The CoMirror algorithm with random constraint sampling for convex semi-infinite programming

The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constr...

Full description

Saved in:
Bibliographic Details
Published inAnnals of operations research Vol. 295; no. 2; pp. 809 - 841
Main Authors Wei, Bo, Haskell, William B., Zhao, Sixiang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2020
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0254-5330
1572-9338
DOI10.1007/s10479-020-03766-7

Cover

Abstract The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O ( 1 / N ) convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O ( 1 / N ) .
AbstractList The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O ( 1 / N ) convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O ( 1 / N ) .
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an O(1/N) convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to O(1/N).
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493-498, 2010), is designed to solve convex optimization problems with one functional constraint. At each iteration, it performs a mirror-descent update using either the subgradient of the objective function or the subgradient of the constraint function, depending on whether or not the constraint violation is below some tolerance. In this paper, we combine the CoMirror algorithm with inexact cut generation to create the SIP-CoM algorithm for solving semi-infinite programming (SIP) problems. First, we provide general error bounds for SIP-CoM. Then, we propose two specific random constraint sampling schemes to approximately solve the cut generation problem for generic SIP. When the objective and constraint functions are generally convex, randomized SIP-CoM achieves an [Formula omitted] convergence rate in expectation (in terms of the optimality gap and SIP constraint violation). When the objective and constraint functions are all strongly convex, this rate can be improved to [Formula omitted].
Audience Academic
Author Zhao, Sixiang
Haskell, William B.
Wei, Bo
Author_xml – sequence: 1
  givenname: Bo
  surname: Wei
  fullname: Wei, Bo
  organization: Institute of Operations Research and Analytics, National University of Singapore
– sequence: 2
  givenname: William B.
  orcidid: 0000-0002-9518-4310
  surname: Haskell
  fullname: Haskell, William B.
  email: wbhaskell@gmail.com
  organization: Krannert School of Management, Purdue University
– sequence: 3
  givenname: Sixiang
  surname: Zhao
  fullname: Zhao, Sixiang
  organization: Sino-US Global Logistics Institute, Shanghai Jiao Tong University
BookMark eNp9kV1rFTEQhoNU8LT6B7wKeGtqPnY3m8ty8Asq3tQrL0KaTfak7CbHTI7Wf-_UI9SKlMAEhvfJzJv3lJzkkgMhLwU_F5zrNyB4pw3jkjOu9DAw_YRsRK8lM0qNJ2TDZd-xXin-jJwC3HDOhRj7Dfl6tQt0Wz6lWkulbplLTW230h9YaXV5Kiv1JUOrLuVGwa37JeWZRlRj_3u4pRDWxFKOKacW6L6Wubp1RdFz8jS6BcKLP_cZ-fLu7dX2A7v8_P7j9uKS-U6qxqQxOuqo4mjkteFm6P00TZ3QQnfaBWXEJLwa_eSc1i5y3HvoozNhEGM3Sq_OyKvjuzj72yFAszflUDOOtLLT6J-PQtyrZrcEi_sW9OTXBN5eDL0QWio1oOr8Pyo8E7pEwyEm7D8AXv8FXB8g5QBYIM27BrM7ADyUy6Pc1wJQQ7T7mlZXf1rB7V2U9hilxSjt7yitRmj8B_KpuZZKvotleRxVRxRwTp5Dvf-bR6hfDDWz6A
CitedBy_id crossref_primary_10_1007_s10479_022_04810_4
crossref_primary_10_1109_TPAMI_2023_3348460
Cites_doi 10.1287/opre.2017.1671
10.1007/s10288-017-0350-6
10.1023/A:1020234019886
10.1007/s10107-011-0442-6
10.1137/S1052623402420528
10.1080/10556788.2015.1124432
10.1007/978-1-4757-4145-2
10.1007/s11071-013-0768-0
10.1137/040619867
10.1007/BFb0003884
10.1007/s10107-015-0953-7
10.1007/s00186-019-00698-2
10.1007/s10589-020-00179-x
10.1137/141001251
10.1007/978-1-4899-8044-1
10.1023/A:1019208524259
10.1137/140955148
10.1016/j.ejor.2012.06.009
10.1007/s10957-011-9923-2
10.1137/090767133
10.1137/07069821X
10.1016/j.orl.2010.08.005
10.1007/s10107-010-0428-9
10.1007/s101070100239
10.1007/978-3-030-11184-7
10.1137/070704277
10.1287/mnsc.2019.3289
10.1023/A:1024814401713
10.1137/08074009X
10.1023/B:JOGO.0000047910.80739.95
10.1023/A:1019260508329
10.1007/s10107-003-0492-5
10.1007/s10589-014-9698-0
10.1137/17M1133087
10.1287/moor.1080.0362
10.1137/0803047
10.1287/moor.1040.0094
10.1007/s10107-007-0165-x
10.1007/s10479-013-1337-0
10.1007/s10107-003-0453-z
10.1007/s10589-007-9117-x
10.1007/s10479-018-2987-8
10.1016/j.ejor.2006.08.045
10.1007/s10589-015-9810-0
10.1137/130925013
10.1007/s10107-017-1172-1
10.1109/TAC.2014.2330702
10.1287/opre.2013.1186
10.1007/s10898-004-8266-z
10.1007/s10898-009-9462-7
10.1007/s10107-003-0499-y
10.1007/s10589-014-9667-7
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
COPYRIGHT 2020 Springer
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: COPYRIGHT 2020 Springer
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
DBID AAYXX
CITATION
N95
3V.
7TA
7TB
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FR3
FRNLG
F~G
GNUQQ
HCIFZ
JG9
JQ2
K60
K6~
K7-
KR7
L.-
L6V
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10479-020-03766-7
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Materials Business File
Mechanical & Transportation Engineering Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Computer Science Database
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Materials Research Database
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
Materials Business File
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1572-9338
EndPage 841
ExternalDocumentID A651172336
10_1007_s10479_020_03766_7
GeographicLocations Singapore
GeographicLocations_xml – name: Singapore
GrantInformation_xml – fundername: Singapore A*STAR
  grantid: 1421200078
GroupedDBID -4X
-57
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8TC
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYQZM
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBO
EBS
EBU
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IEA
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N95
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9M
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SBE
SCF
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
Z8N
Z8U
Z92
ZL0
ZMTXR
ZYFGU
~8M
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ICD
PHGZM
PHGZT
PQGLB
PUEGO
7TA
7TB
7XB
8AL
8FD
8FK
FR3
JG9
JQ2
KR7
L.-
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c423t-2997f7f3f892b90965cddd4171747ae391d1c38cdaa77af018565fa9e618482c3
IEDL.DBID BENPR
ISSN 0254-5330
IngestDate Fri Jul 25 19:35:02 EDT 2025
Mon Oct 20 22:22:36 EDT 2025
Mon Oct 20 16:48:44 EDT 2025
Fri Jun 27 02:33:38 EDT 2025
Thu Apr 24 22:51:16 EDT 2025
Wed Oct 01 02:04:08 EDT 2025
Fri Feb 21 02:37:07 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Corporative stochastic approximation
Semi-infinite programming
Random constraint sampling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-2997f7f3f892b90965cddd4171747ae391d1c38cdaa77af018565fa9e618482c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9518-4310
PQID 2473380811
PQPubID 25585
PageCount 33
ParticipantIDs proquest_journals_2473380811
gale_infotracmisc_A651172336
gale_infotracacademiconefile_A651172336
gale_businessinsightsgauss_A651172336
crossref_primary_10_1007_s10479_020_03766_7
crossref_citationtrail_10_1007_s10479_020_03766_7
springer_journals_10_1007_s10479_020_03766_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Annals of operations research
PublicationTitleAbbrev Ann Oper Res
PublicationYear 2020
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References ZhangLWuS-YLópezMAA new exchange method for convex semi-infinite programmingSIAM Journal on Optimization20102029592977
PangL-PLvJWangJ-HConstrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problemsComputational Optimization and Applications201664433465
KortanekKONoHA central cutting plane algorithm for convex semi-infinite programming problemsSIAM Journal on Optimization19933901918
DentchevaDRuszczyńskiAOptimization with multivariate stochastic dominance constraintsMathematical Programming2009117A111127
KüçükyavuzSNoyanNCut generation for optimization problems with multivariate risk constraintsMathematical Programming2016159A165199
LópezMStillGSemi-infinite programmingEuropean Journal of Operational Research2007180491518
Mohajerin EsfahaniPSutterTKuhnDLygerosJFrom infinite to finite programs: Explicit error bounds with applications to approximate dynamic programmingSIAM Journal on Optimization20182819681998
NoyanNRudolfGOptimization with stochastic preferences based on a general class of scalarization functionsOperations Research201866463486
AndersonEJNashPLinear programming in infinite-dimensional spaces: Theory and applications1987ChichesterWiley
LanGZhouZAlgorithms for stochastic optimization with function or expectation constraintsComputational Optimization and Applications2020762461498
JinPLingCShenHA smoothing Levenberg–Marquardt algorithm for semi-infinite programmingComputational Optimization and Applications201560675695
XuQ-JJianJ-BA nonlinear norm-relaxed method for finely discretized semi-infinite optimization problemsNonlinear Dynamics2013738592
Mohajerin EsfahaniPKuhnDData-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulationsMathematical Programming2018171A115166
WeiBHaskellWBZhaoSAn inexact primal-dual algorithm for semi-infinite programmingMathematical Methods of Operations Research2020913501544
Bhat, N., Farias, V., & Moallemi, C. C. (2012). Non-parametric approximate dynamic programming via the kernel method. In Advances in Neural Information Processing Systems (pp. 386–394).
QiLLingCTongXZhouGA smoothing projected newton-type algorithm for semi-infinite programmingComputational Optimization and Applications200942130
AuslenderAGobernaMALópezMAPenalty and smoothing methods for convex semi-infinite programmingMathematics of Operations Research200934303319
OkunoTHayashiSYamashitaNGomotoKAn exchange method with refined subproblems for convex semi-infinite programming problemsOptimization Methods and Software20163113051324
GobernaMALópezMARecent contributions to linear semi-infinite optimization4OR201715221264
BeckABen-TalAGuttmann-BeckNTetruashviliLThe comirror algorithm for solving nonsmooth constrained convex problemsOperations Research Letters201038493498
Gribik, P. (1979). A central-cutting-plane algorithm for semi-infinite programming problems. In Semi-infinite programming (pp. 66–82). Berlin: Springer.
SteinOHow to solve a semi-infinite optimization problemEuropean Journal of Operational Research2012223312320
Mohajerin EsfahaniPSutterTLygerosJPerformance bounds for the scenario approach and an extension to a class of non-convex programsIEEE Transactions on Automatic Control2015604658
RobertCCasellaGMonte Carlo statistical methods2004New YorkSpringer
BetròBAn accelerated central cutting plane algorithm for linear semi-infinite programmingMathematical Programming2004101A479495
HaskellWBShanthikumarJGShenZMPrimal-dual algorithms for optimization with stochastic dominanceSIAM Journal on Optimization2017273466
KanamoriTTakedaAWorst-case violation of sampled convex programs for optimization with uncertaintyJournal of Optimization Theory and Applications2012152171197
GobernaMALópezMARecent contributions to linear semi-infinite optimization: An updateAnnals of Operations Research2018271237278
Homem-de MelloTMehrotraSA cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraintsSIAM Journal on Optimization20092012501273
MehrotraSPappDA cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimizationSIAM Journal on Optimization20142416701697
FariasDPdRoyBVOn constraint sampling in the linear programming approach to approximate dynamic programmingMathematics of Operations Research200429462478
DentchevaDRuszczynskiAOptimization with stochastic dominance constraintsSIAM Journal on Optimization200314548566
CampiMCGarattiSThe exact feasibility of randomized solutions of uncertain convex programsSIAM Journal on Optimization20081912111230
AragónFJGobernaMALópezMARodríguezMMNonlinear optimization2019New YorkSpringer
DentchevaDWolfhagenEOptimization with multivariate stochastic dominance constraintsSIAM Journal on Optimization201525564588
HuJHomem-de MelloTMehrotraSSample average approximation of stochastic dominance constrained programsMathematical Programming2012133A171201
Fonseca, I., & Leoni, G. (2007). Modern methods in the calculus of variations:L∧p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L ^{\wedge } p$$\end{document}spaces. New York: Springer.
GobernaMALópezMAPost-optimal analysis in linear semi-infinite optimization2014New YorkSpringer
LuenbergerDGOptimization by vector space methods1968New YorkWiley
CalafioreGCampiMUncertain convex programs: Randomized solutions and confidence levelsMathematical Programming2005102A2546
QiLWuS-YZhouGSemismooth newton methods for solving semi-infinite programming problemsJournal of Global Optimization200327215232
StillGDiscretization in semi-infinite programming: The rate of convergenceMathematical Programming200191A5369
AliprantisCDBorderKCInfinite dimensional analysis. A hitchhiker’s guide20053BerlinSpringer
LinQNadarajahSSoheiliNRevisiting approximate linear programming: Constraint-violation learning with applications to inventory control and energy storageManagement Science20206615441562
NiQLingCQiLTeoKLA truncated projected newton-type algorithm for large-scale semi-infinite programmingSIAM Journal on Optimization20061611371154
LingCNiQQiLWuS-YA new smoothing newton-type algorithm for semi-infinite programmingJournal of Global Optimization201047133159
AuslenderAFerrerAGobernaMALópezMAComparative study of RPSALG algorithm for convex semi-infinite programmingComputational Optimization and Applications2015605987
HaskellWBShanthikumarJGShenZMOptimization with a class of multivariate integral stochastic order constraintsAnnals of Operations Research2013206147162
LiuYTeoKLAn adaptive dual parametrization algorithm for quadratic semi-infinite programming problemsJournal of Global Optimization200224205217
LiuYTeoKLWuS-YA new quadratic semi-infinite programming algorithm based on dual parametrizationJournal of Global Optimization200429401413
NoyanNRudolfGOptimization with multivariate conditional value-at-risk constraintsOperations Research2013619901013
NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM Journal on Optimization20091915741609
TeoKLYangXJenningsLSComputational discretization algorithms for functional inequality constrained optimizationAnnals of Operations Research200098215234
LiD-HQiLTamJWuS-YA smoothing newton method for semi-infinite programmingJournal of Global Optimization200430169194
ItoSLiuYTeoKLA dual parametrization method for convex semi-infinite programmingAnnals of Operations Research200098189213
LanGNemirovskiAShapiroAValidation analysis of mirror descent stochastic approximation methodMathematical Programming2012134A425458
DentchevaDRuszczyńskiAOptimality and duality theory for stochastic optimization problems with nonlinear dominance constraintsMathematical Programming200499A329350
C Robert (3766_CR51) 2004
CD Aliprantis (3766_CR1) 2005
T Okuno (3766_CR47) 2016; 31
P Mohajerin Esfahani (3766_CR40) 2018; 171A
N Noyan (3766_CR45) 2013; 61
G Calafiore (3766_CR9) 2005; 102A
O Stein (3766_CR52) 2012; 223
MA Goberna (3766_CR19) 2018; 271
L Qi (3766_CR49) 2009; 42
L Qi (3766_CR50) 2003; 27
B Wei (3766_CR55) 2020; 91
3766_CR8
3766_CR16
A Beck (3766_CR6) 2010; 38
Y Liu (3766_CR36) 2004; 29
WB Haskell (3766_CR21) 2013; 206
D-H Li (3766_CR32) 2004; 30
Q-J Xu (3766_CR56) 2013; 73
L Zhang (3766_CR57) 2010; 20
EJ Anderson (3766_CR2) 1987
D Dentcheva (3766_CR14) 2015; 25
D Dentcheva (3766_CR13) 2009; 117A
DG Luenberger (3766_CR38) 1968
D Dentcheva (3766_CR11) 2003; 14
KL Teo (3766_CR54) 2000; 98
FJ Aragón (3766_CR3) 2019
A Auslender (3766_CR5) 2009; 34
Q Ni (3766_CR44) 2006; 16
B Betrò (3766_CR7) 2004; 101A
G Lan (3766_CR30) 2012; 134A
3766_CR20
N Noyan (3766_CR46) 2018; 66
G Still (3766_CR53) 2001; 91A
DPd Farias (3766_CR15) 2004; 29
S Ito (3766_CR25) 2000; 98
L-P Pang (3766_CR48) 2016; 64
T Homem-de Mello (3766_CR23) 2009; 20
MA Goberna (3766_CR17) 2014
S Küçükyavuz (3766_CR29) 2016; 159A
A Nemirovski (3766_CR43) 2009; 19
MC Campi (3766_CR10) 2008; 19
D Dentcheva (3766_CR12) 2004; 99A
M López (3766_CR37) 2007; 180
MA Goberna (3766_CR18) 2017; 15
J Hu (3766_CR24) 2012; 133A
T Kanamori (3766_CR27) 2012; 152
G Lan (3766_CR31) 2020; 76
P Mohajerin Esfahani (3766_CR41) 2018; 28
P Jin (3766_CR26) 2015; 60
Y Liu (3766_CR35) 2002; 24
S Mehrotra (3766_CR39) 2014; 24
C Ling (3766_CR34) 2010; 47
Q Lin (3766_CR33) 2020; 66
KO Kortanek (3766_CR28) 1993; 3
WB Haskell (3766_CR22) 2017; 27
A Auslender (3766_CR4) 2015; 60
P Mohajerin Esfahani (3766_CR42) 2015; 60
References_xml – reference: ZhangLWuS-YLópezMAA new exchange method for convex semi-infinite programmingSIAM Journal on Optimization20102029592977
– reference: ItoSLiuYTeoKLA dual parametrization method for convex semi-infinite programmingAnnals of Operations Research200098189213
– reference: NemirovskiAJuditskyALanGShapiroARobust stochastic approximation approach to stochastic programmingSIAM Journal on Optimization20091915741609
– reference: QiLLingCTongXZhouGA smoothing projected newton-type algorithm for semi-infinite programmingComputational Optimization and Applications200942130
– reference: JinPLingCShenHA smoothing Levenberg–Marquardt algorithm for semi-infinite programmingComputational Optimization and Applications201560675695
– reference: LiuYTeoKLWuS-YA new quadratic semi-infinite programming algorithm based on dual parametrizationJournal of Global Optimization200429401413
– reference: Mohajerin EsfahaniPSutterTLygerosJPerformance bounds for the scenario approach and an extension to a class of non-convex programsIEEE Transactions on Automatic Control2015604658
– reference: Gribik, P. (1979). A central-cutting-plane algorithm for semi-infinite programming problems. In Semi-infinite programming (pp. 66–82). Berlin: Springer.
– reference: AuslenderAFerrerAGobernaMALópezMAComparative study of RPSALG algorithm for convex semi-infinite programmingComputational Optimization and Applications2015605987
– reference: Fonseca, I., & Leoni, G. (2007). Modern methods in the calculus of variations:L∧p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L ^{\wedge } p$$\end{document}spaces. New York: Springer.
– reference: BeckABen-TalAGuttmann-BeckNTetruashviliLThe comirror algorithm for solving nonsmooth constrained convex problemsOperations Research Letters201038493498
– reference: HaskellWBShanthikumarJGShenZMPrimal-dual algorithms for optimization with stochastic dominanceSIAM Journal on Optimization2017273466
– reference: GobernaMALópezMARecent contributions to linear semi-infinite optimization: An updateAnnals of Operations Research2018271237278
– reference: GobernaMALópezMAPost-optimal analysis in linear semi-infinite optimization2014New YorkSpringer
– reference: HaskellWBShanthikumarJGShenZMOptimization with a class of multivariate integral stochastic order constraintsAnnals of Operations Research2013206147162
– reference: Homem-de MelloTMehrotraSA cutting-surface method for uncertain linear programs with polyhedral stochastic dominance constraintsSIAM Journal on Optimization20092012501273
– reference: AuslenderAGobernaMALópezMAPenalty and smoothing methods for convex semi-infinite programmingMathematics of Operations Research200934303319
– reference: Bhat, N., Farias, V., & Moallemi, C. C. (2012). Non-parametric approximate dynamic programming via the kernel method. In Advances in Neural Information Processing Systems (pp. 386–394).
– reference: PangL-PLvJWangJ-HConstrained incremental bundle method with partial inexact oracle for nonsmooth convex semi-infinite programming problemsComputational Optimization and Applications201664433465
– reference: RobertCCasellaGMonte Carlo statistical methods2004New YorkSpringer
– reference: StillGDiscretization in semi-infinite programming: The rate of convergenceMathematical Programming200191A5369
– reference: NoyanNRudolfGOptimization with multivariate conditional value-at-risk constraintsOperations Research2013619901013
– reference: DentchevaDRuszczyńskiAOptimization with multivariate stochastic dominance constraintsMathematical Programming2009117A111127
– reference: LanGZhouZAlgorithms for stochastic optimization with function or expectation constraintsComputational Optimization and Applications2020762461498
– reference: SteinOHow to solve a semi-infinite optimization problemEuropean Journal of Operational Research2012223312320
– reference: CampiMCGarattiSThe exact feasibility of randomized solutions of uncertain convex programsSIAM Journal on Optimization20081912111230
– reference: LinQNadarajahSSoheiliNRevisiting approximate linear programming: Constraint-violation learning with applications to inventory control and energy storageManagement Science20206615441562
– reference: NoyanNRudolfGOptimization with stochastic preferences based on a general class of scalarization functionsOperations Research201866463486
– reference: LiD-HQiLTamJWuS-YA smoothing newton method for semi-infinite programmingJournal of Global Optimization200430169194
– reference: Mohajerin EsfahaniPSutterTKuhnDLygerosJFrom infinite to finite programs: Explicit error bounds with applications to approximate dynamic programmingSIAM Journal on Optimization20182819681998
– reference: Mohajerin EsfahaniPKuhnDData-driven distributionally robust optimization using the wasserstein metric: Performance guarantees and tractable reformulationsMathematical Programming2018171A115166
– reference: OkunoTHayashiSYamashitaNGomotoKAn exchange method with refined subproblems for convex semi-infinite programming problemsOptimization Methods and Software20163113051324
– reference: AliprantisCDBorderKCInfinite dimensional analysis. A hitchhiker’s guide20053BerlinSpringer
– reference: HuJHomem-de MelloTMehrotraSSample average approximation of stochastic dominance constrained programsMathematical Programming2012133A171201
– reference: NiQLingCQiLTeoKLA truncated projected newton-type algorithm for large-scale semi-infinite programmingSIAM Journal on Optimization20061611371154
– reference: TeoKLYangXJenningsLSComputational discretization algorithms for functional inequality constrained optimizationAnnals of Operations Research200098215234
– reference: XuQ-JJianJ-BA nonlinear norm-relaxed method for finely discretized semi-infinite optimization problemsNonlinear Dynamics2013738592
– reference: KortanekKONoHA central cutting plane algorithm for convex semi-infinite programming problemsSIAM Journal on Optimization19933901918
– reference: AndersonEJNashPLinear programming in infinite-dimensional spaces: Theory and applications1987ChichesterWiley
– reference: GobernaMALópezMARecent contributions to linear semi-infinite optimization4OR201715221264
– reference: LiuYTeoKLAn adaptive dual parametrization algorithm for quadratic semi-infinite programming problemsJournal of Global Optimization200224205217
– reference: LópezMStillGSemi-infinite programmingEuropean Journal of Operational Research2007180491518
– reference: LanGNemirovskiAShapiroAValidation analysis of mirror descent stochastic approximation methodMathematical Programming2012134A425458
– reference: KanamoriTTakedaAWorst-case violation of sampled convex programs for optimization with uncertaintyJournal of Optimization Theory and Applications2012152171197
– reference: MehrotraSPappDA cutting surface algorithm for semi-infinite convex programming with an application to moment robust optimizationSIAM Journal on Optimization20142416701697
– reference: WeiBHaskellWBZhaoSAn inexact primal-dual algorithm for semi-infinite programmingMathematical Methods of Operations Research2020913501544
– reference: BetròBAn accelerated central cutting plane algorithm for linear semi-infinite programmingMathematical Programming2004101A479495
– reference: KüçükyavuzSNoyanNCut generation for optimization problems with multivariate risk constraintsMathematical Programming2016159A165199
– reference: LingCNiQQiLWuS-YA new smoothing newton-type algorithm for semi-infinite programmingJournal of Global Optimization201047133159
– reference: DentchevaDRuszczynskiAOptimization with stochastic dominance constraintsSIAM Journal on Optimization200314548566
– reference: DentchevaDWolfhagenEOptimization with multivariate stochastic dominance constraintsSIAM Journal on Optimization201525564588
– reference: FariasDPdRoyBVOn constraint sampling in the linear programming approach to approximate dynamic programmingMathematics of Operations Research200429462478
– reference: DentchevaDRuszczyńskiAOptimality and duality theory for stochastic optimization problems with nonlinear dominance constraintsMathematical Programming200499A329350
– reference: AragónFJGobernaMALópezMARodríguezMMNonlinear optimization2019New YorkSpringer
– reference: LuenbergerDGOptimization by vector space methods1968New YorkWiley
– reference: CalafioreGCampiMUncertain convex programs: Randomized solutions and confidence levelsMathematical Programming2005102A2546
– reference: QiLWuS-YZhouGSemismooth newton methods for solving semi-infinite programming problemsJournal of Global Optimization200327215232
– volume: 66
  start-page: 463
  year: 2018
  ident: 3766_CR46
  publication-title: Operations Research
  doi: 10.1287/opre.2017.1671
– ident: 3766_CR16
– volume: 15
  start-page: 221
  year: 2017
  ident: 3766_CR18
  publication-title: 4OR
  doi: 10.1007/s10288-017-0350-6
– volume: 24
  start-page: 205
  year: 2002
  ident: 3766_CR35
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1020234019886
– volume: 134A
  start-page: 425
  year: 2012
  ident: 3766_CR30
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-011-0442-6
– volume: 14
  start-page: 548
  year: 2003
  ident: 3766_CR11
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623402420528
– volume: 31
  start-page: 1305
  year: 2016
  ident: 3766_CR47
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556788.2015.1124432
– volume-title: Monte Carlo statistical methods
  year: 2004
  ident: 3766_CR51
  doi: 10.1007/978-1-4757-4145-2
– volume: 73
  start-page: 85
  year: 2013
  ident: 3766_CR56
  publication-title: Nonlinear Dynamics
  doi: 10.1007/s11071-013-0768-0
– volume: 16
  start-page: 1137
  year: 2006
  ident: 3766_CR44
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/040619867
– ident: 3766_CR20
  doi: 10.1007/BFb0003884
– volume: 159A
  start-page: 165
  year: 2016
  ident: 3766_CR29
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-015-0953-7
– volume: 91
  start-page: 501
  issue: 3
  year: 2020
  ident: 3766_CR55
  publication-title: Mathematical Methods of Operations Research
  doi: 10.1007/s00186-019-00698-2
– volume: 76
  start-page: 461
  issue: 2
  year: 2020
  ident: 3766_CR31
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-020-00179-x
– volume: 27
  start-page: 34
  year: 2017
  ident: 3766_CR22
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/141001251
– volume-title: Post-optimal analysis in linear semi-infinite optimization
  year: 2014
  ident: 3766_CR17
  doi: 10.1007/978-1-4899-8044-1
– volume: 98
  start-page: 189
  year: 2000
  ident: 3766_CR25
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019208524259
– volume: 25
  start-page: 564
  year: 2015
  ident: 3766_CR14
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/140955148
– volume: 223
  start-page: 312
  year: 2012
  ident: 3766_CR52
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.06.009
– ident: 3766_CR8
– volume: 152
  start-page: 171
  year: 2012
  ident: 3766_CR27
  publication-title: Journal of Optimization Theory and Applications
  doi: 10.1007/s10957-011-9923-2
– volume: 20
  start-page: 2959
  year: 2010
  ident: 3766_CR57
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/090767133
– volume: 19
  start-page: 1211
  year: 2008
  ident: 3766_CR10
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/07069821X
– volume: 38
  start-page: 493
  year: 2010
  ident: 3766_CR6
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2010.08.005
– volume: 133A
  start-page: 171
  year: 2012
  ident: 3766_CR24
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-010-0428-9
– volume: 91A
  start-page: 53
  year: 2001
  ident: 3766_CR53
  publication-title: Mathematical Programming
  doi: 10.1007/s101070100239
– volume-title: Nonlinear optimization
  year: 2019
  ident: 3766_CR3
  doi: 10.1007/978-3-030-11184-7
– volume: 19
  start-page: 1574
  year: 2009
  ident: 3766_CR43
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/070704277
– volume: 66
  start-page: 1544
  year: 2020
  ident: 3766_CR33
  publication-title: Management Science
  doi: 10.1287/mnsc.2019.3289
– volume: 27
  start-page: 215
  year: 2003
  ident: 3766_CR50
  publication-title: Journal of Global Optimization
  doi: 10.1023/A:1024814401713
– volume: 20
  start-page: 1250
  year: 2009
  ident: 3766_CR23
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/08074009X
– volume: 29
  start-page: 401
  year: 2004
  ident: 3766_CR36
  publication-title: Journal of Global Optimization
  doi: 10.1023/B:JOGO.0000047910.80739.95
– volume: 98
  start-page: 215
  year: 2000
  ident: 3766_CR54
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019260508329
– volume-title: Optimization by vector space methods
  year: 1968
  ident: 3766_CR38
– volume: 101A
  start-page: 479
  year: 2004
  ident: 3766_CR7
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-003-0492-5
– volume-title: Linear programming in infinite-dimensional spaces: Theory and applications
  year: 1987
  ident: 3766_CR2
– volume: 60
  start-page: 675
  year: 2015
  ident: 3766_CR26
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-014-9698-0
– volume: 28
  start-page: 1968
  year: 2018
  ident: 3766_CR41
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/17M1133087
– volume: 34
  start-page: 303
  year: 2009
  ident: 3766_CR5
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1080.0362
– volume: 3
  start-page: 901
  year: 1993
  ident: 3766_CR28
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/0803047
– volume: 29
  start-page: 462
  year: 2004
  ident: 3766_CR15
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1040.0094
– volume: 117A
  start-page: 111
  year: 2009
  ident: 3766_CR13
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-007-0165-x
– volume: 206
  start-page: 147
  year: 2013
  ident: 3766_CR21
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-013-1337-0
– volume: 99A
  start-page: 329
  year: 2004
  ident: 3766_CR12
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-003-0453-z
– volume: 42
  start-page: 1
  year: 2009
  ident: 3766_CR49
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-007-9117-x
– volume: 271
  start-page: 237
  year: 2018
  ident: 3766_CR19
  publication-title: Annals of Operations Research
  doi: 10.1007/s10479-018-2987-8
– volume: 180
  start-page: 491
  year: 2007
  ident: 3766_CR37
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.08.045
– volume: 64
  start-page: 433
  year: 2016
  ident: 3766_CR48
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-015-9810-0
– volume: 24
  start-page: 1670
  year: 2014
  ident: 3766_CR39
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/130925013
– volume: 171A
  start-page: 115
  year: 2018
  ident: 3766_CR40
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-017-1172-1
– volume: 60
  start-page: 46
  year: 2015
  ident: 3766_CR42
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2014.2330702
– volume-title: Infinite dimensional analysis. A hitchhiker’s guide
  year: 2005
  ident: 3766_CR1
– volume: 61
  start-page: 990
  year: 2013
  ident: 3766_CR45
  publication-title: Operations Research
  doi: 10.1287/opre.2013.1186
– volume: 30
  start-page: 169
  year: 2004
  ident: 3766_CR32
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-004-8266-z
– volume: 47
  start-page: 133
  year: 2010
  ident: 3766_CR34
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-009-9462-7
– volume: 102A
  start-page: 25
  year: 2005
  ident: 3766_CR9
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-003-0499-y
– volume: 60
  start-page: 59
  year: 2015
  ident: 3766_CR4
  publication-title: Computational Optimization and Applications
  doi: 10.1007/s10589-014-9667-7
SSID ssj0001185
Score 2.3059115
Snippet The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493–498, 2010), is designed to solve convex optimization problems with one functional constraint....
The CoMirror algorithm, by Beck et al. (Oper Res Lett 38(6):493-498, 2010), is designed to solve convex optimization problems with one functional constraint....
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 809
SubjectTerms Algorithms
Business and Management
Combinatorics
Computational geometry
Convex programming
Convexity
Mathematical optimization
Operations research
Operations Research/Decision Theory
Optimization
Original Research
Sampling
Theory of Computation
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJiF4GKwM0fEhP2zaA1hqEiduHisEQkjsaZWQ9mA5jl0q0QYlqbQ_f3fGoe2ASbzkxZfI8d35fmffB8A3xNw2NbngZWpSLoqB5IUwBvUKp22ygcl9xZvbn9n1WNzcpXchKazpot27K0m_U68kuwmZc3J3BqgVGZcb8DGlcl4oxeN49Lz_ImT2gYvo-nCKnQypMq9_Y80c_bspv7gd9Ubnag8-BbTIRk_s_Qwf7LwHW12weg92u6YMLOhoD3ZWKgzuw28UA3ZR3U7ruqqZfphU9bS9nzE6fmVopspqxgxBROoU0bJGU4D5fMIQyjIfkP6HNXY25SiHU0KnLMRzzZDoC4yvLn9dXPPQT4EbBE0tR8sjnXSJG-ZxkVPZF1OWpYjQoxNS2ySPysgkQ1NqLaV2A1zHLHU6t9QUZhib5AA259XcHgJDrwTtvqU7x0Sgi6lLXQxF4mJZCOec7UPULasyodg4_cmDWpZJJlYoZIXyrFCyD2fP7zw-ldr4L_V34pYKvTrx0dBpRjPRi6ZRowyBpIyTJOvDD09H-oozMDqkHeB_UOWrNcrjNUrUM7M-3MmFCnreqFhI9PERVkV9OO9kZTn89vS_vo_8CLZjklofR3MMm229sCeIhtri1Av_X7Mm_pg
  priority: 102
  providerName: Springer Nature
Title The CoMirror algorithm with random constraint sampling for convex semi-infinite programming
URI https://link.springer.com/article/10.1007/s10479-020-03766-7
https://www.proquest.com/docview/2473380811
Volume 295
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: AMVHM
  dateStart: 19840801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1572-9338
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: BENPR
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: 8FG
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1572-9338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001185
  issn: 0254-5330
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9trYTggUEB0W1UfgDxABZN4sTJA0Ld1G4CrUKISkM8RI4dl0prszWZxJ-_O89ZKYi95CG5RHbu63f2-Q7gNWLuMtaZ4CbWMRfFUPJCaI16hcPWyVBnruLN2TQ5nYnP5_H5DkzbszCUVtnaRGeoTaVpjfxDKCRGU-jAgk-XV5y6RtHuattCQ_nWCuajKzG2C92QKmN1oHs0nn79dmebEU67pEYMizjlVfpjNP4wnZAZp3BqiFqXcLnlqv422P_snDqHNHkCjz2SZKNb1j-FnXLVgwdtInsP9tqGDczrbw8e_VF98Bn8RBFhx9XZYr2u1kxdzHG6za8lo6VZhi7MVEumCT5SF4mG1YqSz1dzhjCXuWT136wulwuOMrog5Mp8rtcSiZ7DbDL-fnzKfa8FrhFQNRy9krTSRjbNwiKjkjDaGCMCjPaEVGWUBSbQUaqNUlIqO8T_mMRWZSU1jElDHb2AzqpalS-BYcSCmKCk_chIYPipjCpSEdlQFsJaW_YhaH9rrn0hcprJRb4poUysyJEVuWNFLvvw7u6dy9syHPdSvyFu5b6PJ15qWumo5-q6rvNRgiBThlGU9OGtoyNdxhFo5Y8k4DyoKtYW5eEWJeqg3n7cykXubUCdbyS2D-9bWdk8_v_w9-__2gE8DElKXU7NIXSa9XX5CpFRUwxgN52cDKA7OvnxZTzwwo93Z-HoBq77C44
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVuJx4BFABArsgYoDrIjttTc-VKiUViltIoRaqRKHZb2PEKmJS-wK-HP8NmbcdUNA9NZLLp5Y653XN7vzAHiBmNulJhfcpiblouhJXghjUK9w2SbrmbzpeDMcZYMj8eE4PV6BX20tDKVVtjaxMdS2NHRG_iYWEqMpdGDR29NvnKZG0e1qO0JDh9EKdrNpMRYKO_bdz-8YwlWbe--R3xtxvLtzuD3gYcoANwglao72WHrpE9_P4yKnZijGWisijHOE1C7JIxuZpG-s1lJq30MHl6Ve545GpfRjk-B7r8GaSESOwd_au53Rx08XvgDhe5NEiWEYpzzOULYTiveEzDmFbz3U8ozLJdf4t4P456a2cYC7d-F2QK5s61zU7sGKm3Xgeps434E77YAIFuxFB2790e3wPnxGkWTb5XAyn5dzpk_GuL311ymjo2CGLtOWU2YIrtLUippVmpLdZ2OGsJo1yfE_WOWmE446MSGkzEJu2RSJHsDRlez6Q1idlTP3CBhGSIhBHN1_JgLDXW110ReJj2UhvPeuC1G7rcqExuf0JSdq0bKZWKGQFaphhZJdeHXxn9Pzth-XUm8Qt1SYG4o_FZ2sVGN9VlVqK0NQK-MkybrwsqEj24ErMDqUQOB3UBeuJcr1JUrUebP8uJULFWxOpRYa0oXXrawsHv9_-Y8vf9tzuDE4HB6og73R_hO4GZPENvk867Baz8_cU0RldfEsiD6DL1etbb8B1Y9Eaw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8aQ5rYgY8CWmGAD0wcwFqTOHFzmNC0UTbGJg5MmsTBOI7dVVqbrckE_Gv763jPdVYKYrddeslr5Ph9_Z79PgBeI-a2qckFL1OTclH0JC-EMahXuGyT9UzuO94cHmV7x-LTSXqyBFdtLQylVbY20RvqsjJ0Rr4ZC4nRFDqwaNOFtIgvu4P35xecJkjRTWs7TmMmIgf21w8M3-qt_V3k9UYcDz583dnjYcIANwgjGo62WDrpEtfP4yKnRiimLEsRYYwjpLZJHpWRSfqm1FpK7Xro3LLU6dzSmJR-bBJ87x24K6mLO1WpDz5eewEE7j59EgMwThmcoWAnlO0JmXMK3Hqo3xmXC07xb9fwzx2td32Dh3A_YFa2PROyR7BkJx1YaVPmO_CgHQ3BgqXowOoffQ4fwzcURrZTHY6m02rK9NkQN7M5HTM6BGboLMtqzAwBVZpX0bBaU5r7ZMgQUDOfFv-T1XY84qgNI8LILGSVjZHoCRzfyp4_heVJNbFrwDA2QvRh6eYzERjo6lIXfZG4WBbCOWe7ELXbqkxoeU5fcqbmzZqJFQpZoTwrlOzC2-v_nM8aftxIvUHcUmFiKP7UdKZSD_VlXavtDOGsjJMk68IbT0dWA1dgdCh-wO-g_lsLlOsLlKjtZvFxKxcqWJtazXWjC-9aWZk__v_yn938tlewgjqmPu8fHTyHezEJrE_kWYflZnppXyAca4qXXu4ZfL9tRfsN3vxCBQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+CoMirror+algorithm+with+random+constraint+sampling+for+convex+semi-infinite+programming&rft.jtitle=Annals+of+operations+research&rft.au=Wei%2C+Bo&rft.au=Haskell%2C+William+B&rft.au=Zhao%2C+Sixiang&rft.date=2020-12-01&rft.pub=Springer&rft.issn=0254-5330&rft.volume=295&rft.issue=2&rft.spage=809&rft_id=info:doi/10.1007%2Fs10479-020-03766-7&rft.externalDocID=A651172336
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-5330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-5330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-5330&client=summon