Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard

Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may impro...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 52; no. 6; pp. 1745 - 1752
Main Authors Zhang, Lingyan, Li, Mifang, Zhou, Yujia, Lu, Guangming, Zhou, Quan
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.27266

Cover

Abstract Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability. Purpose To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI. Study Type Retrospective. Population In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively. Field Strength/Sequence 2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T. Assessment Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images. Statistical Tests Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively. Data Conclusion Our study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury. Level of Evidence 3 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2020;52:1745–1752.
AbstractList MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability. To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI. Retrospective. In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively. 2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T. Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images. Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively. Our study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury. 3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752.
MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability.BACKGROUNDMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time-intensive and depends on the clinical experience of the reader. An automated detection system based on a deep-learning algorithm may improve interpretation time and reliability.To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.PURPOSETo determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.Retrospective.STUDY TYPERetrospective.In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.POPULATIONIn all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.FIELD STRENGTH/SEQUENCE2D sagittal proton density-weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.ASSESSMENTBased on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).STATISTICAL TESTSUsing arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.RESULTSThe accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.Our study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury.DATA CONCLUSIONOur study demonstrated the feasibility of using an automated deep-learning-based detection system to evaluate ACL injury.3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752.LEVEL OF EVIDENCE3 TECHNICAL EFFICACY STAGE: 1 J. MAGN. RESON. IMAGING 2020;52:1745-1752.
Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability. Purpose To determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI. Study Type Retrospective. Population In all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively. Field Strength/Sequence 2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T. Assessment Based on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images. Statistical Tests Using arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Results The accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively. Data Conclusion Our study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury. Level of Evidence 3 Technical Efficacy Stage 1 J. MAGN. RESON. IMAGING 2020;52:1745–1752.
BackgroundMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is time‐intensive and depends on the clinical experience of the reader. An automated detection system based on a deep‐learning algorithm may improve interpretation time and reliability.PurposeTo determine the feasibility of using a deep learning approach to detect ACL injuries within the knee joint on MRI.Study TypeRetrospective.PopulationIn all, 163 subjects with an ACL tear and 245 subjects with an intact ACL. There were 285, 81, and 42 volumes for training, validation, and test sets, respectively.Field Strength/Sequence2D sagittal proton density‐weighted spectral attenuated inversion recovery sequences at 1.5T and 3.0T.AssessmentBased on the architecture of 3D DenseNet, we constructed a classification convolutional neural network. We tested this deep learning approach with different inputs and two other algorithms, including VGG16 and ResNet. Then we had both inexperienced radiologists and senior radiologists read the MR images.Statistical TestsUsing arthroscopic results as the reference standard, the performance of three different inputs and three different algorithms, the residents and senior radiologists assessed the classification accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC).ResultsThe accuracy, sensitivity, specificity, PPV, and NPV of our customized 3D deep learning architecture was 0.957, 0.976, 0.944, 0.940, and 0.976, respectively. The average AUCs were 0.946, 0.859, 0.960 for ResNet, VGG16, and our proposed network, respectively. The diagnostic accuracy of our model, residents, and senior radiologists was 0.957, 0.814, and 0.899, respectively.Data ConclusionOur study demonstrated the feasibility of using an automated deep‐learning‐based detection system to evaluate ACL injury.Level of Evidence3Technical Efficacy Stage1 J. MAGN. RESON. IMAGING 2020;52:1745–1752.
Author Zhou, Quan
Zhang, Lingyan
Zhou, Yujia
Lu, Guangming
Li, Mifang
Author_xml – sequence: 1
  givenname: Lingyan
  surname: Zhang
  fullname: Zhang, Lingyan
  organization: Southern Medical University
– sequence: 2
  givenname: Mifang
  surname: Li
  fullname: Li, Mifang
  organization: Southern Medical University
– sequence: 3
  givenname: Yujia
  surname: Zhou
  fullname: Zhou, Yujia
  organization: Southern Medical University
– sequence: 4
  givenname: Guangming
  surname: Lu
  fullname: Lu, Guangming
  email: cjr.luguangming@vip.163.com
  organization: Southern Medical University
– sequence: 5
  givenname: Quan
  orcidid: 0000-0002-8358-7577
  surname: Zhou
  fullname: Zhou, Quan
  email: zhouquan3777@smu.edu.cn
  organization: Southern Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32715584$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URH9gwwMgS2xQpWltz4xnwi5KChQFgQpdWzeeO4mjGXuwPa3yJn1cnKTdVKgrn8V3zvU995QcWWeRkPecXXDGxOWm9-ZCVELKV-SEl0JkoqzlUdKszDNes-qYnIawYYxNJkX5hhznouJlWRcn5GGOONAFgrfGruh0GLwDvaat83RqI3qTxMyP2kBEujAr6NHGZAjGWTrHiDom9Zle3UE3wk5T19K5gZV1IRpNf6FPYT1YjfQ27If4uPYuaDdsKQQa10hvsEWPO-R3BNuAb96S1y10Ad89vmfk9svVn9m3bPHz6_Vsush0IXKZ8aLEXBa6xSVb8jxvcZKWr0CyugHZCOTYSs4ZiqUuygo0EzWIphZ1o_OWY35GPh1y0-J_RwxR9SZo7Dqw6MagRCGqUnBZ5wn9-AzduNHb9LtEpSFS8qpK1IdHalz22KjBmx78Vj11ngB2AHQqIXhslTZx31z0YDrFmdqdVe3OqvZnTZbzZ5an1P_C_ADfmw63L5Dq-4-b64PnH92itGY
CitedBy_id crossref_primary_10_1155_2021_4931437
crossref_primary_10_1186_s13018_024_04602_5
crossref_primary_10_1016_j_rcl_2021_07_011
crossref_primary_10_1109_TMI_2022_3206042
crossref_primary_10_1016_j_arthro_2024_01_043
crossref_primary_10_26634_jic_12_1_20498
crossref_primary_10_3390_jpm12071029
crossref_primary_10_5114_pjr_2023_133660
crossref_primary_10_1016_j_knee_2025_01_007
crossref_primary_10_1016_j_heliyon_2025_e42520
crossref_primary_10_1016_j_arthro_2022_03_037
crossref_primary_10_3390_diagnostics11010105
crossref_primary_10_1016_j_arthro_2024_05_027
crossref_primary_10_1002_jmri_28069
crossref_primary_10_1007_s00521_023_09350_x
crossref_primary_10_1016_j_arthro_2023_08_010
crossref_primary_10_1109_JBHI_2022_3152846
crossref_primary_10_3390_diagnostics15060776
crossref_primary_10_1007_s00256_021_03830_8
crossref_primary_10_1007_s00330_024_10928_9
crossref_primary_10_1155_2021_4076175
crossref_primary_10_3390_diagnostics12020537
crossref_primary_10_1007_s11604_022_01385_9
crossref_primary_10_13104_imri_2022_1102
crossref_primary_10_2139_ssrn_4051504
crossref_primary_10_1016_j_bspc_2023_105356
crossref_primary_10_1080_21681163_2023_2261554
crossref_primary_10_1177_1759720X231165560
crossref_primary_10_2196_37508
crossref_primary_10_1007_s00521_023_08776_7
crossref_primary_10_1016_j_displa_2025_103032
crossref_primary_10_1007_s00264_022_05628_2
crossref_primary_10_1097_RLI_0000000000000907
crossref_primary_10_3390_diagnostics12030632
crossref_primary_10_7759_cureus_45730
crossref_primary_10_1007_s00256_024_04684_6
crossref_primary_10_1007_s00330_022_08923_z
crossref_primary_10_1007_s00330_024_11105_8
crossref_primary_10_1115_1_4053063
crossref_primary_10_1007_s00256_023_04416_2
crossref_primary_10_3390_healthcare12030300
crossref_primary_10_3788_LOP232102
Cites_doi 10.3389/fgene.2019.00166
10.1371/journal.pmed.1002699
10.1093/bmb/ldm022
10.1016/j.media.2018.11.009
10.1007/s10916-018-1088-1
10.1007/s10278-019-00193-4
10.1371/journal.pmed.1002686
10.1148/radiol.2018171820
10.1148/radiol.2018171565
10.1148/radiol.2018180547
10.1148/radiol.2263011892
10.1007/s00167-015-3861-8
10.1148/radiol.2019182304
10.1016/j.joca.2005.08.005
10.1002/jmri.26047
10.1007/s00417-018-04224-8
10.1148/radiol.2018172986
10.1002/jmri.26246
10.1016/j.jacr.2017.12.028
10.1109/CVPR.2016.90
10.1007/978-3-319-22345-2_10
10.1148/radiol.2018180237
10.1016/j.ocl.2016.05.004
10.1002/mrm.26841
10.1097/MD.0000000000012401
10.1016/j.acra.2018.02.018
10.1371/journal.pmed.1002711
10.3934/mbe.2019167
10.1177/0363546511407612
10.3174/ajnr.A5543
10.1007/s00167-005-0679-9
ContentType Journal Article
Copyright 2020 International Society for Magnetic Resonance in Medicine
2020 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2020 International Society for Magnetic Resonance in Medicine
– notice: 2020 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
DOI 10.1002/jmri.27266
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 1752
ExternalDocumentID 32715584
10_1002_jmri_27266
JMRI27266
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 81801780
– fundername: Guangdong Science and Technology Department
  funderid: 2017ZC0099
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7TK
8FD
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c4236-145e364cfeb0b133fe92587a608da6d2e1ef6110e2bc457ac028a2d828dc3f1e3
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Fri Jul 11 13:03:57 EDT 2025
Mon Sep 29 20:43:44 EDT 2025
Mon Jul 21 05:56:28 EDT 2025
Wed Oct 01 04:37:07 EDT 2025
Thu Apr 24 23:04:49 EDT 2025
Wed Jan 22 16:33:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
anterior cruciate ligament injury
magnetic resonance imaging
convolutional neural network
Language English
License 2020 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4236-145e364cfeb0b133fe92587a608da6d2e1ef6110e2bc457ac028a2d828dc3f1e3
Notes Lingyan Zhang and Mifang Li with equal contribution to this work.
Contract grant sponsor: Guangdong Science and Technology Department; Contract grant number: 2017ZC0099; Contract grant sponsor: National Natural Science Foundation of China; Contract grant number: 81801780.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8358-7577
PMID 32715584
PQID 2461166177
PQPubID 1006400
PageCount 8
ParticipantIDs proquest_miscellaneous_2427521683
proquest_journals_2461166177
pubmed_primary_32715584
crossref_citationtrail_10_1002_jmri_27266
crossref_primary_10_1002_jmri_27266
wiley_primary_10_1002_jmri_27266_JMRI27266
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2020
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Nashville
PublicationSubtitle JMRI
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J Magn Reson Imaging
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 287
2019; 290
2017; 1
2019; 291
2010; 15
2019; 52
2019; 10
2019; 32
2018; 289
2015; 881
2018; 288
2006; 14
2019; 16
2011; 39
2018; 42
2018; 48
2018; 25
2018; 39
2016; 1
2010; 25
2003; 226
2013; 16
1997; 13
2019; 49
2019; 257
2008; 66
2007; 84
2014
2018; 97
2016; 47
2016; 24
2018; 15
2018; 79
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
White LM (e_1_2_7_14_1) 1997; 13
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
Huang G (e_1_2_7_36_1) 2017; 1
e_1_2_7_10_1
Prasoon A (e_1_2_7_32_1) 2013; 16
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Guo JM (e_1_2_7_11_1) 2010; 25
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
Shobairi E (e_1_2_7_39_1) 2010; 15
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
Kim A (e_1_2_7_12_1) 2008; 66
e_1_2_7_38_1
Simonyan K (e_1_2_7_37_1) 2014
References_xml – volume: 226
  start-page: 837
  year: 2003
  end-page: 848
  article-title: MR imaging of the menisci and cruciate ligaments: A systematic review
  publication-title: Radiology
– volume: 16
  start-page: 246
  year: 2013
  end-page: 253
  article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
  publication-title: Med Image Comput Comput Assist Interv
– volume: 25
  start-page: 1268
  year: 2010
  end-page: 1271
  article-title: Evaluation of MRI features of anterior cruciate ligament injury
  publication-title: Radiol Pract
– volume: 15
  year: 2018
  article-title: Deep‐learning‐assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet
  publication-title: PLoS Med
– volume: 15
  year: 2018
  article-title: Deep learning for lung cancer prognostication: A retrospective multi‐cohort radiomics study
  publication-title: PLoS Med
– volume: 881
  start-page: 161
  year: 2015
  end-page: 186
  article-title: Anterior cruciate ligament: Structure, injuries and regenerative treatments
  publication-title: Adv Exp Med Biol
– volume: 14
  start-page: 204
  year: 2006
  end-page: 213
  article-title: Anatomy of the anterior cruciate ligament
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 97
  year: 2018
  article-title: Comparison of 1.5‐ and 3.0‐T magnetic resonance imaging for evaluating lesions of the knee: A systematic review and meta‐analysis (PRISMA‐compliant article)
  publication-title: Medicine (Baltimore)
– volume: 32
  start-page: 980
  year: 2019
  end-page: 986
  article-title: Deep learning for detection of complete anterior cruciate ligament tear
  publication-title: J Digit Imaging
– volume: 288
  start-page: 318
  year: 2018
  end-page: 328
  article-title: Current applications and future impact of machine learning in radiology
  publication-title: Radiology
– volume: 15
  year: 2018
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med
– volume: 47
  start-page: 777
  year: 2016
  end-page: 788
  article-title: Anterior cruciate ligament injuries in children and adolescents
  publication-title: Orthop Clin North Am
– volume: 84
  start-page: 5
  year: 2007
  end-page: 23
  article-title: Magnetic resonance imaging versus arthroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tears: A systematic review
  publication-title: Br Med Bull
– volume: 39
  start-page: 1776
  year: 2018
  end-page: 1784
  article-title: Deep learning in neuroradiology
  publication-title: AJNR Am J Neuroradiol
– volume: 16
  start-page: 3345
  year: 2019
  end-page: 3367
  article-title: A full convolutional network based on DenseNet for remote sensing scene classification
  publication-title: Math Biosci Eng
– volume: 13
  start-page: 224
  year: 1997
  end-page: 228
  article-title: The effect of training and experience on the magnetic resonance imaging interpretation of meniscal tears
  publication-title: Art Ther
– volume: 1
  start-page: 2261
  year: 2017
  end-page: 2269
  article-title: Densely connected convolutional networks
  publication-title: Comput Vis Pattern Recognit
– volume: 66
  start-page: 272
  year: 2008
  end-page: 275
  article-title: Effect of specialty and experience on the interpretation of knee MRI scans
  publication-title: Bull NYU Hosp Jt Dis
– volume: 24
  start-page: 1525
  year: 2016
  end-page: 1539
  article-title: A systematic review and meta‐analysis of the diagnostic accuracy of MRI for suspected ACL and meniscal tears of the knee
  publication-title: Knee Surg Sports Traumatol Arthrosc
– volume: 15
  start-page: 36
  year: 2010
  end-page: 42
  article-title: Diagnostic value of PD‐ fat suppression and T2 gradient echo MRI sequences in diagnosis of cruciate ligament and meniscal lesions
  publication-title: Sci J Kurd Univ Med Sci
– volume: 49
  start-page: 400
  year: 2019
  end-page: 410
  article-title: 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects
  publication-title: J Magn Reson Imaging
– volume: 42
  year: 2018
  article-title: Medical image analysis using convolutional neural networks: A review
  publication-title: J Med Syst
– volume: 287
  start-page: 912
  year: 2018
  end-page: 921
  article-title: Association of mucoid degeneration of the anterior cruciate ligament at MR imaging with medial tibiofemoral osteoarthritis progression at radiography: Data from the osteoarthritis initiative
  publication-title: Radiology
– volume: 79
  start-page: 2379
  year: 2018
  end-page: 2391
  article-title: Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging
  publication-title: Magn Reson Med
– year: 2014
– volume: 290
  start-page: 218
  year: 2019
  end-page: 228
  article-title: Development and validation of deep learning‐based automatic detection algorithm for malignant pulmonary nodules on chest radiographs
  publication-title: Radiology
– volume: 291
  start-page: 606
  year: 2019
  end-page: 617
  article-title: Deep learning for diagnosis of chronic myocardial infarction on nonenhanced cardiac cine MRI
  publication-title: Radiology
– volume: 25
  start-page: 1472
  year: 2018
  end-page: 1480
  article-title: Deep learning in radiology
  publication-title: Acad Radiol
– volume: 14
  start-page: 114
  year: 2006
  end-page: 119
  article-title: Early post‐traumatic osteoarthritis‐like changes in human articular cartilage following rupture of the anterior cruciate ligament
  publication-title: Osteoarthr Cartil
– volume: 1
  start-page: 770
  year: 2016
  end-page: 778
– volume: 290
  start-page: 590
  year: 2019
  end-page: 606
  article-title: Convolutional neural networks for radiologic images: A radiologist's guide
  publication-title: Radiology
– volume: 15
  start-page: 512
  year: 2018
  end-page: 520
  article-title: Machine learning in medical imaging
  publication-title: J Am Coll Radiol
– volume: 39
  start-page: 1557
  year: 2011
  end-page: 1568
  article-title: The clinical utility and diagnostic performance of magnetic resonance imaging for identification of early and advanced knee osteoarthritis: A systematic review
  publication-title: Am J Sports Med
– volume: 48
  start-page: 1570
  year: 2018
  end-page: 1577
  article-title: Computer‐aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 166
  year: 2019
  article-title: SALMON: Survival analysis learning with multi‐omics neural networks on breast cancer
  publication-title: Front Genet
– volume: 52
  start-page: 109
  year: 2019
  end-page: 118
  article-title: Automated segmentation of knee bone and cartilage combining statistical shape knowledge and convolutional neural networks: Data from the osteoarthritis initiative
  publication-title: Med Image Anal
– volume: 289
  start-page: 160
  year: 2018
  end-page: 169
  article-title: Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection
  publication-title: Radiology
– volume: 257
  start-page: 495
  year: 2019
  end-page: 505
  article-title: Fully automated detection of retinal disorders by image‐based deep learning
  publication-title: Graefes Arch Clin Exp Ophthalmol
– ident: e_1_2_7_24_1
  doi: 10.3389/fgene.2019.00166
– ident: e_1_2_7_33_1
  doi: 10.1371/journal.pmed.1002699
– ident: e_1_2_7_8_1
  doi: 10.1093/bmb/ldm022
– volume: 66
  start-page: 272
  year: 2008
  ident: e_1_2_7_12_1
  article-title: Effect of specialty and experience on the interpretation of knee MRI scans
  publication-title: Bull NYU Hosp Jt Dis
– ident: e_1_2_7_28_1
  doi: 10.1016/j.media.2018.11.009
– ident: e_1_2_7_19_1
  doi: 10.1007/s10916-018-1088-1
– ident: e_1_2_7_34_1
  doi: 10.1007/s10278-019-00193-4
– volume: 15
  start-page: 36
  year: 2010
  ident: e_1_2_7_39_1
  article-title: Diagnostic value of PD‐ fat suppression and T2 gradient echo MRI sequences in diagnosis of cruciate ligament and meniscal lesions
  publication-title: Sci J Kurd Univ Med Sci
– volume: 25
  start-page: 1268
  year: 2010
  ident: e_1_2_7_11_1
  article-title: Evaluation of MRI features of anterior cruciate ligament injury
  publication-title: Radiol Pract
– ident: e_1_2_7_23_1
  doi: 10.1371/journal.pmed.1002686
– ident: e_1_2_7_15_1
  doi: 10.1148/radiol.2018171820
– ident: e_1_2_7_4_1
  doi: 10.1148/radiol.2018171565
– ident: e_1_2_7_18_1
  doi: 10.1148/radiol.2018180547
– ident: e_1_2_7_9_1
  doi: 10.1148/radiol.2263011892
– ident: e_1_2_7_10_1
  doi: 10.1007/s00167-015-3861-8
– ident: e_1_2_7_27_1
  doi: 10.1148/radiol.2019182304
– volume: 16
  start-page: 246
  year: 2013
  ident: e_1_2_7_32_1
  article-title: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network
  publication-title: Med Image Comput Comput Assist Interv
– ident: e_1_2_7_5_1
  doi: 10.1016/j.joca.2005.08.005
– ident: e_1_2_7_26_1
  doi: 10.1002/jmri.26047
– volume: 1
  start-page: 2261
  year: 2017
  ident: e_1_2_7_36_1
  article-title: Densely connected convolutional networks
  publication-title: Comput Vis Pattern Recognit
– ident: e_1_2_7_21_1
  doi: 10.1007/s00417-018-04224-8
– ident: e_1_2_7_30_1
  doi: 10.1148/radiol.2018172986
– ident: e_1_2_7_31_1
  doi: 10.1002/jmri.26246
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jacr.2017.12.028
– ident: e_1_2_7_38_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_7_3_1
  doi: 10.1007/978-3-319-22345-2_10
– ident: e_1_2_7_25_1
  doi: 10.1148/radiol.2018180237
– ident: e_1_2_7_6_1
  doi: 10.1016/j.ocl.2016.05.004
– ident: e_1_2_7_29_1
  doi: 10.1002/mrm.26841
– volume-title: International Conference on Learning Representations (ICLR)
  year: 2014
  ident: e_1_2_7_37_1
– ident: e_1_2_7_7_1
  doi: 10.1097/MD.0000000000012401
– ident: e_1_2_7_17_1
  doi: 10.1016/j.acra.2018.02.018
– ident: e_1_2_7_22_1
  doi: 10.1371/journal.pmed.1002711
– ident: e_1_2_7_35_1
  doi: 10.3934/mbe.2019167
– ident: e_1_2_7_13_1
  doi: 10.1177/0363546511407612
– ident: e_1_2_7_20_1
  doi: 10.3174/ajnr.A5543
– ident: e_1_2_7_2_1
  doi: 10.1007/s00167-005-0679-9
– volume: 13
  start-page: 224
  year: 1997
  ident: e_1_2_7_14_1
  article-title: The effect of training and experience on the magnetic resonance imaging interpretation of meniscal tears
  publication-title: Art Ther
SSID ssj0009945
Score 2.5246248
Snippet Background MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is...
MRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is...
BackgroundMRI is the most commonly used imaging method for diagnosing anterior cruciate ligament (ACL) injuries. However, the interpretation of knee MRI is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1745
SubjectTerms Accuracy
Algorithms
Anterior cruciate ligament
Anterior Cruciate Ligament - diagnostic imaging
Anterior Cruciate Ligament Injuries - diagnostic imaging
anterior cruciate ligament injury
Arthroscopy
Artificial neural networks
Automation
Classification
convolutional neural network
Deep Learning
Diagnostic systems
Feasibility studies
Field strength
Humans
Injuries
Knee
Lesions
Ligaments
Machine learning
Magnetic Resonance Imaging
Medical imaging
Model accuracy
Neural networks
Performance evaluation
Population studies
Proton density (concentration)
Reference Standards
Reproducibility of Results
Retrospective Studies
Sensitivity and Specificity
Sports injuries
Statistical analysis
Statistical tests
Test sets
Title Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.27266
https://www.ncbi.nlm.nih.gov/pubmed/32715584
https://www.proquest.com/docview/2461166177
https://www.proquest.com/docview/2427521683
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1053-1807
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1VPSAuQPkMLWgQXEDKNnEcO6m4rLqtSkURKlTqBUV2MmkX2uyqu3ugv4Sfy9jJZlVASHCzlLHs2DP288z4GeAVL7uOdESHlPPZRGa2DnOrRVjHpmQ0q6uIfJbvB3VwIg9P09M1eLu8C9PyQ_QON2cZfr12Bm7sbHtFGvr18mo8EJo3GF6A4yT1MdrjFXdUnvsXihk_JGGcRbrnJhXbq6o3d6PfIOZNxOq3nP278GXZ2TbT5NtgMbeD8voXHsf__Zt7cKfDojhslWcD1qi5D7eOumj7A_gxIppix8B6hsOOfhwZ5-LQTciYC7usHDy9hO_HZ8a5GrmC88DhiOY-zavZwb2eUhwnNY7a7D5uFD-uri2gT15wnTl3BJuT6Xc0M2R4ij0XLn7q_B4P4WR_7_PuQdi95BCWDNdUGMuUEiXLmmxk-VRcs2akmTYqyiqjKkEx1YqBCAlbylSbklGPERWfBqsyqWNKHsF6M2noCWAqImVFrrSujKREWmkoTytRx2lmrDUBvF7OaFF2NOfutY2LoiVoFoUb6sIPdQAve9lpS-7xR6mtpWIUnYHPCkfDFzO20TqAF_1nNk0XbzENTRZORmhGRypLAnjcKlTfTCI0I7lMBvDGq8Vf2i8Oj47f-dLTfxHehNvC-QZ86s0WrM-vFvSMAdTcPveG8hOtgxju
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMdPMCTghd-DsAFG8AJSusRx7IS3at3UjXZCY5P2FtmJM8qPtFrbh-0v2Z_LneOlGiAkeIsUW07iO_vr8-VjgLc47BJ0RIU2x7WJyEwd5kbxsI51iWpWVZF1Wb4Hcngs9k_SE5-bQ__CtHyILuBGnuHGa3JwCkhvraihX3-cTXpc4QxzE27RBh355eBwRY_Kc3dGMSqIJIyzSHV0Ur61qnt9PvpNZF7XrG7S2b3fnqw6d6xCyjX51lsuTK-8-IXk-N_v8wDueTnK-q39PIQbtnkEt8d-w_0xXA6snTEPYT1lfU8gZyh1WZ_6ZIIX22gf2MOWjSanmqKNWIGCcGxgFy7Tq_nAdjqqOJvWbNAm-GGj7NPqzwXm8hfoYb4QY3M6O2d6zlChsg6Hyz770McTON7dOdoehv4wh7BExSbDWKQ2kaKsrYkMLoxrNI40U1pGWaVlxW1sa4laxHJTilTpEoWP5hUuCKsyqWObrMNaM23sM2Apj6ThuVSq0sImwght87TidZxm2hgdwLurLi1KTzqnAze-Fy2jmRf0qQv3qQN405WdtXyPP5bavLKMwvv4vCASX4zyRqkAXne30Ttpy0U3drqkMlyhQJJZEsDT1qK6ZhKuUMxlIoD3zi7-0n6xPz7cc1fP_6XwK7gzPBqPitHewccNuMspVOAycTZhbXG2tC9QTy3MS-c1PwEh4x0K
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIlVcyjcNFDCCC0jZJo5jJ4jLqttVW9qqKlTqBUV2Mm63QHbV7h7aX8LPZexksyogJLhZylh27Bn7zXj8DPCGll1HOqJCzMk3EZmxYW4UD22sS0KzqorQZ_keyO1jsXuSnizBh_ldmIYfogu4Ocvw67Uz8EllNxakoeffL0Y9rmiDuQW3hST3ykGiowV5VJ77J4oJQCRhnEWqIyflG4u6N7ej3zDmTcjq95zhXfgy722TavK1N5uaXnn9C5Hj__7OPVhtwSjrN9pzH5awfgAr--1x-0P4MUCcsJaC9ZT1W_5xRkCX9d2MjKiwSdpB84tsb3SqXayRKrgQHBvg1Od51e_ZVscpzsaWDZr0PmqUHS7uLTCfveA6c-YYNseTK6YvGeFT1pHhsk9t4OMRHA-3Pm9uh-1TDmFJeE2GsUgxkaK0aCJDbrEl1UgzpWWUVVpWHGO0kpAIclOKVOmSYI_mFbmDVZnYGJPHsFyPa1wDlvJIGp5LpSotMBFGaMzTits4zbQxOoC38xktypbn3D238a1oGJp54Ya68EMdwOtOdtKwe_xRan2uGEVr4ZeF4-GLCdwoFcCr7jPZpjtw0TWOZ06GK4JHMksCeNIoVNdMwhVBuUwE8M6rxV_aL3b3j3Z86em_CL-ElcPBsNjbOfj4DO5wFyfwaTjrsDy9mOFzAlNT88LbzE--ARu5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Approach+for+Anterior+Cruciate+Ligament+Lesion+Detection%3A+Evaluation+of+Diagnostic+Performance+Using+Arthroscopy+as+the+Reference+Standard&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Zhang%2C+Lingyan&rft.au=Li%2C+Mifang&rft.au=Zhou%2C+Yujia&rft.au=Lu%2C+Guangming&rft.date=2020-12-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=52&rft.issue=6&rft.spage=1745&rft.epage=1752&rft_id=info:doi/10.1002%2Fjmri.27266&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon