Censoring Sensitivity Analysis for Benchmarking Survival Machine Learning Methods

(1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model...

Full description

Saved in:
Bibliographic Details
Published inSci Vol. 7; no. 1; p. 18
Main Authors Báskay, János, Mezei, Tamás, Banczerowski, Péter, Horváth, Anna, Joó, Tamás, Pollner, Péter
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2025
Subjects
Online AccessGet full text
ISSN2413-4155
2413-4155
DOI10.3390/sci7010018

Cover

Abstract (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model robustness under varying censoring conditions. This limitation creates uncertainty about model reliability in real-world applications where censoring patterns may differ from training data. We address this gap by introducing a systematic benchmarking methodology focused on censoring sensitivity. (2) Methods: We developed a benchmarking framework that assesses survival models through controlled modification of censoring conditions. Five models were evaluated: Cox proportional hazards, survival tree, random survival forest, gradient-boosted survival analysis, and mixture density networks. The framework systematically reduced observation periods and increased censoring rates while measuring performance through multiple metrics following Bayesian hyperparameter optimization. (3) Results: Model performance showed greater sensitivity to increased censoring rates than to reduced observation periods. Non-linear models, especially mixture density networks, exhibited higher vulnerability to data quality degradation. Statistical comparisons became increasingly challenging with higher censoring rates due to widened confidence intervals. (4) Conclusions: Our methodology provides a new standard for evaluating survival analysis models, revealing the critical impact of censoring on model performance. These findings offer practical guidance for model selection and development in clinical applications, emphasizing the importance of robust censoring handling strategies.
AbstractList (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some subjects. While established methodologies exist for validating standard machine learning models, current benchmarking approaches rarely assess model robustness under varying censoring conditions. This limitation creates uncertainty about model reliability in real-world applications where censoring patterns may differ from training data. We address this gap by introducing a systematic benchmarking methodology focused on censoring sensitivity. (2) Methods: We developed a benchmarking framework that assesses survival models through controlled modification of censoring conditions. Five models were evaluated: Cox proportional hazards, survival tree, random survival forest, gradient-boosted survival analysis, and mixture density networks. The framework systematically reduced observation periods and increased censoring rates while measuring performance through multiple metrics following Bayesian hyperparameter optimization. (3) Results: Model performance showed greater sensitivity to increased censoring rates than to reduced observation periods. Non-linear models, especially mixture density networks, exhibited higher vulnerability to data quality degradation. Statistical comparisons became increasingly challenging with higher censoring rates due to widened confidence intervals. (4) Conclusions: Our methodology provides a new standard for evaluating survival analysis models, revealing the critical impact of censoring on model performance. These findings offer practical guidance for model selection and development in clinical applications, emphasizing the importance of robust censoring handling strategies.
Author Pollner, Péter
Horváth, Anna
Banczerowski, Péter
Báskay, János
Mezei, Tamás
Joó, Tamás
Author_xml – sequence: 1
  givenname: János
  orcidid: 0000-0002-2841-3021
  surname: Báskay
  fullname: Báskay, János
– sequence: 2
  givenname: Tamás
  orcidid: 0000-0002-0848-1182
  surname: Mezei
  fullname: Mezei, Tamás
– sequence: 3
  givenname: Péter
  orcidid: 0000-0003-2144-5298
  surname: Banczerowski
  fullname: Banczerowski, Péter
– sequence: 4
  givenname: Anna
  orcidid: 0000-0003-3229-5643
  surname: Horváth
  fullname: Horváth, Anna
– sequence: 5
  givenname: Tamás
  orcidid: 0000-0002-3551-6125
  surname: Joó
  fullname: Joó, Tamás
– sequence: 6
  givenname: Péter
  orcidid: 0000-0003-0464-4893
  surname: Pollner
  fullname: Pollner, Péter
BookMark eNp9kMFOGzEQQC0EEinNpV-wUm9UgRnbWdtHGtE2UhBC0LPleL2Jw9ZO7U2q_H2dBAEnTh7ZT0-e94mchhgcIV8QrhhTcJ2tF4AAKE_IgHJkI47j8em7-ZwMc14BABWKg1ID8jBxIcfkw6J6LJPv_db3u-ommG6Xfa7amKrvLtjlH5OeD9Qmbf3WdNWdsUsfXDVzJoX9y53rl7HJn8lZa7rshi_nBfn94_Zp8ms0u_85ndzMRpZT1o8oa0GCZbUcI2BDAVXbMsqMgJo6xMZxwY1EELJp50ZYpGWNVgGvaSOxYRdkevQ20az0Ovnyw52OxuvDRUwLbVLvbec0FTVIalQ9F4Iz2xgsASSnc6nmJVddXN-Ork1Ym90_03WvQgS9j6vf4hb665Fep_h343KvV3GTSrGsGUqsFZNcFerySNkUc06u_Uj5H-PLhfs
Cites_doi 10.1007/s10462-023-10681-3
10.1145/3534678.3539110
10.1109/JBHI.2021.3052441
10.1145/3214306
10.1002/9781118032985
10.1145/3583780.3614824
10.1007/978-3-030-86340-1_15
10.1214/08-AOAS169
10.1177/09622802221090763
10.1016/j.inffus.2021.11.011
10.1186/s12874-018-0482-1
10.1093/biostatistics/kxj011
10.1002/sim.10087
10.1016/j.clon.2022.09.054
10.1111/j.2517-6161.1972.tb00899.x
10.1186/s12874-023-02078-1
10.1145/3292500.3330701
10.1038/s41598-021-86327-7
10.1007/978-0-387-84858-7
10.1080/01621459.1958.10501452
10.1201/9781003255499
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.3390/inventions9030059
10.1093/biostatistics/kxh019
10.1023/A:1010933404324
10.1093/biomet/69.3.553
10.1093/bioinformatics/17.6.520
10.1056/AIoa2300138
10.1007/978-1-0716-1418-1
10.3390/cancers16203527
10.1002/sim.4780140108
10.1609/aaai.v32i1.11842
10.1111/biom.13555
10.1117/12.3008751
10.1007/978-3-030-47426-3_53
10.1080/01621459.1993.10476296
10.1145/2939672.2939778
10.1177/0962280213515571
10.1002/sim.4154
10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
10.18071/isz.75.0117
10.1038/nature10983
10.1111/j.1541-0420.2008.00986.x
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/sci7010018
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2413-4155
ExternalDocumentID oai_doaj_org_article_276082a96b7743cda1027842b89b0016
10.3390/sci7010018
10_3390_sci7010018
GroupedDBID 88I
AADQD
AAYXX
ABDBF
ABUWG
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IGS
ISR
ITC
M2P
MODMG
OK1
PHGZM
PHGZT
PIMPY
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c423t-23f080c3685101d2019ff323a7062e11de474a81078dfba7c12241f90462d81d3
IEDL.DBID BENPR
ISSN 2413-4155
IngestDate Fri Oct 03 12:40:27 EDT 2025
Sun Sep 07 11:19:52 EDT 2025
Mon Jun 30 12:05:39 EDT 2025
Thu Oct 16 04:40:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-23f080c3685101d2019ff323a7062e11de474a81078dfba7c12241f90462d81d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3229-5643
0000-0002-3551-6125
0000-0003-0464-4893
0000-0002-2841-3021
0000-0003-2144-5298
0000-0002-0848-1182
OpenAccessLink https://www.proquest.com/docview/3181693849?pq-origsite=%requestingapplication%&accountid=15518
PQID 3181693849
PQPubID 5046859
ParticipantIDs doaj_primary_oai_doaj_org_article_276082a96b7743cda1027842b89b0016
unpaywall_primary_10_3390_sci7010018
proquest_journals_3181693849
crossref_primary_10_3390_sci7010018
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sci
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kaplan (ref_4) 1958; 53
ref_14
Hothorn (ref_29) 2006; 7
ref_58
ref_13
ref_12
ref_56
ref_55
ref_10
Mezei (ref_54) 2022; 35
ref_52
Leblanc (ref_27) 1993; 88
Su (ref_35) 2022; 31
ref_18
ref_17
ref_16
ref_15
ref_59
Lambert (ref_48) 2016; 25
Curtis (ref_57) 2012; 486
ref_60
Mezei (ref_53) 2022; 75
Harrington (ref_49) 1982; 69
ref_25
ref_23
ref_22
ref_20
Nagpal (ref_8) 2021; 25
Wang (ref_1) 2019; 51
Faraggi (ref_11) 1995; 14
ref_26
Cox (ref_3) 1972; 34
Fairfax (ref_34) 2024; 43
Troyanskaya (ref_50) 2001; 17
Wiegrebe (ref_2) 2024; 57
Huang (ref_32) 2008; 64
ref_36
Jung (ref_19) 2021; Volume 149
ref_30
(ref_6) 2020; 21
Pedregosa (ref_51) 2011; 12
Harrell (ref_46) 1996; 15
ref_39
Siannis (ref_31) 2005; 6
ref_37
Armon (ref_24) 2022; 81
Ishwaran (ref_28) 2008; 2
Breiman (ref_38) 2001; 45
ref_44
ref_43
ref_42
Uno (ref_45) 2011; 30
ref_41
Graf (ref_47) 1999; 18
Yang (ref_33) 2021; 79
ref_40
ref_9
ref_5
ref_7
Tu (ref_21) 2024; 1
References_xml – volume: 57
  start-page: 65
  year: 2024
  ident: ref_2
  article-title: Deep learning for survival analysis: A review
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10681-3
– ident: ref_52
  doi: 10.1145/3534678.3539110
– volume: 25
  start-page: 3163
  year: 2021
  ident: ref_8
  article-title: Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data With Competing Risks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3052441
– volume: 51
  start-page: 110
  year: 2019
  ident: ref_1
  article-title: Machine Learning for Survival Analysis: A Survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3214306
– ident: ref_5
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_51
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_55
  doi: 10.1002/9781118032985
– ident: ref_26
– ident: ref_22
  doi: 10.1145/3583780.3614824
– ident: ref_7
  doi: 10.1007/978-3-030-86340-1_15
– volume: 2
  start-page: 841
  year: 2008
  ident: ref_28
  article-title: Random survival forests
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS169
– ident: ref_16
– volume: Volume 149
  start-page: 674
  year: 2021
  ident: ref_19
  article-title: Deep Cox Mixtures for Survival Regression
  publication-title: Proceedings of the 6th Machine Learning for Healthcare Conference, Virtual, 6–7 August 2021
– volume: 31
  start-page: 1374
  year: 2022
  ident: ref_35
  article-title: Sensitivity analysis for calibrated inverse probability-of-censoring weighted estimators under non-ignorable dropout
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/09622802221090763
– ident: ref_39
– volume: 81
  start-page: 84
  year: 2022
  ident: ref_24
  article-title: Tabular data: Deep learning is not all you need
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.11.011
– ident: ref_42
– ident: ref_13
  doi: 10.1186/s12874-018-0482-1
– volume: 7
  start-page: 355
  year: 2006
  ident: ref_29
  article-title: Survival ensembles
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxj011
– volume: 43
  start-page: 2622
  year: 2024
  ident: ref_34
  article-title: Distributional imputation for the analysis of censored recurrent events
  publication-title: Stat. Med.
  doi: 10.1002/sim.10087
– volume: 35
  start-page: e20
  year: 2022
  ident: ref_54
  article-title: A Novel Prognostication System for Spinal Metastasis Patients Based on Network Science and Correlation Analysis
  publication-title: Clin. Oncol.
  doi: 10.1016/j.clon.2022.09.054
– volume: 34
  start-page: 187
  year: 1972
  ident: ref_3
  article-title: Regression models and life-tables
  publication-title: J. R. Stat. Soc.
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: ref_10
  doi: 10.1186/s12874-023-02078-1
– ident: ref_56
– ident: ref_58
  doi: 10.1145/3292500.3330701
– ident: ref_30
  doi: 10.1038/s41598-021-86327-7
– ident: ref_14
  doi: 10.1007/978-0-387-84858-7
– volume: 53
  start-page: 457
  year: 1958
  ident: ref_4
  article-title: Nonparametric estimation from incomplete observations
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1958.10501452
– ident: ref_41
– ident: ref_43
  doi: 10.1201/9781003255499
– volume: 18
  start-page: 2529
  year: 1999
  ident: ref_47
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– ident: ref_9
  doi: 10.3390/inventions9030059
– ident: ref_59
– volume: 21
  start-page: 1
  year: 2020
  ident: ref_6
  article-title: Scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn
  publication-title: J. Mach. Learn. Res.
– volume: 6
  start-page: 77
  year: 2005
  ident: ref_31
  article-title: Sensitivity analysis for informative censoring in parametric survival models
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxh019
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_38
  article-title: Random Forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 69
  start-page: 553
  year: 1982
  ident: ref_49
  article-title: A class of rank test procedures for censored survival data
  publication-title: Biometrika
  doi: 10.1093/biomet/69.3.553
– volume: 17
  start-page: 520
  year: 2001
  ident: ref_50
  article-title: Missing value estimation methods for DNA microarrays
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/17.6.520
– volume: 1
  start-page: AIoa2300138
  year: 2024
  ident: ref_21
  article-title: Towards Generalist Biomedical AI
  publication-title: NEJM AI
  doi: 10.1056/AIoa2300138
– ident: ref_44
  doi: 10.1007/978-1-0716-1418-1
– ident: ref_23
  doi: 10.3390/cancers16203527
– ident: ref_40
– volume: 14
  start-page: 73
  year: 1995
  ident: ref_11
  article-title: A neural network model for survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4780140108
– ident: ref_37
– ident: ref_12
  doi: 10.1609/aaai.v32i1.11842
– ident: ref_18
– volume: 79
  start-page: 230
  year: 2021
  ident: ref_33
  article-title: SMIM: A Unified Framework of Survival Sensitivity Analysis Using Multiple Imputation and Martingale
  publication-title: Biometrics
  doi: 10.1111/biom.13555
– ident: ref_20
  doi: 10.1117/12.3008751
– ident: ref_25
– ident: ref_17
  doi: 10.1007/978-3-030-47426-3_53
– volume: 88
  start-page: 457
  year: 1993
  ident: ref_27
  article-title: Survival trees by goodness of split
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476296
– ident: ref_60
  doi: 10.1145/2939672.2939778
– volume: 25
  start-page: 2088
  year: 2016
  ident: ref_48
  article-title: Summary measure of discrimination in survival models based on cumulative/dynamic time-dependent ROC curves
  publication-title: Stat. Methods Med. Res.
  doi: 10.1177/0962280213515571
– ident: ref_15
– volume: 30
  start-page: 1105
  year: 2011
  ident: ref_45
  article-title: On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data
  publication-title: Stat. Med.
  doi: 10.1002/sim.4154
– volume: 15
  start-page: 361
  year: 1996
  ident: ref_46
  article-title: Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
– volume: 75
  start-page: 117
  year: 2022
  ident: ref_53
  article-title: New, innovative prognosis calculator for patients with metastatic spinal tumors
  publication-title: Ideggyogy. Sz.
  doi: 10.18071/isz.75.0117
– ident: ref_36
– volume: 486
  start-page: 346
  year: 2012
  ident: ref_57
  article-title: The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups
  publication-title: Nature
  doi: 10.1038/nature10983
– volume: 64
  start-page: 1090
  year: 2008
  ident: ref_32
  article-title: Regression survival analysis with an assumed copula for dependent censoring: A sensitivity analysis approach
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.00986.x
SSID ssj0002794099
Score 2.307186
Snippet (1) Background: Survival analysis models in clinical research must effectively handle censored data, where complete survival times are unknown for some...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 18
SubjectTerms Algorithms
Clinical outcomes
Datasets
Deep learning
Electronic health records
gradient-boosted survival trees
Machine learning
mixture density networks
Neural networks
random survival forests
Sensitivity analysis
Survival analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fS8MwEA7ii76IomJ1SsC9Ftska5NHNxxDmCBzsLeQn4rMOtyG-N97Sbu5veiLr6WU4-6S-6539x1Cbc0h6ncMSyn3PmWe0VTr3KUi88Zr7Usa59aGD8VgzO4nncnGqq_QE1bTA9eKuyFlAVFKiUIDUKHGqjzWyojmgc0vj2TbGRcbydRrLKcJSFxEzUdKIa8PUzJlFgiH-FYEikT9W-hyb1nN1Nenmk43Ak3_EB00CBHf1pIdoR1XHaPHHqSbsVcOj0LLeb3zAa8oRTBAT9wFh3t5U_HnNx4t4Q4AL8LD2C3pcEOk-oyHcWf0_ASN-3dPvUHabENIDUCeRUqoB3RnAmE8HCMLgVt4TwlVZVYQl-fWsZIpDukct16r0sSamRdh-tQCKqWnaLd6r9wZwpYzb4zwVNsOKyzRniuhlYOPaUOFTdD1SkNyVpNeSEgWgh7ljx4T1A3KW78RiKrjAzCfbMwn_zJfglor1cvm9Mwl3DOBI4YzkaD22hy_iHL-H6JcoH0SlvvGBrMW2l18LN0lII6FvorO9Q1xntGj
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvTiAxWjVRbtNdJkN8nm2BZLESpKLdRT2EdWwRpFW0R_vbObxEcPxWvYhGFmdueb7Mw3AC3JMepHivmUG-Mzw6gvZZD7adsoI6VJqOtbG17FgzG7nESTFTite2F-3d9TTMdtc0vStjxBfBXW4gjxdgPWxlfXnTs7NQ5PYN9GxJJ3dOGFP5HGEfL_QZHr8-JFfLyL6fRXQOlvQa8WpawjeTyfz-S5-lxgaVwu6zZsVniSdEoH2IGVvNiFmx4mp66yjoxsgXo5IYLUBCQEgSrpons-PAn3q5yM5nhioM-RoautzElFu3pPhm7C9NsejPsXt72BX81O8BUCpJkfUoNYUFl6edx0GsN8agwNqUjacZgHgc5ZwgTH5I9rI0Wi3A2bSW2vqkYMS_ehUTwX-QEQzZlRKjVU6ojFOpSGi1SKHD8mFU21B2e1nrOXkiIjw9TCqiT7UYkHXWuC7xWW1to9QA1m1S7JwiRGSCLSWCIqpUqLwF2MhpJb6sYg9qBZGzCr9tpbhqeSZZThLPWg9W3UJaIc_m_ZEWyEdtivKzhrQmP2Os-PEYHM5Enlgl8Edddi
  priority: 102
  providerName: Unpaywall
Title Censoring Sensitivity Analysis for Benchmarking Survival Machine Learning Methods
URI https://www.proquest.com/docview/3181693849
https://doi.org/10.3390/sci7010018
https://doaj.org/article/276082a96b7743cda1027842b89b0016
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2413-4155
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794099
  issn: 2413-4155
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2413-4155
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794099
  issn: 2413-4155
  databaseCode: ABDBF
  dateStart: 20210901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2413-4155
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002794099
  issn: 2413-4155
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFH5BOOjFaNSIommi10XWlq07GAMEQ0wgKJLgaemPVQ84UCHG_97XsqFePG5ZmuX1te977XvfB3CpBEb9luYBE9YG3HIWKBVmQdK02iplY-b71gbDqD_hd9PWtALDshfGlVWWe6LfqM1cuzPyK_Q9xxsieHKzeAucapS7XS0lNGQhrWCuPcXYFtSoY8aqQq3TG44eNqcuFN0PMdGap5Rhvu-6Z-KmIyISfyKTJ_D_gzq3V_lCfn3K2exXALrdg90COZL2eqr3oZLlB3DfxTTU19CRsStFX2tBkJJqhCAkJR10xJdX6Q_FyXiFewN6Fxn4KsqMFASrz2TgtaQ_DmFy23vs9oNCJSHQCIWWAWUWUZ92RPK4vAwG9MRaRpmMmxHNwtBkPOZSYJonjFUy1v4uzSauK9UgWmVHUM3neXYMxAhutU4sU6bFI0OVFTJRMsPBlGaJqcNFaaF0sSbDSDGJcHZMf-xYh44z3uYLR2DtX8zfn9NiPaQ0jhB8yCRSiD-ZNjL0V6BUCUfSGEZ1aJSmT4tV9ZH--EAdLjfT8c-vnPw_yinsUCfn60vKGlBdvq-yM8QYS3VeOM65z9HxaTIctZ--AftL1DE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NTxsxEB1RcqCXCkQRodBagh5XZG1n1z6giqREoZCofEncFn_CAZKUJEL5c_y2jp3dABduXFcrazX7bL-xZ94D2NMCd_2m4QkT3ifcc5ZonbpENrzxWvucxb61Xj_rXvE_183rJXiuemFCWWW1JsaF2g5NOCPfR-wF3RDB5a_RvyS4RoXb1cpCQ5XWCvYgSoyVjR0nbvaEKdz44Pg3_u-flHaOLtvdpHQZSAxSiUlCmUfWZIIQO8LT4oYovWeUqbyRUZem1vGcK4FpkrBeq9zEuygvQ1enRbbHcNxPUOOMS0z-aq2j_t_zxSkPRbgjB5vrojImG6FbJ28E4SPxZieMhgFvWO7KdDBSsyd1f_9qw-uswpeSqZLDObTWYMkN1uGsjWlvrNkjF6H0fe49QSppE4IUmLQQ-HcPKh7Ck4sprkWIZtKLVZuOlIKut6QXvavHX-HqQ-K1AcuD4cBtArGCe2OkZ9o2eWap9kJJrRwOpg2Ttg67VYSK0Vx8o8CkJcSxeIljHVoheIs3gmB2fDB8vC3K-VfQPEOyo2Smke8yY1Uar1ypFkEUMs3qsF2Fvihn8bh4wVwd9ha_451P2Xp_lB-w0r3snRanx_2Tb_CZBivhWM62DcuTx6nbQX4z0d9LEBG4-Wjc_gccswvX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxEB5RkNpeUFFbNTyKJehxRdZ2du0DQgSIeCWipUjctn7CgSaBJEL8RX4VY8cb4MKN62plrWY_z3xjz3wDsKkFRv2W4RkT3mfcc5ZpnbtMNr3xWvuSxb61bq84vODHl63LOXise2FCWWXtE6OjtgMTzsi3EHtBN0RwueVTWcTZfmdneJuFCVLhprUep6HSmAW7HeXGUpPHiXu4x3RutH20j__-F6Wdg797h1maOJAZpBXjjDKPDMoEUXaEqsXgKL1nlKmyWVCX59bxkiuBKZOwXqvSxHspL0OHp0Xmx3DdD7AQLr_QSSy0D3pnf2YnPhShj3xsqpHKmGyGzp2yGUSQxKuoGIcHvGK8nyb9oXq4Vzc3L4Jf5wssJtZKdqcwW4I51_8Kv_cwBY71e-Q8lMFP51CQWuaEIB0mbdwE1_9VPJAn5xP0S4hs0o0VnI4kcdcr0o1zrEff4OJd7PUd5vuDvvsBxArujZGeadvihaXaCyW1criYNkzaBmzUFqqGUyGOChOYYMfq2Y4NaAfjzd4I4tnxweDuqkp7saJlgcRHyUIj92XGqjxev1ItgkBkXjRgtTZ9lXb0qHrGXwM2Z7_jjU9ZfnuVdfiI-K1Oj3onK_CZhqnCsbJtFebHdxO3hlRnrH8mDBH4996wfQJnZRAG
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB60HvTiAxWjVRbtNdJkN8nm2BZLESpKLdRT2EdWwRpFW0R_vbObxEcPxWvYhGFmdueb7Mw3AC3JMepHivmUG-Mzw6gvZZD7adsoI6VJqOtbG17FgzG7nESTFTite2F-3d9TTMdtc0vStjxBfBXW4gjxdgPWxlfXnTs7NQ5PYN9GxJJ3dOGFP5HGEfL_QZHr8-JFfLyL6fRXQOlvQa8WpawjeTyfz-S5-lxgaVwu6zZsVniSdEoH2IGVvNiFmx4mp66yjoxsgXo5IYLUBCQEgSrpons-PAn3q5yM5nhioM-RoautzElFu3pPhm7C9NsejPsXt72BX81O8BUCpJkfUoNYUFl6edx0GsN8agwNqUjacZgHgc5ZwgTH5I9rI0Wi3A2bSW2vqkYMS_ehUTwX-QEQzZlRKjVU6ojFOpSGi1SKHD8mFU21B2e1nrOXkiIjw9TCqiT7UYkHXWuC7xWW1to9QA1m1S7JwiRGSCLSWCIqpUqLwF2MhpJb6sYg9qBZGzCr9tpbhqeSZZThLPWg9W3UJaIc_m_ZEWyEdtivKzhrQmP2Os-PEYHM5Enlgl8Edddi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Censoring+Sensitivity+Analysis+for+Benchmarking+Survival+Machine+Learning+Methods&rft.jtitle=Sci&rft.au=B%C3%A1skay%2C+J%C3%A1nos&rft.au=Mezei%2C+Tam%C3%A1s&rft.au=Banczerowski%2C+P%C3%A9ter&rft.au=Horv%C3%A1th%2C+Anna&rft.date=2025-03-01&rft.pub=MDPI+AG&rft.eissn=2413-4155&rft.volume=7&rft.issue=1&rft.spage=18&rft_id=info:doi/10.3390%2Fsci7010018&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2413-4155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2413-4155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2413-4155&client=summon