Theory of higher harmonics imaging in tapping-mode atomic force microscopy

The periodic impact force induced by tip-sample contact in a tapping mode atomic force microscope (AFM) gives rise to the non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dy...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 19; no. 5; pp. 213 - 218
Main Author 李渊 钱建强 李英姿
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.05.2010
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/19/5/050701

Cover

More Information
Summary:The periodic impact force induced by tip-sample contact in a tapping mode atomic force microscope (AFM) gives rise to the non-harmonic response of a micro-cantilever. These non-harmonic signals contain the full characteristics of tip-sample interaction. A complete theoretical model describing the dynamical behaviour of tip-sample system was developed in this paper. An analytic formula was introduced to describe the relationship between time-varying tip-sample impact force and tip motion. The theoretical analysis and numerical results both show that the timevarying tip-sample impact force can be reconstructed by recording tip motion. This allows for the reconstruction of the characteristics of the tip-sample force, like contact time and maximum contact force. It can also explain the ability of AFM higher harmonics imaging in mapping stiffness and surface energy variations.
Bibliography:TH742
TN16
tapping mode atomic force microscopy, higher harmonics imaging
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/19/5/050701