Censoring Sensitivity Analysis for Benchmarking Survival Machine Learning Methods
(1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model...
Saved in:
| Published in | Sci Vol. 7; no. 1; p. 18 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2413-4155 2413-4155 |
| DOI | 10.3390/sci7010018 |
Cover
| Abstract | (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model robustness under varying censoring conditions. This limitation creates uncertainty about model reliability in real-world applications where censoring patterns may differ from training data. We address this gap by introducing a systematic benchmarking methodology focused on censoring sensitivity. (2) Methods: We developed a benchmarking framework that assesses survival models through controlled modification of censoring conditions. Five models were evaluated: Cox proportional hazards, survival tree, random survival forest, gradient-boosted survival analysis, and mixture density networks. The framework systematically reduced observation periods and increased censoring rates while measuring performance through multiple metrics following Bayesian hyperparameter optimization. (3) Results: Model performance showed greater sensitivity to increased censoring rates than to reduced observation periods. Non-linear models, especially mixture density networks, exhibited higher vulnerability to data quality degradation. Statistical comparisons became increasingly challenging with higher censoring rates due to widened confidence intervals. (4) Conclusions: Our methodology provides a new standard for evaluating survival analysis models, revealing the critical impact of censoring on model performance. These findings offer practical guidance for model selection and development in clinical applications, emphasizing the importance of robust censoring handling strategies. |
|---|---|
| AbstractList | (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model robustness under varying censoring conditions. This limitation creates uncertainty about model reliability in real-world applications where censoring patterns may differ from training data. We address this gap by introducing a systematic benchmarking methodology focused on censoring sensitivity. (2) Methods: We developed a benchmarking framework that assesses survival models through controlled modification of censoring conditions. Five models were evaluated: Cox proportional hazards, survival tree, random survival forest, gradient-boosted survival analysis, and mixture density networks. The framework systematically reduced observation periods and increased censoring rates while measuring performance through multiple metrics following Bayesian hyperparameter optimization. (3) Results: Model performance showed greater sensitivity to increased censoring rates than to reduced observation periods. Non-linear models, especially mixture density networks, exhibited higher vulnerability to data quality degradation. Statistical comparisons became increasingly challenging with higher censoring rates due to widened confidence intervals. (4) Conclusions: Our methodology provides a new standard for evaluating survival analysis models, revealing the critical impact of censoring on model performance. These findings offer practical guidance for model selection and development in clinical applications, emphasizing the importance of robust censoring handling strategies. |
| Author | Pollner, Péter Horváth, Anna Banczerowski, Péter Báskay, János Mezei, Tamás Joó, Tamás |
| Author_xml | – sequence: 1 givenname: János orcidid: 0000-0002-2841-3021 surname: Báskay fullname: Báskay, János – sequence: 2 givenname: Tamás orcidid: 0000-0002-0848-1182 surname: Mezei fullname: Mezei, Tamás – sequence: 3 givenname: Péter orcidid: 0000-0003-2144-5298 surname: Banczerowski fullname: Banczerowski, Péter – sequence: 4 givenname: Anna orcidid: 0000-0003-3229-5643 surname: Horváth fullname: Horváth, Anna – sequence: 5 givenname: Tamás orcidid: 0000-0002-3551-6125 surname: Joó fullname: Joó, Tamás – sequence: 6 givenname: Péter orcidid: 0000-0003-0464-4893 surname: Pollner fullname: Pollner, Péter |
| BookMark | eNp9kMFOGzEQQC0EEinNpV-wUm9UgRnbWdtHGtE2UhBC0LPleL2Jw9ZO7U2q_H2dBAEnTh7ZT0-e94mchhgcIV8QrhhTcJ2tF4AAKE_IgHJkI47j8em7-ZwMc14BABWKg1ID8jBxIcfkw6J6LJPv_db3u-ommG6Xfa7amKrvLtjlH5OeD9Qmbf3WdNWdsUsfXDVzJoX9y53rl7HJn8lZa7rshi_nBfn94_Zp8ms0u_85ndzMRpZT1o8oa0GCZbUcI2BDAVXbMsqMgJo6xMZxwY1EELJp50ZYpGWNVgGvaSOxYRdkevQ20az0Ovnyw52OxuvDRUwLbVLvbec0FTVIalQ9F4Iz2xgsASSnc6nmJVddXN-Ork1Ym90_03WvQgS9j6vf4hb665Fep_h343KvV3GTSrGsGUqsFZNcFerySNkUc06u_Uj5H-PLhfs |
| Cites_doi | 10.1007/s10462-023-10681-3 10.1145/3534678.3539110 10.1109/JBHI.2021.3052441 10.1145/3214306 10.1002/9781118032985 10.1145/3583780.3614824 10.1007/978-3-030-86340-1_15 10.1214/08-AOAS169 10.1177/09622802221090763 10.1016/j.inffus.2021.11.011 10.1186/s12874-018-0482-1 10.1093/biostatistics/kxj011 10.1002/sim.10087 10.1016/j.clon.2022.09.054 10.1111/j.2517-6161.1972.tb00899.x 10.1186/s12874-023-02078-1 10.1145/3292500.3330701 10.1038/s41598-021-86327-7 10.1007/978-0-387-84858-7 10.1080/01621459.1958.10501452 10.1201/9781003255499 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 10.3390/inventions9030059 10.1093/biostatistics/kxh019 10.1023/A:1010933404324 10.1093/biomet/69.3.553 10.1093/bioinformatics/17.6.520 10.1056/AIoa2300138 10.1007/978-1-0716-1418-1 10.3390/cancers16203527 10.1002/sim.4780140108 10.1609/aaai.v32i1.11842 10.1111/biom.13555 10.1117/12.3008751 10.1007/978-3-030-47426-3_53 10.1080/01621459.1993.10476296 10.1145/2939672.2939778 10.1177/0962280213515571 10.1002/sim.4154 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 10.18071/isz.75.0117 10.1038/nature10983 10.1111/j.1541-0420.2008.00986.x |
| ContentType | Journal Article |
| Copyright | 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/sci7010018 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2413-4155 |
| ExternalDocumentID | oai_doaj_org_article_276082a96b7743cda1027842b89b0016 10.3390/sci7010018 10_3390_sci7010018 |
| GroupedDBID | 88I AADQD AAYXX ABDBF ABUWG AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AZQEC BENPR CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO IGS ISR ITC M2P MODMG OK1 PHGZM PHGZT PIMPY 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c423t-23f080c3685101d2019ff323a7062e11de474a81078dfba7c12241f90462d81d3 |
| IEDL.DBID | BENPR |
| ISSN | 2413-4155 |
| IngestDate | Fri Oct 03 12:40:27 EDT 2025 Sun Sep 07 11:19:52 EDT 2025 Mon Jun 30 12:05:39 EDT 2025 Thu Oct 16 04:40:56 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-23f080c3685101d2019ff323a7062e11de474a81078dfba7c12241f90462d81d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3229-5643 0000-0002-3551-6125 0000-0003-0464-4893 0000-0002-2841-3021 0000-0003-2144-5298 0000-0002-0848-1182 |
| OpenAccessLink | https://www.proquest.com/docview/3181693849?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3181693849 |
| PQPubID | 5046859 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_276082a96b7743cda1027842b89b0016 unpaywall_primary_10_3390_sci7010018 proquest_journals_3181693849 crossref_primary_10_3390_sci7010018 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sci |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kaplan (ref_4) 1958; 53 ref_14 Hothorn (ref_29) 2006; 7 ref_58 ref_13 ref_12 ref_56 ref_55 ref_10 Mezei (ref_54) 2022; 35 ref_52 Leblanc (ref_27) 1993; 88 Su (ref_35) 2022; 31 ref_18 ref_17 ref_16 ref_15 ref_59 Lambert (ref_48) 2016; 25 Curtis (ref_57) 2012; 486 ref_60 Mezei (ref_53) 2022; 75 Harrington (ref_49) 1982; 69 ref_25 ref_23 ref_22 ref_20 Nagpal (ref_8) 2021; 25 Wang (ref_1) 2019; 51 Faraggi (ref_11) 1995; 14 ref_26 Cox (ref_3) 1972; 34 Fairfax (ref_34) 2024; 43 Troyanskaya (ref_50) 2001; 17 Wiegrebe (ref_2) 2024; 57 Huang (ref_32) 2008; 64 ref_36 Jung (ref_19) 2021; Volume 149 ref_30 (ref_6) 2020; 21 Pedregosa (ref_51) 2011; 12 Harrell (ref_46) 1996; 15 ref_39 Siannis (ref_31) 2005; 6 ref_37 Armon (ref_24) 2022; 81 Ishwaran (ref_28) 2008; 2 Breiman (ref_38) 2001; 45 ref_44 ref_43 ref_42 Uno (ref_45) 2011; 30 ref_41 Graf (ref_47) 1999; 18 Yang (ref_33) 2021; 79 ref_40 ref_9 ref_5 ref_7 Tu (ref_21) 2024; 1 |
| References_xml | – volume: 57 start-page: 65 year: 2024 ident: ref_2 article-title: Deep learning for survival analysis: A review publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-023-10681-3 – ident: ref_52 doi: 10.1145/3534678.3539110 – volume: 25 start-page: 3163 year: 2021 ident: ref_8 article-title: Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data With Competing Risks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3052441 – volume: 51 start-page: 110 year: 2019 ident: ref_1 article-title: Machine Learning for Survival Analysis: A Survey publication-title: ACM Comput. Surv. doi: 10.1145/3214306 – ident: ref_5 – volume: 12 start-page: 2825 year: 2011 ident: ref_51 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_55 doi: 10.1002/9781118032985 – ident: ref_26 – ident: ref_22 doi: 10.1145/3583780.3614824 – ident: ref_7 doi: 10.1007/978-3-030-86340-1_15 – volume: 2 start-page: 841 year: 2008 ident: ref_28 article-title: Random survival forests publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS169 – ident: ref_16 – volume: Volume 149 start-page: 674 year: 2021 ident: ref_19 article-title: Deep Cox Mixtures for Survival Regression publication-title: Proceedings of the 6th Machine Learning for Healthcare Conference, Virtual, 6–7 August 2021 – volume: 31 start-page: 1374 year: 2022 ident: ref_35 article-title: Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout publication-title: Stat. Methods Med. Res. doi: 10.1177/09622802221090763 – ident: ref_39 – volume: 81 start-page: 84 year: 2022 ident: ref_24 article-title: Tabular data: Deep learning is not all you need publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.11.011 – ident: ref_42 – ident: ref_13 doi: 10.1186/s12874-018-0482-1 – volume: 7 start-page: 355 year: 2006 ident: ref_29 article-title: Survival ensembles publication-title: Biostatistics doi: 10.1093/biostatistics/kxj011 – volume: 43 start-page: 2622 year: 2024 ident: ref_34 article-title: Distributional imputation for the analysis of censored recurrent events publication-title: Stat. Med. doi: 10.1002/sim.10087 – volume: 35 start-page: e20 year: 2022 ident: ref_54 article-title: A Novel Prognostication System for Spinal Metastasis Patients Based on Network Science and Correlation Analysis publication-title: Clin. Oncol. doi: 10.1016/j.clon.2022.09.054 – volume: 34 start-page: 187 year: 1972 ident: ref_3 article-title: Regression models and life-tables publication-title: J. R. Stat. Soc. doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: ref_10 doi: 10.1186/s12874-023-02078-1 – ident: ref_56 – ident: ref_58 doi: 10.1145/3292500.3330701 – ident: ref_30 doi: 10.1038/s41598-021-86327-7 – ident: ref_14 doi: 10.1007/978-0-387-84858-7 – volume: 53 start-page: 457 year: 1958 ident: ref_4 article-title: Nonparametric estimation from incomplete observations publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1958.10501452 – ident: ref_41 – ident: ref_43 doi: 10.1201/9781003255499 – volume: 18 start-page: 2529 year: 1999 ident: ref_47 article-title: Assessment and comparison of prognostic classification schemes for survival data publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5 – ident: ref_9 doi: 10.3390/inventions9030059 – ident: ref_59 – volume: 21 start-page: 1 year: 2020 ident: ref_6 article-title: Scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn publication-title: J. Mach. Learn. Res. – volume: 6 start-page: 77 year: 2005 ident: ref_31 article-title: Sensitivity analysis for informative censoring in parametric survival models publication-title: Biostatistics doi: 10.1093/biostatistics/kxh019 – volume: 45 start-page: 5 year: 2001 ident: ref_38 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 69 start-page: 553 year: 1982 ident: ref_49 article-title: A class of rank test procedures for censored survival data publication-title: Biometrika doi: 10.1093/biomet/69.3.553 – volume: 17 start-page: 520 year: 2001 ident: ref_50 article-title: Missing value estimation methods for DNA microarrays publication-title: Bioinformatics doi: 10.1093/bioinformatics/17.6.520 – volume: 1 start-page: AIoa2300138 year: 2024 ident: ref_21 article-title: Towards Generalist Biomedical AI publication-title: NEJM AI doi: 10.1056/AIoa2300138 – ident: ref_44 doi: 10.1007/978-1-0716-1418-1 – ident: ref_23 doi: 10.3390/cancers16203527 – ident: ref_40 – volume: 14 start-page: 73 year: 1995 ident: ref_11 article-title: A neural network model for survival data publication-title: Stat. Med. doi: 10.1002/sim.4780140108 – ident: ref_37 – ident: ref_12 doi: 10.1609/aaai.v32i1.11842 – ident: ref_18 – volume: 79 start-page: 230 year: 2021 ident: ref_33 article-title: SMIM: A Unified Framework of Survival Sensitivity Analysis Using Multiple Imputation and Martingale publication-title: Biometrics doi: 10.1111/biom.13555 – ident: ref_20 doi: 10.1117/12.3008751 – ident: ref_25 – ident: ref_17 doi: 10.1007/978-3-030-47426-3_53 – volume: 88 start-page: 457 year: 1993 ident: ref_27 article-title: Survival trees by goodness of split publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476296 – ident: ref_60 doi: 10.1145/2939672.2939778 – volume: 25 start-page: 2088 year: 2016 ident: ref_48 article-title: Summary measure of discrimination in survival models based on cumulative/dynamic time-dependent ROC curves publication-title: Stat. Methods Med. Res. doi: 10.1177/0962280213515571 – ident: ref_15 – volume: 30 start-page: 1105 year: 2011 ident: ref_45 article-title: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data publication-title: Stat. Med. doi: 10.1002/sim.4154 – volume: 15 start-page: 361 year: 1996 ident: ref_46 article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors publication-title: Stat. Med. doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4 – volume: 75 start-page: 117 year: 2022 ident: ref_53 article-title: New, innovative prognosis calculator for patients with metastatic spinal tumors publication-title: Ideggyogy. Sz. doi: 10.18071/isz.75.0117 – ident: ref_36 – volume: 486 start-page: 346 year: 2012 ident: ref_57 article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups publication-title: Nature doi: 10.1038/nature10983 – volume: 64 start-page: 1090 year: 2008 ident: ref_32 article-title: Regression survival analysis with an assumed copula for dependent censoring: A sensitivity analysis approach publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.00986.x |
| SSID | ssj0002794099 |
| Score | 2.307186 |
| Snippet | (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 18 |
| SubjectTerms | Algorithms Clinical outcomes Datasets Deep learning Electronic health records gradient-boosted survival trees Machine learning mixture density networks Neural networks random survival forests Sensitivity analysis Survival analysis |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA7ii76IomJ1SsC9Ftska5NHNxxDmCBzsLeQn4rMOtyG-N97Sbu5veiLr6WU4-6S-6539x1Cbc0h6ncMSyn3PmWe0VTr3KUi88Zr7Usa59aGD8VgzO4nncnGqq_QE1bTA9eKuyFlAVFKiUIDUKHGqjzWyojmgc0vj2TbGRcbydRrLKcJSFxEzUdKIa8PUzJlFgiH-FYEikT9W-hyb1nN1Nenmk43Ak3_EB00CBHf1pIdoR1XHaPHHqSbsVcOj0LLeb3zAa8oRTBAT9wFh3t5U_HnNx4t4Q4AL8LD2C3pcEOk-oyHcWf0_ASN-3dPvUHabENIDUCeRUqoB3RnAmE8HCMLgVt4TwlVZVYQl-fWsZIpDukct16r0sSamRdh-tQCKqWnaLd6r9wZwpYzb4zwVNsOKyzRniuhlYOPaUOFTdD1SkNyVpNeSEgWgh7ljx4T1A3KW78RiKrjAzCfbMwn_zJfglor1cvm9Mwl3DOBI4YzkaD22hy_iHL-H6JcoH0SlvvGBrMW2l18LN0lII6FvorO9Q1xntGj priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvTiAxWjVRbtNdJkN8nm2BZLESpKLdRT2EdWwRpFW0R_vbObxEcPxWvYhGFmdueb7Mw3AC3JMepHivmUG-Mzw6gvZZD7adsoI6VJqOtbG17FgzG7nESTFTite2F-3d9TTMdtc0vStjxBfBXW4gjxdgPWxlfXnTs7NQ5PYN9GxJJ3dOGFP5HGEfL_QZHr8-JFfLyL6fRXQOlvQa8WpawjeTyfz-S5-lxgaVwu6zZsVniSdEoH2IGVvNiFmx4mp66yjoxsgXo5IYLUBCQEgSrpons-PAn3q5yM5nhioM-RoautzElFu3pPhm7C9NsejPsXt72BX81O8BUCpJkfUoNYUFl6edx0GsN8agwNqUjacZgHgc5ZwgTH5I9rI0Wi3A2bSW2vqkYMS_ehUTwX-QEQzZlRKjVU6ojFOpSGi1SKHD8mFU21B2e1nrOXkiIjw9TCqiT7UYkHXWuC7xWW1to9QA1m1S7JwiRGSCLSWCIqpUqLwF2MhpJb6sYg9qBZGzCr9tpbhqeSZZThLPWg9W3UJaIc_m_ZEWyEdtivKzhrQmP2Os-PEYHM5Enlgl8Edddi priority: 102 providerName: Unpaywall |
| Title | Censoring Sensitivity Analysis for Benchmarking Survival Machine Learning Methods |
| URI | https://www.proquest.com/docview/3181693849 https://doi.org/10.3390/sci7010018 https://doaj.org/article/276082a96b7743cda1027842b89b0016 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2413-4155 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794099 issn: 2413-4155 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2413-4155 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794099 issn: 2413-4155 databaseCode: ABDBF dateStart: 20210901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2413-4155 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002794099 issn: 2413-4155 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BOOjFaNSIommi10XWlq07GAMEQ0wgKJLgaemPVQ84UCHG_97XsqFePG5ZmuX1te977XvfB3CpBEb9luYBE9YG3HIWKBVmQdK02iplY-b71gbDqD_hd9PWtALDshfGlVWWe6LfqM1cuzPyK_Q9xxsieHKzeAucapS7XS0lNGQhrWCuPcXYFtSoY8aqQq3TG44eNqcuFN0PMdGap5Rhvu-6Z-KmIyISfyKTJ_D_gzq3V_lCfn3K2exXALrdg90COZL2eqr3oZLlB3DfxTTU19CRsStFX2tBkJJqhCAkJR10xJdX6Q_FyXiFewN6Fxn4KsqMFASrz2TgtaQ_DmFy23vs9oNCJSHQCIWWAWUWUZ92RPK4vAwG9MRaRpmMmxHNwtBkPOZSYJonjFUy1v4uzSauK9UgWmVHUM3neXYMxAhutU4sU6bFI0OVFTJRMsPBlGaJqcNFaaF0sSbDSDGJcHZMf-xYh44z3uYLR2DtX8zfn9NiPaQ0jhB8yCRSiD-ZNjL0V6BUCUfSGEZ1aJSmT4tV9ZH--EAdLjfT8c-vnPw_yinsUCfn60vKGlBdvq-yM8QYS3VeOM65z9HxaTIctZ--AftL1DE |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1RcqCXCkQRodBagh5XZG1n1z6giqREoZCofEncFn_CAZKUJEL5c_y2jp3dABduXFcrazX7bL-xZ94D2NMCd_2m4QkT3ifcc5ZonbpENrzxWvucxb61Xj_rXvE_183rJXiuemFCWWW1JsaF2g5NOCPfR-wF3RDB5a_RvyS4RoXb1cpCQ5XWCvYgSoyVjR0nbvaEKdz44Pg3_u-flHaOLtvdpHQZSAxSiUlCmUfWZIIQO8LT4oYovWeUqbyRUZem1vGcK4FpkrBeq9zEuygvQ1enRbbHcNxPUOOMS0z-aq2j_t_zxSkPRbgjB5vrojImG6FbJ28E4SPxZieMhgFvWO7KdDBSsyd1f_9qw-uswpeSqZLDObTWYMkN1uGsjWlvrNkjF6H0fe49QSppE4IUmLQQ-HcPKh7Ck4sprkWIZtKLVZuOlIKut6QXvavHX-HqQ-K1AcuD4cBtArGCe2OkZ9o2eWap9kJJrRwOpg2Ttg67VYSK0Vx8o8CkJcSxeIljHVoheIs3gmB2fDB8vC3K-VfQPEOyo2Smke8yY1Uar1ypFkEUMs3qsF2Fvihn8bh4wVwd9ha_451P2Xp_lB-w0r3snRanx_2Tb_CZBivhWM62DcuTx6nbQX4z0d9LEBG4-Wjc_gccswvX |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkNpeUFFbNTyKJehxRdZ2du0DQgSIeCWipUjctn7CgSaBJEL8RX4VY8cb4MKN62plrWY_z3xjz3wDsKkFRv2W4RkT3mfcc5ZpnbtMNr3xWvuSxb61bq84vODHl63LOXise2FCWWXtE6OjtgMTzsi3EHtBN0RwueVTWcTZfmdneJuFCVLhprUep6HSmAW7HeXGUpPHiXu4x3RutH20j__-F6Wdg797h1maOJAZpBXjjDKPDMoEUXaEqsXgKL1nlKmyWVCX59bxkiuBKZOwXqvSxHspL0OHp0Xmx3DdD7AQLr_QSSy0D3pnf2YnPhShj3xsqpHKmGyGzp2yGUSQxKuoGIcHvGK8nyb9oXq4Vzc3L4Jf5wssJtZKdqcwW4I51_8Kv_cwBY71e-Q8lMFP51CQWuaEIB0mbdwE1_9VPJAn5xP0S4hs0o0VnI4kcdcr0o1zrEff4OJd7PUd5vuDvvsBxArujZGeadvihaXaCyW1criYNkzaBmzUFqqGUyGOChOYYMfq2Y4NaAfjzd4I4tnxweDuqkp7saJlgcRHyUIj92XGqjxev1ItgkBkXjRgtTZ9lXb0qHrGXwM2Z7_jjU9ZfnuVdfiI-K1Oj3onK_CZhqnCsbJtFebHdxO3hlRnrH8mDBH4996wfQJnZRAG |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvTiAxWjVRbtNdJkN8nm2BZLESpKLdRT2EdWwRpFW0R_vbObxEcPxWvYhGFmdueb7Mw3AC3JMepHivmUG-Mzw6gvZZD7adsoI6VJqOtbG17FgzG7nESTFTite2F-3d9TTMdtc0vStjxBfBXW4gjxdgPWxlfXnTs7NQ5PYN9GxJJ3dOGFP5HGEfL_QZHr8-JFfLyL6fRXQOlvQa8WpawjeTyfz-S5-lxgaVwu6zZsVniSdEoH2IGVvNiFmx4mp66yjoxsgXo5IYLUBCQEgSrpons-PAn3q5yM5nhioM-RoautzElFu3pPhm7C9NsejPsXt72BX81O8BUCpJkfUoNYUFl6edx0GsN8agwNqUjacZgHgc5ZwgTH5I9rI0Wi3A2bSW2vqkYMS_ehUTwX-QEQzZlRKjVU6ojFOpSGi1SKHD8mFU21B2e1nrOXkiIjw9TCqiT7UYkHXWuC7xWW1to9QA1m1S7JwiRGSCLSWCIqpUqLwF2MhpJb6sYg9qBZGzCr9tpbhqeSZZThLPWg9W3UJaIc_m_ZEWyEdtivKzhrQmP2Os-PEYHM5Enlgl8Edddi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Censoring+Sensitivity+Analysis+for+Benchmarking+Survival+Machine+Learning+Methods&rft.jtitle=Sci&rft.au=B%C3%A1skay%2C+J%C3%A1nos&rft.au=Mezei%2C+Tam%C3%A1s&rft.au=Banczerowski%2C+P%C3%A9ter&rft.au=Horv%C3%A1th%2C+Anna&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2413-4155&rft.volume=7&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Fsci7010018&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2413-4155&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2413-4155&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2413-4155&client=summon |