Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard
Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may impro...
Saved in:
Published in | Journal of magnetic resonance imaging Vol. 52; no. 6; pp. 1745 - 1752 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.12.2020
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1053-1807 1522-2586 1522-2586 |
DOI | 10.1002/jmri.27266 |
Cover
Abstract | Background
MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability.
Purpose
To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.
Study Type
Retrospective.
Population
In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.
Field Strength/Sequence
2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.
Assessment
Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.
Statistical Tests
Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).
Results
The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.
Data Conclusion
Our study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury.
Level of Evidence
3
Technical Efficacy Stage
1 J. MAGN. RESON. IMAGING 2020;52:1745–1752. |
---|---|
AbstractList | MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability.
To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.
Retrospective.
In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.
2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.
Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.
Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).
The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.
Our study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury.
3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752. MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability.BACKGROUNDMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability.To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.PURPOSETo determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.Retrospective.STUDY TYPERetrospective.In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.POPULATIONIn all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.FIELD STRENGTH/SEQUENCE2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.ASSESSMENTBased on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).STATISTICAL TESTSUsing arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.RESULTSThe accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.Our study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury.DATA CONCLUSIONOur study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury.3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752.LEVEL OF EVIDENCE3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752. Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability. Purpose To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI. Study Type Retrospective. Population In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively. Field Strength/Sequence 2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T. Assessment Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images. Statistical Tests Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively. Data Conclusion Our study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury. Level of Evidence 3 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2020;52:1745–1752. BackgroundMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability.PurposeTo determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.Study TypeRetrospective.PopulationIn all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.Field Strength/Sequence2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.AssessmentBased on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.Statistical TestsUsing arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).ResultsThe accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.Data ConclusionOur study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury.Level of Evidence3Technical Efficacy Stage1 J. MAGN. RESON. IMAGING 2020;52:1745–1752. |
Author | Zhou, Quan Zhang, Lingyan Zhou, Yujia Lu, Guangming Li, Mifang |
Author_xml | – sequence: 1 givenname: Lingyan surname: Zhang fullname: Zhang, Lingyan organization: Southern Medical University – sequence: 2 givenname: Mifang surname: Li fullname: Li, Mifang organization: Southern Medical University – sequence: 3 givenname: Yujia surname: Zhou fullname: Zhou, Yujia organization: Southern Medical University – sequence: 4 givenname: Guangming surname: Lu fullname: Lu, Guangming email: cjr.luguangming@vip.163.com organization: Southern Medical University – sequence: 5 givenname: Quan orcidid: 0000-0002-8358-7577 surname: Zhou fullname: Zhou, Quan email: zhouquan3777@smu.edu.cn organization: Southern Medical University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32715584$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1uEzEUhS1URH9gwwMgS2xQpWltz4xnwi5KChQFgQpdWzeeO4mjGXuwPa3yJn1cnKTdVKgrn8V3zvU995QcWWeRkPecXXDGxOWm9-ZCVELKV-SEl0JkoqzlUdKszDNes-qYnIawYYxNJkX5hhznouJlWRcn5GGOONAFgrfGruh0GLwDvaat83RqI3qTxMyP2kBEujAr6NHGZAjGWTrHiDom9Zle3UE3wk5T19K5gZV1IRpNf6FPYT1YjfQ27If4uPYuaDdsKQQa10hvsEWPO-R3BNuAb96S1y10Ad89vmfk9svVn9m3bPHz6_Vsush0IXKZ8aLEXBa6xSVb8jxvcZKWr0CyugHZCOTYSs4ZiqUuygo0EzWIphZ1o_OWY35GPh1y0-J_RwxR9SZo7Dqw6MagRCGqUnBZ5wn9-AzduNHb9LtEpSFS8qpK1IdHalz22KjBmx78Vj11ngB2AHQqIXhslTZx31z0YDrFmdqdVe3OqvZnTZbzZ5an1P_C_ADfmw63L5Dq-4-b64PnH92itGY |
CitedBy_id | crossref_primary_10_1155_2021_4931437 crossref_primary_10_1186_s13018_024_04602_5 crossref_primary_10_1016_j_rcl_2021_07_011 crossref_primary_10_1109_TMI_2022_3206042 crossref_primary_10_1016_j_arthro_2024_01_043 crossref_primary_10_26634_jic_12_1_20498 crossref_primary_10_3390_jpm12071029 crossref_primary_10_5114_pjr_2023_133660 crossref_primary_10_1016_j_knee_2025_01_007 crossref_primary_10_1016_j_heliyon_2025_e42520 crossref_primary_10_1016_j_arthro_2022_03_037 crossref_primary_10_3390_diagnostics11010105 crossref_primary_10_1016_j_arthro_2024_05_027 crossref_primary_10_1002_jmri_28069 crossref_primary_10_1007_s00521_023_09350_x crossref_primary_10_1016_j_arthro_2023_08_010 crossref_primary_10_1109_JBHI_2022_3152846 crossref_primary_10_3390_diagnostics15060776 crossref_primary_10_1007_s00256_021_03830_8 crossref_primary_10_1007_s00330_024_10928_9 crossref_primary_10_1155_2021_4076175 crossref_primary_10_3390_diagnostics12020537 crossref_primary_10_1007_s11604_022_01385_9 crossref_primary_10_13104_imri_2022_1102 crossref_primary_10_2139_ssrn_4051504 crossref_primary_10_1016_j_bspc_2023_105356 crossref_primary_10_1080_21681163_2023_2261554 crossref_primary_10_1177_1759720X231165560 crossref_primary_10_2196_37508 crossref_primary_10_1007_s00521_023_08776_7 crossref_primary_10_1016_j_displa_2025_103032 crossref_primary_10_1007_s00264_022_05628_2 crossref_primary_10_1097_RLI_0000000000000907 crossref_primary_10_3390_diagnostics12030632 crossref_primary_10_7759_cureus_45730 crossref_primary_10_1007_s00256_024_04684_6 crossref_primary_10_1007_s00330_022_08923_z crossref_primary_10_1007_s00330_024_11105_8 crossref_primary_10_1115_1_4053063 crossref_primary_10_1007_s00256_023_04416_2 crossref_primary_10_3390_healthcare12030300 crossref_primary_10_3788_LOP232102 |
Cites_doi | 10.3389/fgene.2019.00166 10.1371/journal.pmed.1002699 10.1093/bmb/ldm022 10.1016/j.media.2018.11.009 10.1007/s10916-018-1088-1 10.1007/s10278-019-00193-4 10.1371/journal.pmed.1002686 10.1148/radiol.2018171820 10.1148/radiol.2018171565 10.1148/radiol.2018180547 10.1148/radiol.2263011892 10.1007/s00167-015-3861-8 10.1148/radiol.2019182304 10.1016/j.joca.2005.08.005 10.1002/jmri.26047 10.1007/s00417-018-04224-8 10.1148/radiol.2018172986 10.1002/jmri.26246 10.1016/j.jacr.2017.12.028 10.1109/CVPR.2016.90 10.1007/978-3-319-22345-2_10 10.1148/radiol.2018180237 10.1016/j.ocl.2016.05.004 10.1002/mrm.26841 10.1097/MD.0000000000012401 10.1016/j.acra.2018.02.018 10.1371/journal.pmed.1002711 10.3934/mbe.2019167 10.1177/0363546511407612 10.3174/ajnr.A5543 10.1007/s00167-005-0679-9 |
ContentType | Journal Article |
Copyright | 2020 International Society for Magnetic Resonance in Medicine 2020 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2020 International Society for Magnetic Resonance in Medicine – notice: 2020 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
DOI | 10.1002/jmri.27266 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1522-2586 |
EndPage | 1752 |
ExternalDocumentID | 32715584 10_1002_jmri_27266 JMRI27266 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81801780 – fundername: Guangdong Science and Technology Department funderid: 2017ZC0099 |
GroupedDBID | --- -DZ .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TWZ UB1 V2E V8K V9Y W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR XG1 XV2 ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QO 7TK 8FD FR3 K9. P64 7X8 |
ID | FETCH-LOGICAL-c4236-145e364cfeb0b133fe92587a608da6d2e1ef6110e2bc457ac028a2d828dc3f1e3 |
IEDL.DBID | DR2 |
ISSN | 1053-1807 1522-2586 |
IngestDate | Fri Jul 11 13:03:57 EDT 2025 Mon Sep 29 20:43:44 EDT 2025 Mon Jul 21 05:56:28 EDT 2025 Wed Oct 01 04:37:07 EDT 2025 Thu Apr 24 23:04:49 EDT 2025 Wed Jan 22 16:33:16 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | deep learning anterior cruciate ligament injury magnetic resonance imaging convolutional neural network |
Language | English |
License | 2020 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4236-145e364cfeb0b133fe92587a608da6d2e1ef6110e2bc457ac028a2d828dc3f1e3 |
Notes | Lingyan Zhang and Mifang Li with equal contribution to this work. Contract grant sponsor: Guangdong Science and Technology Department; Contract grant number: 2017ZC0099; Contract grant sponsor: National Natural Science Foundation of China; Contract grant number: 81801780. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8358-7577 |
PMID | 32715584 |
PQID | 2461166177 |
PQPubID | 1006400 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2427521683 proquest_journals_2461166177 pubmed_primary_32715584 crossref_citationtrail_10_1002_jmri_27266 crossref_primary_10_1002_jmri_27266 wiley_primary_10_1002_jmri_27266_JMRI27266 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2020 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Nashville |
PublicationSubtitle | JMRI |
PublicationTitle | Journal of magnetic resonance imaging |
PublicationTitleAlternate | J Magn Reson Imaging |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 287 2019; 290 2017; 1 2019; 291 2010; 15 2019; 52 2019; 10 2019; 32 2018; 289 2015; 881 2018; 288 2006; 14 2019; 16 2011; 39 2018; 42 2018; 48 2018; 25 2018; 39 2016; 1 2010; 25 2003; 226 2013; 16 1997; 13 2019; 49 2019; 257 2008; 66 2007; 84 2014 2018; 97 2016; 47 2016; 24 2018; 15 2018; 79 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 White LM (e_1_2_7_14_1) 1997; 13 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 Huang G (e_1_2_7_36_1) 2017; 1 e_1_2_7_10_1 Prasoon A (e_1_2_7_32_1) 2013; 16 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Guo JM (e_1_2_7_11_1) 2010; 25 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 Shobairi E (e_1_2_7_39_1) 2010; 15 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 Kim A (e_1_2_7_12_1) 2008; 66 e_1_2_7_38_1 Simonyan K (e_1_2_7_37_1) 2014 |
References_xml | – volume: 226 start-page: 837 year: 2003 end-page: 848 article-title: MR imaging of the menisci and cruciate ligaments: A systematic review publication-title: Radiology – volume: 16 start-page: 246 year: 2013 end-page: 253 article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network publication-title: Med Image Comput Comput Assist Interv – volume: 25 start-page: 1268 year: 2010 end-page: 1271 article-title: Evaluation of MRI features of anterior cruciate ligament injury publication-title: Radiol Pract – volume: 15 year: 2018 article-title: Deep‐learning‐assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet publication-title: PLoS Med – volume: 15 year: 2018 article-title: Deep learning for lung cancer prognostication: A retrospective multi‐cohort radiomics study publication-title: PLoS Med – volume: 881 start-page: 161 year: 2015 end-page: 186 article-title: Anterior cruciate ligament: Structure, injuries and regenerative treatments publication-title: Adv Exp Med Biol – volume: 14 start-page: 204 year: 2006 end-page: 213 article-title: Anatomy of the anterior cruciate ligament publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 97 year: 2018 article-title: Comparison of 1.5‐ and 3.0‐T magnetic resonance imaging for evaluating lesions of the knee: A systematic review and meta‐analysis (PRISMA‐compliant article) publication-title: Medicine (Baltimore) – volume: 32 start-page: 980 year: 2019 end-page: 986 article-title: Deep learning for detection of complete anterior cruciate ligament tear publication-title: J Digit Imaging – volume: 288 start-page: 318 year: 2018 end-page: 328 article-title: Current applications and future impact of machine learning in radiology publication-title: Radiology – volume: 15 year: 2018 article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med – volume: 47 start-page: 777 year: 2016 end-page: 788 article-title: Anterior cruciate ligament injuries in children and adolescents publication-title: Orthop Clin North Am – volume: 84 start-page: 5 year: 2007 end-page: 23 article-title: Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: A systematic review publication-title: Br Med Bull – volume: 39 start-page: 1776 year: 2018 end-page: 1784 article-title: Deep learning in neuroradiology publication-title: AJNR Am J Neuroradiol – volume: 16 start-page: 3345 year: 2019 end-page: 3367 article-title: A full convolutional network based on DenseNet for remote sensing scene classification publication-title: Math Biosci Eng – volume: 13 start-page: 224 year: 1997 end-page: 228 article-title: The effect of training and experience on the magnetic resonance imaging interpretation of meniscal tears publication-title: Art Ther – volume: 1 start-page: 2261 year: 2017 end-page: 2269 article-title: Densely connected convolutional networks publication-title: Comput Vis Pattern Recognit – volume: 66 start-page: 272 year: 2008 end-page: 275 article-title: Effect of specialty and experience on the interpretation of knee MRI scans publication-title: Bull NYU Hosp Jt Dis – volume: 24 start-page: 1525 year: 2016 end-page: 1539 article-title: A systematic review and meta‐analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee publication-title: Knee Surg Sports Traumatol Arthrosc – volume: 15 start-page: 36 year: 2010 end-page: 42 article-title: Diagnostic value of PD‐ fat suppression and T2 gradient echo MRI sequences in diagnosis of cruciate ligament and meniscal lesions publication-title: Sci J Kurd Univ Med Sci – volume: 49 start-page: 400 year: 2019 end-page: 410 article-title: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects publication-title: J Magn Reson Imaging – volume: 42 year: 2018 article-title: Medical image analysis using convolutional neural networks: A review publication-title: J Med Syst – volume: 287 start-page: 912 year: 2018 end-page: 921 article-title: Association of mucoid degeneration of the anterior cruciate ligament at MR imaging with medial tibiofemoral osteoarthritis progression at radiography: Data from the osteoarthritis initiative publication-title: Radiology – volume: 79 start-page: 2379 year: 2018 end-page: 2391 article-title: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging publication-title: Magn Reson Med – year: 2014 – volume: 290 start-page: 218 year: 2019 end-page: 228 article-title: Development and validation of deep learning‐based automatic detection algorithm for malignant pulmonary nodules on chest radiographs publication-title: Radiology – volume: 291 start-page: 606 year: 2019 end-page: 617 article-title: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI publication-title: Radiology – volume: 25 start-page: 1472 year: 2018 end-page: 1480 article-title: Deep learning in radiology publication-title: Acad Radiol – volume: 14 start-page: 114 year: 2006 end-page: 119 article-title: Early post‐traumatic osteoarthritis‐like changes in human articular cartilage following rupture of the anterior cruciate ligament publication-title: Osteoarthr Cartil – volume: 1 start-page: 770 year: 2016 end-page: 778 – volume: 290 start-page: 590 year: 2019 end-page: 606 article-title: Convolutional neural networks for radiologic images: A radiologist's guide publication-title: Radiology – volume: 15 start-page: 512 year: 2018 end-page: 520 article-title: Machine learning in medical imaging publication-title: J Am Coll Radiol – volume: 39 start-page: 1557 year: 2011 end-page: 1568 article-title: The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: A systematic review publication-title: Am J Sports Med – volume: 48 start-page: 1570 year: 2018 end-page: 1577 article-title: Computer‐aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI publication-title: J Magn Reson Imaging – volume: 10 start-page: 166 year: 2019 article-title: SALMON: Survival analysis learning with multi‐omics neural networks on breast cancer publication-title: Front Genet – volume: 52 start-page: 109 year: 2019 end-page: 118 article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative publication-title: Med Image Anal – volume: 289 start-page: 160 year: 2018 end-page: 169 article-title: Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection publication-title: Radiology – volume: 257 start-page: 495 year: 2019 end-page: 505 article-title: Fully automated detection of retinal disorders by image‐based deep learning publication-title: Graefes Arch Clin Exp Ophthalmol – ident: e_1_2_7_24_1 doi: 10.3389/fgene.2019.00166 – ident: e_1_2_7_33_1 doi: 10.1371/journal.pmed.1002699 – ident: e_1_2_7_8_1 doi: 10.1093/bmb/ldm022 – volume: 66 start-page: 272 year: 2008 ident: e_1_2_7_12_1 article-title: Effect of specialty and experience on the interpretation of knee MRI scans publication-title: Bull NYU Hosp Jt Dis – ident: e_1_2_7_28_1 doi: 10.1016/j.media.2018.11.009 – ident: e_1_2_7_19_1 doi: 10.1007/s10916-018-1088-1 – ident: e_1_2_7_34_1 doi: 10.1007/s10278-019-00193-4 – volume: 15 start-page: 36 year: 2010 ident: e_1_2_7_39_1 article-title: Diagnostic value of PD‐ fat suppression and T2 gradient echo MRI sequences in diagnosis of cruciate ligament and meniscal lesions publication-title: Sci J Kurd Univ Med Sci – volume: 25 start-page: 1268 year: 2010 ident: e_1_2_7_11_1 article-title: Evaluation of MRI features of anterior cruciate ligament injury publication-title: Radiol Pract – ident: e_1_2_7_23_1 doi: 10.1371/journal.pmed.1002686 – ident: e_1_2_7_15_1 doi: 10.1148/radiol.2018171820 – ident: e_1_2_7_4_1 doi: 10.1148/radiol.2018171565 – ident: e_1_2_7_18_1 doi: 10.1148/radiol.2018180547 – ident: e_1_2_7_9_1 doi: 10.1148/radiol.2263011892 – ident: e_1_2_7_10_1 doi: 10.1007/s00167-015-3861-8 – ident: e_1_2_7_27_1 doi: 10.1148/radiol.2019182304 – volume: 16 start-page: 246 year: 2013 ident: e_1_2_7_32_1 article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network publication-title: Med Image Comput Comput Assist Interv – ident: e_1_2_7_5_1 doi: 10.1016/j.joca.2005.08.005 – ident: e_1_2_7_26_1 doi: 10.1002/jmri.26047 – volume: 1 start-page: 2261 year: 2017 ident: e_1_2_7_36_1 article-title: Densely connected convolutional networks publication-title: Comput Vis Pattern Recognit – ident: e_1_2_7_21_1 doi: 10.1007/s00417-018-04224-8 – ident: e_1_2_7_30_1 doi: 10.1148/radiol.2018172986 – ident: e_1_2_7_31_1 doi: 10.1002/jmri.26246 – ident: e_1_2_7_16_1 doi: 10.1016/j.jacr.2017.12.028 – ident: e_1_2_7_38_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_7_3_1 doi: 10.1007/978-3-319-22345-2_10 – ident: e_1_2_7_25_1 doi: 10.1148/radiol.2018180237 – ident: e_1_2_7_6_1 doi: 10.1016/j.ocl.2016.05.004 – ident: e_1_2_7_29_1 doi: 10.1002/mrm.26841 – volume-title: International Conference on Learning Representations (ICLR) year: 2014 ident: e_1_2_7_37_1 – ident: e_1_2_7_7_1 doi: 10.1097/MD.0000000000012401 – ident: e_1_2_7_17_1 doi: 10.1016/j.acra.2018.02.018 – ident: e_1_2_7_22_1 doi: 10.1371/journal.pmed.1002711 – ident: e_1_2_7_35_1 doi: 10.3934/mbe.2019167 – ident: e_1_2_7_13_1 doi: 10.1177/0363546511407612 – ident: e_1_2_7_20_1 doi: 10.3174/ajnr.A5543 – ident: e_1_2_7_2_1 doi: 10.1007/s00167-005-0679-9 – volume: 13 start-page: 224 year: 1997 ident: e_1_2_7_14_1 article-title: The effect of training and experience on the magnetic resonance imaging interpretation of meniscal tears publication-title: Art Ther |
SSID | ssj0009945 |
Score | 2.5246248 |
Snippet | Background
MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is... MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is... BackgroundMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1745 |
SubjectTerms | Accuracy Algorithms Anterior cruciate ligament Anterior Cruciate Ligament - diagnostic imaging Anterior Cruciate Ligament Injuries - diagnostic imaging anterior cruciate ligament injury Arthroscopy Artificial neural networks Automation Classification convolutional neural network Deep Learning Diagnostic systems Feasibility studies Field strength Humans Injuries Knee Lesions Ligaments Machine learning Magnetic Resonance Imaging Medical imaging Model accuracy Neural networks Performance evaluation Population studies Proton density (concentration) Reference Standards Reproducibility of Results Retrospective Studies Sensitivity and Specificity Sports injuries Statistical analysis Statistical tests Test sets |
Title | Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27266 https://www.ncbi.nlm.nih.gov/pubmed/32715584 https://www.proquest.com/docview/2461166177 https://www.proquest.com/docview/2427521683 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1053-1807 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2586 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009945 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VPSAuQPkMLWgQXEDKNnEcO6m4rLqtSkURKlTqBUV2MmkX2uyqu3ugv4Sfy9jJZlVASHCzlLHs2DP288z4GeAVL7uOdESHlPPZRGa2DnOrRVjHpmQ0q6uIfJbvB3VwIg9P09M1eLu8C9PyQ_QON2cZfr12Bm7sbHtFGvr18mo8EJo3GF6A4yT1MdrjFXdUnvsXihk_JGGcRbrnJhXbq6o3d6PfIOZNxOq3nP278GXZ2TbT5NtgMbeD8voXHsf__Zt7cKfDojhslWcD1qi5D7eOumj7A_gxIppix8B6hsOOfhwZ5-LQTciYC7usHDy9hO_HZ8a5GrmC88DhiOY-zavZwb2eUhwnNY7a7D5uFD-uri2gT15wnTl3BJuT6Xc0M2R4ij0XLn7q_B4P4WR_7_PuQdi95BCWDNdUGMuUEiXLmmxk-VRcs2akmTYqyiqjKkEx1YqBCAlbylSbklGPERWfBqsyqWNKHsF6M2noCWAqImVFrrSujKREWmkoTytRx2lmrDUBvF7OaFF2NOfutY2LoiVoFoUb6sIPdQAve9lpS-7xR6mtpWIUnYHPCkfDFzO20TqAF_1nNk0XbzENTRZORmhGRypLAnjcKlTfTCI0I7lMBvDGq8Vf2i8Oj47f-dLTfxHehNvC-QZ86s0WrM-vFvSMAdTcPveG8hOtgxju |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPMCTghd-DsAFG8AJSusRx7IS3at3UjXZCY5P2FtmJM8qPtFrbh-0v2Z_LneOlGiAkeIsUW07iO_vr8-VjgLc47BJ0RIU2x7WJyEwd5kbxsI51iWpWVZF1Wb4Hcngs9k_SE5-bQ__CtHyILuBGnuHGa3JwCkhvraihX3-cTXpc4QxzE27RBh355eBwRY_Kc3dGMSqIJIyzSHV0Ur61qnt9PvpNZF7XrG7S2b3fnqw6d6xCyjX51lsuTK-8-IXk-N_v8wDueTnK-q39PIQbtnkEt8d-w_0xXA6snTEPYT1lfU8gZyh1WZ_6ZIIX22gf2MOWjSanmqKNWIGCcGxgFy7Tq_nAdjqqOJvWbNAm-GGj7NPqzwXm8hfoYb4QY3M6O2d6zlChsg6Hyz770McTON7dOdoehv4wh7BExSbDWKQ2kaKsrYkMLoxrNI40U1pGWaVlxW1sa4laxHJTilTpEoWP5hUuCKsyqWObrMNaM23sM2Apj6ThuVSq0sImwght87TidZxm2hgdwLurLi1KTzqnAze-Fy2jmRf0qQv3qQN405WdtXyPP5bavLKMwvv4vCASX4zyRqkAXne30Ttpy0U3drqkMlyhQJJZEsDT1qK6ZhKuUMxlIoD3zi7-0n6xPz7cc1fP_6XwK7gzPBqPitHewccNuMspVOAycTZhbXG2tC9QTy3MS-c1PwEh4x0K |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIlVcyjcNFDCCC0jZJo5jJ4jLqttVW9qqKlTqBUV2Mm63QHbV7h7aX8LPZexksyogJLhZylh27Bn7zXj8DPCGll1HOqJCzMk3EZmxYW4UD22sS0KzqorQZ_keyO1jsXuSnizBh_ldmIYfogu4Ocvw67Uz8EllNxakoeffL0Y9rmiDuQW3hST3ykGiowV5VJ77J4oJQCRhnEWqIyflG4u6N7ej3zDmTcjq95zhXfgy722TavK1N5uaXnn9C5Hj__7OPVhtwSjrN9pzH5awfgAr--1x-0P4MUCcsJaC9ZT1W_5xRkCX9d2MjKiwSdpB84tsb3SqXayRKrgQHBvg1Od51e_ZVscpzsaWDZr0PmqUHS7uLTCfveA6c-YYNseTK6YvGeFT1pHhsk9t4OMRHA-3Pm9uh-1TDmFJeE2GsUgxkaK0aCJDbrEl1UgzpWWUVVpWHGO0kpAIclOKVOmSYI_mFbmDVZnYGJPHsFyPa1wDlvJIGp5LpSotMBFGaMzTits4zbQxOoC38xktypbn3D238a1oGJp54Ya68EMdwOtOdtKwe_xRan2uGEVr4ZeF4-GLCdwoFcCr7jPZpjtw0TWOZ06GK4JHMksCeNIoVNdMwhVBuUwE8M6rxV_aL3b3j3Z86em_CL-ElcPBsNjbOfj4DO5wFyfwaTjrsDy9mOFzAlNT88LbzE--ARu5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Anterior+Cruciate+Ligament+Lesion+Detection%3A+Evaluation+of+Diagnostic+Performance+Using+Arthroscopy+as+the+Reference+Standard&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhang%2C+Lingyan&rft.au=Li%2C+Mifang&rft.au=Zhou%2C+Yujia&rft.au=Lu%2C+Guangming&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=52&rft.issue=6&rft.spage=1745&rft.epage=1752&rft_id=info:doi/10.1002%2Fjmri.27266&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon |