Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐...
Saved in:
| Published in | Glia Vol. 68; no. 5; pp. 878 - 897 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2020
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0894-1491 1098-1136 1098-1136 |
| DOI | 10.1002/glia.23734 |
Cover
| Abstract | Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Main points
GFAP expression is regulated by transcription factors and enzymes at multiple levels;
GFAP serves as cytoskeleton, interactive platform, and protein location guide;
The guiding role of GFAP involves cellular transport and mobile machineries. |
|---|---|
| AbstractList | Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation. Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation. Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation. Main points GFAP expression is regulated by transcription factors and enzymes at multiple levels; GFAP serves as cytoskeleton, interactive platform, and protein location guide; The guiding role of GFAP involves cellular transport and mobile machineries. |
| Author | Wang, Yu‐Feng Liu, Xiaoyu Li, Dongyang Liu, Haitao Jia, Shuwei Liu, Tianming Tong, Li |
| Author_xml | – sequence: 1 givenname: Dongyang orcidid: 0000-0003-4159-7600 surname: Li fullname: Li, Dongyang organization: Harbin Medical University – sequence: 2 givenname: Xiaoyu surname: Liu fullname: Liu, Xiaoyu organization: Harbin Medical University – sequence: 3 givenname: Tianming surname: Liu fullname: Liu, Tianming organization: Harbin Medical University – sequence: 4 givenname: Haitao surname: Liu fullname: Liu, Haitao organization: Harbin Medical University – sequence: 5 givenname: Li surname: Tong fullname: Tong, Li organization: Harbin Medical University – sequence: 6 givenname: Shuwei surname: Jia fullname: Jia, Shuwei organization: Harbin Medical University – sequence: 7 givenname: Yu‐Feng surname: Wang fullname: Wang, Yu‐Feng email: yufengwang@ems.hrbmu.edu.cn organization: Harbin Medical University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31626364$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtLJDEUhYMo2j428wOGwGwGoTQ3SVVSS5HxAY1udF2kUjd2JF3Vk1Sh_e9N2-pChoFASPKdc2_OPSS7_dAjIT-AnQFj_PwpeHPGhRJyh8yA1boAENUumTFdywJkDQfkMKVnxiAf1D45EFDxSlRyRhZ3OMXBLnDprQk04tMUzOiHng6Ojguk-LqKmNLmxvQddVNvP583dQN1vo0-BBPX1FjfeUtXcRjR9zQvk8bsvh4xHZM9Z0LCk4_9iDxe_Xm4vCnm99e3lxfzwkouZOFaXrJWam1rh60Gq4yruFNguLamZshrV-vOtQIdtKChq6QsGSJTiAKZOCK_t765i78TprFZ-mQxN9jjMKWGC6ZAKllWGf31DX0eptjn7jKlSsWg1mWmfn5QU7vErllFv8yfbT4zzMDpFrBxSCmi-0KANZsBNZugmvcBZZh9g60f3wMfo_Hh3xLYSl58wPV_zJvr-e3FVvMG0QqjuQ |
| CitedBy_id | crossref_primary_10_1002_dneu_22736 crossref_primary_10_3389_fncel_2024_1414662 crossref_primary_10_3390_ijms241411640 crossref_primary_10_1016_j_intimp_2023_110503 crossref_primary_10_4103_1673_5374_317982 crossref_primary_10_3390_ijms252212379 crossref_primary_10_1016_j_expneurol_2023_114371 crossref_primary_10_1016_j_jchemneu_2020_101805 crossref_primary_10_1080_00207454_2023_2277664 crossref_primary_10_1038_s41420_024_02211_z crossref_primary_10_1371_journal_pcbi_1012710 crossref_primary_10_1016_j_bbi_2024_12_025 crossref_primary_10_1016_j_yfrne_2020_100897 crossref_primary_10_4103_1673_5374_391313 crossref_primary_10_1186_s13287_023_03497_z crossref_primary_10_1016_j_cbi_2024_111159 crossref_primary_10_4103_1673_5374_385839 crossref_primary_10_1002_glia_24116 crossref_primary_10_1016_j_neuroscience_2022_02_013 crossref_primary_10_3389_fncel_2022_896172 crossref_primary_10_2174_1874467215666220902112939 crossref_primary_10_1016_j_ejphar_2023_176140 crossref_primary_10_1016_j_ejphar_2025_177358 crossref_primary_10_1016_j_npep_2024_102480 crossref_primary_10_1007_s11011_024_01457_x crossref_primary_10_3390_ijms23116000 crossref_primary_10_1007_s11064_020_03172_2 crossref_primary_10_3389_fimmu_2023_1106490 crossref_primary_10_1021_acs_analchem_3c04825 crossref_primary_10_1016_j_expneurol_2023_114642 crossref_primary_10_1016_j_envres_2023_116869 crossref_primary_10_1155_2021_7806370 crossref_primary_10_1007_s12035_022_02784_9 crossref_primary_10_1177_1759091420981206 crossref_primary_10_3390_biomedicines11112878 crossref_primary_10_3390_biomedicines9101341 crossref_primary_10_3389_fcell_2022_1115348 crossref_primary_10_1016_j_jpsychires_2024_01_007 crossref_primary_10_3389_fnagi_2024_1461556 crossref_primary_10_3389_fcell_2022_1047487 crossref_primary_10_1177_1759091420960550 crossref_primary_10_1007_s00221_023_06587_9 crossref_primary_10_1089_can_2022_0289 crossref_primary_10_3390_cells12192357 crossref_primary_10_1016_j_neuint_2020_104755 crossref_primary_10_1016_j_expneurol_2023_114427 crossref_primary_10_1016_j_arr_2025_102680 crossref_primary_10_1016_j_neurot_2024_e00359 crossref_primary_10_4103_1673_5374_343888 crossref_primary_10_1007_s11064_023_03966_0 crossref_primary_10_1177_17590914211043087 crossref_primary_10_3389_fncel_2021_784154 crossref_primary_10_1016_j_brainres_2023_148271 crossref_primary_10_1002_ptr_8064 crossref_primary_10_1007_s11064_020_03129_5 crossref_primary_10_3389_fphys_2022_835173 crossref_primary_10_1016_j_neuro_2021_05_003 crossref_primary_10_1186_s42269_021_00678_9 crossref_primary_10_1080_1028415X_2023_2278867 crossref_primary_10_3390_biomedicines11051259 crossref_primary_10_1155_2021_6301458 crossref_primary_10_1016_j_neulet_2021_136378 crossref_primary_10_1159_000541648 crossref_primary_10_1016_j_neuro_2021_09_001 crossref_primary_10_1007_s10072_025_08011_2 crossref_primary_10_1111_jcmm_17508 crossref_primary_10_1172_jci_insight_154804 crossref_primary_10_1007_s10571_023_01426_5 crossref_primary_10_1016_j_neuro_2021_03_005 crossref_primary_10_1186_s12974_023_02843_5 crossref_primary_10_1111_apha_13672 crossref_primary_10_1016_j_neumar_2025_100038 crossref_primary_10_1021_acschemneuro_2c00638 crossref_primary_10_3390_ijms26051831 crossref_primary_10_4081_ejtm_2023_11553 crossref_primary_10_1016_j_neuroscience_2023_01_038 crossref_primary_10_1093_gigascience_giae103 crossref_primary_10_2139_ssrn_4123180 crossref_primary_10_23934_2223_9022_2023_12_4_625_636 crossref_primary_10_1016_j_bbi_2022_06_004 crossref_primary_10_3389_fimmu_2023_1136955 crossref_primary_10_1007_s10637_022_01233_7 crossref_primary_10_1007_s11064_024_04261_2 crossref_primary_10_1002_glia_24306 crossref_primary_10_1016_j_jff_2022_105263 crossref_primary_10_1016_j_lfs_2020_118683 crossref_primary_10_1016_j_expneurol_2021_113695 crossref_primary_10_1016_j_physbeh_2020_112982 crossref_primary_10_4103_NRR_NRR_D_24_00286 crossref_primary_10_3390_antiox12010149 crossref_primary_10_3390_brainsci15030279 crossref_primary_10_1186_s40779_021_00303_w crossref_primary_10_1016_j_bbrc_2022_09_025 crossref_primary_10_1186_s12951_024_02511_7 crossref_primary_10_1016_j_xpro_2022_101753 crossref_primary_10_1155_2021_6668739 crossref_primary_10_3389_fnmol_2022_952036 crossref_primary_10_3233_JAD_230195 crossref_primary_10_1038_s41598_023_30093_1 crossref_primary_10_1016_j_bioactmat_2022_01_043 crossref_primary_10_3390_nu13010042 crossref_primary_10_1186_s13024_024_00794_w crossref_primary_10_1016_j_jcis_2024_11_167 crossref_primary_10_1097_MD_0000000000031995 crossref_primary_10_3390_ph14040321 crossref_primary_10_3390_cells13020131 crossref_primary_10_1016_j_biopha_2024_116754 crossref_primary_10_1038_s41398_020_01137_1 crossref_primary_10_1016_j_phymed_2023_155121 crossref_primary_10_1038_s41420_025_02323_0 crossref_primary_10_1016_j_bbi_2021_10_007 crossref_primary_10_1096_fj_202400823R crossref_primary_10_1080_1744666X_2023_2148657 crossref_primary_10_3390_s24020575 |
| Cites_doi | 10.1101/cshperspect.a021642 10.1371/journal.pone.0105219 10.1142/S0192415X16500075 10.1016/j.eplepsyres.2010.03.014 10.1016/j.bbr.2016.12.038 10.1016/j.brainres.2006.04.135 10.1111/j.1471-4159.1992.tb09313.x 10.1073/pnas.90.4.1541 10.1016/j.mbs.2017.11.005 10.1186/s12974-016-0613-8 10.1371/journal.pone.0135249 10.1371/journal.pone.0214156 10.1089/neu.2015.3981 10.1002/glia.22453 10.1146/annurev-pathol-052016-100218 10.1242/dev.041632 10.1002/glia.22577 10.1038/sj.mp.4000696 10.1002/brb3.283 10.1158/1535-7163.MCT-16-0291 10.1016/j.molbrainres.2004.02.021 10.1111/joa.12053 10.1080/09168451.2014.955455 10.1213/ANE.0000000000001238 10.1074/jbc.M116.772020 10.1016/j.ejphar.2017.03.023 10.1016/j.neurobiolaging.2013.09.035 10.1097/01.jnen.0000195943.32786.39 10.1080/00207454.2019.1586687 10.1016/j.neuropharm.2013.01.020 10.1007/s11011-017-0013-5 10.1007/978-1-4020-7937-5_4 10.1002/glia.22536 10.1016/j.molonc.2011.03.003 10.1016/j.exer.2016.03.019 10.1016/j.bbrc.2018.05.173 10.1023/A:1022572304626 10.1074/jbc.M406601200 10.1111/nan.12338 10.1016/j.cyto.2006.10.007 10.1007/s13365-017-0584-2 10.1085/jgp.201611607 10.1016/j.ydbio.2013.12.021 10.1073/pnas.1100957108 10.1097/00004647-200007000-00003 10.1523/JNEUROSCI.0820-04.2004 10.1016/j.neuroscience.2011.11.062 10.1126/science.aai8185 10.1080/15384101.2019.1608128 10.1074/jbc.M704152200 10.1007/s11064-017-2276-y 10.1016/j.jstrokecerebrovasdis.2016.02.002 10.1126/science.278.5337.477 10.3389/fneur.2017.00255 10.1016/j.bbrc.2017.04.031 10.1210/en.2007-1054 10.1523/JNEUROSCI.4669-08.2009 10.1007/BF00225557 10.1016/S0169-328X(98)00240-X 10.1038/mp.2015.65 10.1373/clinchem.2011.172676 10.1016/j.ceb.2015.02.004 10.3389/fncel.2016.00129 10.1111/j.1471-4159.2011.07610.x 10.1002/(SICI)1098-1136(19990101)25:1<10::AID-GLIA2>3.0.CO;2-Y 10.1016/S0074-7742(07)82005-8 10.1016/j.lfs.2010.10.025 10.1016/j.mcn.2014.06.008 10.3389/fendo.2019.00053 10.1111/jnc.14123 10.1002/jnr.23959 10.1111/ejn.12137 10.1136/jnnp.2005.074823 10.1248/bpb.b15-00872 10.1016/j.neuroscience.2015.12.044 10.3109/15368378.2010.500568 10.1038/s41419-018-0381-8 10.1093/cercor/bhr254 10.1007/s00441-011-1211-9 10.1096/fj.04-3281fje 10.1096/fj.02-1183fje 10.1080/135502801300069674 10.1038/nature08673 10.1002/jnr.23620 10.1002/ijc.24513 10.1042/AN20110061 10.1126/scisignal.2003900 10.1159/000485008 10.1186/2045-8118-8-6 10.1371/journal.pone.0165439 10.1023/A:1007677003387 10.3389/fnmol.2017.00262 10.1089/neu.2017.4999 10.1016/j.bbamcr.2006.09.004 10.1093/jnen/60.11.1087 10.1007/s13311-011-0087-4 10.1002/glia.23639 10.1371/journal.pone.0052659 10.1111/j.1365-2826.2006.01410.x 10.1007/s11307-017-1153-z 10.1371/journal.pone.0042823 10.1016/j.neulet.2017.07.050 10.1006/mcne.2000.0947 10.1038/nn1246 10.1111/gtc.12331 10.1016/S0304-3940(99)00447-4 10.1007/s00401-009-0625-x 10.1016/j.bbagen.2016.07.023 10.1038/srep23903 10.1016/j.msard.2019.01.036 10.1016/j.csbj.2019.01.011 10.1016/bs.mie.2015.08.005 10.1089/neu.2010.1520 10.1016/j.neuroscience.2013.07.061 10.1088/1748-605X/ab0d69 10.1002/glia.21258 10.1007/s00018-016-2239-5 10.1371/journal.pone.0029725 10.1038/nn1849 10.1016/j.expneurol.2014.01.020 10.1111/j.1600-0854.2006.00509.x 10.1038/s41587-019-0035-0 10.1016/j.biopha.2017.08.132 10.1006/cyto.2001.0883 10.3389/fncel.2016.00174 10.1016/j.bbagen.2017.06.022 10.1007/s12035-014-8860-0 10.1002/jnr.24338 10.3109/15376516.2012.721809 10.1016/j.expneurol.2018.09.006 10.1111/jnc.13879 10.1007/s12035-015-9094-5 10.3389/fneur.2019.00099 10.1016/j.bbagen.2016.04.021 10.3389/fnins.2019.00454 10.1007/s00429-016-1305-y 10.1096/fj.201700780R 10.1002/ana.24881 10.1074/jbc.M309304200 10.1002/glia.22956 10.1038/nn1988 10.3389/fnmol.2017.00096 10.1016/j.neuroscience.2006.08.028 10.1091/mbc.E17-05-0271 10.1038/nm.3912 10.3389/fnagi.2018.00122 10.1136/jnnp-2017-316583 10.1111/neup.12379 10.3233/JAD-181084 10.1111/j.1471-4159.2006.04164.x 10.1016/j.lfs.2011.05.008 10.1016/j.jmb.2014.04.008 10.1038/cddis.2013.514 10.1100/tsw.2009.148 10.3389/fnmol.2018.00204 10.1046/j.1471-4159.1999.721353.x 10.1186/s40478-016-0350-3 10.3233/JAD-180325 10.1016/j.neulet.2016.07.052 10.1016/j.mcn.2017.11.013 10.1523/JNEUROSCI.4119-07.2007 10.1016/S0896-6273(00)80194-4 10.1073/pnas.241508198 10.1080/15384101.2017.1301330 10.1111/jnc.14634 10.1016/S0021-9258(19)39622-X 10.1247/csf.12034 10.1016/0006-8993(90)91526-M 10.1210/en.2002-221039 10.1089/neu.2016.4711 10.1007/s11060-017-2565-y 10.1002/glia.20724 |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. 2020 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. – notice: 2020 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION NPM 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
| DOI | 10.1002/glia.23734 |
| DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1098-1136 |
| EndPage | 897 |
| ExternalDocumentID | 31626364 10_1002_glia_23734 GLIA23734 |
| Genre | reviewArticle Journal Article Review |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31471113 – fundername: “Double‐First‐Class” Construction – fundername: "Double-First-Class" Construction – fundername: National Natural Science Foundation of China grantid: 31471113 |
| GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION NPM 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 7X8 |
| ID | FETCH-LOGICAL-c4234-fb250b488c9feb81c7af62f71a28ca90e29f98dfb3ef1b181d64450ee07ee3e03 |
| IEDL.DBID | DR2 |
| ISSN | 0894-1491 1098-1136 |
| IngestDate | Thu Jul 10 19:56:18 EDT 2025 Tue Oct 07 06:17:34 EDT 2025 Wed Feb 19 02:31:27 EST 2025 Thu Apr 24 22:57:22 EDT 2025 Wed Oct 01 02:33:38 EDT 2025 Wed Jan 22 16:34:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | expression regulation astrocyte glial fibrillary acidic protein function |
| Language | English |
| License | 2019 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4234-fb250b488c9feb81c7af62f71a28ca90e29f98dfb3ef1b181d64450ee07ee3e03 |
| Notes | Funding information The fund of “Double‐First‐Class” Construction; National Natural Science Foundation of China, Grant/Award Number: 31471113 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-4159-7600 |
| PMID | 31626364 |
| PQID | 2375701985 |
| PQPubID | 996331 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2307147456 proquest_journals_2375701985 pubmed_primary_31626364 crossref_primary_10_1002_glia_23734 crossref_citationtrail_10_1002_glia_23734 wiley_primary_10_1002_glia_23734_GLIA23734 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2020 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: May 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
| PublicationTitle | Glia |
| PublicationTitleAlternate | Glia |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 1997; 278 2015; 79 2012; 120 2017; 81 2019; 97 2019; 10 2019; 13 2007; 100 2004; 7 2013; 61 2006; 36 2019; 14 2004; 24 2019; 17 2016; 146 2010; 463 2019; 18 2013; 70 1992; 58 2011; 58 2016; 39 2014; 254 2013; 6 2016; 37 2016; 33 1998; 152 2018; 295 2001; 60 2018; 9 2018; 4 2010; 119 2010; 29 2016; 316 2007; 8 2019; 311 2019; 29 2018; 32 2012; 22 2009; 125 2018; 35 2016; 44 2018; 340 2018; 29 1996; 17 1990; 521 2011; 2 2018; 502 2007; 282 2015; 52 2019; 37 1999; 25 2016; 10 1999; 24 2008; 56 2013; 223 2016; 568 1998; 62 2007; 10 2017; 135 2011; 5 2011; 8 2014; 45 2016; 13 2017; 657 2016; 11 2018; 24 2014; 426 2016; 4 2016; 6 2018; 17 2005; 19 2004; 279 2016; 21 2011; 88 2014; 35 2007; 82 2017; 140 2011; 89 2017; 142 2018; 11 2018; 10 2018; 97 2016; 25 2017; 149 2014; 387 2016; 22 2017; 636 2012; 60 2017; 42 2017; 8 2004; 124 2000; 5 2006; 77 2013; 23 2017; 44 2017; 43 2017; 1861 2015; 32 2006; 1763 2016; 73 2003; 17 2008; 149 1994; 29 2019; 129 2011; 17 2018; 89 2012; 202 2014; 61 2017; 356 1990; 265 2018; 86 2017; 9 1985; 242 2017; 803 2014; 5 2014; 4 2017; 37 2006; 65 2019; 67 2017; 32 2017; 34 2001; 17 2014; 9 2011; 28 2017; 487 2001; 14 2001; 98 2007; 27 2019; 72 2000; 25 2015; 93 2018; 149 2015; 10 2000; 20 2019; 148 2006; 1103 2016; 123 2016; 53 2017; 292 2006; 18 2004 1993; 90 2016; 1860 1999; 269 2009; 29 2017; 95 2011; 345 2013; 37 2011; 108 2013; 38 2001; 7 2017; 16 2017; 10 2010; 137 2017; 12 2015; 21 2019 2016; 64 2006; 143 2009; 9 2017 2016 1999; 72 2013; 252 2012; 7 2017; 222 2010; 90 2012; 4 2003; 144 2012; 9 e_1_2_11_70_1 e_1_2_11_93_1 e_1_2_11_182_1 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_36_1 e_1_2_11_51_1 e_1_2_11_74_1 e_1_2_11_97_1 e_1_2_11_13_1 e_1_2_11_118_1 e_1_2_11_29_1 e_1_2_11_125_1 e_1_2_11_4_1 e_1_2_11_106_1 e_1_2_11_148_1 e_1_2_11_48_1 e_1_2_11_121_1 e_1_2_11_102_1 e_1_2_11_144_1 e_1_2_11_163_1 e_1_2_11_140_1 e_1_2_11_81_1 e_1_2_11_20_1 e_1_2_11_66_1 e_1_2_11_47_1 e_1_2_11_89_1 e_1_2_11_24_1 e_1_2_11_62_1 e_1_2_11_129_1 e_1_2_11_8_1 e_1_2_11_43_1 e_1_2_11_85_1 e_1_2_11_17_1 e_1_2_11_117_1 e_1_2_11_136_1 e_1_2_11_159_1 e_1_2_11_178_1 e_1_2_11_113_1 e_1_2_11_132_1 e_1_2_11_155_1 e_1_2_11_174_1 Kushwaha R. (e_1_2_11_78_1) 2018; 149 e_1_2_11_151_1 e_1_2_11_170_1 e_1_2_11_92_1 e_1_2_11_183_1 e_1_2_11_31_1 e_1_2_11_77_1 e_1_2_11_58_1 e_1_2_11_119_1 e_1_2_11_35_1 e_1_2_11_73_1 e_1_2_11_12_1 e_1_2_11_54_1 e_1_2_11_96_1 e_1_2_11_103_1 e_1_2_11_126_1 e_1_2_11_149_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_122_1 e_1_2_11_145_1 e_1_2_11_168_1 e_1_2_11_141_1 e_1_2_11_164_1 e_1_2_11_160_1 e_1_2_11_61_1 e_1_2_11_80_1 e_1_2_11_46_1 e_1_2_11_69_1 e_1_2_11_88_1 e_1_2_11_107_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_114_1 e_1_2_11_137_1 e_1_2_11_156_1 e_1_2_11_179_1 e_1_2_11_110_1 e_1_2_11_39_1 e_1_2_11_133_1 Su R. J. (e_1_2_11_135_1) 2018; 17 e_1_2_11_152_1 e_1_2_11_175_1 Cavet M. E. (e_1_2_11_16_1) 2011; 17 Hinton D. J. (e_1_2_11_50_1) 2014; 4 Wizeman J. W. (e_1_2_11_171_1) 2016; 22 e_1_2_11_180_1 e_1_2_11_72_1 e_1_2_11_91_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_99_1 e_1_2_11_34_1 e_1_2_11_53_1 Inagaki M. (e_1_2_11_59_1) 1990; 265 e_1_2_11_76_1 e_1_2_11_95_1 Liedtke W. (e_1_2_11_84_1) 1998; 152 e_1_2_11_6_1 e_1_2_11_104_1 e_1_2_11_27_1 e_1_2_11_127_1 e_1_2_11_169_1 e_1_2_11_2_1 e_1_2_11_100_1 e_1_2_11_146_1 Zhu X. (e_1_2_11_184_1) 2019; 72 e_1_2_11_123_1 e_1_2_11_165_1 e_1_2_11_142_1 e_1_2_11_161_1 e_1_2_11_83_1 e_1_2_11_60_1 e_1_2_11_45_1 e_1_2_11_68_1 e_1_2_11_41_1 e_1_2_11_108_1 e_1_2_11_22_1 e_1_2_11_64_1 e_1_2_11_115_1 e_1_2_11_138_1 e_1_2_11_15_1 e_1_2_11_111_1 e_1_2_11_134_1 e_1_2_11_38_1 e_1_2_11_157_1 e_1_2_11_19_1 e_1_2_11_176_1 e_1_2_11_153_1 e_1_2_11_130_1 Wang Y. F. (e_1_2_11_167_1) 2014; 45 e_1_2_11_172_1 e_1_2_11_94_1 e_1_2_11_181_1 e_1_2_11_71_1 e_1_2_11_90_1 e_1_2_11_185_1 e_1_2_11_10_1 e_1_2_11_56_1 e_1_2_11_79_1 e_1_2_11_14_1 e_1_2_11_52_1 e_1_2_11_98_1 e_1_2_11_33_1 e_1_2_11_75_1 e_1_2_11_7_1 e_1_2_11_105_1 e_1_2_11_128_1 e_1_2_11_147_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_101_1 e_1_2_11_124_1 e_1_2_11_143_1 e_1_2_11_166_1 e_1_2_11_120_1 Wang Y.‐F. (e_1_2_11_162_1) 2011; 2 e_1_2_11_82_1 Liu X. Y. (e_1_2_11_87_1) 2016; 37 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_67_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_86_1 e_1_2_11_109_1 e_1_2_11_18_1 e_1_2_11_139_1 e_1_2_11_116_1 e_1_2_11_158_1 e_1_2_11_37_1 e_1_2_11_154_1 e_1_2_11_177_1 e_1_2_11_112_1 Brenner M. (e_1_2_11_11_1) 1994; 29 e_1_2_11_131_1 e_1_2_11_150_1 e_1_2_11_173_1 |
| References_xml | – volume: 4 start-page: 903 year: 2014 end-page: 914 article-title: Type 1 equilibrative nucleoside transporter regulates astrocyte‐specific glial fibrillary acidic protein expression in the striatum publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective – volume: 144 start-page: 2947 year: 2003 end-page: 2956 article-title: Extracellular signal‐regulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation publication-title: Endocrinology – volume: 90 start-page: 1541 year: 1993 end-page: 1545 article-title: Human immunodeficiency virus coat protein gp120 inhibits the beta‐adrenergic regulation of astroglial and microglial functions publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 18 start-page: 253 year: 2006 end-page: 265 article-title: Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype publication-title: Journal of Neuroendocrinology – volume: 242 start-page: 9 year: 1985 end-page: 15 article-title: Lactation‐associated redistribution of the glial fibrillary acidic protein within the supraoptic nucleus. An immunocytochemical study publication-title: Cell and Tissue Research – volume: 77 start-page: 181 year: 2006 end-page: 184 article-title: Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke publication-title: Journal of Neurology, Neurosurgery & Psychiatry – volume: 9 start-page: 65 year: 2012 end-page: 72 article-title: Novel treatment targets for cerebral edema publication-title: Neurotherapeutics – volume: 316 start-page: 209 year: 2016 end-page: 220 article-title: Density of GFAP‐immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder publication-title: Neuroscience – volume: 502 start-page: 375 year: 2018 end-page: 381 article-title: Mechanisms involved in epigenetic down‐regulation of Gfap under maternal hypothyroidism publication-title: Biochemical and Biophysical Research Communications – volume: 90 start-page: 99 year: 2010 end-page: 109 article-title: Immunohistochemical characterization of the out‐of frame splice variants GFAP Delta164/Deltaexon 6 in focal lesions associated with chronic epilepsy publication-title: Epilepsy Research – volume: 146 start-page: 259 year: 2016 end-page: 268 article-title: Glio‐vascular modifications caused by Aquaporin‐4 deletion in the mouse retina publication-title: Experimental Eye Research – volume: 137 start-page: 313 year: 2010 end-page: 321 article-title: GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex publication-title: Development – volume: 79 start-page: 11 year: 2015 end-page: 15 article-title: Synthesis of (+/−)‐terpendole E publication-title: Bioscience, Biotechnology, and Biochemistry – volume: 95 start-page: 1503 year: 2017 end-page: 1512 article-title: Induction of peptidylarginine deiminase 2 and 3 by dibutyryl cAMP via cAMP‐PKA signaling in human astrocytoma U‐251MG cells publication-title: Journal of Neuroscience Research – volume: 21 start-page: 927 year: 2015 end-page: 931 article-title: STAT3‐dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch publication-title: Nature Medicine – volume: 125 start-page: 1505 year: 2009 end-page: 1513 article-title: Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo publication-title: International Journal of Cancer – volume: 29 start-page: 2075 year: 1994 end-page: 2093 article-title: Structure and transcriptional regulation of the GFAP gene publication-title: Brain Pathology – volume: 10 start-page: 174 year: 2016 article-title: Dystrophin distribution and expression in human and experimental temporal lobe epilepsy publication-title: Frontiers in Cellular Neuroscience – volume: 222 start-page: 1753 year: 2017 end-page: 1766 article-title: Factors determining the density of AQP4 water channel molecules at the brain‐blood interface publication-title: Brain Structure & Function – volume: 98 start-page: 14108 year: 2001 end-page: 14113 article-title: Syntrophin‐dependent expression and localization of Aquaporin‐4 water channel protein publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 34 start-page: 1658 year: 2017 end-page: 1665 article-title: Leukemia inhibitory factor contributes to reactive astrogliosis via activation of signal transducer and activator of transcription 3 signaling after intracerebral hemorrhage in rats publication-title: Journal of Neurotrauma – volume: 18 start-page: 1001 year: 2019 end-page: 1018 article-title: NF‐kappaB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic‐ischemic brain damage publication-title: Cell Cycle – volume: 20 start-page: 1040 year: 2000 end-page: 1044 article-title: High susceptibility to cerebral ischemia in GFAP‐null mice publication-title: Journal of Cerebral Blood Flow and Metabolism – volume: 9 start-page: 1308 year: 2009 end-page: 1320 article-title: Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: Role of glial fibrillary acidic protein plasticity publication-title: ScientificWorldJournal – volume: 4 year: 2012 article-title: Astroglial excitability and gliotransmission: An appraisal of Ca2+ as a signalling route publication-title: ASN Neuro – volume: 22 start-page: 1690 year: 2012 end-page: 1697 article-title: Immunogold detection of L‐glutamate and D‐serine in small synaptic‐like microvesicles in adult hippocampal astrocytes publication-title: Cerebral Cortex – volume: 142 start-page: 901 year: 2017 end-page: 907 article-title: PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells publication-title: Journal of Neurochemistry – volume: 36 start-page: 17 year: 2006 end-page: 22 article-title: Neuropoietin induces neuroepithelial cells to differentiate into astrocytes via activation of STAT3 publication-title: Cytokine – volume: 24 start-page: 5016 year: 2004 end-page: 5021 article-title: Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post‐traumatic regeneration publication-title: The Journal of Neuroscience – volume: 387 start-page: 73 year: 2014 end-page: 92 article-title: Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube publication-title: Developmental Biology – volume: 7 start-page: 29725 year: 2012 article-title: Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice publication-title: PLoS One – volume: 295 start-page: 62 year: 2018 end-page: 66 article-title: Extracellular volume depletion and resultant hypotonic hyponatremia: A novel translational approach publication-title: Mathematical Biosciences – volume: 123 start-page: 93 year: 2016 end-page: 102 article-title: Sevoflurane inhibits glutamate‐aspartate transporter and glial fibrillary acidic protein expression in hippocampal astrocytes of neonatal rats through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway publication-title: Anesthesia and Analgesia – volume: 58 start-page: 237 year: 2011 end-page: 245 article-title: Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating Intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke publication-title: Clinical Chemistry – volume: 21 start-page: 509 year: 2016 end-page: 515 article-title: Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides publication-title: Molecular Psychiatry – volume: 72 start-page: 1353 year: 1999 end-page: 1361 article-title: Glial fibrillary acidic protein transcription responses to transforming growth factor‐beta1 and interleukin‐1beta are mediated by a nuclear factor‐1‐like site in the near‐upstream promoter publication-title: Journal of Neurochemistry – volume: 42 start-page: 2730 year: 2017 end-page: 2742 article-title: Phase‐dependent astroglial alterations in Li–Pilocarpine‐induced status epilepticus in young rats publication-title: Neurochemical Research – volume: 37 start-page: 420 year: 2017 end-page: 425 article-title: MM1‐type sporadic Creutzfeldt‐Jakob disease with 1‐month total disease duration and early pathologic indicators publication-title: Neuropathology – volume: 29 start-page: 209 year: 2018 end-page: 219 article-title: Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes publication-title: Molecular Biology of the Cell – volume: 56 start-page: 1755 year: 2008 end-page: 1766 article-title: Actin cytoskeleton remodeling governs aquaporin‐4 localization in astrocytes publication-title: Glia – volume: 356 year: 2017 article-title: Three‐dimensional Ca(2+) imaging advances understanding of astrocyte biology publication-title: Science – volume: 7 start-page: 52 year: 2001 end-page: 55 article-title: HIV‐1 Nef co‐localizes with the astrocyte‐specific cytoskeleton protein GFAP in persistently nef‐expressing human astrocytes publication-title: Journal of Neurovirology – volume: 149 start-page: 1358 year: 2008 end-page: 1365 article-title: Oxytocin facilitates female sexual maturation through a glia‐to‐neuron signaling pathway publication-title: Endocrinology – volume: 17 start-page: 1508 year: 2003 end-page: 1510 article-title: Inhibition of aquaporin‐4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia‐related genes publication-title: The FASEB Journal – volume: 279 start-page: 19936 year: 2004 end-page: 19947 article-title: Induction of gp130‐related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up‐regulation of glial fibrillary acidic protein in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine model of neurodegeneration. Key signaling pathway for astrogliosis in vivo? publication-title: Journal of Biological Chemistry – volume: 10 start-page: 122 year: 2018 article-title: Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies publication-title: Frontiers in Aging Neuroscience – volume: 10 start-page: 53 year: 2019 article-title: Receptor‐receptor interactions as a widespread phenomenon: Novel targets for drug development? publication-title: Frontiers in Endocrinology – volume: 93 start-page: 1664 year: 2015 end-page: 1674 article-title: Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains publication-title: Journal of Neuroscience Research – volume: 81 start-page: 298 year: 2017 end-page: 309 article-title: Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients publication-title: Annals of Neurology – volume: 1763 start-page: 1175 year: 2006 end-page: 1183 article-title: Exocytosis in neuroendocrine cells: New tasks for Actin publication-title: Biochimica et Biophysica Acta – volume: 7 start-page: 613 year: 2004 end-page: 620 article-title: Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate publication-title: Nature Neuroscience – volume: 265 start-page: 4722 year: 1990 end-page: 4729 article-title: Phosphorylation sites linked to glial filament disassembly in vitro locate in a non‐alpha‐helical head domain publication-title: The Journal of Biological Chemistry – volume: 14 start-page: 0214156 year: 2019 article-title: Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC‐derived neural progenitor cells of Huntington's disease monkeys publication-title: PLoS One – volume: 86 start-page: 58 year: 2018 end-page: 64 article-title: Heat shock protein 70 suppresses neuroinflammation induced by alpha‐synuclein in astrocytes publication-title: Molecular and Cellular Neurosciences – volume: 292 start-page: 5814 year: 2017 end-page: 5824 article-title: Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease publication-title: The Journal of Biological Chemistry – volume: 39 start-page: 564 year: 2016 end-page: 569 article-title: Expression of vesicular nucleotide transporter in the mouse retina publication-title: Biological & Pharmaceutical Bulletin – volume: 24 start-page: 156 year: 2018 end-page: 167 article-title: Transgenic mice expressing HIV‐1 envelope protein gp120 in the brain as an animal model in neuroAIDS research publication-title: Journal of Neurovirology – volume: 24 start-page: 1357 year: 1999 end-page: 1362 article-title: The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes publication-title: Neurochemical Research – volume: 11 start-page: 204 year: 2018 article-title: Astroglial modulation of hydromineral balance and cerebral edema publication-title: Frontiers in Molecular Neuroscience – volume: 5 start-page: 1033 year: 2014 article-title: CDK5‐induced p‐PPARgamma(Ser 112) downregulates GFAP via PPREs in developing rat brain: Effect of metal mixture and troglitazone in astrocytes publication-title: Cell Death & Disease – volume: 7 start-page: 42823 year: 2012 article-title: GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease publication-title: PLoS One – volume: 10 start-page: 96 year: 2017 article-title: Interactions of the mechanosensitive channels with extracellular matrix, Integrins, and cytoskeletal network in osmosensation publication-title: Frontiers in Molecular Neuroscience – volume: 97 start-page: 1011 year: 2018 end-page: 1019 article-title: Juglanin ameliorates LPS‐induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF‐kappaB pathway publication-title: Biomedicine & Pharmacotherapy – year: 2016 – volume: 25 start-page: 1439 year: 2000 end-page: 1451 article-title: Glial fibrillary acidic protein: GFAP‐thirty‐one years (1969‐2000) publication-title: Neurochemical Research – volume: 17 start-page: 607 year: 1996 end-page: 615 article-title: GFAP is necessary for the integrity of CNS white matter architecture and long‐term maintenance of myelination publication-title: Neuron – volume: 17 start-page: 3356 year: 2018 end-page: 3363 article-title: Time‐course behavioral features are correlated with Parkinson's diseaseassociated pathology in a 6‐hydroxydopamine hemiparkinsonian rat model publication-title: Molecular Medicine Reports – volume: 45 start-page: 177 year: 2014 end-page: 184 article-title: Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity publication-title: Sheng Li Ke Xue Jin Zhan – volume: 282 start-page: 29414 year: 2007 end-page: 29423 article-title: Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: An identified role for GFAP publication-title: The Journal of Biological Chemistry – volume: 25 start-page: 1289 year: 2016 end-page: 1300 article-title: Vasopressin Hypersecretion‐associated brain edema formation in ischemic stroke: Underlying mechanisms publication-title: Journal of Stroke and Cerebrovascular Diseases – volume: 426 start-page: 3467 year: 2014 end-page: 3477 article-title: Gene‐specific methylation control of H3K9 and H3K36 on neurotrophic BDNF versus astroglial GFAP genes by KDM4A/C regulates neural stem cell differentiation publication-title: Journal of Molecular Biology – volume: 60 start-page: 1087 year: 2001 end-page: 1098 article-title: Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions publication-title: Journal of Neuropathology and Experimental Neurology – volume: 10 start-page: 331 year: 2007 end-page: 339 article-title: Glutamate exocytosis from astrocytes controls synaptic strength publication-title: Nature Neuroscience – volume: 278 start-page: 477 year: 1997 end-page: 483 article-title: Regulation of gliogenesis in the central nervous system by the JAK‐STAT signaling pathway publication-title: Science – volume: 13 start-page: 144 year: 2016 article-title: Oncostatin M promotes excitotoxicity by inhibiting glutamate uptake in astrocytes: Implications in HIV‐associated neurotoxicity publication-title: Journal of Neuroinflammation – volume: 89 start-page: 123 year: 2011 end-page: 128 article-title: Short‐ and long‐term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and tau in prefrontal cortex and hippocampus publication-title: Life Sciences – volume: 9 start-page: 105219 year: 2014 article-title: Activated CD8+ T lymphocytes inhibit neural stem/progenitor cell proliferation: Role of interferon‐gamma publication-title: PLoS One – volume: 340 start-page: 137 year: 2018 end-page: 146 article-title: Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus publication-title: Behavioural Brain Research – volume: 61 start-page: 1488 year: 2013 end-page: 1499 article-title: Transgenic analysis of GFAP promoter elements publication-title: Glia – volume: 29 start-page: 113 year: 2010 end-page: 121 article-title: Magnetic stimulation influences injury‐induced migration of white matter astrocytes publication-title: Electromagnetic Biology and Medicine – volume: 143 start-page: 851 year: 2006 end-page: 861 article-title: Expression of ezrin in glial tubes in the adult subventricular zone and rostral migratory stream publication-title: Neuroscience – volume: 223 start-page: 22 year: 2013 end-page: 37 article-title: Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti) publication-title: Journal of Anatomy – volume: 25 start-page: 10 year: 1999 end-page: 20 article-title: The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta‐Ala‐Lys‐Nepsilon‐AMCA in astrocytes publication-title: Glia – volume: 33 start-page: 615 year: 2016 end-page: 624 article-title: Hyponatremia in neurotrauma: The role of vasopressin publication-title: Journal of Neurotrauma – volume: 82 start-page: 95 year: 2007 end-page: 111 article-title: The role of astrocytes and complement system in neural plasticity publication-title: International Review of Neurobiology – volume: 35 start-page: 157 year: 2018 end-page: 173 article-title: Role of Caspase‐3‐mediated apoptosis in chronic Caspase‐3‐cleaved tau accumulation and blood‐brain barrier damage in the Corpus callosum after traumatic brain injury in rats publication-title: Journal of Neurotrauma – volume: 10 start-page: 262 year: 2017 article-title: Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A publication-title: Frontiers in Molecular Neuroscience – volume: 10 start-page: 129 year: 2016 article-title: Central role of maladapted astrocytic plasticity in ischemic brain edema formation publication-title: Frontiers in Cellular Neuroscience – volume: 16 start-page: 601 year: 2017 end-page: 613 article-title: 15alpha‐methoxypuupehenol induces antitumor effects in vitro and in vivo against human Glioblastoma and breast Cancer models publication-title: Molecular Cancer Therapeutics – volume: 10 start-page: 1355 year: 2007 end-page: 1360 article-title: Glial cells as intrinsic components of non‐cell‐autonomous neurodegenerative disease publication-title: Nature Neuroscience – volume: 148 start-page: 219 year: 2019 end-page: 237 article-title: Diet‐induced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AbetaPP/PS1 mice publication-title: Journal of Neurochemistry – volume: 37 start-page: 267 year: 2019 end-page: 275 article-title: NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells publication-title: Nature Biotechnology – volume: 53 start-page: 1329 year: 2016 end-page: 1342 article-title: Role of sigma receptor in cocaine‐mediated induction of glial fibrillary acidic protein: Implications for HAND publication-title: Molecular Neurobiology – volume: 568 start-page: 537 year: 2016 end-page: 555 article-title: Synemin: Molecular features and the use of proximity ligation assay to study its interactions publication-title: Methods in Enzymology – volume: 61 start-page: 529 year: 2013 end-page: 538 article-title: Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus publication-title: Glia – volume: 29 start-page: 94 year: 2019 end-page: 99 article-title: Astrocytic damage in glial fibrillary acidic protein astrocytopathy during initial attack publication-title: Multiple Sclerosis and Related Disorders – volume: 32 start-page: 121 year: 2015 end-page: 130 article-title: Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system publication-title: Current Opinion in Cell Biology – volume: 19 start-page: 1674 year: 2005 end-page: 1676 article-title: New possible roles for aquaporin‐4 in astrocytes: Cell cytoskeleton and functional relationship with connexin43 publication-title: The FASEB Journal – start-page: 99 year: 2004 end-page: 124 – volume: 32 start-page: 1108 year: 2018 end-page: 1119 article-title: The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells publication-title: The FASEB Journal – volume: 88 start-page: 50 year: 2011 end-page: 56 article-title: CysLT2 receptor‐mediated AQP4 up‐regulation is involved in ischemic‐like injury through activation of ERK and p38 MAPK in rat astrocytes publication-title: Life Sciences – volume: 62 start-page: 77 year: 1998 end-page: 81 article-title: Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin publication-title: Brain Research. Molecular Brain Research – volume: 22 start-page: 1137 year: 2016 end-page: 1155 article-title: Citrullination of glial intermediate filaments is an early response in retinal injury publication-title: Molecular Vision – volume: 2 start-page: 3 year: 2011 article-title: Neurophysiological involvement in hypervolemic hyponatremia‐evoked by hypersecretion of vasopressin publication-title: Translational Biomedicine – volume: 9 start-page: 352 year: 2018 article-title: Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice publication-title: Cell Death & Disease – volume: 67 start-page: 1109 year: 2019 end-page: 1122 article-title: Potential astrocytic receptors and transporters in the pathogenesis of Alzheimer's disease publication-title: Journal of Alzheimer's Disease – volume: 97 start-page: 149 year: 2019 end-page: 161 article-title: AP‐1 and the injury response of the GFAP gene publication-title: Journal of Neuroscience Research – volume: 32 start-page: 1627 year: 2017 end-page: 1637 article-title: Inhibition of NF‐kappaB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia publication-title: Metabolic Brain Disease – volume: 120 start-page: 710 year: 2012 end-page: 720 article-title: STAT3 signaling after traumatic brain injury publication-title: Journal of Neurochemistry – volume: 38 start-page: 55 year: 2013 end-page: 66 article-title: Chromatin accessibility at a STAT3 target site is altered prior to astrocyte differentiation publication-title: Cell Structure and Function – volume: 108 start-page: 12915 year: 2011 end-page: 12919 article-title: Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 8 start-page: 255 year: 2017 article-title: Alexander disease mutations produce cells with coexpression of glial fibrillary acidic protein and NG2 in neurosphere cultures and inhibit differentiation into mature oligodendrocytes publication-title: Frontiers in Neurology – volume: 8 start-page: 12 year: 2007 end-page: 20 article-title: Cytoskeleton and vesicle mobility in astrocytes publication-title: Traffic – volume: 61 start-page: 187 year: 2014 end-page: 200 article-title: The histone lysine demethylase Kdm6b is required for activity‐dependent preconditioning of hippocampal neuronal survival publication-title: Molecular and Cellular Neurosciences – volume: 202 start-page: 58 year: 2012 end-page: 68 article-title: High glucose‐induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes publication-title: Neuroscience – volume: 9 start-page: a021642 year: 2017 article-title: Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin publication-title: Cold Spring Harbor Perspectives in Biology – volume: 70 start-page: 236 year: 2013 end-page: 246 article-title: PPARgamma activation blocks development and reduces established neuropathic pain in rats publication-title: Neuropharmacology – volume: 803 start-page: 148 year: 2017 end-page: 158 article-title: Simultaneous blockade of NMDA receptors and PARP‐1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3‐nitropropionic acid intoxicated mice: Evidences from memantine and 3‐aminobenzamide interventions publication-title: European Journal of Pharmacology – volume: 37 start-page: 41 year: 2016 end-page: 45 article-title: Expression of glial fibrillary acidic protein in astrocytes of rat supraoptic nucleus throughout estrous cycle publication-title: Neuro Endocrinology Letters – volume: 73 start-page: 4101 year: 2016 end-page: 4120 article-title: GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions publication-title: Cellular and Molecular Life Sciences – volume: 140 start-page: 96 year: 2017 end-page: 113 article-title: Docosahexaenoic acid up‐regulates both PI3K/AKT‐dependent FABP7‐PPARgamma interaction and MKP3 that enhance GFAP in developing rat brain astrocytes publication-title: Journal of Neurochemistry – volume: 152 start-page: 251 year: 1998 end-page: 259 article-title: Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion publication-title: The American Journal of Pathology – volume: 13 start-page: 454 year: 2019 article-title: Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways publication-title: Frontiers in Neuroscience – volume: 35 start-page: 492 year: 2014 end-page: 510 article-title: Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease publication-title: Neurobiology of Aging – volume: 487 start-page: 134 year: 2017 end-page: 139 article-title: Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis publication-title: Biochemical and Biophysical Research Communications – volume: 1861 start-page: 2293 year: 2017 end-page: 2303 article-title: Dynamin regulates the fusion pore of endo‐ and exocytotic vesicles as revealed by membrane capacitance measurements publication-title: Biochimica et Biophysica Acta – volume: 10 start-page: 99 year: 2019 article-title: Astrocyte mechano‐activation by high‐rate overpressure involves alterations in structural and junctional proteins publication-title: Frontiers in Neurology – volume: 21 start-page: 218 year: 2016 end-page: 225 article-title: Increase in GFAP‐positive astrocytes in histone demethylase GASC1/KDM4C/JMJD2C hypomorphic mutant mice publication-title: Genes to Cells – volume: 29 start-page: 1743 year: 2009 end-page: 1754 article-title: Astrocytic plasticity and patterned oxytocin neuronal activity: Dynamic interactions publication-title: The Journal of Neuroscience – volume: 7 start-page: 52659 year: 2012 article-title: GFAPdelta expression in glia of the developmental and adolescent mouse brain publication-title: PLoS One – volume: 521 start-page: 73 year: 1990 end-page: 80 article-title: Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine publication-title: Brain Research – volume: 11 start-page: 0165439 year: 2016 article-title: Aquaporin‐4 cell‐surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes publication-title: PLoS One – volume: 345 start-page: 295 year: 2011 end-page: 311 article-title: Development of astroglia heterogeneously expressing Pax2, vimentin and GFAP during the ontogeny of the optic pathway of the lizard (Gallotia galloti): An immunohistochemical and ultrastructural study publication-title: Cell and Tissue Research – volume: 100 start-page: 87 year: 2007 end-page: 104 article-title: Functional down‐regulation of volume‐regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes publication-title: Journal of Neurochemistry – volume: 149 start-page: 272 year: 2018 end-page: 285 article-title: Rosiglitazone up‐regulates glial fibrillary acidic protein via HB‐EGF secreted from astrocytes and neurons through PPARgamma pathway and reduces apoptosis in high‐fat diet‐fed mice publication-title: Journal of Neurochemistry – volume: 16 start-page: 785 year: 2017 end-page: 794 article-title: High salt‐induced activation and expression of inflammatory cytokines in cultured astrocytes publication-title: Cell Cycle – volume: 119 start-page: 199 year: 2010 end-page: 210 article-title: Involvement of peptidylarginine deiminase‐mediated post‐translational citrullination in pathogenesis of sporadic Creutzfeldt‐Jakob disease publication-title: Acta Neuropathologica – volume: 1860 start-page: 2239 year: 2016 end-page: 2248 article-title: Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation publication-title: Biochimica et Biophysica Acta (BBA) ‐ General Subjects – volume: 279 start-page: 41537 year: 2004 end-page: 41545 article-title: Self‐assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform‐specific C terminus publication-title: The Journal of Biological Chemistry – volume: 5 start-page: 142 year: 2000 end-page: 149 article-title: Disease‐specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium publication-title: Molecular Psychiatry – volume: 17 start-page: 195 year: 2019 end-page: 205 article-title: Revealing gene function and transcription relationship by reconstructing gene‐level chromatin interaction publication-title: Computational and Structural Biotechnology Journal – volume: 252 start-page: 367 year: 2013 end-page: 383 article-title: IL‐1beta induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury‐associated apoptosis in rat brain striatum via NFkappaB/Ca(2)(+)‐calmodulin/ERK mitogen‐activated protein kinase signaling pathway publication-title: Neuroscience – year: 2019 article-title: Spinal IL‐33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2‐STAT3 cascade publication-title: Glia – volume: 311 start-page: 15 year: 2019 end-page: 32 article-title: Mesenchymal stem cells‐derived IL‐6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic‐ischemic brain damage publication-title: Experimental Neurology – volume: 89 start-page: 138 year: 2018 end-page: 146 article-title: Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: A case series of 22 patients publication-title: Journal of Neurology, Neurosurgery, and Psychiatry – volume: 28 start-page: 607 year: 2011 end-page: 618 article-title: Down‐regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats publication-title: Journal of Neurotrauma – volume: 23 start-page: 99 year: 2013 end-page: 107 article-title: Down‐regulated GFAPalpha: A major player in heavy metal induced astrocyte damage publication-title: Toxicology Mechanisms and Methods – volume: 37 start-page: 1260 year: 2013 end-page: 1269 article-title: GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge publication-title: The European Journal of Neuroscience – volume: 8 start-page: 6 year: 2011 article-title: Ecrg4 expression and its product augurin in the choroid plexus: Impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury publication-title: Fluids and Barriers of the CNS – volume: 58 start-page: 320 year: 1992 end-page: 327 article-title: Phosphorylation of glial fibrillary acidic protein and vimentin by cytoskeletal‐associated intermediate filament protein kinase activity in astrocytes publication-title: Journal of Neurochemistry – volume: 14 start-page: 264 year: 2001 end-page: 271 article-title: Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin‐1‐induced activation of STAT3 publication-title: Cytokine – volume: 64 start-page: 716 year: 2016 end-page: 729 article-title: Altered astrocyte morphology and vascular development in dystrophin‐Dp71‐null mice publication-title: Glia – volume: 5 start-page: 265 year: 2011 end-page: 272 article-title: Activation of a pro‐survival pathway IL‐6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin‐induced differentiation of C6 malignant glioma cells publication-title: Molecular Oncology – volume: 61 start-page: 2063 year: 2013 end-page: 2077 article-title: Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c‐Jun/AP‐1 pathway and switch on GFAP expression publication-title: Glia – volume: 636 start-page: 27 year: 2017 end-page: 31 article-title: Significance of aberrant glial cell phenotypes in pathophysiology of amyotrophic lateral sclerosis publication-title: Neuroscience Letters – volume: 463 start-page: 232 year: 2010 end-page: 236 article-title: Long‐term potentiation depends on release of D‐serine from astrocytes publication-title: Nature – volume: 72 start-page: 358 year: 2019 end-page: 366 article-title: Neuroprotective and anti‐inflammatory effects of isoliquiritigenin in kainic acid‐induced epileptic rats via the TLR4/MYD88 signaling pathway publication-title: Inflammopharmacology – volume: 12 start-page: 131 year: 2017 end-page: 152 article-title: Disorders of astrocytes: Alexander disease as a model publication-title: Annual Review of Pathology – volume: 43 start-page: 281 year: 2017 end-page: 298 article-title: Review: Astrocytes in Alzheimer's disease and other age‐associated dementias; a supporting player with a central role publication-title: Neuropathology and Applied Neurobiology – volume: 4 start-page: 605 year: 2018 end-page: 614 article-title: Astroglial responses to amyloid‐Beta progression in a mouse model of Alzheimer's disease publication-title: Molecular Imaging and Biology – volume: 44 start-page: 423 year: 2017 end-page: 435 article-title: Roscovitine, a CDK5 inhibitor, alleviates Sevoflurane‐induced cognitive dysfunction via regulation tau/GSK3beta and ERK/PPARgamma/CREB signaling publication-title: Cellular Physiology and Biochemistry – volume: 1860 start-page: 2510 year: 2016 end-page: 2520 article-title: Calcium signaling mechanisms disrupt the cytoskeleton of primary astrocytes and neurons exposed to diphenylditelluride publication-title: Biochimica et Biophysica Acta – volume: 52 start-page: 341 year: 2015 end-page: 352 article-title: Neuroinflammatory and amyloidogenic activities of IL‐32beta in Alzheimer's disease publication-title: Molecular Neurobiology – volume: 6 start-page: ra55 year: 2013 article-title: Blockade of glioma proliferation through allosteric inhibition of JAK2 publication-title: Science Signaling – volume: 27 start-page: 13822 year: 2007 end-page: 13834 article-title: Interaction of extracellular signal‐regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: Role in burst firing publication-title: The Journal of Neuroscience – volume: 44 start-page: 103 year: 2016 end-page: 117 article-title: Oleanolic acid inhibiting the differentiation of neural stem cells into astrocyte by down‐regulating JAK/STAT signaling pathway publication-title: The American Journal of Chinese Medicine – volume: 124 start-page: 114 year: 2004 end-page: 123 article-title: Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA‐induced EAAT2 cell surface trafficking publication-title: Brain Research. Molecular Brain Research – volume: 14 start-page: 045005 year: 2019 article-title: Gliosis of astrocytes cultivated on coral skeleton is regulated by the matrix surface topography publication-title: Biomedical Materials – volume: 6 start-page: 23903 year: 2016 article-title: Identification of genes associated with the astrocyte‐specific gene Gfap during astrocyte differentiation publication-title: Scientific Reports – volume: 269 start-page: 169 year: 1999 end-page: 172 article-title: STAT3‐mediated astrocyte differentiation from mouse fetal neuroepithelial cells by mouse oncostatin M publication-title: Neuroscience Letters – volume: 17 start-page: 533 year: 2011 end-page: 542 article-title: Anti‐inflammatory and anti‐oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells publication-title: Molecular Vision – volume: 65 start-page: 87 year: 2006 end-page: 96 article-title: Ezrin immunoreactivity reveals specific astrocyte activation in cerebral HIV publication-title: Journal of Neuropathology and Experimental Neurology – volume: 149 start-page: 149 year: 2017 end-page: 170 article-title: A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes publication-title: The Journal of General Physiology – volume: 10 year: 2015 article-title: Basic properties of the p38 signaling pathway in response to hyperosmotic shock publication-title: PLoS One – volume: 4 start-page: 76 year: 2016 article-title: Astroglial NF‐kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia publication-title: Acta Neuropathologica Communications – volume: 657 start-page: 166 year: 2017 end-page: 170 article-title: GFAP in early multiple sclerosis: A biomarker for inflammation publication-title: Neuroscience Letters – volume: 60 start-page: 229 year: 2012 end-page: 238 article-title: VGLUT1 is localized in astrocytic processes in several brain regions publication-title: Glia – volume: 129 start-page: 896 year: 2019 end-page: 903 article-title: Thalidomide alleviates bone cancer pain by down‐regulating expressions of NF‐kappaB and GFAP in spinal astrocytes in a mouse model publication-title: The International Journal of Neuroscience – volume: 17 start-page: 426 year: 2001 end-page: 443 article-title: Selective introduction of antisense oligonucleotides into single adult CNS progenitor cells using electroporation demonstrates the requirement of STAT3 activation for CNTF‐induced gliogenesis publication-title: Molecular and Cellular Neurosciences – volume: 1103 start-page: 25 year: 2006 end-page: 31 article-title: Growing axons in fish optic nerve are accompanied by astrocytes interconnected by tight junctions publication-title: Brain Research – volume: 67 start-page: 481 year: 2019 end-page: 488 article-title: Glial fibrillary acidic protein in serum is increased in Alzheimer's disease and correlates with cognitive impairment publication-title: Journal of Alzheimer's Disease – year: 2017 – volume: 135 start-page: 193 year: 2017 end-page: 199 article-title: Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma publication-title: Journal of Neuro‐Oncology – volume: 254 start-page: 180 year: 2014 end-page: 189 article-title: SN79, a sigma receptor antagonist, attenuates methamphetamine‐induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation publication-title: Experimental Neurology – ident: e_1_2_11_53_1 doi: 10.1101/cshperspect.a021642 – ident: e_1_2_11_56_1 doi: 10.1371/journal.pone.0105219 – ident: e_1_2_11_181_1 doi: 10.1142/S0192415X16500075 – ident: e_1_2_11_9_1 doi: 10.1016/j.eplepsyres.2010.03.014 – ident: e_1_2_11_142_1 doi: 10.1016/j.bbr.2016.12.038 – ident: e_1_2_11_89_1 doi: 10.1016/j.brainres.2006.04.135 – ident: e_1_2_11_41_1 doi: 10.1111/j.1471-4159.1992.tb09313.x – ident: e_1_2_11_81_1 doi: 10.1073/pnas.90.4.1541 – ident: e_1_2_11_152_1 doi: 10.1016/j.mbs.2017.11.005 – ident: e_1_2_11_95_1 doi: 10.1186/s12974-016-0613-8 – ident: e_1_2_11_3_1 doi: 10.1371/journal.pone.0135249 – ident: e_1_2_11_18_1 doi: 10.1371/journal.pone.0214156 – ident: e_1_2_11_73_1 doi: 10.1089/neu.2015.3981 – ident: e_1_2_11_166_1 doi: 10.1002/glia.22453 – ident: e_1_2_11_111_1 doi: 10.1146/annurev-pathol-052016-100218 – ident: e_1_2_11_93_1 doi: 10.1242/dev.041632 – ident: e_1_2_11_31_1 doi: 10.1002/glia.22577 – ident: e_1_2_11_69_1 doi: 10.1038/sj.mp.4000696 – volume: 4 start-page: 903 year: 2014 ident: e_1_2_11_50_1 article-title: Type 1 equilibrative nucleoside transporter regulates astrocyte‐specific glial fibrillary acidic protein expression in the striatum publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective doi: 10.1002/brb3.283 – ident: e_1_2_11_49_1 doi: 10.1158/1535-7163.MCT-16-0291 – ident: e_1_2_11_57_1 doi: 10.1016/j.molbrainres.2004.02.021 – ident: e_1_2_11_125_1 doi: 10.1111/joa.12053 – ident: e_1_2_11_139_1 doi: 10.1080/09168451.2014.955455 – ident: e_1_2_11_158_1 doi: 10.1213/ANE.0000000000001238 – volume: 17 start-page: 3356 year: 2018 ident: e_1_2_11_135_1 article-title: Time‐course behavioral features are correlated with Parkinson's diseaseassociated pathology in a 6‐hydroxydopamine hemiparkinsonian rat model publication-title: Molecular Medicine Reports – ident: e_1_2_11_96_1 doi: 10.1074/jbc.M116.772020 – ident: e_1_2_11_17_1 doi: 10.1016/j.ejphar.2017.03.023 – ident: e_1_2_11_71_1 doi: 10.1016/j.neurobiolaging.2013.09.035 – ident: e_1_2_11_34_1 doi: 10.1097/01.jnen.0000195943.32786.39 – ident: e_1_2_11_143_1 doi: 10.1080/00207454.2019.1586687 – ident: e_1_2_11_98_1 doi: 10.1016/j.neuropharm.2013.01.020 – ident: e_1_2_11_132_1 doi: 10.1007/s11011-017-0013-5 – ident: e_1_2_11_43_1 doi: 10.1007/978-1-4020-7937-5_4 – ident: e_1_2_11_176_1 doi: 10.1002/glia.22536 – ident: e_1_2_11_36_1 – ident: e_1_2_11_131_1 doi: 10.1016/j.molonc.2011.03.003 – ident: e_1_2_11_103_1 doi: 10.1016/j.exer.2016.03.019 – ident: e_1_2_11_77_1 doi: 10.1016/j.bbrc.2018.05.173 – volume: 2 start-page: 3 year: 2011 ident: e_1_2_11_162_1 article-title: Neurophysiological involvement in hypervolemic hyponatremia‐evoked by hypersecretion of vasopressin publication-title: Translational Biomedicine – ident: e_1_2_11_117_1 doi: 10.1023/A:1022572304626 – ident: e_1_2_11_106_1 doi: 10.1074/jbc.M406601200 – ident: e_1_2_11_33_1 doi: 10.1111/nan.12338 – volume: 45 start-page: 177 year: 2014 ident: e_1_2_11_167_1 article-title: Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity publication-title: Sheng Li Ke Xue Jin Zhan – ident: e_1_2_11_110_1 doi: 10.1016/j.cyto.2006.10.007 – ident: e_1_2_11_141_1 doi: 10.1007/s13365-017-0584-2 – ident: e_1_2_11_172_1 doi: 10.1085/jgp.201611607 – ident: e_1_2_11_68_1 doi: 10.1016/j.ydbio.2013.12.021 – ident: e_1_2_11_80_1 doi: 10.1073/pnas.1100957108 – ident: e_1_2_11_100_1 doi: 10.1097/00004647-200007000-00003 – ident: e_1_2_11_169_1 doi: 10.1523/JNEUROSCI.0820-04.2004 – ident: e_1_2_11_154_1 doi: 10.1016/j.neuroscience.2011.11.062 – ident: e_1_2_11_8_1 doi: 10.1126/science.aai8185 – ident: e_1_2_11_26_1 doi: 10.1080/15384101.2019.1608128 – ident: e_1_2_11_137_1 doi: 10.1074/jbc.M704152200 – ident: e_1_2_11_151_1 doi: 10.1007/s11064-017-2276-y – ident: e_1_2_11_66_1 doi: 10.1016/j.jstrokecerebrovasdis.2016.02.002 – ident: e_1_2_11_10_1 doi: 10.1126/science.278.5337.477 – ident: e_1_2_11_38_1 doi: 10.3389/fneur.2017.00255 – ident: e_1_2_11_170_1 doi: 10.1016/j.bbrc.2017.04.031 – ident: e_1_2_11_115_1 doi: 10.1210/en.2007-1054 – ident: e_1_2_11_161_1 doi: 10.1523/JNEUROSCI.4669-08.2009 – volume: 17 start-page: 533 year: 2011 ident: e_1_2_11_16_1 article-title: Anti‐inflammatory and anti‐oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells publication-title: Molecular Vision – ident: e_1_2_11_129_1 doi: 10.1007/BF00225557 – ident: e_1_2_11_23_1 doi: 10.1016/S0169-328X(98)00240-X – ident: e_1_2_11_144_1 doi: 10.1038/mp.2015.65 – ident: e_1_2_11_30_1 doi: 10.1373/clinchem.2011.172676 – ident: e_1_2_11_54_1 doi: 10.1016/j.ceb.2015.02.004 – ident: e_1_2_11_163_1 doi: 10.3389/fncel.2016.00129 – ident: e_1_2_11_112_1 doi: 10.1111/j.1471-4159.2011.07610.x – ident: e_1_2_11_22_1 doi: 10.1002/(SICI)1098-1136(19990101)25:1<10::AID-GLIA2>3.0.CO;2-Y – ident: e_1_2_11_118_1 doi: 10.1016/S0074-7742(07)82005-8 – ident: e_1_2_11_121_1 doi: 10.1016/j.lfs.2010.10.025 – ident: e_1_2_11_168_1 doi: 10.1016/j.mcn.2014.06.008 – ident: e_1_2_11_40_1 doi: 10.3389/fendo.2019.00053 – ident: e_1_2_11_55_1 doi: 10.1111/jnc.14123 – ident: e_1_2_11_92_1 doi: 10.1002/jnr.23959 – ident: e_1_2_11_165_1 doi: 10.1111/ejn.12137 – ident: e_1_2_11_29_1 doi: 10.1136/jnnp.2005.074823 – ident: e_1_2_11_99_1 doi: 10.1248/bpb.b15-00872 – ident: e_1_2_11_20_1 doi: 10.1016/j.neuroscience.2015.12.044 – ident: e_1_2_11_27_1 doi: 10.3109/15368378.2010.500568 – ident: e_1_2_11_157_1 doi: 10.1038/s41419-018-0381-8 – ident: e_1_2_11_6_1 doi: 10.1093/cercor/bhr254 – ident: e_1_2_11_14_1 doi: 10.1007/s00441-011-1211-9 – ident: e_1_2_11_145_1 doi: 10.1038/mp.2015.65 – ident: e_1_2_11_105_1 doi: 10.1096/fj.04-3281fje – ident: e_1_2_11_102_1 doi: 10.1096/fj.02-1183fje – ident: e_1_2_11_74_1 doi: 10.1080/135502801300069674 – ident: e_1_2_11_48_1 doi: 10.1038/nature08673 – ident: e_1_2_11_61_1 doi: 10.1002/jnr.23620 – ident: e_1_2_11_82_1 doi: 10.1002/ijc.24513 – ident: e_1_2_11_185_1 doi: 10.1042/AN20110061 – ident: e_1_2_11_44_1 doi: 10.1126/scisignal.2003900 – ident: e_1_2_11_85_1 doi: 10.1159/000485008 – ident: e_1_2_11_39_1 doi: 10.1186/2045-8118-8-6 – ident: e_1_2_11_140_1 doi: 10.1371/journal.pone.0165439 – ident: e_1_2_11_25_1 doi: 10.1023/A:1007677003387 – ident: e_1_2_11_155_1 doi: 10.3389/fnmol.2017.00262 – ident: e_1_2_11_37_1 doi: 10.1089/neu.2017.4999 – ident: e_1_2_11_90_1 doi: 10.1016/j.bbamcr.2006.09.004 – ident: e_1_2_11_126_1 doi: 10.1093/jnen/60.11.1087 – ident: e_1_2_11_153_1 doi: 10.1007/s13311-011-0087-4 – ident: e_1_2_11_24_1 doi: 10.1002/glia.23639 – ident: e_1_2_11_91_1 doi: 10.1371/journal.pone.0052659 – ident: e_1_2_11_119_1 doi: 10.1111/j.1365-2826.2006.01410.x – ident: e_1_2_11_113_1 doi: 10.1007/s11307-017-1153-z – ident: e_1_2_11_58_1 doi: 10.1371/journal.pone.0042823 – ident: e_1_2_11_72_1 doi: 10.1016/j.neulet.2017.07.050 – ident: e_1_2_11_2_1 doi: 10.1006/mcne.2000.0947 – ident: e_1_2_11_7_1 doi: 10.1038/nn1246 – ident: e_1_2_11_136_1 doi: 10.1111/gtc.12331 – ident: e_1_2_11_173_1 doi: 10.1016/S0304-3940(99)00447-4 – volume: 72 start-page: 358 year: 2019 ident: e_1_2_11_184_1 article-title: Neuroprotective and anti‐inflammatory effects of isoliquiritigenin in kainic acid‐induced epileptic rats via the TLR4/MYD88 signaling pathway publication-title: Inflammopharmacology – ident: e_1_2_11_65_1 doi: 10.1007/s00401-009-0625-x – ident: e_1_2_11_46_1 doi: 10.1016/j.bbagen.2016.07.023 – ident: e_1_2_11_63_1 doi: 10.1038/srep23903 – ident: e_1_2_11_175_1 doi: 10.1016/j.msard.2019.01.036 – ident: e_1_2_11_86_1 doi: 10.1016/j.csbj.2019.01.011 – ident: e_1_2_11_116_1 doi: 10.1016/bs.mie.2015.08.005 – ident: e_1_2_11_146_1 doi: 10.1089/neu.2010.1520 – ident: e_1_2_11_134_1 doi: 10.1016/j.neuroscience.2013.07.061 – ident: e_1_2_11_97_1 doi: 10.1088/1748-605X/ab0d69 – ident: e_1_2_11_114_1 doi: 10.1002/glia.21258 – ident: e_1_2_11_94_1 doi: 10.1007/s00018-016-2239-5 – ident: e_1_2_11_4_1 doi: 10.1371/journal.pone.0029725 – ident: e_1_2_11_70_1 doi: 10.1038/nn1849 – ident: e_1_2_11_124_1 doi: 10.1016/j.expneurol.2014.01.020 – volume: 29 start-page: 2075 year: 1994 ident: e_1_2_11_11_1 article-title: Structure and transcriptional regulation of the GFAP gene publication-title: Brain Pathology – ident: e_1_2_11_120_1 doi: 10.1111/j.1600-0854.2006.00509.x – ident: e_1_2_11_138_1 doi: 10.1038/s41587-019-0035-0 – ident: e_1_2_11_179_1 doi: 10.1016/j.biopha.2017.08.132 – ident: e_1_2_11_108_1 doi: 10.1006/cyto.2001.0883 – ident: e_1_2_11_47_1 doi: 10.3389/fncel.2016.00174 – ident: e_1_2_11_79_1 doi: 10.1016/j.bbagen.2017.06.022 – volume: 22 start-page: 1137 year: 2016 ident: e_1_2_11_171_1 article-title: Citrullination of glial intermediate filaments is an early response in retinal injury publication-title: Molecular Vision – volume: 152 start-page: 251 year: 1998 ident: e_1_2_11_84_1 article-title: Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion publication-title: The American Journal of Pathology – ident: e_1_2_11_178_1 doi: 10.1007/s12035-014-8860-0 – ident: e_1_2_11_12_1 doi: 10.1002/jnr.24338 – ident: e_1_2_11_122_1 doi: 10.3109/15376516.2012.721809 – ident: e_1_2_11_45_1 doi: 10.1016/j.expneurol.2018.09.006 – ident: e_1_2_11_148_1 doi: 10.1111/jnc.13879 – ident: e_1_2_11_174_1 doi: 10.1007/s12035-015-9094-5 – ident: e_1_2_11_51_1 doi: 10.3389/fneur.2019.00099 – ident: e_1_2_11_127_1 doi: 10.1016/j.bbagen.2016.04.021 – ident: e_1_2_11_156_1 doi: 10.3389/fnins.2019.00454 – ident: e_1_2_11_52_1 doi: 10.1007/s00429-016-1305-y – ident: e_1_2_11_75_1 doi: 10.1096/fj.201700780R – ident: e_1_2_11_28_1 doi: 10.1002/ana.24881 – ident: e_1_2_11_133_1 doi: 10.1074/jbc.M309304200 – ident: e_1_2_11_35_1 doi: 10.1002/glia.22956 – ident: e_1_2_11_88_1 doi: 10.1038/nn1988 – ident: e_1_2_11_67_1 doi: 10.3389/fnmol.2017.00096 – ident: e_1_2_11_19_1 doi: 10.1016/j.neuroscience.2006.08.028 – ident: e_1_2_11_62_1 doi: 10.1091/mbc.E17-05-0271 – ident: e_1_2_11_130_1 doi: 10.1038/nm.3912 – ident: e_1_2_11_32_1 doi: 10.3389/fnagi.2018.00122 – ident: e_1_2_11_60_1 doi: 10.1136/jnnp-2017-316583 – ident: e_1_2_11_64_1 doi: 10.1111/neup.12379 – ident: e_1_2_11_180_1 doi: 10.3233/JAD-181084 – ident: e_1_2_11_5_1 doi: 10.1111/j.1471-4159.2006.04164.x – ident: e_1_2_11_13_1 doi: 10.1016/j.lfs.2011.05.008 – ident: e_1_2_11_15_1 doi: 10.1016/j.jmb.2014.04.008 – ident: e_1_2_11_123_1 doi: 10.1038/cddis.2013.514 – ident: e_1_2_11_159_1 doi: 10.1100/tsw.2009.148 – ident: e_1_2_11_164_1 doi: 10.3389/fnmol.2018.00204 – ident: e_1_2_11_76_1 doi: 10.1046/j.1471-4159.1999.721353.x – ident: e_1_2_11_128_1 doi: 10.1186/s40478-016-0350-3 – ident: e_1_2_11_109_1 doi: 10.3233/JAD-180325 – ident: e_1_2_11_147_1 doi: 10.1016/j.neulet.2016.07.052 – ident: e_1_2_11_177_1 doi: 10.1016/j.mcn.2017.11.013 – ident: e_1_2_11_160_1 doi: 10.1523/JNEUROSCI.4119-07.2007 – ident: e_1_2_11_83_1 doi: 10.1016/S0896-6273(00)80194-4 – ident: e_1_2_11_101_1 doi: 10.1073/pnas.241508198 – ident: e_1_2_11_21_1 doi: 10.1080/15384101.2017.1301330 – ident: e_1_2_11_42_1 doi: 10.1111/jnc.14634 – volume: 265 start-page: 4722 year: 1990 ident: e_1_2_11_59_1 article-title: Phosphorylation sites linked to glial filament disassembly in vitro locate in a non‐alpha‐helical head domain publication-title: The Journal of Biological Chemistry doi: 10.1016/S0021-9258(19)39622-X – volume: 149 start-page: 272 year: 2018 ident: e_1_2_11_78_1 article-title: Rosiglitazone up‐regulates glial fibrillary acidic protein via HB‐EGF secreted from astrocytes and neurons through PPARgamma pathway and reduces apoptosis in high‐fat diet‐fed mice publication-title: Journal of Neurochemistry – ident: e_1_2_11_149_1 doi: 10.1247/csf.12034 – ident: e_1_2_11_107_1 doi: 10.1016/0006-8993(90)91526-M – ident: e_1_2_11_182_1 doi: 10.1210/en.2002-221039 – volume: 37 start-page: 41 year: 2016 ident: e_1_2_11_87_1 article-title: Expression of glial fibrillary acidic protein in astrocytes of rat supraoptic nucleus throughout estrous cycle publication-title: Neuro Endocrinology Letters – ident: e_1_2_11_183_1 doi: 10.1089/neu.2016.4711 – ident: e_1_2_11_150_1 doi: 10.1007/s11060-017-2565-y – ident: e_1_2_11_104_1 doi: 10.1002/glia.20724 |
| SSID | ssj0011497 |
| Score | 2.625296 |
| SecondaryResourceType | review_article |
| Snippet | Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 878 |
| SubjectTerms | astrocyte Astrocytes Barriers Brain Cytoskeleton Edema expression function Gene expression Glial fibrillary acidic protein Head injuries Hormones Inflammation Janus kinase Kinases Localization Membrane proteins Mental disorders Morphology Neurodegeneration Neuronal-glial interactions Plastic foam Plastic properties Plasticity Protein kinase Protein transport Proteins regulation Signaling Transcription factors Traumatic brain injury |
| Title | Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23734 https://www.ncbi.nlm.nih.gov/pubmed/31626364 https://www.proquest.com/docview/2375701985 https://www.proquest.com/docview/2307147456 |
| Volume | 68 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0894-1491 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-1136 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011497 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_Ep75UrVVPryVSKSjsuZvsbjbQl0O0tlgfRMEXWZJsoofnntwH9PzrnWQ_xA8KFfYhkEmy2ckkv2RnfgHYsbGyqeJpgIsJD2KOJiVjGQWFjIUWikUydQHOf07T44v492VyuQA_mliYih-iPXBzluHna2fgUk32n0hDr4cD2aOMM0cGGrHU76fOWu4oxPmiovkUcYDpqOUmpftPRZ-vRq8g5nPE6pecoyW4al628jS57c2mqqcfXvA4vrc3y_CxxqKkXw2eFVgw5SdY7Ze4D7-bk-_Ee4f6Y_dVuPEsHrqmFyDj6gp7VCoZWYIgkpi_tUttSWRZELdeNtmu1SGxLrgAB914TqQeFANNPEfEoCT4yMkUa58j7v0MF0eH5wfHQX1LQ6ARisWBVYiiFM4DWlijskhzaVNqeSRppqUIDRVWZIVVzNhIIaAoEIIloTEhN4aZkK3BYjkqzQYQKjKjLWdYDOtWLCt0zJgwkieUh5nuwG6jrVzXFObuJo1hXpEv09x1KPefsQPfWtn7irjjTaluo_S8Nt6Jy0kcS32WdGC7zUazc_9SZGlGMyfjIr84ws8OrFeDpW2GRY7iJ8XK97zK_9F-_vPkV9-nNv9HeAs-ULfv946XXVicjmfmC4KjqfrqjeAR2uUMFg |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0fNAXv07P1VMjiqDQvTZJm-ZxEc893bsHuYN7K0ma6OLalf0A17_embTb41QEhT4EMklIJ9P5JZ35BeBFkDYUVhUJOhOVSIUmZaTJktpI7bQVmSkowfn4pBifyffn-XkXm0O5MC0_RH_gRpYRv9dk4HQgfXDBGvppNjVDLpSQV-GaLHCjQpjoY88ehUhft0SfWiZYznp2Un5w0fayP_oNZF7GrNHpHN5qb1ZdRq5CijX5Mlyv7ND9-IXJ8b_ncxtudnCUjdr1cweu-OYu7I4a3Ip_3bCXLAaIxpP3XfgciTxcxzDAFu0t9qhXNg8McSTz37uo2oaZpmbkMrfVNOqMBcovwHW32DDjpvXUsUgTMW0YPma5wt43CH3vwdnh29M346S7qCFxiMZkEiwCKYufAqeDt2XmlAkFDyozvHRGp57roMs6WOFDZhFT1IjC8tT7VHkvfCruw04zb_wDYFyX3gUlsBn2bUVZOymE9kblXKWlG8Crrboq17GY02Uas6rlX-YVTaiKr3EAz3vZby13xx-l9rdarzr7XVJNTkT1ZT6AZ301Wh79TjGNn69JhpK_FCLQAey1q6UfRmTE8lNg56-jzv8yfvVucjSKpYf_IvwUro9PjyfV5OjkwyO4wekYIMZh7sPOarH2jxErreyTaBE_AZjwEDc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0BPHFr9Nz9dSIIih0r03SpnlcPNc7PQ8RD-6tJGmii2v32A9w_eudSbs9TkVQ6EMgk4R0Msmv6cxvAJ4FaUNhVZHgYaISqdCkjDRZUhupnbYiMwUFOL8_Lg5O5NvT_LTzzaFYmJYfor9wI8uI-zUZuD-rw945a-jn6cQMuVBCXoYrMtclefTtf-zZoxDp65boU8sEy1nPTsr3zttePI9-A5kXMWs8dMY32syqi8hVSL4mX4erpR26H78wOf73fG7C9Q6OslG7fm7BJd_chu1Rg5_i39bsOYsOovHmfRu-RCIP1zEMsHmbxR71ymaBIY5k_nvnVdsw09SMjsxNNY06ZYHiC3DdzdfMuEk9cSzSREwaho9ZLLH3NULfO3Ayfv3p1UHSJWpIHKIxmQSLQMriVuB08LbMnDKh4EFlhpfO6NRzHXRZByt8yCxiihpRWJ56nyrvhU_FXdhqZo2_B4zr0rugBDbDvq0oayeF0N6onKu0dAN4sVFX5ToWc0qmMa1a_mVe0YSq-BoH8LSXPWu5O_4otbvRetXZ74JqciKqL_MBPOmr0fLod4pp_GxFMhT8pRCBDmCnXS39MCIjlp8CO38Zdf6X8as3R4ejWLr_L8KP4eqH_XF1dHj87gFc43QLEN0wd2FrOV_5hwiVlvZRNIifK8EPuw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurochemical+regulation+of+the+expression+and+function+of+glial+fibrillary+acidic+protein+in+astrocytes&rft.jtitle=Glia&rft.au=Li%2C+Dongyang&rft.au=Liu%2C+Xiaoyu&rft.au=Liu%2C+Tianming&rft.au=Liu%2C+Haitao&rft.date=2020-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=68&rft.issue=5&rft.spage=878&rft.epage=897&rft_id=info:doi/10.1002%2Fglia.23734&rft.externalDBID=10.1002%252Fglia.23734&rft.externalDocID=GLIA23734 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |