BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes
Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets w...
Saved in:
| Published in | Chemometrics and intelligent laboratory systems Vol. 185; pp. 122 - 134 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Netherlands
Elsevier B.V
15.02.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-7439 1873-3239 |
| DOI | 10.1016/j.chemolab.2019.01.002 |
Cover
| Abstract | Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings.
•There is no random forest method available for clustered binary outcomes.•We propose a random forest method to accommodate clustered and longitudinal outcomes called Binary Mixed Model (BiMM) forest.•Accuracy of BiMM forest is slightly higher or comparable to existing methods for predicting outcome of new subjects.•Accuracy of BiMM forest is often higher for predicting outcome of new training data observations compared to other methods. |
|---|---|
| AbstractList | Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings. Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings.Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings. Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings. •There is no random forest method available for clustered binary outcomes.•We propose a random forest method to accommodate clustered and longitudinal outcomes called Binary Mixed Model (BiMM) forest.•Accuracy of BiMM forest is slightly higher or comparable to existing methods for predicting outcome of new subjects.•Accuracy of BiMM forest is often higher for predicting outcome of new training data observations compared to other methods. |
| Author | Koch, David G. Speiser, Jaime Lynn Wolf, Bethany J. Chung, Dongjun Karvellas, Constantine J. Durkalski, Valerie L. |
| AuthorAffiliation | 3 Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada 1 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC 2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 4 Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC |
| AuthorAffiliation_xml | – name: 1 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC – name: 3 Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada – name: 2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC – name: 4 Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC |
| Author_xml | – sequence: 1 givenname: Jaime Lynn surname: Speiser fullname: Speiser, Jaime Lynn email: jspeiser@wakehealth.edu organization: Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA – sequence: 2 givenname: Bethany J. surname: Wolf fullname: Wolf, Bethany J. organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA – sequence: 3 givenname: Dongjun orcidid: 0000-0002-8072-5671 surname: Chung fullname: Chung, Dongjun organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA – sequence: 4 givenname: Constantine J. orcidid: 0000-0002-1555-1089 surname: Karvellas fullname: Karvellas, Constantine J. organization: Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada – sequence: 5 givenname: David G. surname: Koch fullname: Koch, David G. organization: Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA – sequence: 6 givenname: Valerie L. surname: Durkalski fullname: Durkalski, Valerie L. organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31656362$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtv1DAQtlAR3Rb-QuUjlwQ_skmMEKJUhSK14gInDlZsT3a9cuxiO5X493W0uwh66cWjsb_HeL4zdOKDB4QuKKkpoe27Xa23MAU3qJoRKmpCa0LYC7Sifccrzrg4QasCFFXXcHGKzlLakaVv6Ct0ymm7bnnLVujXZ3t3h8cQIeX3-BLHwZswHS7wBHkbzNLhKRhw1m-wdnPKEMHgAsUu-I3Ns7F-cFiVM_7BYc46TJBeo5fj4BK8OdRz9PPL9Y-rm-r2-9dvV5e3lW4YzxUtwzLGqCZUac2g463QnHBl9MgpqEapNRgOY89NI1qh2r6UhioCIx8Hws_Rx73u_awmMBp8joOT99FOZRwZBiv_f_F2KzfhQbY95Z1oisDbg0AMv-fycTnZpMG5wUOYk2SciJ6uO9EV6MW_Xn9NjhstgA97gI4hpQij1DYP2YbF2jpJiVwClDt5DFAuAUpCZQmw0Nsn9KPDs8RPeyKUTT9YiDJpC16DsRF0libY5yQeAfVfuyE |
| CitedBy_id | crossref_primary_10_1016_j_jbi_2021_103763 crossref_primary_10_3390_rs14236068 crossref_primary_10_1080_23737484_2023_2278112 crossref_primary_10_1080_02664763_2021_1907840 crossref_primary_10_1002_adem_202201493 crossref_primary_10_3390_su13169304 crossref_primary_10_1007_s00542_019_04566_1 crossref_primary_10_1371_journal_pone_0255977 crossref_primary_10_1080_03610918_2020_1801729 crossref_primary_10_1109_TPAMI_2022_3168152 crossref_primary_10_1016_j_cmpb_2019_04_012 crossref_primary_10_1017_S1360674319000133 crossref_primary_10_1111_acps_13765 crossref_primary_10_1142_S0217751X22502190 crossref_primary_10_1007_s11042_022_12991_0 crossref_primary_10_1007_s11525_025_09435_4 crossref_primary_10_1186_s12911_021_01731_3 crossref_primary_10_1093_gerona_glab269 crossref_primary_10_47172_2965_730X_SDGsReview_v5_n02_pe03885 crossref_primary_10_1002_asi_24718 crossref_primary_10_1080_03610926_2025_2477289 crossref_primary_10_1177_07334648241270052 crossref_primary_10_13005_ojcst12_04_04 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1017_cts_2020_513 crossref_primary_10_1177_0013164421992818 crossref_primary_10_1093_bib_bbad002 crossref_primary_10_3390_su142416654 crossref_primary_10_1155_2022_3682194 crossref_primary_10_1038_s41598_022_19281_7 crossref_primary_10_1080_21680566_2021_1997672 crossref_primary_10_1080_01605682_2022_2118630 crossref_primary_10_1177_00131644221108180 crossref_primary_10_1155_2021_5572781 crossref_primary_10_1016_j_yebeh_2025_110284 |
| Cites_doi | 10.1023/A:1010933404324 10.1016/j.csda.2009.04.003 10.1016/j.spl.2010.12.003 10.1016/j.csda.2015.02.004 10.1007/s10994-011-5258-3 10.1214/088342304000000305 10.1080/01621459.1992.10475220 10.1016/j.csda.2004.07.003 10.1007/s11222-012-9349-1 10.1002/asm.3150070203 10.1093/biostatistics/kxp053 10.1093/pan/mpi009 10.1016/0016-5085(89)90081-4 10.1002/hep.510290309 10.1016/S0140-6736(02)07743-7 10.1214/12-AOAS596 10.1080/00949655.2012.741599 10.1002/sim.6351 10.1002/sim.1266 10.1080/10618600.1999.10474847 10.1002/hep.22177 10.1371/journal.pone.0122929 10.1016/j.cgh.2016.03.046 10.1016/j.spl.2017.02.033 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION NPM 7X8 5PM |
| DOI | 10.1016/j.chemolab.2019.01.002 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1873-3239 |
| EndPage | 134 |
| ExternalDocumentID | PMC6813794 31656362 10_1016_j_chemolab_2019_01_002 S0169743918304362 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCATS NIH HHS grantid: TL1 TR001451 – fundername: NIGMS NIH HHS grantid: R01 GM122078 – fundername: NCATS NIH HHS grantid: KL2 TR001421 – fundername: NIDDK NIH HHS grantid: U01 DK058369 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABAOU ABFRF ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCH SDF SDG SDP SES SPC SPCBC SSK SSW SSZ T5K UNMZH YK3 ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HMU HVGLF HZ~ R2- SCB SEW WUQ XPP ~HD AFXIZ AGCQF AGRNS NPM SSH 7X8 5PM |
| ID | FETCH-LOGICAL-c423t-12392221c01bcc2e7369c303bdcf31eb4bb5ed3ef83d4969b6849641b0ef3fa03 |
| IEDL.DBID | .~1 |
| ISSN | 0169-7439 |
| IngestDate | Tue Sep 30 16:41:08 EDT 2025 Thu Oct 02 10:39:32 EDT 2025 Mon Jul 21 06:04:36 EDT 2025 Thu Oct 02 04:31:28 EDT 2025 Thu Apr 24 23:01:24 EDT 2025 Fri Feb 23 02:33:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Clustered data Mixed effects Random forest Longitudinal data clustered data mixed effects random forest longitudinal data |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c423t-12392221c01bcc2e7369c303bdcf31eb4bb5ed3ef83d4969b6849641b0ef3fa03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8072-5671 0000-0002-1555-1089 |
| PMID | 31656362 |
| PQID | 2309815797 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813794 proquest_miscellaneous_2309815797 pubmed_primary_31656362 crossref_citationtrail_10_1016_j_chemolab_2019_01_002 crossref_primary_10_1016_j_chemolab_2019_01_002 elsevier_sciencedirect_doi_10_1016_j_chemolab_2019_01_002 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-02-15 |
| PublicationDateYYYYMMDD | 2019-02-15 |
| PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands |
| PublicationTitle | Chemometrics and intelligent laboratory systems |
| PublicationTitleAlternate | Chemometr Intell Lab Syst |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hapfelmeier, Hothorn, Ulm, Strobl (bib41) 2014; 24 R Development Core Team (bib30) 2008 Speiser, Durkalski, Lee (bib35) 2015; 34 Gelman, Jakulin, Pittau, Su (bib24) 2008 Liaw, Weiner (bib31) 2002; 2 Ciampi (bib18) 1993 Zorn (bib25) 2005; 13 Fokkema, Smits, Zeileis, Hothorn, Kelderman (bib21) 2015 Sela, Simonoff (bib13) 2012; 86 Clemmesen, Larsen, Kondrup (bib39) 1999; 29 Speiser, Lee, Karvellas (bib32) 2015; 10 Dorie, blme (bib29) 2013 Abdolell, LeBlanc, Stephens, Harrison (bib6) 2002; 21 Segal (bib12) 1992; 87 Fernández-Delgado, Cernadas, Barro, Amorim (bib4) 2014; 15 Hajjem, Bellavance, Larocque (bib16) 2014; 84 Bates (bib23) 2009 Breiman (bib2) 2001; 45 Hastie, Tibshirani, Friedman, Hastie, Friedman, Tibshirani (bib3) 2009 Ciampi, Lin, Yousif (bib19) 1990 Yu, Lambert (bib14) 1999; 8 De'Ath (bib7) 2002; 83 Keon Lee (bib10) 2005; 49 Bates, Maechler, Bolker, Walker, Christensen, Singmann, Dai, Grothendieck (bib27) 2015 Ciampi, Lou, Lin, Negassa (bib20) 1991; 7 Bernal, Donaldson, Wyncoll, Wendon (bib38) 2002; 359 Hajjem, Larocque, Bellavance (bib17) 2017; 126 Fong, Rue, Wakefield (bib28) 2010; 11 Speiser, Wolf, Chung, Karvellas, Koch, Durkalski (bib1) 2018 Fu, Simonoff (bib40) 2015; 88 Lee, Squires, Nyberg, Doo, Hoofnagle (bib5) 2008; 47 Lee, Nelder (bib36) 2004; 19 Dorie (bib26) 2014 Breiman, Friedman, Olshen, Stone (bib22) 1984 Dine, Larocque, Bellavance (bib8) 2009; 53 Hajjem, Bellavance, Larocque (bib9) 2011; 81 Wu, Zhang (bib15) 2006 S.A. Mistler, A SAS Macro for Applying Multiple Imputation to Multilevel Data. O'Grady, Alexander, Hayllar, Williams (bib37) 1989; 97 Koch, Tillman, Durkalski, Lee, Reuben (bib34) 2016 Loh, Zheng (bib11) 2013; 7 Loh (10.1016/j.chemolab.2019.01.002_bib11) 2013; 7 Breiman (10.1016/j.chemolab.2019.01.002_bib22) 1984 Speiser (10.1016/j.chemolab.2019.01.002_bib35) 2015; 34 Ciampi (10.1016/j.chemolab.2019.01.002_bib18) 1993 Gelman (10.1016/j.chemolab.2019.01.002_bib24) 2008 R Development Core Team (10.1016/j.chemolab.2019.01.002_bib30) 2008 Sela (10.1016/j.chemolab.2019.01.002_bib13) 2012; 86 Fernández-Delgado (10.1016/j.chemolab.2019.01.002_bib4) 2014; 15 Wu (10.1016/j.chemolab.2019.01.002_bib15) 2006 10.1016/j.chemolab.2019.01.002_bib33 Keon Lee (10.1016/j.chemolab.2019.01.002_bib10) 2005; 49 Fong (10.1016/j.chemolab.2019.01.002_bib28) 2010; 11 Fokkema (10.1016/j.chemolab.2019.01.002_bib21) 2015 Ciampi (10.1016/j.chemolab.2019.01.002_bib19) 1990 Liaw (10.1016/j.chemolab.2019.01.002_bib31) 2002; 2 O'Grady (10.1016/j.chemolab.2019.01.002_bib37) 1989; 97 Speiser (10.1016/j.chemolab.2019.01.002_bib1) 2018 Speiser (10.1016/j.chemolab.2019.01.002_bib32) 2015; 10 Dine (10.1016/j.chemolab.2019.01.002_bib8) 2009; 53 Abdolell (10.1016/j.chemolab.2019.01.002_bib6) 2002; 21 Hajjem (10.1016/j.chemolab.2019.01.002_bib9) 2011; 81 De'Ath (10.1016/j.chemolab.2019.01.002_bib7) 2002; 83 Lee (10.1016/j.chemolab.2019.01.002_bib36) 2004; 19 Ciampi (10.1016/j.chemolab.2019.01.002_bib20) 1991; 7 Dorie (10.1016/j.chemolab.2019.01.002_bib29) 2013 Breiman (10.1016/j.chemolab.2019.01.002_bib2) 2001; 45 Bernal (10.1016/j.chemolab.2019.01.002_bib38) 2002; 359 Fu (10.1016/j.chemolab.2019.01.002_bib40) 2015; 88 Segal (10.1016/j.chemolab.2019.01.002_bib12) 1992; 87 Yu (10.1016/j.chemolab.2019.01.002_bib14) 1999; 8 Hapfelmeier (10.1016/j.chemolab.2019.01.002_bib41) 2014; 24 Dorie (10.1016/j.chemolab.2019.01.002_bib26) 2014 Koch (10.1016/j.chemolab.2019.01.002_bib34) 2016 Clemmesen (10.1016/j.chemolab.2019.01.002_bib39) 1999; 29 Lee (10.1016/j.chemolab.2019.01.002_bib5) 2008; 47 Bates (10.1016/j.chemolab.2019.01.002_bib27) 2015 Hajjem (10.1016/j.chemolab.2019.01.002_bib17) 2017; 126 Hajjem (10.1016/j.chemolab.2019.01.002_bib16) 2014; 84 Bates (10.1016/j.chemolab.2019.01.002_bib23) Zorn (10.1016/j.chemolab.2019.01.002_bib25) 2005; 13 Hastie (10.1016/j.chemolab.2019.01.002_bib3) 2009 |
| References_xml | – volume: 97 start-page: 439 year: 1989 end-page: 445 ident: bib37 article-title: Early indicators of prognosis in fulminant hepatic failure publication-title: Gastroenterology – volume: 88 start-page: 53 year: 2015 end-page: 74 ident: bib40 article-title: Unbiased regression trees for longitudinal and clustered data publication-title: Comput. Stat. Data Anal. – year: 2006 ident: bib15 article-title: Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches – start-page: 1 year: 2018 end-page: 20 ident: bib1 article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes publication-title: Commun. Stat. Simulat. Comput. – start-page: 1360 year: 2008 end-page: 1383 ident: bib24 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Stat. – year: 2016 ident: bib34 article-title: Development of a model to predict transplant-free survival of patients with acute liver failure publication-title: Clin. Gastroenterol. Hepatol. – volume: 7 start-page: 495 year: 2013 end-page: 522 ident: bib11 article-title: Regression trees for longitudinal and multiresponse data publication-title: Ann. Appl. Stat. – year: 2008 ident: bib30 article-title: R: a Language and Environment for Statistical Computing – volume: 34 start-page: 887 year: 2015 end-page: 899 ident: bib35 article-title: Random forest classification of etiologies for an orphan disease publication-title: Stat. Med. – volume: 11 start-page: 397 year: 2010 end-page: 412 ident: bib28 article-title: Bayesian inference for generalized linear mixed models publication-title: Biostatistics – year: 2009 ident: bib3 article-title: The Elements of Statistical Learning – volume: 29 start-page: 648 year: 1999 end-page: 653 ident: bib39 article-title: Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration publication-title: Hepatology – year: 2009 ident: bib23 article-title: Online response to convergence issues in CRAN R LME4 package – start-page: 21 year: 1990 end-page: 26 ident: bib19 article-title: GLIMTREE: RECPAM Trees with the Generalized Linear Model – volume: 359 start-page: 558 year: 2002 end-page: 563 ident: bib38 article-title: Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study publication-title: Lancet – volume: 13 start-page: 157 year: 2005 end-page: 170 ident: bib25 article-title: A solution to separation in binary response models publication-title: Polit. Anal. – volume: 83 start-page: 1105 year: 2002 end-page: 1117 ident: bib7 article-title: Multivariate regression trees: a new technique for modeling species-environment relationships publication-title: Ecology – volume: 21 start-page: 3395 year: 2002 end-page: 3409 ident: bib6 article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable publication-title: Stat. Med. – volume: 84 start-page: 1313 year: 2014 end-page: 1328 ident: bib16 article-title: Mixed-effects random forest for clustered data publication-title: J. Stat. Comput. Simulat. – volume: 19 start-page: 219 year: 2004 end-page: 238 ident: bib36 article-title: Conditional and marginal models: another view publication-title: Stat. Sci. – volume: 126 start-page: 114 year: 2017 end-page: 118 ident: bib17 article-title: Generalized mixed effects regression trees publication-title: Stat. Probab. Lett. – volume: 8 start-page: 749 year: 1999 end-page: 762 ident: bib14 article-title: Fitting trees to functional data, with an application to time-of-day patterns publication-title: J. Comput. Graph Stat. – volume: 87 start-page: 407 year: 1992 end-page: 418 ident: bib12 article-title: Tree-structured methods for longitudinal data publication-title: J. Am. Stat. Assoc. – volume: 15 start-page: 3133 year: 2014 end-page: 3181 ident: bib4 article-title: Do we need hundreds of classifiers to solve real world classification problems publication-title: J. Mach. Learn. Res. – start-page: 1 year: 2015 end-page: 19 ident: bib21 article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees publication-title: Behav. Res. Methods – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib2 article-title: Random forests publication-title: Mach. Learn. – year: 2013 ident: bib29 article-title: Bayesian Linear Mixed-Effects Models – reference: S.A. Mistler, A SAS Macro for Applying Multiple Imputation to Multilevel Data. – volume: 81 start-page: 451 year: 2011 end-page: 459 ident: bib9 article-title: Mixed effects regression trees for clustered data publication-title: Stat. Probab. Lett. – year: 1984 ident: bib22 article-title: Classification and Regression Trees – volume: 49 start-page: 1105 year: 2005 end-page: 1119 ident: bib10 article-title: On generalized multivariate decision tree by using GEE publication-title: Comput. Stat. Data Anal. – volume: 7 start-page: 121 year: 1991 end-page: 137 ident: bib20 article-title: Recursive partition and amalgamation with the exponential family: theory and applications publication-title: Appl. Stoch Model Data Anal. – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: bib31 article-title: Classification and regression by randomForest publication-title: R. News – volume: 24 start-page: 21 year: 2014 end-page: 34 ident: bib41 article-title: A new variable importance measure for random forests with missing data publication-title: Stat. Comput. – start-page: 105 year: 1993 end-page: 152 ident: bib18 article-title: Constructing Prediction Trees from Data: the RECPAM Approach, Computational Aspects of Model Choice – volume: 10 year: 2015 ident: bib32 article-title: Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models publication-title: PLoS One – volume: 47 start-page: 1401 year: 2008 end-page: 1415 ident: bib5 article-title: Acute liver failure: summary of a workshop publication-title: Hepatology – volume: 86 start-page: 169 year: 2012 end-page: 207 ident: bib13 article-title: RE-EM trees: a data mining approach for longitudinal and clustered data publication-title: Mach. Learn. – year: 2014 ident: bib26 article-title: Mixed Methods for Mixed Models – volume: 53 start-page: 3795 year: 2009 end-page: 3804 ident: bib8 article-title: Multivariate trees for mixed outcomes publication-title: Comput. Stat. Data Anal. – year: 2015 ident: bib27 article-title: Package ‘lme4’ – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.chemolab.2019.01.002_bib2 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 53 start-page: 3795 year: 2009 ident: 10.1016/j.chemolab.2019.01.002_bib8 article-title: Multivariate trees for mixed outcomes publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2009.04.003 – year: 2014 ident: 10.1016/j.chemolab.2019.01.002_bib26 – year: 2015 ident: 10.1016/j.chemolab.2019.01.002_bib27 – volume: 81 start-page: 451 year: 2011 ident: 10.1016/j.chemolab.2019.01.002_bib9 article-title: Mixed effects regression trees for clustered data publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2010.12.003 – volume: 88 start-page: 53 year: 2015 ident: 10.1016/j.chemolab.2019.01.002_bib40 article-title: Unbiased regression trees for longitudinal and clustered data publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2015.02.004 – volume: 15 start-page: 3133 year: 2014 ident: 10.1016/j.chemolab.2019.01.002_bib4 article-title: Do we need hundreds of classifiers to solve real world classification problems publication-title: J. Mach. Learn. Res. – volume: 86 start-page: 169 year: 2012 ident: 10.1016/j.chemolab.2019.01.002_bib13 article-title: RE-EM trees: a data mining approach for longitudinal and clustered data publication-title: Mach. Learn. doi: 10.1007/s10994-011-5258-3 – volume: 19 start-page: 219 year: 2004 ident: 10.1016/j.chemolab.2019.01.002_bib36 article-title: Conditional and marginal models: another view publication-title: Stat. Sci. doi: 10.1214/088342304000000305 – volume: 87 start-page: 407 year: 1992 ident: 10.1016/j.chemolab.2019.01.002_bib12 article-title: Tree-structured methods for longitudinal data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1992.10475220 – volume: 49 start-page: 1105 year: 2005 ident: 10.1016/j.chemolab.2019.01.002_bib10 article-title: On generalized multivariate decision tree by using GEE publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2004.07.003 – volume: 2 start-page: 18 year: 2002 ident: 10.1016/j.chemolab.2019.01.002_bib31 article-title: Classification and regression by randomForest publication-title: R. News – volume: 24 start-page: 21 year: 2014 ident: 10.1016/j.chemolab.2019.01.002_bib41 article-title: A new variable importance measure for random forests with missing data publication-title: Stat. Comput. doi: 10.1007/s11222-012-9349-1 – volume: 7 start-page: 121 year: 1991 ident: 10.1016/j.chemolab.2019.01.002_bib20 article-title: Recursive partition and amalgamation with the exponential family: theory and applications publication-title: Appl. Stoch Model Data Anal. doi: 10.1002/asm.3150070203 – start-page: 1360 year: 2008 ident: 10.1016/j.chemolab.2019.01.002_bib24 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Stat. – volume: 11 start-page: 397 year: 2010 ident: 10.1016/j.chemolab.2019.01.002_bib28 article-title: Bayesian inference for generalized linear mixed models publication-title: Biostatistics doi: 10.1093/biostatistics/kxp053 – volume: 13 start-page: 157 year: 2005 ident: 10.1016/j.chemolab.2019.01.002_bib25 article-title: A solution to separation in binary response models publication-title: Polit. Anal. doi: 10.1093/pan/mpi009 – ident: 10.1016/j.chemolab.2019.01.002_bib33 – start-page: 1 year: 2015 ident: 10.1016/j.chemolab.2019.01.002_bib21 article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees publication-title: Behav. Res. Methods – volume: 97 start-page: 439 year: 1989 ident: 10.1016/j.chemolab.2019.01.002_bib37 article-title: Early indicators of prognosis in fulminant hepatic failure publication-title: Gastroenterology doi: 10.1016/0016-5085(89)90081-4 – year: 2006 ident: 10.1016/j.chemolab.2019.01.002_bib15 – start-page: 105 year: 1993 ident: 10.1016/j.chemolab.2019.01.002_bib18 – volume: 29 start-page: 648 year: 1999 ident: 10.1016/j.chemolab.2019.01.002_bib39 article-title: Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration publication-title: Hepatology doi: 10.1002/hep.510290309 – volume: 359 start-page: 558 year: 2002 ident: 10.1016/j.chemolab.2019.01.002_bib38 article-title: Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study publication-title: Lancet doi: 10.1016/S0140-6736(02)07743-7 – volume: 83 start-page: 1105 year: 2002 ident: 10.1016/j.chemolab.2019.01.002_bib7 article-title: Multivariate regression trees: a new technique for modeling species-environment relationships publication-title: Ecology – volume: 7 start-page: 495 year: 2013 ident: 10.1016/j.chemolab.2019.01.002_bib11 article-title: Regression trees for longitudinal and multiresponse data publication-title: Ann. Appl. Stat. doi: 10.1214/12-AOAS596 – year: 2013 ident: 10.1016/j.chemolab.2019.01.002_bib29 – volume: 84 start-page: 1313 year: 2014 ident: 10.1016/j.chemolab.2019.01.002_bib16 article-title: Mixed-effects random forest for clustered data publication-title: J. Stat. Comput. Simulat. doi: 10.1080/00949655.2012.741599 – year: 1984 ident: 10.1016/j.chemolab.2019.01.002_bib22 – volume: 34 start-page: 887 year: 2015 ident: 10.1016/j.chemolab.2019.01.002_bib35 article-title: Random forest classification of etiologies for an orphan disease publication-title: Stat. Med. doi: 10.1002/sim.6351 – volume: 21 start-page: 3395 year: 2002 ident: 10.1016/j.chemolab.2019.01.002_bib6 article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable publication-title: Stat. Med. doi: 10.1002/sim.1266 – volume: 8 start-page: 749 year: 1999 ident: 10.1016/j.chemolab.2019.01.002_bib14 article-title: Fitting trees to functional data, with an application to time-of-day patterns publication-title: J. Comput. Graph Stat. doi: 10.1080/10618600.1999.10474847 – volume: 47 start-page: 1401 year: 2008 ident: 10.1016/j.chemolab.2019.01.002_bib5 article-title: Acute liver failure: summary of a workshop publication-title: Hepatology doi: 10.1002/hep.22177 – year: 2008 ident: 10.1016/j.chemolab.2019.01.002_bib30 – volume: 10 issue: 4 year: 2015 ident: 10.1016/j.chemolab.2019.01.002_bib32 article-title: Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models publication-title: PLoS One doi: 10.1371/journal.pone.0122929 – year: 2009 ident: 10.1016/j.chemolab.2019.01.002_bib3 – ident: 10.1016/j.chemolab.2019.01.002_bib23 – start-page: 1 year: 2018 ident: 10.1016/j.chemolab.2019.01.002_bib1 article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes publication-title: Commun. Stat. Simulat. Comput. – start-page: 21 year: 1990 ident: 10.1016/j.chemolab.2019.01.002_bib19 – year: 2016 ident: 10.1016/j.chemolab.2019.01.002_bib34 article-title: Development of a model to predict transplant-free survival of patients with acute liver failure publication-title: Clin. Gastroenterol. Hepatol. doi: 10.1016/j.cgh.2016.03.046 – volume: 126 start-page: 114 year: 2017 ident: 10.1016/j.chemolab.2019.01.002_bib17 article-title: Generalized mixed effects regression trees publication-title: Stat. Probab. Lett. doi: 10.1016/j.spl.2017.02.033 |
| SSID | ssj0016941 |
| Score | 2.4652038 |
| Snippet | Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized... |
| SourceID | pubmedcentral proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 122 |
| SubjectTerms | Clustered data Longitudinal data Mixed effects Random forest |
| Title | BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes |
| URI | https://dx.doi.org/10.1016/j.chemolab.2019.01.002 https://www.ncbi.nlm.nih.gov/pubmed/31656362 https://www.proquest.com/docview/2309815797 https://pubmed.ncbi.nlm.nih.gov/PMC6813794 |
| Volume | 185 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016941 issn: 0169-7439 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hOMBlxXO3LCAjcQ2N6ziJ91YqUAGVC4uExMGKH9EWlQRBc93fvjN5VHRB4sApsmNHlmcyM7bH3wdw4nOZxjbOgjyMsiCSAxtk0qEuDzCakF7GrqZOmNzE47vo6l7er8CouwtDaZWt7W9sem2t25p-O5v95-m0f0s4IhROo1ISjjrZ4ShKiMXg9O8izYPTRc0G31sF1PrNLeHHU5yXJ1xBGkrxUjV8Z7u98oGDeh-A_p9H-cYxXWzCtzaiZMNm0Fuw4ottWB91RG478HA2nUwYBqf41V9syNA7ufKprWANhTSVWM2Kg66M2VlF-AneMWzKZiVxGlWO-LOYqe_vsrKa44z51124uzj_PRoHLadCYDFwmgfoqBSGBNyG3Fg78ImIlUU3ZpzNBfcmMkZ6J3yeChepWJk4xUfETehzkWeh2IPVoiz8D2AZQcXRHpJJFf75KsudoMMxXBF6OxCmB7KbSG1bwHHivZjpLrPsUXcC0CQAHXKNAuhBf9HvuYHc-LSH6uSkl5RHo1_4tO9xJ1iNcqHjkqzwZfWqcXGmUi4TlfTgeyPoxXgEgRahzvUgWVKBRQNC7V5-U0z_1OjdccoFGsH9L4z5J2xQiZLHuTyA1flL5Q8xNpqbo1r5j2BteHk9vvkHO7gQHw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONBLBZTShQKu1GvYeB0ncW_LCrRtWS4FCYmDFT8iFi0Jgs21v70zeax2KRIHTlH8SCzPeB72-BuA7z6XaWzjLMjDKAsiObBBJh3y8gCtCell7OrUCZPLeHwd_bqRN2sw6u7CUFhlK_sbmV5L67ak385m_3E67f8hHBEyp5EpCUcd5fAG_ishD-zk7yLOg9NNzQbgWwXUfOma8P0JTswDupCGYrxUjd_Z7q-8oqH-t0BfBlIuaabzLfjYmpRs2Ix6G9Z8sQOboy6T2ye4PZ1OJgytU_zqDzZkqJ5c-dAWsCaHNL2xOi0O6jJmZxUBKHjHsCmblZTUqHKUQIuZ-gIvK6s5Tpl_3oXr87Or0ThokyoEFi2neYCaSqFNwG3IjbUDn4hYWdRjxtlccG8iY6R3wuepcJGKlYlTfETchD4XeRaKz7BelIX_AiwjrDjaRDKpwqWvstwJOh1Dl9DbgTA9kN1EatsijlPii5nuQsvudUcATQTQIddIgB70F_0eG8yNN3uojk56hXs0KoY3-37rCKuRLnRekhW-rJ41emcq5TJRSQ_2GkIvxiMItQiZrgfJCgssGhBs92pNMb2r4bvjlAuUgvvvGPMxbI6vJhf64ufl7wP4QDUUSc7lV1ifP1X-EA2luTmqF8I_Y9URtA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiMM+forest%3A+A+random+forest+method+for+modeling+clustered+and+longitudinal+binary+outcomes&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Speiser%2C+Jaime+Lynn&rft.au=Wolf%2C+Bethany+J.&rft.au=Chung%2C+Dongjun&rft.au=Karvellas%2C+Constantine+J.&rft.date=2019-02-15&rft.issn=0169-7439&rft.volume=185&rft.spage=122&rft.epage=134&rft_id=info:doi/10.1016%2Fj.chemolab.2019.01.002&rft_id=info%3Apmid%2F31656362&rft.externalDocID=PMC6813794 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon |