BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes

Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets w...

Full description

Saved in:
Bibliographic Details
Published inChemometrics and intelligent laboratory systems Vol. 185; pp. 122 - 134
Main Authors Speiser, Jaime Lynn, Wolf, Bethany J., Chung, Dongjun, Karvellas, Constantine J., Koch, David G., Durkalski, Valerie L.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2019
Subjects
Online AccessGet full text
ISSN0169-7439
1873-3239
DOI10.1016/j.chemolab.2019.01.002

Cover

Abstract Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings. •There is no random forest method available for clustered binary outcomes.•We propose a random forest method to accommodate clustered and longitudinal outcomes called Binary Mixed Model (BiMM) forest.•Accuracy of BiMM forest is slightly higher or comparable to existing methods for predicting outcome of new subjects.•Accuracy of BiMM forest is often higher for predicting outcome of new training data observations compared to other methods.
AbstractList Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings.
Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings.Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings.
Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) typically employed for clustered endpoints have challenges for some scenarios, particularly for complex datasets which contain many interactions among predictors and nonlinear predictors of outcome. We propose a new method called Binary Mixed Model (BiMM) forest, which combines random forest and GLMM methodology. BiMM forest offers a flexible and stable method which naturally models interactions among predictors and can be employed in the setting of clustered data. Simulation studies show that BiMM forest achieves similar or superior prediction accuracy compared to standard random forest, GLMMs and its tree counterpart (BiMM tree) for clustered binary outcomes. The method is applied to a real dataset from the Acute Liver Failure Study Group. BiMM forest offers an alternative method for modeling clustered binary outcomes which may be applied in myriad research settings. •There is no random forest method available for clustered binary outcomes.•We propose a random forest method to accommodate clustered and longitudinal outcomes called Binary Mixed Model (BiMM) forest.•Accuracy of BiMM forest is slightly higher or comparable to existing methods for predicting outcome of new subjects.•Accuracy of BiMM forest is often higher for predicting outcome of new training data observations compared to other methods.
Author Koch, David G.
Speiser, Jaime Lynn
Wolf, Bethany J.
Chung, Dongjun
Karvellas, Constantine J.
Durkalski, Valerie L.
AuthorAffiliation 3 Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada
1 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC
2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
4 Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC
AuthorAffiliation_xml – name: 1 Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC
– name: 3 Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada
– name: 2 Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC
– name: 4 Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC
Author_xml – sequence: 1
  givenname: Jaime Lynn
  surname: Speiser
  fullname: Speiser, Jaime Lynn
  email: jspeiser@wakehealth.edu
  organization: Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA
– sequence: 2
  givenname: Bethany J.
  surname: Wolf
  fullname: Wolf, Bethany J.
  organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
– sequence: 3
  givenname: Dongjun
  orcidid: 0000-0002-8072-5671
  surname: Chung
  fullname: Chung, Dongjun
  organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
– sequence: 4
  givenname: Constantine J.
  orcidid: 0000-0002-1555-1089
  surname: Karvellas
  fullname: Karvellas, Constantine J.
  organization: Divisions of Hepatology and Critical Care Medicine, University of Alberta, Edmonton, Canada
– sequence: 5
  givenname: David G.
  surname: Koch
  fullname: Koch, David G.
  organization: Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
– sequence: 6
  givenname: Valerie L.
  surname: Durkalski
  fullname: Durkalski, Valerie L.
  organization: Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31656362$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtv1DAQtlAR3Rb-QuUjlwQ_skmMEKJUhSK14gInDlZsT3a9cuxiO5X493W0uwh66cWjsb_HeL4zdOKDB4QuKKkpoe27Xa23MAU3qJoRKmpCa0LYC7Sifccrzrg4QasCFFXXcHGKzlLakaVv6Ct0ymm7bnnLVujXZ3t3h8cQIeX3-BLHwZswHS7wBHkbzNLhKRhw1m-wdnPKEMHgAsUu-I3Ns7F-cFiVM_7BYc46TJBeo5fj4BK8OdRz9PPL9Y-rm-r2-9dvV5e3lW4YzxUtwzLGqCZUac2g463QnHBl9MgpqEapNRgOY89NI1qh2r6UhioCIx8Hws_Rx73u_awmMBp8joOT99FOZRwZBiv_f_F2KzfhQbY95Z1oisDbg0AMv-fycTnZpMG5wUOYk2SciJ6uO9EV6MW_Xn9NjhstgA97gI4hpQij1DYP2YbF2jpJiVwClDt5DFAuAUpCZQmw0Nsn9KPDs8RPeyKUTT9YiDJpC16DsRF0libY5yQeAfVfuyE
CitedBy_id crossref_primary_10_1016_j_jbi_2021_103763
crossref_primary_10_3390_rs14236068
crossref_primary_10_1080_23737484_2023_2278112
crossref_primary_10_1080_02664763_2021_1907840
crossref_primary_10_1002_adem_202201493
crossref_primary_10_3390_su13169304
crossref_primary_10_1007_s00542_019_04566_1
crossref_primary_10_1371_journal_pone_0255977
crossref_primary_10_1080_03610918_2020_1801729
crossref_primary_10_1109_TPAMI_2022_3168152
crossref_primary_10_1016_j_cmpb_2019_04_012
crossref_primary_10_1017_S1360674319000133
crossref_primary_10_1111_acps_13765
crossref_primary_10_1142_S0217751X22502190
crossref_primary_10_1007_s11042_022_12991_0
crossref_primary_10_1007_s11525_025_09435_4
crossref_primary_10_1186_s12911_021_01731_3
crossref_primary_10_1093_gerona_glab269
crossref_primary_10_47172_2965_730X_SDGsReview_v5_n02_pe03885
crossref_primary_10_1002_asi_24718
crossref_primary_10_1080_03610926_2025_2477289
crossref_primary_10_1177_07334648241270052
crossref_primary_10_13005_ojcst12_04_04
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1017_cts_2020_513
crossref_primary_10_1177_0013164421992818
crossref_primary_10_1093_bib_bbad002
crossref_primary_10_3390_su142416654
crossref_primary_10_1155_2022_3682194
crossref_primary_10_1038_s41598_022_19281_7
crossref_primary_10_1080_21680566_2021_1997672
crossref_primary_10_1080_01605682_2022_2118630
crossref_primary_10_1177_00131644221108180
crossref_primary_10_1155_2021_5572781
crossref_primary_10_1016_j_yebeh_2025_110284
Cites_doi 10.1023/A:1010933404324
10.1016/j.csda.2009.04.003
10.1016/j.spl.2010.12.003
10.1016/j.csda.2015.02.004
10.1007/s10994-011-5258-3
10.1214/088342304000000305
10.1080/01621459.1992.10475220
10.1016/j.csda.2004.07.003
10.1007/s11222-012-9349-1
10.1002/asm.3150070203
10.1093/biostatistics/kxp053
10.1093/pan/mpi009
10.1016/0016-5085(89)90081-4
10.1002/hep.510290309
10.1016/S0140-6736(02)07743-7
10.1214/12-AOAS596
10.1080/00949655.2012.741599
10.1002/sim.6351
10.1002/sim.1266
10.1080/10618600.1999.10474847
10.1002/hep.22177
10.1371/journal.pone.0122929
10.1016/j.cgh.2016.03.046
10.1016/j.spl.2017.02.033
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1016/j.chemolab.2019.01.002
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1873-3239
EndPage 134
ExternalDocumentID PMC6813794
31656362
10_1016_j_chemolab_2019_01_002
S0169743918304362
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: TL1 TR001451
– fundername: NIGMS NIH HHS
  grantid: R01 GM122078
– fundername: NCATS NIH HHS
  grantid: KL2 TR001421
– fundername: NIDDK NIH HHS
  grantid: U01 DK058369
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABAOU
ABFRF
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCH
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SSW
SSZ
T5K
UNMZH
YK3
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SEW
WUQ
XPP
~HD
AFXIZ
AGCQF
AGRNS
NPM
SSH
7X8
5PM
ID FETCH-LOGICAL-c423t-12392221c01bcc2e7369c303bdcf31eb4bb5ed3ef83d4969b6849641b0ef3fa03
IEDL.DBID .~1
ISSN 0169-7439
IngestDate Tue Sep 30 16:41:08 EDT 2025
Thu Oct 02 10:39:32 EDT 2025
Mon Jul 21 06:04:36 EDT 2025
Thu Oct 02 04:31:28 EDT 2025
Thu Apr 24 23:01:24 EDT 2025
Fri Feb 23 02:33:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Clustered data
Mixed effects
Random forest
Longitudinal data
clustered data
mixed effects
random forest
longitudinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c423t-12392221c01bcc2e7369c303bdcf31eb4bb5ed3ef83d4969b6849641b0ef3fa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8072-5671
0000-0002-1555-1089
PMID 31656362
PQID 2309815797
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6813794
proquest_miscellaneous_2309815797
pubmed_primary_31656362
crossref_citationtrail_10_1016_j_chemolab_2019_01_002
crossref_primary_10_1016_j_chemolab_2019_01_002
elsevier_sciencedirect_doi_10_1016_j_chemolab_2019_01_002
PublicationCentury 2000
PublicationDate 2019-02-15
PublicationDateYYYYMMDD 2019-02-15
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Chemometrics and intelligent laboratory systems
PublicationTitleAlternate Chemometr Intell Lab Syst
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hapfelmeier, Hothorn, Ulm, Strobl (bib41) 2014; 24
R Development Core Team (bib30) 2008
Speiser, Durkalski, Lee (bib35) 2015; 34
Gelman, Jakulin, Pittau, Su (bib24) 2008
Liaw, Weiner (bib31) 2002; 2
Ciampi (bib18) 1993
Zorn (bib25) 2005; 13
Fokkema, Smits, Zeileis, Hothorn, Kelderman (bib21) 2015
Sela, Simonoff (bib13) 2012; 86
Clemmesen, Larsen, Kondrup (bib39) 1999; 29
Speiser, Lee, Karvellas (bib32) 2015; 10
Dorie, blme (bib29) 2013
Abdolell, LeBlanc, Stephens, Harrison (bib6) 2002; 21
Segal (bib12) 1992; 87
Fernández-Delgado, Cernadas, Barro, Amorim (bib4) 2014; 15
Hajjem, Bellavance, Larocque (bib16) 2014; 84
Bates (bib23) 2009
Breiman (bib2) 2001; 45
Hastie, Tibshirani, Friedman, Hastie, Friedman, Tibshirani (bib3) 2009
Ciampi, Lin, Yousif (bib19) 1990
Yu, Lambert (bib14) 1999; 8
De'Ath (bib7) 2002; 83
Keon Lee (bib10) 2005; 49
Bates, Maechler, Bolker, Walker, Christensen, Singmann, Dai, Grothendieck (bib27) 2015
Ciampi, Lou, Lin, Negassa (bib20) 1991; 7
Bernal, Donaldson, Wyncoll, Wendon (bib38) 2002; 359
Hajjem, Larocque, Bellavance (bib17) 2017; 126
Fong, Rue, Wakefield (bib28) 2010; 11
Speiser, Wolf, Chung, Karvellas, Koch, Durkalski (bib1) 2018
Fu, Simonoff (bib40) 2015; 88
Lee, Squires, Nyberg, Doo, Hoofnagle (bib5) 2008; 47
Lee, Nelder (bib36) 2004; 19
Dorie (bib26) 2014
Breiman, Friedman, Olshen, Stone (bib22) 1984
Dine, Larocque, Bellavance (bib8) 2009; 53
Hajjem, Bellavance, Larocque (bib9) 2011; 81
Wu, Zhang (bib15) 2006
S.A. Mistler, A SAS Macro for Applying Multiple Imputation to Multilevel Data.
O'Grady, Alexander, Hayllar, Williams (bib37) 1989; 97
Koch, Tillman, Durkalski, Lee, Reuben (bib34) 2016
Loh, Zheng (bib11) 2013; 7
Loh (10.1016/j.chemolab.2019.01.002_bib11) 2013; 7
Breiman (10.1016/j.chemolab.2019.01.002_bib22) 1984
Speiser (10.1016/j.chemolab.2019.01.002_bib35) 2015; 34
Ciampi (10.1016/j.chemolab.2019.01.002_bib18) 1993
Gelman (10.1016/j.chemolab.2019.01.002_bib24) 2008
R Development Core Team (10.1016/j.chemolab.2019.01.002_bib30) 2008
Sela (10.1016/j.chemolab.2019.01.002_bib13) 2012; 86
Fernández-Delgado (10.1016/j.chemolab.2019.01.002_bib4) 2014; 15
Wu (10.1016/j.chemolab.2019.01.002_bib15) 2006
10.1016/j.chemolab.2019.01.002_bib33
Keon Lee (10.1016/j.chemolab.2019.01.002_bib10) 2005; 49
Fong (10.1016/j.chemolab.2019.01.002_bib28) 2010; 11
Fokkema (10.1016/j.chemolab.2019.01.002_bib21) 2015
Ciampi (10.1016/j.chemolab.2019.01.002_bib19) 1990
Liaw (10.1016/j.chemolab.2019.01.002_bib31) 2002; 2
O'Grady (10.1016/j.chemolab.2019.01.002_bib37) 1989; 97
Speiser (10.1016/j.chemolab.2019.01.002_bib1) 2018
Speiser (10.1016/j.chemolab.2019.01.002_bib32) 2015; 10
Dine (10.1016/j.chemolab.2019.01.002_bib8) 2009; 53
Abdolell (10.1016/j.chemolab.2019.01.002_bib6) 2002; 21
Hajjem (10.1016/j.chemolab.2019.01.002_bib9) 2011; 81
De'Ath (10.1016/j.chemolab.2019.01.002_bib7) 2002; 83
Lee (10.1016/j.chemolab.2019.01.002_bib36) 2004; 19
Ciampi (10.1016/j.chemolab.2019.01.002_bib20) 1991; 7
Dorie (10.1016/j.chemolab.2019.01.002_bib29) 2013
Breiman (10.1016/j.chemolab.2019.01.002_bib2) 2001; 45
Bernal (10.1016/j.chemolab.2019.01.002_bib38) 2002; 359
Fu (10.1016/j.chemolab.2019.01.002_bib40) 2015; 88
Segal (10.1016/j.chemolab.2019.01.002_bib12) 1992; 87
Yu (10.1016/j.chemolab.2019.01.002_bib14) 1999; 8
Hapfelmeier (10.1016/j.chemolab.2019.01.002_bib41) 2014; 24
Dorie (10.1016/j.chemolab.2019.01.002_bib26) 2014
Koch (10.1016/j.chemolab.2019.01.002_bib34) 2016
Clemmesen (10.1016/j.chemolab.2019.01.002_bib39) 1999; 29
Lee (10.1016/j.chemolab.2019.01.002_bib5) 2008; 47
Bates (10.1016/j.chemolab.2019.01.002_bib27) 2015
Hajjem (10.1016/j.chemolab.2019.01.002_bib17) 2017; 126
Hajjem (10.1016/j.chemolab.2019.01.002_bib16) 2014; 84
Bates (10.1016/j.chemolab.2019.01.002_bib23)
Zorn (10.1016/j.chemolab.2019.01.002_bib25) 2005; 13
Hastie (10.1016/j.chemolab.2019.01.002_bib3) 2009
References_xml – volume: 97
  start-page: 439
  year: 1989
  end-page: 445
  ident: bib37
  article-title: Early indicators of prognosis in fulminant hepatic failure
  publication-title: Gastroenterology
– volume: 88
  start-page: 53
  year: 2015
  end-page: 74
  ident: bib40
  article-title: Unbiased regression trees for longitudinal and clustered data
  publication-title: Comput. Stat. Data Anal.
– year: 2006
  ident: bib15
  article-title: Nonparametric Regression Methods for Longitudinal Data Analysis: Mixed-Effects Modeling Approaches
– start-page: 1
  year: 2018
  end-page: 20
  ident: bib1
  article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes
  publication-title: Commun. Stat. Simulat. Comput.
– start-page: 1360
  year: 2008
  end-page: 1383
  ident: bib24
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Stat.
– year: 2016
  ident: bib34
  article-title: Development of a model to predict transplant-free survival of patients with acute liver failure
  publication-title: Clin. Gastroenterol. Hepatol.
– volume: 7
  start-page: 495
  year: 2013
  end-page: 522
  ident: bib11
  article-title: Regression trees for longitudinal and multiresponse data
  publication-title: Ann. Appl. Stat.
– year: 2008
  ident: bib30
  article-title: R: a Language and Environment for Statistical Computing
– volume: 34
  start-page: 887
  year: 2015
  end-page: 899
  ident: bib35
  article-title: Random forest classification of etiologies for an orphan disease
  publication-title: Stat. Med.
– volume: 11
  start-page: 397
  year: 2010
  end-page: 412
  ident: bib28
  article-title: Bayesian inference for generalized linear mixed models
  publication-title: Biostatistics
– year: 2009
  ident: bib3
  article-title: The Elements of Statistical Learning
– volume: 29
  start-page: 648
  year: 1999
  end-page: 653
  ident: bib39
  article-title: Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration
  publication-title: Hepatology
– year: 2009
  ident: bib23
  article-title: Online response to convergence issues in CRAN R LME4 package
– start-page: 21
  year: 1990
  end-page: 26
  ident: bib19
  article-title: GLIMTREE: RECPAM Trees with the Generalized Linear Model
– volume: 359
  start-page: 558
  year: 2002
  end-page: 563
  ident: bib38
  article-title: Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study
  publication-title: Lancet
– volume: 13
  start-page: 157
  year: 2005
  end-page: 170
  ident: bib25
  article-title: A solution to separation in binary response models
  publication-title: Polit. Anal.
– volume: 83
  start-page: 1105
  year: 2002
  end-page: 1117
  ident: bib7
  article-title: Multivariate regression trees: a new technique for modeling species-environment relationships
  publication-title: Ecology
– volume: 21
  start-page: 3395
  year: 2002
  end-page: 3409
  ident: bib6
  article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable
  publication-title: Stat. Med.
– volume: 84
  start-page: 1313
  year: 2014
  end-page: 1328
  ident: bib16
  article-title: Mixed-effects random forest for clustered data
  publication-title: J. Stat. Comput. Simulat.
– volume: 19
  start-page: 219
  year: 2004
  end-page: 238
  ident: bib36
  article-title: Conditional and marginal models: another view
  publication-title: Stat. Sci.
– volume: 126
  start-page: 114
  year: 2017
  end-page: 118
  ident: bib17
  article-title: Generalized mixed effects regression trees
  publication-title: Stat. Probab. Lett.
– volume: 8
  start-page: 749
  year: 1999
  end-page: 762
  ident: bib14
  article-title: Fitting trees to functional data, with an application to time-of-day patterns
  publication-title: J. Comput. Graph Stat.
– volume: 87
  start-page: 407
  year: 1992
  end-page: 418
  ident: bib12
  article-title: Tree-structured methods for longitudinal data
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 3133
  year: 2014
  end-page: 3181
  ident: bib4
  article-title: Do we need hundreds of classifiers to solve real world classification problems
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2015
  end-page: 19
  ident: bib21
  article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees
  publication-title: Behav. Res. Methods
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib2
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2013
  ident: bib29
  article-title: Bayesian Linear Mixed-Effects Models
– reference: S.A. Mistler, A SAS Macro for Applying Multiple Imputation to Multilevel Data.
– volume: 81
  start-page: 451
  year: 2011
  end-page: 459
  ident: bib9
  article-title: Mixed effects regression trees for clustered data
  publication-title: Stat. Probab. Lett.
– year: 1984
  ident: bib22
  article-title: Classification and Regression Trees
– volume: 49
  start-page: 1105
  year: 2005
  end-page: 1119
  ident: bib10
  article-title: On generalized multivariate decision tree by using GEE
  publication-title: Comput. Stat. Data Anal.
– volume: 7
  start-page: 121
  year: 1991
  end-page: 137
  ident: bib20
  article-title: Recursive partition and amalgamation with the exponential family: theory and applications
  publication-title: Appl. Stoch Model Data Anal.
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: bib31
  article-title: Classification and regression by randomForest
  publication-title: R. News
– volume: 24
  start-page: 21
  year: 2014
  end-page: 34
  ident: bib41
  article-title: A new variable importance measure for random forests with missing data
  publication-title: Stat. Comput.
– start-page: 105
  year: 1993
  end-page: 152
  ident: bib18
  article-title: Constructing Prediction Trees from Data: the RECPAM Approach, Computational Aspects of Model Choice
– volume: 10
  year: 2015
  ident: bib32
  article-title: Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models
  publication-title: PLoS One
– volume: 47
  start-page: 1401
  year: 2008
  end-page: 1415
  ident: bib5
  article-title: Acute liver failure: summary of a workshop
  publication-title: Hepatology
– volume: 86
  start-page: 169
  year: 2012
  end-page: 207
  ident: bib13
  article-title: RE-EM trees: a data mining approach for longitudinal and clustered data
  publication-title: Mach. Learn.
– year: 2014
  ident: bib26
  article-title: Mixed Methods for Mixed Models
– volume: 53
  start-page: 3795
  year: 2009
  end-page: 3804
  ident: bib8
  article-title: Multivariate trees for mixed outcomes
  publication-title: Comput. Stat. Data Anal.
– year: 2015
  ident: bib27
  article-title: Package ‘lme4’
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.chemolab.2019.01.002_bib2
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 53
  start-page: 3795
  year: 2009
  ident: 10.1016/j.chemolab.2019.01.002_bib8
  article-title: Multivariate trees for mixed outcomes
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2009.04.003
– year: 2014
  ident: 10.1016/j.chemolab.2019.01.002_bib26
– year: 2015
  ident: 10.1016/j.chemolab.2019.01.002_bib27
– volume: 81
  start-page: 451
  year: 2011
  ident: 10.1016/j.chemolab.2019.01.002_bib9
  article-title: Mixed effects regression trees for clustered data
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2010.12.003
– volume: 88
  start-page: 53
  year: 2015
  ident: 10.1016/j.chemolab.2019.01.002_bib40
  article-title: Unbiased regression trees for longitudinal and clustered data
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2015.02.004
– volume: 15
  start-page: 3133
  year: 2014
  ident: 10.1016/j.chemolab.2019.01.002_bib4
  article-title: Do we need hundreds of classifiers to solve real world classification problems
  publication-title: J. Mach. Learn. Res.
– volume: 86
  start-page: 169
  year: 2012
  ident: 10.1016/j.chemolab.2019.01.002_bib13
  article-title: RE-EM trees: a data mining approach for longitudinal and clustered data
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5258-3
– volume: 19
  start-page: 219
  year: 2004
  ident: 10.1016/j.chemolab.2019.01.002_bib36
  article-title: Conditional and marginal models: another view
  publication-title: Stat. Sci.
  doi: 10.1214/088342304000000305
– volume: 87
  start-page: 407
  year: 1992
  ident: 10.1016/j.chemolab.2019.01.002_bib12
  article-title: Tree-structured methods for longitudinal data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1992.10475220
– volume: 49
  start-page: 1105
  year: 2005
  ident: 10.1016/j.chemolab.2019.01.002_bib10
  article-title: On generalized multivariate decision tree by using GEE
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2004.07.003
– volume: 2
  start-page: 18
  year: 2002
  ident: 10.1016/j.chemolab.2019.01.002_bib31
  article-title: Classification and regression by randomForest
  publication-title: R. News
– volume: 24
  start-page: 21
  year: 2014
  ident: 10.1016/j.chemolab.2019.01.002_bib41
  article-title: A new variable importance measure for random forests with missing data
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9349-1
– volume: 7
  start-page: 121
  year: 1991
  ident: 10.1016/j.chemolab.2019.01.002_bib20
  article-title: Recursive partition and amalgamation with the exponential family: theory and applications
  publication-title: Appl. Stoch Model Data Anal.
  doi: 10.1002/asm.3150070203
– start-page: 1360
  year: 2008
  ident: 10.1016/j.chemolab.2019.01.002_bib24
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Stat.
– volume: 11
  start-page: 397
  year: 2010
  ident: 10.1016/j.chemolab.2019.01.002_bib28
  article-title: Bayesian inference for generalized linear mixed models
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp053
– volume: 13
  start-page: 157
  year: 2005
  ident: 10.1016/j.chemolab.2019.01.002_bib25
  article-title: A solution to separation in binary response models
  publication-title: Polit. Anal.
  doi: 10.1093/pan/mpi009
– ident: 10.1016/j.chemolab.2019.01.002_bib33
– start-page: 1
  year: 2015
  ident: 10.1016/j.chemolab.2019.01.002_bib21
  article-title: Detecting treatment-subgroup interactions in clustered data with generalized linear mixed-effects model trees
  publication-title: Behav. Res. Methods
– volume: 97
  start-page: 439
  year: 1989
  ident: 10.1016/j.chemolab.2019.01.002_bib37
  article-title: Early indicators of prognosis in fulminant hepatic failure
  publication-title: Gastroenterology
  doi: 10.1016/0016-5085(89)90081-4
– year: 2006
  ident: 10.1016/j.chemolab.2019.01.002_bib15
– start-page: 105
  year: 1993
  ident: 10.1016/j.chemolab.2019.01.002_bib18
– volume: 29
  start-page: 648
  year: 1999
  ident: 10.1016/j.chemolab.2019.01.002_bib39
  article-title: Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration
  publication-title: Hepatology
  doi: 10.1002/hep.510290309
– volume: 359
  start-page: 558
  year: 2002
  ident: 10.1016/j.chemolab.2019.01.002_bib38
  article-title: Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)07743-7
– volume: 83
  start-page: 1105
  year: 2002
  ident: 10.1016/j.chemolab.2019.01.002_bib7
  article-title: Multivariate regression trees: a new technique for modeling species-environment relationships
  publication-title: Ecology
– volume: 7
  start-page: 495
  year: 2013
  ident: 10.1016/j.chemolab.2019.01.002_bib11
  article-title: Regression trees for longitudinal and multiresponse data
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/12-AOAS596
– year: 2013
  ident: 10.1016/j.chemolab.2019.01.002_bib29
– volume: 84
  start-page: 1313
  year: 2014
  ident: 10.1016/j.chemolab.2019.01.002_bib16
  article-title: Mixed-effects random forest for clustered data
  publication-title: J. Stat. Comput. Simulat.
  doi: 10.1080/00949655.2012.741599
– year: 1984
  ident: 10.1016/j.chemolab.2019.01.002_bib22
– volume: 34
  start-page: 887
  year: 2015
  ident: 10.1016/j.chemolab.2019.01.002_bib35
  article-title: Random forest classification of etiologies for an orphan disease
  publication-title: Stat. Med.
  doi: 10.1002/sim.6351
– volume: 21
  start-page: 3395
  year: 2002
  ident: 10.1016/j.chemolab.2019.01.002_bib6
  article-title: Binary partitioning for continuous longitudinal data: categorizing a prognostic variable
  publication-title: Stat. Med.
  doi: 10.1002/sim.1266
– volume: 8
  start-page: 749
  year: 1999
  ident: 10.1016/j.chemolab.2019.01.002_bib14
  article-title: Fitting trees to functional data, with an application to time-of-day patterns
  publication-title: J. Comput. Graph Stat.
  doi: 10.1080/10618600.1999.10474847
– volume: 47
  start-page: 1401
  year: 2008
  ident: 10.1016/j.chemolab.2019.01.002_bib5
  article-title: Acute liver failure: summary of a workshop
  publication-title: Hepatology
  doi: 10.1002/hep.22177
– year: 2008
  ident: 10.1016/j.chemolab.2019.01.002_bib30
– volume: 10
  issue: 4
  year: 2015
  ident: 10.1016/j.chemolab.2019.01.002_bib32
  article-title: Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0122929
– year: 2009
  ident: 10.1016/j.chemolab.2019.01.002_bib3
– ident: 10.1016/j.chemolab.2019.01.002_bib23
– start-page: 1
  year: 2018
  ident: 10.1016/j.chemolab.2019.01.002_bib1
  article-title: BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes
  publication-title: Commun. Stat. Simulat. Comput.
– start-page: 21
  year: 1990
  ident: 10.1016/j.chemolab.2019.01.002_bib19
– year: 2016
  ident: 10.1016/j.chemolab.2019.01.002_bib34
  article-title: Development of a model to predict transplant-free survival of patients with acute liver failure
  publication-title: Clin. Gastroenterol. Hepatol.
  doi: 10.1016/j.cgh.2016.03.046
– volume: 126
  start-page: 114
  year: 2017
  ident: 10.1016/j.chemolab.2019.01.002_bib17
  article-title: Generalized mixed effects regression trees
  publication-title: Stat. Probab. Lett.
  doi: 10.1016/j.spl.2017.02.033
SSID ssj0016941
Score 2.4652038
Snippet Clustered binary outcomes and datasets with many predictor variables are frequently encountered in clinical research (e.g. longitudinal studies). Generalized...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122
SubjectTerms Clustered data
Longitudinal data
Mixed effects
Random forest
Title BiMM forest: A random forest method for modeling clustered and longitudinal binary outcomes
URI https://dx.doi.org/10.1016/j.chemolab.2019.01.002
https://www.ncbi.nlm.nih.gov/pubmed/31656362
https://www.proquest.com/docview/2309815797
https://pubmed.ncbi.nlm.nih.gov/PMC6813794
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016941
  issn: 0169-7439
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4hOMBlxXO3LCAjcQ2N6ziJ91YqUAGVC4uExMGKH9EWlQRBc93fvjN5VHRB4sApsmNHlmcyM7bH3wdw4nOZxjbOgjyMsiCSAxtk0qEuDzCakF7GrqZOmNzE47vo6l7er8CouwtDaZWt7W9sem2t25p-O5v95-m0f0s4IhROo1ISjjrZ4ShKiMXg9O8izYPTRc0G31sF1PrNLeHHU5yXJ1xBGkrxUjV8Z7u98oGDeh-A_p9H-cYxXWzCtzaiZMNm0Fuw4ottWB91RG478HA2nUwYBqf41V9syNA7ufKprWANhTSVWM2Kg66M2VlF-AneMWzKZiVxGlWO-LOYqe_vsrKa44z51124uzj_PRoHLadCYDFwmgfoqBSGBNyG3Fg78ImIlUU3ZpzNBfcmMkZ6J3yeChepWJk4xUfETehzkWeh2IPVoiz8D2AZQcXRHpJJFf75KsudoMMxXBF6OxCmB7KbSG1bwHHivZjpLrPsUXcC0CQAHXKNAuhBf9HvuYHc-LSH6uSkl5RHo1_4tO9xJ1iNcqHjkqzwZfWqcXGmUi4TlfTgeyPoxXgEgRahzvUgWVKBRQNC7V5-U0z_1OjdccoFGsH9L4z5J2xQiZLHuTyA1flL5Q8xNpqbo1r5j2BteHk9vvkHO7gQHw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hONBLBZTShQKu1GvYeB0ncW_LCrRtWS4FCYmDFT8iFi0Jgs21v70zeax2KRIHTlH8SCzPeB72-BuA7z6XaWzjLMjDKAsiObBBJh3y8gCtCell7OrUCZPLeHwd_bqRN2sw6u7CUFhlK_sbmV5L67ak385m_3E67f8hHBEyp5EpCUcd5fAG_ishD-zk7yLOg9NNzQbgWwXUfOma8P0JTswDupCGYrxUjd_Z7q-8oqH-t0BfBlIuaabzLfjYmpRs2Ix6G9Z8sQOboy6T2ye4PZ1OJgytU_zqDzZkqJ5c-dAWsCaHNL2xOi0O6jJmZxUBKHjHsCmblZTUqHKUQIuZ-gIvK6s5Tpl_3oXr87Or0ThokyoEFi2neYCaSqFNwG3IjbUDn4hYWdRjxtlccG8iY6R3wuepcJGKlYlTfETchD4XeRaKz7BelIX_AiwjrDjaRDKpwqWvstwJOh1Dl9DbgTA9kN1EatsijlPii5nuQsvudUcATQTQIddIgB70F_0eG8yNN3uojk56hXs0KoY3-37rCKuRLnRekhW-rJ41emcq5TJRSQ_2GkIvxiMItQiZrgfJCgssGhBs92pNMb2r4bvjlAuUgvvvGPMxbI6vJhf64ufl7wP4QDUUSc7lV1ifP1X-EA2luTmqF8I_Y9URtA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BiMM+forest%3A+A+random+forest+method+for+modeling+clustered+and+longitudinal+binary+outcomes&rft.jtitle=Chemometrics+and+intelligent+laboratory+systems&rft.au=Speiser%2C+Jaime+Lynn&rft.au=Wolf%2C+Bethany+J.&rft.au=Chung%2C+Dongjun&rft.au=Karvellas%2C+Constantine+J.&rft.date=2019-02-15&rft.issn=0169-7439&rft.volume=185&rft.spage=122&rft.epage=134&rft_id=info:doi/10.1016%2Fj.chemolab.2019.01.002&rft_id=info%3Apmid%2F31656362&rft.externalDocID=PMC6813794
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-7439&client=summon