HUYyXdne54EJbFL1jwoueQSSqQsSdpk_TqePd_m3FmET24p4LieV5CvbkgZyEGJOQpgzUDJl5u1wGXgGXNgbE1yDUAe0BWbBxkw4eRn5EVjLJtBIxwTi5y3gKAGLv2ETnn1ZFMwor8vKI1tpn0HhNNaJaUMBRao5Oe6ijfYvpCXUzUxJBL0j6gpXPGxca6ucXvNM7F7_wPXXwMVAdLfclUz_PkzXF3sO0-6J03dI6puDj5-Jf2mDx0esr45DQvyee3bz5dv29uPr77cH1105iOt6XpmEPbDxsuxg1o7YQVWti-Fxt0g2yxdaBtD6zrO8GdcEJa3fUtdGA524iuvSQvjrlzil8XzEXtfDY4TTpgXLKSvOUgueD3k2xggsnxQD47kctmh1bNye902qu7G1fg-QnQ2ejJJR2Mz3-4-lgm-6Fyr46cSTHnhE4ZX36f53D2STFQh-LVVh2LV4fiFUhVi69y9498l3-P9vqoYb36rceksvEYDFpfP0NRNvr_B_wCeOHMoA | 
    
| CitedBy_id | crossref_primary_10_1002_cplx_21673 crossref_primary_10_1016_j_neunet_2020_06_012 crossref_primary_10_1109_TNNLS_2015_2496658 crossref_primary_10_1016_j_energy_2018_08_180 crossref_primary_10_1016_j_jfranklin_2021_02_029 crossref_primary_10_1109_TETCI_2024_3369667 crossref_primary_10_1109_TNNLS_2015_2461553 crossref_primary_10_1155_2016_1327235 crossref_primary_10_1155_2014_283092 crossref_primary_10_1016_j_neucom_2017_09_036 crossref_primary_10_1109_TNNLS_2016_2538288 crossref_primary_10_1016_j_neunet_2021_12_001 crossref_primary_10_1016_j_jfranklin_2021_07_007 crossref_primary_10_1016_j_neunet_2013_03_010 crossref_primary_10_1186_s40064_016_1931_0 crossref_primary_10_1142_S0219622023500128 crossref_primary_10_1109_TNNLS_2016_2574363 crossref_primary_10_1016_j_neucom_2015_06_045 crossref_primary_10_3390_en15249486 crossref_primary_10_1016_j_neucom_2015_12_034 crossref_primary_10_1016_j_neucom_2015_08_073 crossref_primary_10_1016_j_matcom_2012_03_013 crossref_primary_10_1016_j_neunet_2018_01_008 crossref_primary_10_1109_TCYB_2016_2567449 crossref_primary_10_1162_neco_a_01294 crossref_primary_10_1016_j_automatica_2023_111203 crossref_primary_10_1016_j_neunet_2021_08_001 crossref_primary_10_1002_acs_3303 crossref_primary_10_1016_j_neunet_2014_12_007 crossref_primary_10_1109_TCYB_2018_2883095 crossref_primary_10_1016_j_neunet_2022_10_018 crossref_primary_10_1109_TETCI_2017_2716377 crossref_primary_10_1109_TSMCB_2012_2198812 crossref_primary_10_1016_j_neunet_2013_11_006 crossref_primary_10_1109_TCYB_2017_2760908 crossref_primary_10_1007_s11071_022_08075_1 crossref_primary_10_1016_j_neunet_2013_11_007 crossref_primary_10_1115_1_4028716 crossref_primary_10_1109_TNNLS_2022_3213167 crossref_primary_10_1109_TSMC_2023_3274222 crossref_primary_10_1080_0952813X_2022_2153271 crossref_primary_10_3233_JIFS_182953 crossref_primary_10_1016_j_eswa_2024_125893 crossref_primary_10_1007_s10489_014_0616_z crossref_primary_10_1109_TSMC_2019_2898551 crossref_primary_10_1109_TNNLS_2015_2466612 crossref_primary_10_1016_j_cogsys_2019_09_024 crossref_primary_10_1109_TNNLS_2014_2387862 crossref_primary_10_1007_s11063_023_11154_y crossref_primary_10_1016_j_neunet_2014_06_002 crossref_primary_10_1109_TNNLS_2013_2275732 crossref_primary_10_1016_j_neunet_2013_11_015 crossref_primary_10_1080_00207721_2024_2428844 crossref_primary_10_1016_j_jfranklin_2021_11_034 crossref_primary_10_1016_j_neunet_2021_10_007 crossref_primary_10_1007_s11768_023_00181_8 crossref_primary_10_1016_j_neunet_2022_06_023 crossref_primary_10_1016_j_aej_2015_03_006 crossref_primary_10_1109_TAC_2024_3453117 crossref_primary_10_1016_j_neucom_2024_127518 crossref_primary_10_1016_j_neunet_2019_12_015 crossref_primary_10_1016_j_neucom_2013_02_035 crossref_primary_10_1016_j_neucom_2022_09_120 crossref_primary_10_1109_TNNLS_2014_2341654 crossref_primary_10_1007_s00034_015_0176_4 crossref_primary_10_37394_23209_2020_17_18 crossref_primary_10_1016_j_jhydrol_2013_05_038 crossref_primary_10_1137_15M105361X crossref_primary_10_1016_j_neunet_2015_09_013 crossref_primary_10_1016_j_neunet_2024_106337 crossref_primary_10_1109_TNNLS_2021_3105732 crossref_primary_10_1016_j_neunet_2018_10_010 crossref_primary_10_1007_s11063_021_10681_w crossref_primary_10_1016_j_neunet_2021_01_004 crossref_primary_10_1016_j_neunet_2017_05_004 crossref_primary_10_1007_s00521_012_0918_1 crossref_primary_10_1016_j_neucom_2019_04_002 crossref_primary_10_1016_j_neunet_2021_05_020 crossref_primary_10_1007_s00521_016_2532_0 crossref_primary_10_1016_j_neucom_2013_01_025 crossref_primary_10_1016_j_cnsns_2013_08_034 crossref_primary_10_1016_j_neucom_2013_10_008 crossref_primary_10_1016_j_neunet_2021_04_038 crossref_primary_10_1109_TNNLS_2013_2278427 crossref_primary_10_1111_exsy_12498 crossref_primary_10_1109_TNNLS_2013_2244908 crossref_primary_10_1016_j_neucom_2014_08_014 crossref_primary_10_1016_j_ijdrr_2022_103276 crossref_primary_10_1016_j_eswa_2022_119427 crossref_primary_10_1016_j_sigpro_2023_109360 crossref_primary_10_1109_TNNLS_2019_2957105 crossref_primary_10_1016_j_neunet_2023_10_022 crossref_primary_10_1016_j_neunet_2019_10_008 crossref_primary_10_1080_01605682_2019_1595193 crossref_primary_10_1109_TSMC_2024_3403840 crossref_primary_10_1016_j_neunet_2014_09_009 crossref_primary_10_1109_TCYB_2021_3088884 crossref_primary_10_1016_j_matcom_2023_12_032 crossref_primary_10_1109_TNNLS_2014_2334364 crossref_primary_10_1155_2014_787102 crossref_primary_10_1109_TSMC_2023_3336200 crossref_primary_10_1109_TNNLS_2014_2305440 crossref_primary_10_1109_TNNLS_2017_2652478 crossref_primary_10_1109_TNNLS_2020_3027471 crossref_primary_10_1016_j_neunet_2024_107121 crossref_primary_10_1016_j_neunet_2014_03_006 crossref_primary_10_1016_j_physa_2019_123331 crossref_primary_10_1016_j_asoc_2019_01_002 crossref_primary_10_1007_s00521_012_1141_9 crossref_primary_10_1016_j_asoc_2015_09_040 crossref_primary_10_1016_j_neucom_2023_126728 crossref_primary_10_1109_TCYB_2018_2855724 crossref_primary_10_1109_TNNLS_2013_2292893 crossref_primary_10_1016_j_neunet_2019_07_019 crossref_primary_10_1016_j_neunet_2022_07_018  | 
    
| Cites_doi | 10.1109/TNN.2008.2000993 10.1109/31.1783 10.1016/0893-6080(94)90041-8 10.1109/81.995659 10.1162/neco.2006.18.3.683 10.1109/TNN.2006.879775 10.1109/TCSI.2003.812613 10.1109/72.286888 10.1162/neco.2007.03-07-488 10.1109/TSMCB.2007.903706 10.1109/TSMCB.2006.886166 10.1109/3468.725357 10.1109/TCSI.2008.920131 10.1109/TSMCB.2003.822955 10.1109/TCS.1986.1085953 10.1109/TCSI.2004.834493 10.1109/TNN.2006.879774 10.1109/TNN.2009.2016340 10.1023/A:1022659230603 10.1109/82.160169 10.2307/2975974 10.1109/TNN.2006.881046 10.1109/TNN.2004.841779 10.1162/NECO_a_00029 10.1002/cta.352 10.1109/TSMCB.2009.2033565 10.1109/81.244913 10.1016/j.neunet.2004.05.006 10.1109/ICSMC.2002.1175641 10.1109/72.548188 10.1109/TNN.2007.910736 10.1109/TCSI.2004.830694 10.1109/72.572114 10.1109/9.802909  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2011 Elsevier Ltd 2015 INIST-CNRS Copyright © 2011 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2011 Elsevier Ltd – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64  | 
    
| DOI | 10.1016/j.neunet.2011.09.001 | 
    
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | MEDLINE Engineering Research Database MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Applied Sciences  | 
    
| EISSN | 1879-2782 | 
    
| EndPage | 109 | 
    
| ExternalDocumentID | 22019190 25461957 10_1016_j_neunet_2011_09_001 S0893608011002528  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GrantInformation_xml | – fundername: the Research Grants Council of the Hong Kong Special Administrative Region, China grantid: CUHK417209E; CUHK417608E – fundername: the National Natural Science Foundation of China grantid: 61105060  | 
    
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64  | 
    
| ID | FETCH-LOGICAL-c423t-41fed57b268b0aaf6d6a6d556bef793e3f0ad50145462f6f69da453040d21b643 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0893-6080 1879-2782  | 
    
| IngestDate | Tue Oct 07 09:04:44 EDT 2025 Thu Oct 02 10:02:02 EDT 2025 Mon Jul 21 05:56:54 EDT 2025 Mon Jul 21 09:15:02 EDT 2025 Wed Oct 01 02:07:50 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 Fri Feb 23 02:28:36 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Recurrent neural networks Differential inclusion Pseudoconvex optimization Convergence Lyapunov function Lower bound Recurrent neural nets Network management Neural network Modeling Constrained optimization Efficiency Equality constraint Dynamic programming Fractional programming Rational function Portfolio management Optimal flow Mathematical programming  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2011 Elsevier Ltd. All rights reserved.  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c423t-41fed57b268b0aaf6d6a6d556bef793e3f0ad50145462f6f69da453040d21b643 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 22019190 | 
    
| PQID | 917161982 | 
    
| PQPubID | 23479 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | proquest_miscellaneous_923209262 proquest_miscellaneous_917161982 pubmed_primary_22019190 pascalfrancis_primary_25461957 crossref_citationtrail_10_1016_j_neunet_2011_09_001 crossref_primary_10_1016_j_neunet_2011_09_001 elsevier_sciencedirect_doi_10_1016_j_neunet_2011_09_001  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2012-02-01 | 
    
| PublicationDateYYYYMMDD | 2012-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2012 text: 2012-02-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Kidlington | 
    
| PublicationPlace_xml | – name: Kidlington – name: United States  | 
    
| PublicationTitle | Neural networks | 
    
| PublicationTitleAlternate | Neural Netw | 
    
| PublicationYear | 2012 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | (pp. 516–519). Liang, Tang (br000070) 2001; 19 Tang, W., Wang, Y., & Liang, J. (2002). Fractional programming model for portfolio with probability criterion. In Filippov (br000030) 1988 Markovitz (br000130) 1952; 7 Zhang, Constantinides (br000220) 1992; 39 Marco, Forti, Grazzini (br000125) 2006; 34 Barbarosou, Maratos (br000010) 2008; 19 Kennedy, Chua (br000060) 1988; 35 Wang (br000165) 1994; 7 Xia, Wang (br000205) 2004; 34 Liu, Wang (br000095) 2006; 17 Penot, Quang (br000145) 1997; 92 Hu, Wang (br000050) 2007; 37 Liu, Wang (br000110) 2006; Vol. 4233 Markowitz (br000135) 1991 Xia, Feng, Wang (br000190) 2004; 17 Clarke (br000025) 1983 Aubin, Cellina (br000005) 1984 Kinderlehrer, Stampacchia (br000065) 1982 Chong, Hui, Zak (br000020) 1999; 44 Hu, Wang (br000045) 2007; 37 Liu, Wang (br000105) 2008; 19 Xia (br000180) 2003; 50 Bian, Xue (br000015) 2009; 20 Wang (br000160) 1993; 40 Xia, H, J (br000195) 2002; 49 Hu, Wang (br000055) 2006; 17 Lillo, Loh, Hui, Zak (br000075) 1993; 4 Liu, Wang (br000115) 2009; Vol. 5507 Xue, Bian (br000215) 2008; 55 Olsson, C., Eriksson, A., & Kahl, F. (2007). Efficient optimization for Tank, Hopfield (br000155) 1986; 33 Liu, Cao (br000080) 2010; 40 (pp. 1–8). . Xia, Wang (br000210) 2005; 16 Xia, Wang (br000200) 2004; 51 Liu, Cao, Chen (br000085) 2010; 22 problems using pseudoconvexity. In Wang (br000170) 1997; 8 Liu, Ku (br000090) 1993; 13 Lu, Chen (br000120) 2006; 18 Wang (br000175) 1998; 28 Forti, Nistri, Quincampoix (br000035) 2004; 51 Forti, Nistri, Quincampoix (br000040) 2006; 17 Liu, Wang (br000100) 2008; 20 Xia (br000185) 1996; 7 Hu (10.1016/j.neunet.2011.09.001_br000050) 2007; 37 Liu (10.1016/j.neunet.2011.09.001_br000100) 2008; 20 Tank (10.1016/j.neunet.2011.09.001_br000155) 1986; 33 Chong (10.1016/j.neunet.2011.09.001_br000020) 1999; 44 Kinderlehrer (10.1016/j.neunet.2011.09.001_br000065) 1982 Clarke (10.1016/j.neunet.2011.09.001_br000025) 1983 Liu (10.1016/j.neunet.2011.09.001_br000105) 2008; 19 Zhang (10.1016/j.neunet.2011.09.001_br000220) 1992; 39 Liang (10.1016/j.neunet.2011.09.001_br000070) 2001; 19 Wang (10.1016/j.neunet.2011.09.001_br000175) 1998; 28 Lillo (10.1016/j.neunet.2011.09.001_br000075) 1993; 4 Xia (10.1016/j.neunet.2011.09.001_br000200) 2004; 51 Marco (10.1016/j.neunet.2011.09.001_br000125) 2006; 34 Penot (10.1016/j.neunet.2011.09.001_br000145) 1997; 92 Xia (10.1016/j.neunet.2011.09.001_br000205) 2004; 34 Xue (10.1016/j.neunet.2011.09.001_br000215) 2008; 55 Liu (10.1016/j.neunet.2011.09.001_br000095) 2006; 17 Liu (10.1016/j.neunet.2011.09.001_br000080) 2010; 40 Liu (10.1016/j.neunet.2011.09.001_br000085) 2010; 22 10.1016/j.neunet.2011.09.001_br000140 Hu (10.1016/j.neunet.2011.09.001_br000045) 2007; 37 Xia (10.1016/j.neunet.2011.09.001_br000195) 2002; 49 Markovitz (10.1016/j.neunet.2011.09.001_br000130) 1952; 7 Filippov (10.1016/j.neunet.2011.09.001_br000030) 1988 Hu (10.1016/j.neunet.2011.09.001_br000055) 2006; 17 Xia (10.1016/j.neunet.2011.09.001_br000190) 2004; 17 Liu (10.1016/j.neunet.2011.09.001_br000115) 2009; Vol. 5507 Wang (10.1016/j.neunet.2011.09.001_br000170) 1997; 8 Bian (10.1016/j.neunet.2011.09.001_br000015) 2009; 20 Forti (10.1016/j.neunet.2011.09.001_br000035) 2004; 51 Kennedy (10.1016/j.neunet.2011.09.001_br000060) 1988; 35 Lu (10.1016/j.neunet.2011.09.001_br000120) 2006; 18 Forti (10.1016/j.neunet.2011.09.001_br000040) 2006; 17 Liu (10.1016/j.neunet.2011.09.001_br000090) 1993; 13 Markowitz (10.1016/j.neunet.2011.09.001_br000135) 1991 Wang (10.1016/j.neunet.2011.09.001_br000160) 1993; 40 Wang (10.1016/j.neunet.2011.09.001_br000165) 1994; 7 Xia (10.1016/j.neunet.2011.09.001_br000180) 2003; 50 Aubin (10.1016/j.neunet.2011.09.001_br000005) 1984 Xia (10.1016/j.neunet.2011.09.001_br000185) 1996; 7 Liu (10.1016/j.neunet.2011.09.001_br000110) 2006; Vol. 4233 Barbarosou (10.1016/j.neunet.2011.09.001_br000010) 2008; 19 Xia (10.1016/j.neunet.2011.09.001_br000210) 2005; 16 10.1016/j.neunet.2011.09.001_br000150  | 
    
| References_xml | – volume: 16 start-page: 379 year: 2005 end-page: 386 ident: br000210 article-title: A recurrent neural network for solving nonlinear convex programs subject to linear constraints publication-title: IEEE Transactions on Neural Networks – volume: 28 start-page: 864 year: 1998 end-page: 869 ident: br000175 article-title: Primal and dual neural networks for shortest-path routing publication-title: IEEE Transactions on Systems, Man, and Cybernetics-A – volume: 37 start-page: 528 year: 2007 end-page: 539 ident: br000045 article-title: A recurrent neural network for solving a class of general variational inequalities publication-title: IEEE Transactions on Systems, Man and Cybernetics-B – volume: 19 start-page: 5 year: 2001 end-page: 10 ident: br000070 article-title: Probability criterion in portfolio investment model with commission publication-title: Systems Engineering – volume: 17 start-page: 1500 year: 2006 end-page: 1510 ident: br000095 article-title: A simplified dual neural network for quadratic programming with its kwta application publication-title: IEEE Transactions on Neural Networks – volume: 37 start-page: 1414 year: 2007 end-page: 1421 ident: br000050 article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics-B – volume: 33 start-page: 533 year: 1986 end-page: 541 ident: br000155 article-title: Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit publication-title: IEEE Transactions on Circuits and Systems – volume: 40 start-page: 928 year: 2010 end-page: 938 ident: br000080 article-title: A recurrent neural network based on projection operator for extended general variational inequalities publication-title: IEEE Transactions on Systems, Man and Cybernetics-B – reference: -problems using pseudoconvexity. In – volume: 17 start-page: 1003 year: 2004 end-page: 1015 ident: br000190 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: Neural Networks – volume: 19 start-page: 558 year: 2008 end-page: 570 ident: br000105 article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming publication-title: IEEE Transactions on Neural Networks – volume: 7 start-page: 629 year: 1994 end-page: 641 ident: br000165 article-title: A deterministic annealing neural network for convex programming publication-title: Neural Networks – volume: 7 start-page: 77 year: 1952 end-page: 91 ident: br000130 article-title: Portfolio selection publication-title: Journal of Finance – volume: 49 start-page: 447 year: 2002 end-page: 458 ident: br000195 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions Circuits and Systems-I – year: 1988 ident: br000030 article-title: Differential equations with discontinuous right hand sides. Mathematics and its applications (Soviet series) – volume: 35 start-page: 554 year: 1988 end-page: 562 ident: br000060 article-title: Neural networks for nonlinear programming publication-title: IEEE Transactions on Circuits and Systems – volume: 34 start-page: 307 year: 2006 end-page: 316 ident: br000125 article-title: Robustness of convergence in finite time for linear programming neural networks publication-title: International Journal of Circuit Theory and Applications – year: 1991 ident: br000135 article-title: Portfolio selection: efficient diversification of investments – volume: 44 start-page: 1995 year: 1999 end-page: 2006 ident: br000020 article-title: An analysis of a class of neural networks for solving linear programming problems publication-title: IEEE Transactions on Automatic Control – volume: 17 start-page: 1487 year: 2006 end-page: 1499 ident: br000055 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks – reference: (pp. 1–8). – volume: 55 start-page: 2378 year: 2008 end-page: 2391 ident: br000215 article-title: Subgradient-based neural networks for nonsmooth convex optimization problems publication-title: IEEE Transactions on Circuits and Systems-I – volume: 40 start-page: 613 year: 1993 end-page: 618 ident: br000160 article-title: Analysis and design of a recurrent neural network for linear programming publication-title: IEEE Transactions on Circuits and Systems-I – reference: (pp. 516–519). – volume: Vol. 4233 start-page: 1004 year: 2006 end-page: 1013 ident: br000110 article-title: A recurrent neural network for non-smooth convex programming subject to linear equality and bound constraints publication-title: Proc. 13th Int. conference on neural information processing – year: 1983 ident: br000025 article-title: Optimization and nonsmooth analysis – volume: 4 start-page: 931 year: 1993 end-page: 940 ident: br000075 article-title: On solving constrained optimization problems with neural networks: a penalty method approach publication-title: IEEE Transactions on Neural Networks – volume: 34 start-page: 1261 year: 2004 end-page: 1269 ident: br000205 article-title: A one-layer recurrent neural network for support vector machine learning publication-title: IEEE Transactions on Systems, Man and Cybernetics-B – volume: 19 start-page: 1665 year: 2008 end-page: 1677 ident: br000010 article-title: A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems publication-title: IEEE Transactions on Neural Networks – volume: 18 start-page: 683 year: 2006 end-page: 708 ident: br000120 article-title: Dynamical behaviors of delayed neural network systems with discontinuous activation functions publication-title: Neural Computation – volume: 50 start-page: 818 year: 2003 end-page: 822 ident: br000180 article-title: Global convergence analysis of Lagrangian networks publication-title: IEEE Transactions on Circuits and Systems-I – volume: 39 start-page: 441 year: 1992 end-page: 452 ident: br000220 article-title: Lagrange programming neural networks publication-title: IEEE Transactions on Circuits and Systems-II – year: 1984 ident: br000005 article-title: Differential inclusions: set-valued maps and viability theory – volume: 20 start-page: 1024 year: 2009 end-page: 1038 ident: br000015 article-title: Subgradient-based neural networks for nonsmooth nonconvex optimization problems publication-title: IEEE Transactions on Neural Networks – volume: Vol. 5507 start-page: 1003 year: 2009 end-page: 1010 ident: br000115 article-title: A one-layer recurrent neural network for non-smooth convex optimization subject to linear equality constraints publication-title: Proc. 15th int. conference on neural information processing (ICONIP2008). Part II – year: 1982 ident: br000065 article-title: An introduction to variational inequalities and their applications – volume: 92 start-page: 343 year: 1997 end-page: 356 ident: br000145 article-title: Generalized convexity of functions and generalized monotonicity of set-valued maps publication-title: Journal of Optimization Theory and Applications – volume: 17 start-page: 1471 year: 2006 end-page: 1486 ident: br000040 article-title: Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality publication-title: IEEE Transactions on Neural Networks – volume: 51 start-page: 1385 year: 2004 end-page: 1394 ident: br000200 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems-I – reference: Olsson, C., Eriksson, A., & Kahl, F. (2007). Efficient optimization for – volume: 51 start-page: 1741 year: 2004 end-page: 1754 ident: br000035 article-title: Generalized neural network for nonsmooth nonlinear programming problems publication-title: IEEE Transactions on Circuits and Systems-I – volume: 22 start-page: 2962 year: 2010 end-page: 2978 ident: br000085 article-title: A novel recurrent neural network with finite-time convergence for linear programming publication-title: Neural Computation – volume: 13 start-page: 70 year: 1993 end-page: 75 ident: br000090 article-title: Probability criterion in inventory systems publication-title: Journal of Systems Science and Mathematical Science – reference: Tang, W., Wang, Y., & Liang, J. (2002). Fractional programming model for portfolio with probability criterion. In – volume: 20 start-page: 1366 year: 2008 end-page: 1383 ident: br000100 article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming publication-title: Neural Computation – volume: 7 start-page: 1544 year: 1996 end-page: 1548 ident: br000185 article-title: A new neural network for solving linear and quadratic programming problems publication-title: IEEE Transactions on Neural Networks – reference: . – volume: 8 start-page: 784 year: 1997 end-page: 790 ident: br000170 article-title: Primal and dual assignment networks publication-title: IEEE Transactions on Neural Networks – volume: 19 start-page: 1665 issue: 10 year: 2008 ident: 10.1016/j.neunet.2011.09.001_br000010 article-title: A nonfeasible gradient projection recurrent neural network for equality-constrained optimization problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2000993 – volume: 35 start-page: 554 issue: 5 year: 1988 ident: 10.1016/j.neunet.2011.09.001_br000060 article-title: Neural networks for nonlinear programming publication-title: IEEE Transactions on Circuits and Systems doi: 10.1109/31.1783 – volume: 7 start-page: 629 issue: 4 year: 1994 ident: 10.1016/j.neunet.2011.09.001_br000165 article-title: A deterministic annealing neural network for convex programming publication-title: Neural Networks doi: 10.1016/0893-6080(94)90041-8 – year: 1983 ident: 10.1016/j.neunet.2011.09.001_br000025 – volume: 49 start-page: 447 issue: 4 year: 2002 ident: 10.1016/j.neunet.2011.09.001_br000195 article-title: A projection neural network and its application to constrained optimization problems publication-title: IEEE Transactions Circuits and Systems-I doi: 10.1109/81.995659 – volume: 18 start-page: 683 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000120 article-title: Dynamical behaviors of delayed neural network systems with discontinuous activation functions publication-title: Neural Computation doi: 10.1162/neco.2006.18.3.683 – volume: 17 start-page: 1471 issue: 6 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000040 article-title: Convergence of neural networks for programming problems via a nonsmooth Łojasiewicz inequality publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.879775 – volume: 50 start-page: 818 issue: 6 year: 2003 ident: 10.1016/j.neunet.2011.09.001_br000180 article-title: Global convergence analysis of Lagrangian networks publication-title: IEEE Transactions on Circuits and Systems-I doi: 10.1109/TCSI.2003.812613 – volume: 4 start-page: 931 issue: 6 year: 1993 ident: 10.1016/j.neunet.2011.09.001_br000075 article-title: On solving constrained optimization problems with neural networks: a penalty method approach publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.286888 – year: 1988 ident: 10.1016/j.neunet.2011.09.001_br000030 – volume: 20 start-page: 1366 issue: 5 year: 2008 ident: 10.1016/j.neunet.2011.09.001_br000100 article-title: A one-layer recurrent neural network with a discontinuous activation function for linear programming publication-title: Neural Computation doi: 10.1162/neco.2007.03-07-488 – volume: 37 start-page: 1414 issue: 5 year: 2007 ident: 10.1016/j.neunet.2011.09.001_br000050 article-title: Design of general projection neural networks for solving monotone linear variational inequalities and linear and quadratic optimization problems publication-title: IEEE Transactions on Systems, Man and Cybernetics-B doi: 10.1109/TSMCB.2007.903706 – volume: 37 start-page: 528 issue: 3 year: 2007 ident: 10.1016/j.neunet.2011.09.001_br000045 article-title: A recurrent neural network for solving a class of general variational inequalities publication-title: IEEE Transactions on Systems, Man and Cybernetics-B doi: 10.1109/TSMCB.2006.886166 – volume: 28 start-page: 864 issue: 6 year: 1998 ident: 10.1016/j.neunet.2011.09.001_br000175 article-title: Primal and dual neural networks for shortest-path routing publication-title: IEEE Transactions on Systems, Man, and Cybernetics-A doi: 10.1109/3468.725357 – volume: 55 start-page: 2378 issue: 8 year: 2008 ident: 10.1016/j.neunet.2011.09.001_br000215 article-title: Subgradient-based neural networks for nonsmooth convex optimization problems publication-title: IEEE Transactions on Circuits and Systems-I doi: 10.1109/TCSI.2008.920131 – volume: 13 start-page: 70 issue: 1 year: 1993 ident: 10.1016/j.neunet.2011.09.001_br000090 article-title: Probability criterion in inventory systems publication-title: Journal of Systems Science and Mathematical Science – volume: 34 start-page: 1261 issue: 2 year: 2004 ident: 10.1016/j.neunet.2011.09.001_br000205 article-title: A one-layer recurrent neural network for support vector machine learning publication-title: IEEE Transactions on Systems, Man and Cybernetics-B doi: 10.1109/TSMCB.2003.822955 – volume: 33 start-page: 533 issue: 5 year: 1986 ident: 10.1016/j.neunet.2011.09.001_br000155 article-title: Simple neural optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit publication-title: IEEE Transactions on Circuits and Systems doi: 10.1109/TCS.1986.1085953 – year: 1984 ident: 10.1016/j.neunet.2011.09.001_br000005 – volume: 51 start-page: 1741 issue: 9 year: 2004 ident: 10.1016/j.neunet.2011.09.001_br000035 article-title: Generalized neural network for nonsmooth nonlinear programming problems publication-title: IEEE Transactions on Circuits and Systems-I doi: 10.1109/TCSI.2004.834493 – volume: 17 start-page: 1487 issue: 6 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000055 article-title: Solving pseudomonotone variational inequalities and pseudoconvex optimization problems using the projection neural network publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.879774 – volume: 20 start-page: 1024 issue: 6 year: 2009 ident: 10.1016/j.neunet.2011.09.001_br000015 article-title: Subgradient-based neural networks for nonsmooth nonconvex optimization problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2009.2016340 – volume: 92 start-page: 343 issue: 2 year: 1997 ident: 10.1016/j.neunet.2011.09.001_br000145 article-title: Generalized convexity of functions and generalized monotonicity of set-valued maps publication-title: Journal of Optimization Theory and Applications doi: 10.1023/A:1022659230603 – volume: 39 start-page: 441 issue: 7 year: 1992 ident: 10.1016/j.neunet.2011.09.001_br000220 article-title: Lagrange programming neural networks publication-title: IEEE Transactions on Circuits and Systems-II doi: 10.1109/82.160169 – year: 1991 ident: 10.1016/j.neunet.2011.09.001_br000135 – volume: Vol. 4233 start-page: 1004 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000110 article-title: A recurrent neural network for non-smooth convex programming subject to linear equality and bound constraints – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 10.1016/j.neunet.2011.09.001_br000130 article-title: Portfolio selection publication-title: Journal of Finance doi: 10.2307/2975974 – volume: 17 start-page: 1500 issue: 6 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000095 article-title: A simplified dual neural network for quadratic programming with its kwta application publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2006.881046 – year: 1982 ident: 10.1016/j.neunet.2011.09.001_br000065 – volume: 16 start-page: 379 issue: 2 year: 2005 ident: 10.1016/j.neunet.2011.09.001_br000210 article-title: A recurrent neural network for solving nonlinear convex programs subject to linear constraints publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2004.841779 – volume: 19 start-page: 5 issue: 2 year: 2001 ident: 10.1016/j.neunet.2011.09.001_br000070 article-title: Probability criterion in portfolio investment model with commission publication-title: Systems Engineering – volume: 22 start-page: 2962 issue: 11 year: 2010 ident: 10.1016/j.neunet.2011.09.001_br000085 article-title: A novel recurrent neural network with finite-time convergence for linear programming publication-title: Neural Computation doi: 10.1162/NECO_a_00029 – volume: 34 start-page: 307 issue: 3 year: 2006 ident: 10.1016/j.neunet.2011.09.001_br000125 article-title: Robustness of convergence in finite time for linear programming neural networks publication-title: International Journal of Circuit Theory and Applications doi: 10.1002/cta.352 – volume: 40 start-page: 928 issue: 3 year: 2010 ident: 10.1016/j.neunet.2011.09.001_br000080 article-title: A recurrent neural network based on projection operator for extended general variational inequalities publication-title: IEEE Transactions on Systems, Man and Cybernetics-B doi: 10.1109/TSMCB.2009.2033565 – volume: 40 start-page: 613 issue: 9 year: 1993 ident: 10.1016/j.neunet.2011.09.001_br000160 article-title: Analysis and design of a recurrent neural network for linear programming publication-title: IEEE Transactions on Circuits and Systems-I doi: 10.1109/81.244913 – volume: 17 start-page: 1003 issue: 7 year: 2004 ident: 10.1016/j.neunet.2011.09.001_br000190 article-title: A recurrent neural network with exponential convergence for solving convex quadratic program and related linear piecewise equations publication-title: Neural Networks doi: 10.1016/j.neunet.2004.05.006 – volume: Vol. 5507 start-page: 1003 year: 2009 ident: 10.1016/j.neunet.2011.09.001_br000115 article-title: A one-layer recurrent neural network for non-smooth convex optimization subject to linear equality constraints – ident: 10.1016/j.neunet.2011.09.001_br000150 doi: 10.1109/ICSMC.2002.1175641 – volume: 7 start-page: 1544 issue: 6 year: 1996 ident: 10.1016/j.neunet.2011.09.001_br000185 article-title: A new neural network for solving linear and quadratic programming problems publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.548188 – volume: 19 start-page: 558 issue: 4 year: 2008 ident: 10.1016/j.neunet.2011.09.001_br000105 article-title: A one-layer recurrent neural network with a discontinuous hard-limiting activation function for quadratic programming publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2007.910736 – ident: 10.1016/j.neunet.2011.09.001_br000140 – volume: 51 start-page: 1385 issue: 7 year: 2004 ident: 10.1016/j.neunet.2011.09.001_br000200 article-title: A recurrent neural network for nonlinear convex optimization subject to nonlinear inequality constraints publication-title: IEEE Transactions on Circuits and Systems-I doi: 10.1109/TCSI.2004.830694 – volume: 8 start-page: 784 issue: 3 year: 1997 ident: 10.1016/j.neunet.2011.09.001_br000170 article-title: Primal and dual assignment networks publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.572114 – volume: 44 start-page: 1995 issue: 11 year: 1999 ident: 10.1016/j.neunet.2011.09.001_br000020 article-title: An analysis of a class of neural networks for solving linear programming problems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.802909  | 
    
| SSID | ssj0006843 | 
    
| Score | 2.4211013 | 
    
| Snippet | In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound... | 
    
| SourceID | proquest pubmed pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 99 | 
    
| SubjectTerms | Algorithms Animals Applied sciences Artificial intelligence Computer science; control theory; systems Computer Simulation Connectionism. Neural networks Convergence Differential inclusion Exact sciences and technology Flows in networks. Combinatorial problems Humans Lyapunov function Mathematical programming Neural Networks (Computer) Nonlinear Dynamics Operational research and scientific management Operational research. Management science Pattern Recognition, Automated Portfolio theory Pseudoconvex optimization Recurrent neural networks  | 
    
| Title | A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization | 
    
| URI | https://dx.doi.org/10.1016/j.neunet.2011.09.001 https://www.ncbi.nlm.nih.gov/pubmed/22019190 https://www.proquest.com/docview/917161982 https://www.proquest.com/docview/923209262  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CeimUpu9uH4sOvbrrlSXZOi6hYdtCLm0gNyGvJNiytZesF3rqrf87M5KcdA9poPhko7FlPUafPZ--AfhQhtqWXvoCv34ozMh10eoginloJQ-kv7eKbItztbwQXy7l5RGcjnthiFaZfX_y6dFb5yuz3Jqz7Xo9-1biUqsQ8JDoGZecNvwKUVMWg4-_b2keqknMOSxcUOlx-1zkeHV-3_khC3lG4cq7lqdHW7vDRgsp28XdcDQuS2dP4HHGk2yRqvwUjnz3DE7GXA0sT93n8GfB-s4XG4sQm13RT3aSZWIkZ4nmXSKDM0SwbEWIkRJHeMe2O793fWSm_2I9epefedsms51j62HH_gqAR2uXMtwzgvWh36z7A7MXcHH26fvpssgpGIoV4qwBOy94J-uWq6YtrQ3KKauclKr1AWe2r0JpXQxNCsWDCko7K2SFnsHxeYto5yUcd_h6r4GJxlfCqdYhAhON1bYJCJ3wcIJAXDWBamx5s8r65PS2GzMS0X6Y1F-G-suUmvh4EyhurLZJn-Oe8vXYqeZgnBlcQu6xnB6MgZvHUUaBuZb1BNg4KAzOUQq82M73-53RpEk01w3_RxFEtiVpN07gVRpPt_fHSmjEbW_-u-pv4SGe8UQ2fwfHw9Xev0csNbTTOFmm8GDx-evy_BqMFyFE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgAJlW_YAsUHrmGzju0kx6pqtUDphVbqzXLWtrTVkqy6Wamn3vjfnbGdlj2USii3xJP4c_wcP78B-JL70uROugxXP7TNyOusqb3IJr6R3JP-3iywLU7U9Ex8P5fnW3AwnIUhWmXy_dGnB2-d7oxTbY6X8_n4V45TrULAQ6JnXPLqETwWkpe0Avt6fcfzUFWkzmHqjJIP5-cCyat169b1SckzKFfeNz89W5oV1pqP4S7ux6NhXjp6ATsJULL9mOeXsOXaV_B8CNbA0th9DX_2Wde6bGEQY7NL-stOukyM9CzRvI1scIYQls0IMlLkCGfZcuXWtgvU9CvWoXv5nc5tMtNaNu9X7K8d8GBtY4h7Rrjed4t5t2H2Bs6ODk8PplmKwZDNEGj12HreWVk2XFVNboxXVhllpVSN8zi0XeFzY8PepFDcK69qa4Qs0DVYPmkQ7ryF7RaL9x6YqFwhrGosQjBRmdpUHrETXlYQiitGUAw1r2dJoJxKu9ADE-1Cx_bS1F46r4mQN4Ls1moZBToeSF8Ojao3OprGOeQBy72NPnD7OQopMKllOQI2dAqNg5R2XkzruvVK1yRKNKkr_o8kCG1zEm8cwbvYn-7ej5moEbjt_nfWP8OT6enPY3387eTHB3iKT3hknn-E7f5y7T4hsOqbvTBwbgAD2yLZ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+one-layer+recurrent+neural+network+for+constrained+pseudoconvex+optimization+and+its+application+for+dynamic+portfolio+optimization&rft.jtitle=Neural+networks&rft.au=QINGSHAN+LIU&rft.au=ZHISHAN+GUO&rft.au=JUN+WANG&rft.date=2012-02-01&rft.pub=Elsevier&rft.issn=0893-6080&rft.volume=26&rft.spage=99&rft.epage=109&rft_id=info:doi/10.1016%2Fj.neunet.2011.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=25461957 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |