Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes

Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐...

Full description

Saved in:
Bibliographic Details
Published inGlia Vol. 68; no. 5; pp. 878 - 897
Main Authors Li, Dongyang, Liu, Xiaoyu, Liu, Tianming, Liu, Haitao, Tong, Li, Jia, Shuwei, Wang, Yu‐Feng
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2020
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0894-1491
1098-1136
1098-1136
DOI10.1002/glia.23734

Cover

Abstract Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation. Main points GFAP expression is regulated by transcription factors and enzymes at multiple levels; GFAP serves as cytoskeleton, interactive platform, and protein location guide; The guiding role of GFAP involves cellular transport and mobile machineries.
AbstractList Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.
Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase‐2/signal transducer and activator of transcription 3 cascade and nuclear factor κ‐light‐chain‐enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema‐eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α‐isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation. Main points GFAP expression is regulated by transcription factors and enzymes at multiple levels; GFAP serves as cytoskeleton, interactive platform, and protein location guide; The guiding role of GFAP involves cellular transport and mobile machineries.
Author Wang, Yu‐Feng
Liu, Xiaoyu
Li, Dongyang
Liu, Haitao
Jia, Shuwei
Liu, Tianming
Tong, Li
Author_xml – sequence: 1
  givenname: Dongyang
  orcidid: 0000-0003-4159-7600
  surname: Li
  fullname: Li, Dongyang
  organization: Harbin Medical University
– sequence: 2
  givenname: Xiaoyu
  surname: Liu
  fullname: Liu, Xiaoyu
  organization: Harbin Medical University
– sequence: 3
  givenname: Tianming
  surname: Liu
  fullname: Liu, Tianming
  organization: Harbin Medical University
– sequence: 4
  givenname: Haitao
  surname: Liu
  fullname: Liu, Haitao
  organization: Harbin Medical University
– sequence: 5
  givenname: Li
  surname: Tong
  fullname: Tong, Li
  organization: Harbin Medical University
– sequence: 6
  givenname: Shuwei
  surname: Jia
  fullname: Jia, Shuwei
  organization: Harbin Medical University
– sequence: 7
  givenname: Yu‐Feng
  surname: Wang
  fullname: Wang, Yu‐Feng
  email: yufengwang@ems.hrbmu.edu.cn
  organization: Harbin Medical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31626364$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtLJDEUhYMo2j428wOGwGwGoTQ3SVVSS5HxAY1udF2kUjd2JF3Vk1Sh_e9N2-pChoFASPKdc2_OPSS7_dAjIT-AnQFj_PwpeHPGhRJyh8yA1boAENUumTFdywJkDQfkMKVnxiAf1D45EFDxSlRyRhZ3OMXBLnDprQk04tMUzOiHng6Ojguk-LqKmNLmxvQddVNvP583dQN1vo0-BBPX1FjfeUtXcRjR9zQvk8bsvh4xHZM9Z0LCk4_9iDxe_Xm4vCnm99e3lxfzwkouZOFaXrJWam1rh60Gq4yruFNguLamZshrV-vOtQIdtKChq6QsGSJTiAKZOCK_t765i78TprFZ-mQxN9jjMKWGC6ZAKllWGf31DX0eptjn7jKlSsWg1mWmfn5QU7vErllFv8yfbT4zzMDpFrBxSCmi-0KANZsBNZugmvcBZZh9g60f3wMfo_Hh3xLYSl58wPV_zJvr-e3FVvMG0QqjuQ
CitedBy_id crossref_primary_10_1002_dneu_22736
crossref_primary_10_3389_fncel_2024_1414662
crossref_primary_10_3390_ijms241411640
crossref_primary_10_1016_j_intimp_2023_110503
crossref_primary_10_4103_1673_5374_317982
crossref_primary_10_3390_ijms252212379
crossref_primary_10_1016_j_expneurol_2023_114371
crossref_primary_10_1016_j_jchemneu_2020_101805
crossref_primary_10_1080_00207454_2023_2277664
crossref_primary_10_1038_s41420_024_02211_z
crossref_primary_10_1371_journal_pcbi_1012710
crossref_primary_10_1016_j_bbi_2024_12_025
crossref_primary_10_1016_j_yfrne_2020_100897
crossref_primary_10_4103_1673_5374_391313
crossref_primary_10_1186_s13287_023_03497_z
crossref_primary_10_1016_j_cbi_2024_111159
crossref_primary_10_4103_1673_5374_385839
crossref_primary_10_1002_glia_24116
crossref_primary_10_1016_j_neuroscience_2022_02_013
crossref_primary_10_3389_fncel_2022_896172
crossref_primary_10_2174_1874467215666220902112939
crossref_primary_10_1016_j_ejphar_2023_176140
crossref_primary_10_1016_j_ejphar_2025_177358
crossref_primary_10_1016_j_npep_2024_102480
crossref_primary_10_1007_s11011_024_01457_x
crossref_primary_10_3390_ijms23116000
crossref_primary_10_1007_s11064_020_03172_2
crossref_primary_10_3389_fimmu_2023_1106490
crossref_primary_10_1021_acs_analchem_3c04825
crossref_primary_10_1016_j_expneurol_2023_114642
crossref_primary_10_1016_j_envres_2023_116869
crossref_primary_10_1155_2021_7806370
crossref_primary_10_1007_s12035_022_02784_9
crossref_primary_10_1177_1759091420981206
crossref_primary_10_3390_biomedicines11112878
crossref_primary_10_3390_biomedicines9101341
crossref_primary_10_3389_fcell_2022_1115348
crossref_primary_10_1016_j_jpsychires_2024_01_007
crossref_primary_10_3389_fnagi_2024_1461556
crossref_primary_10_3389_fcell_2022_1047487
crossref_primary_10_1177_1759091420960550
crossref_primary_10_1007_s00221_023_06587_9
crossref_primary_10_1089_can_2022_0289
crossref_primary_10_3390_cells12192357
crossref_primary_10_1016_j_neuint_2020_104755
crossref_primary_10_1016_j_expneurol_2023_114427
crossref_primary_10_1016_j_arr_2025_102680
crossref_primary_10_1016_j_neurot_2024_e00359
crossref_primary_10_4103_1673_5374_343888
crossref_primary_10_1007_s11064_023_03966_0
crossref_primary_10_1177_17590914211043087
crossref_primary_10_3389_fncel_2021_784154
crossref_primary_10_1016_j_brainres_2023_148271
crossref_primary_10_1002_ptr_8064
crossref_primary_10_1007_s11064_020_03129_5
crossref_primary_10_3389_fphys_2022_835173
crossref_primary_10_1016_j_neuro_2021_05_003
crossref_primary_10_1186_s42269_021_00678_9
crossref_primary_10_1080_1028415X_2023_2278867
crossref_primary_10_3390_biomedicines11051259
crossref_primary_10_1155_2021_6301458
crossref_primary_10_1016_j_neulet_2021_136378
crossref_primary_10_1159_000541648
crossref_primary_10_1016_j_neuro_2021_09_001
crossref_primary_10_1007_s10072_025_08011_2
crossref_primary_10_1111_jcmm_17508
crossref_primary_10_1172_jci_insight_154804
crossref_primary_10_1007_s10571_023_01426_5
crossref_primary_10_1016_j_neuro_2021_03_005
crossref_primary_10_1186_s12974_023_02843_5
crossref_primary_10_1111_apha_13672
crossref_primary_10_1016_j_neumar_2025_100038
crossref_primary_10_1021_acschemneuro_2c00638
crossref_primary_10_3390_ijms26051831
crossref_primary_10_4081_ejtm_2023_11553
crossref_primary_10_1016_j_neuroscience_2023_01_038
crossref_primary_10_1093_gigascience_giae103
crossref_primary_10_2139_ssrn_4123180
crossref_primary_10_23934_2223_9022_2023_12_4_625_636
crossref_primary_10_1016_j_bbi_2022_06_004
crossref_primary_10_3389_fimmu_2023_1136955
crossref_primary_10_1007_s10637_022_01233_7
crossref_primary_10_1007_s11064_024_04261_2
crossref_primary_10_1002_glia_24306
crossref_primary_10_1016_j_jff_2022_105263
crossref_primary_10_1016_j_lfs_2020_118683
crossref_primary_10_1016_j_expneurol_2021_113695
crossref_primary_10_1016_j_physbeh_2020_112982
crossref_primary_10_4103_NRR_NRR_D_24_00286
crossref_primary_10_3390_antiox12010149
crossref_primary_10_3390_brainsci15030279
crossref_primary_10_1186_s40779_021_00303_w
crossref_primary_10_1016_j_bbrc_2022_09_025
crossref_primary_10_1186_s12951_024_02511_7
crossref_primary_10_1016_j_xpro_2022_101753
crossref_primary_10_1155_2021_6668739
crossref_primary_10_3389_fnmol_2022_952036
crossref_primary_10_3233_JAD_230195
crossref_primary_10_1038_s41598_023_30093_1
crossref_primary_10_1016_j_bioactmat_2022_01_043
crossref_primary_10_3390_nu13010042
crossref_primary_10_1186_s13024_024_00794_w
crossref_primary_10_1016_j_jcis_2024_11_167
crossref_primary_10_1097_MD_0000000000031995
crossref_primary_10_3390_ph14040321
crossref_primary_10_3390_cells13020131
crossref_primary_10_1016_j_biopha_2024_116754
crossref_primary_10_1038_s41398_020_01137_1
crossref_primary_10_1016_j_phymed_2023_155121
crossref_primary_10_1038_s41420_025_02323_0
crossref_primary_10_1016_j_bbi_2021_10_007
crossref_primary_10_1096_fj_202400823R
crossref_primary_10_1080_1744666X_2023_2148657
crossref_primary_10_3390_s24020575
Cites_doi 10.1101/cshperspect.a021642
10.1371/journal.pone.0105219
10.1142/S0192415X16500075
10.1016/j.eplepsyres.2010.03.014
10.1016/j.bbr.2016.12.038
10.1016/j.brainres.2006.04.135
10.1111/j.1471-4159.1992.tb09313.x
10.1073/pnas.90.4.1541
10.1016/j.mbs.2017.11.005
10.1186/s12974-016-0613-8
10.1371/journal.pone.0135249
10.1371/journal.pone.0214156
10.1089/neu.2015.3981
10.1002/glia.22453
10.1146/annurev-pathol-052016-100218
10.1242/dev.041632
10.1002/glia.22577
10.1038/sj.mp.4000696
10.1002/brb3.283
10.1158/1535-7163.MCT-16-0291
10.1016/j.molbrainres.2004.02.021
10.1111/joa.12053
10.1080/09168451.2014.955455
10.1213/ANE.0000000000001238
10.1074/jbc.M116.772020
10.1016/j.ejphar.2017.03.023
10.1016/j.neurobiolaging.2013.09.035
10.1097/01.jnen.0000195943.32786.39
10.1080/00207454.2019.1586687
10.1016/j.neuropharm.2013.01.020
10.1007/s11011-017-0013-5
10.1007/978-1-4020-7937-5_4
10.1002/glia.22536
10.1016/j.molonc.2011.03.003
10.1016/j.exer.2016.03.019
10.1016/j.bbrc.2018.05.173
10.1023/A:1022572304626
10.1074/jbc.M406601200
10.1111/nan.12338
10.1016/j.cyto.2006.10.007
10.1007/s13365-017-0584-2
10.1085/jgp.201611607
10.1016/j.ydbio.2013.12.021
10.1073/pnas.1100957108
10.1097/00004647-200007000-00003
10.1523/JNEUROSCI.0820-04.2004
10.1016/j.neuroscience.2011.11.062
10.1126/science.aai8185
10.1080/15384101.2019.1608128
10.1074/jbc.M704152200
10.1007/s11064-017-2276-y
10.1016/j.jstrokecerebrovasdis.2016.02.002
10.1126/science.278.5337.477
10.3389/fneur.2017.00255
10.1016/j.bbrc.2017.04.031
10.1210/en.2007-1054
10.1523/JNEUROSCI.4669-08.2009
10.1007/BF00225557
10.1016/S0169-328X(98)00240-X
10.1038/mp.2015.65
10.1373/clinchem.2011.172676
10.1016/j.ceb.2015.02.004
10.3389/fncel.2016.00129
10.1111/j.1471-4159.2011.07610.x
10.1002/(SICI)1098-1136(19990101)25:1<10::AID-GLIA2>3.0.CO;2-Y
10.1016/S0074-7742(07)82005-8
10.1016/j.lfs.2010.10.025
10.1016/j.mcn.2014.06.008
10.3389/fendo.2019.00053
10.1111/jnc.14123
10.1002/jnr.23959
10.1111/ejn.12137
10.1136/jnnp.2005.074823
10.1248/bpb.b15-00872
10.1016/j.neuroscience.2015.12.044
10.3109/15368378.2010.500568
10.1038/s41419-018-0381-8
10.1093/cercor/bhr254
10.1007/s00441-011-1211-9
10.1096/fj.04-3281fje
10.1096/fj.02-1183fje
10.1080/135502801300069674
10.1038/nature08673
10.1002/jnr.23620
10.1002/ijc.24513
10.1042/AN20110061
10.1126/scisignal.2003900
10.1159/000485008
10.1186/2045-8118-8-6
10.1371/journal.pone.0165439
10.1023/A:1007677003387
10.3389/fnmol.2017.00262
10.1089/neu.2017.4999
10.1016/j.bbamcr.2006.09.004
10.1093/jnen/60.11.1087
10.1007/s13311-011-0087-4
10.1002/glia.23639
10.1371/journal.pone.0052659
10.1111/j.1365-2826.2006.01410.x
10.1007/s11307-017-1153-z
10.1371/journal.pone.0042823
10.1016/j.neulet.2017.07.050
10.1006/mcne.2000.0947
10.1038/nn1246
10.1111/gtc.12331
10.1016/S0304-3940(99)00447-4
10.1007/s00401-009-0625-x
10.1016/j.bbagen.2016.07.023
10.1038/srep23903
10.1016/j.msard.2019.01.036
10.1016/j.csbj.2019.01.011
10.1016/bs.mie.2015.08.005
10.1089/neu.2010.1520
10.1016/j.neuroscience.2013.07.061
10.1088/1748-605X/ab0d69
10.1002/glia.21258
10.1007/s00018-016-2239-5
10.1371/journal.pone.0029725
10.1038/nn1849
10.1016/j.expneurol.2014.01.020
10.1111/j.1600-0854.2006.00509.x
10.1038/s41587-019-0035-0
10.1016/j.biopha.2017.08.132
10.1006/cyto.2001.0883
10.3389/fncel.2016.00174
10.1016/j.bbagen.2017.06.022
10.1007/s12035-014-8860-0
10.1002/jnr.24338
10.3109/15376516.2012.721809
10.1016/j.expneurol.2018.09.006
10.1111/jnc.13879
10.1007/s12035-015-9094-5
10.3389/fneur.2019.00099
10.1016/j.bbagen.2016.04.021
10.3389/fnins.2019.00454
10.1007/s00429-016-1305-y
10.1096/fj.201700780R
10.1002/ana.24881
10.1074/jbc.M309304200
10.1002/glia.22956
10.1038/nn1988
10.3389/fnmol.2017.00096
10.1016/j.neuroscience.2006.08.028
10.1091/mbc.E17-05-0271
10.1038/nm.3912
10.3389/fnagi.2018.00122
10.1136/jnnp-2017-316583
10.1111/neup.12379
10.3233/JAD-181084
10.1111/j.1471-4159.2006.04164.x
10.1016/j.lfs.2011.05.008
10.1016/j.jmb.2014.04.008
10.1038/cddis.2013.514
10.1100/tsw.2009.148
10.3389/fnmol.2018.00204
10.1046/j.1471-4159.1999.721353.x
10.1186/s40478-016-0350-3
10.3233/JAD-180325
10.1016/j.neulet.2016.07.052
10.1016/j.mcn.2017.11.013
10.1523/JNEUROSCI.4119-07.2007
10.1016/S0896-6273(00)80194-4
10.1073/pnas.241508198
10.1080/15384101.2017.1301330
10.1111/jnc.14634
10.1016/S0021-9258(19)39622-X
10.1247/csf.12034
10.1016/0006-8993(90)91526-M
10.1210/en.2002-221039
10.1089/neu.2016.4711
10.1007/s11060-017-2565-y
10.1002/glia.20724
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
2020 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
– notice: 2020 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
DOI 10.1002/glia.23734
DatabaseName CrossRef
PubMed
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed
Virology and AIDS Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1098-1136
EndPage 897
ExternalDocumentID 31626364
10_1002_glia_23734
GLIA23734
Genre reviewArticle
Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31471113
– fundername: “Double‐First‐Class” Construction
– fundername: "Double-First-Class" Construction
– fundername: National Natural Science Foundation of China
  grantid: 31471113
GroupedDBID ---
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GAKWD
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
X7M
XG1
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
NPM
7QL
7T7
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
7X8
ID FETCH-LOGICAL-c4234-fb250b488c9feb81c7af62f71a28ca90e29f98dfb3ef1b181d64450ee07ee3e03
IEDL.DBID DR2
ISSN 0894-1491
1098-1136
IngestDate Thu Jul 10 19:56:18 EDT 2025
Tue Oct 07 06:17:34 EDT 2025
Wed Feb 19 02:31:27 EST 2025
Thu Apr 24 22:57:22 EDT 2025
Wed Oct 01 02:33:38 EDT 2025
Wed Jan 22 16:34:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords expression
regulation
astrocyte
glial fibrillary acidic protein
function
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4234-fb250b488c9feb81c7af62f71a28ca90e29f98dfb3ef1b181d64450ee07ee3e03
Notes Funding information
The fund of “Double‐First‐Class” Construction; National Natural Science Foundation of China, Grant/Award Number: 31471113
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-4159-7600
PMID 31626364
PQID 2375701985
PQPubID 996331
PageCount 20
ParticipantIDs proquest_miscellaneous_2307147456
proquest_journals_2375701985
pubmed_primary_31626364
crossref_primary_10_1002_glia_23734
crossref_citationtrail_10_1002_glia_23734
wiley_primary_10_1002_glia_23734_GLIA23734
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2020
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: May 2020
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Glia
PublicationTitleAlternate Glia
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 1997; 278
2015; 79
2012; 120
2017; 81
2019; 97
2019; 10
2019; 13
2007; 100
2004; 7
2013; 61
2006; 36
2019; 14
2004; 24
2019; 17
2016; 146
2010; 463
2019; 18
2013; 70
1992; 58
2011; 58
2016; 39
2014; 254
2013; 6
2016; 37
2016; 33
1998; 152
2018; 295
2001; 60
2018; 9
2018; 4
2010; 119
2010; 29
2016; 316
2007; 8
2019; 311
2019; 29
2018; 32
2012; 22
2009; 125
2018; 35
2016; 44
2018; 340
2018; 29
1996; 17
1990; 521
2011; 2
2018; 502
2007; 282
2015; 52
2019; 37
1999; 25
2016; 10
1999; 24
2008; 56
2013; 223
2016; 568
1998; 62
2007; 10
2017; 135
2011; 5
2011; 8
2014; 45
2016; 13
2017; 657
2016; 11
2018; 24
2014; 426
2016; 4
2016; 6
2018; 17
2005; 19
2004; 279
2016; 21
2011; 88
2014; 35
2007; 82
2017; 140
2011; 89
2017; 142
2018; 11
2018; 10
2018; 97
2016; 25
2017; 149
2014; 387
2016; 22
2017; 636
2012; 60
2017; 42
2017; 8
2004; 124
2000; 5
2006; 77
2013; 23
2017; 44
2017; 43
2017; 1861
2015; 32
2006; 1763
2016; 73
2003; 17
2008; 149
1994; 29
2019; 129
2011; 17
2018; 89
2012; 202
2014; 61
2017; 356
1990; 265
2018; 86
2017; 9
1985; 242
2017; 803
2014; 5
2014; 4
2017; 37
2006; 65
2019; 67
2017; 32
2017; 34
2001; 17
2014; 9
2011; 28
2017; 487
2001; 14
2001; 98
2007; 27
2019; 72
2000; 25
2015; 93
2018; 149
2015; 10
2000; 20
2019; 148
2006; 1103
2016; 123
2016; 53
2017; 292
2006; 18
2004
1993; 90
2016; 1860
1999; 269
2009; 29
2017; 95
2011; 345
2013; 37
2011; 108
2013; 38
2001; 7
2017; 16
2017; 10
2010; 137
2017; 12
2015; 21
2019
2016; 64
2006; 143
2009; 9
2017
2016
1999; 72
2013; 252
2012; 7
2017; 222
2010; 90
2012; 4
2003; 144
2012; 9
e_1_2_11_70_1
e_1_2_11_93_1
e_1_2_11_182_1
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_97_1
e_1_2_11_13_1
e_1_2_11_118_1
e_1_2_11_29_1
e_1_2_11_125_1
e_1_2_11_4_1
e_1_2_11_106_1
e_1_2_11_148_1
e_1_2_11_48_1
e_1_2_11_121_1
e_1_2_11_102_1
e_1_2_11_144_1
e_1_2_11_163_1
e_1_2_11_140_1
e_1_2_11_81_1
e_1_2_11_20_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_62_1
e_1_2_11_129_1
e_1_2_11_8_1
e_1_2_11_43_1
e_1_2_11_85_1
e_1_2_11_17_1
e_1_2_11_117_1
e_1_2_11_136_1
e_1_2_11_159_1
e_1_2_11_178_1
e_1_2_11_113_1
e_1_2_11_132_1
e_1_2_11_155_1
e_1_2_11_174_1
Kushwaha R. (e_1_2_11_78_1) 2018; 149
e_1_2_11_151_1
e_1_2_11_170_1
e_1_2_11_92_1
e_1_2_11_183_1
e_1_2_11_31_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_119_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_54_1
e_1_2_11_96_1
e_1_2_11_103_1
e_1_2_11_126_1
e_1_2_11_149_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_122_1
e_1_2_11_145_1
e_1_2_11_168_1
e_1_2_11_141_1
e_1_2_11_164_1
e_1_2_11_160_1
e_1_2_11_61_1
e_1_2_11_80_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_107_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_114_1
e_1_2_11_137_1
e_1_2_11_156_1
e_1_2_11_179_1
e_1_2_11_110_1
e_1_2_11_39_1
e_1_2_11_133_1
Su R. J. (e_1_2_11_135_1) 2018; 17
e_1_2_11_152_1
e_1_2_11_175_1
Cavet M. E. (e_1_2_11_16_1) 2011; 17
Hinton D. J. (e_1_2_11_50_1) 2014; 4
Wizeman J. W. (e_1_2_11_171_1) 2016; 22
e_1_2_11_180_1
e_1_2_11_72_1
e_1_2_11_91_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_99_1
e_1_2_11_34_1
e_1_2_11_53_1
Inagaki M. (e_1_2_11_59_1) 1990; 265
e_1_2_11_76_1
e_1_2_11_95_1
Liedtke W. (e_1_2_11_84_1) 1998; 152
e_1_2_11_6_1
e_1_2_11_104_1
e_1_2_11_27_1
e_1_2_11_127_1
e_1_2_11_169_1
e_1_2_11_2_1
e_1_2_11_100_1
e_1_2_11_146_1
Zhu X. (e_1_2_11_184_1) 2019; 72
e_1_2_11_123_1
e_1_2_11_165_1
e_1_2_11_142_1
e_1_2_11_161_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_45_1
e_1_2_11_68_1
e_1_2_11_41_1
e_1_2_11_108_1
e_1_2_11_22_1
e_1_2_11_64_1
e_1_2_11_115_1
e_1_2_11_138_1
e_1_2_11_15_1
e_1_2_11_111_1
e_1_2_11_134_1
e_1_2_11_38_1
e_1_2_11_157_1
e_1_2_11_19_1
e_1_2_11_176_1
e_1_2_11_153_1
e_1_2_11_130_1
Wang Y. F. (e_1_2_11_167_1) 2014; 45
e_1_2_11_172_1
e_1_2_11_94_1
e_1_2_11_181_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_185_1
e_1_2_11_10_1
e_1_2_11_56_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_52_1
e_1_2_11_98_1
e_1_2_11_33_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_105_1
e_1_2_11_128_1
e_1_2_11_147_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_101_1
e_1_2_11_124_1
e_1_2_11_143_1
e_1_2_11_166_1
e_1_2_11_120_1
Wang Y.‐F. (e_1_2_11_162_1) 2011; 2
e_1_2_11_82_1
Liu X. Y. (e_1_2_11_87_1) 2016; 37
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_86_1
e_1_2_11_109_1
e_1_2_11_18_1
e_1_2_11_139_1
e_1_2_11_116_1
e_1_2_11_158_1
e_1_2_11_37_1
e_1_2_11_154_1
e_1_2_11_177_1
e_1_2_11_112_1
Brenner M. (e_1_2_11_11_1) 1994; 29
e_1_2_11_131_1
e_1_2_11_150_1
e_1_2_11_173_1
References_xml – volume: 4
  start-page: 903
  year: 2014
  end-page: 914
  article-title: Type 1 equilibrative nucleoside transporter regulates astrocyte‐specific glial fibrillary acidic protein expression in the striatum
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
– volume: 144
  start-page: 2947
  year: 2003
  end-page: 2956
  article-title: Extracellular signal‐regulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation
  publication-title: Endocrinology
– volume: 90
  start-page: 1541
  year: 1993
  end-page: 1545
  article-title: Human immunodeficiency virus coat protein gp120 inhibits the beta‐adrenergic regulation of astroglial and microglial functions
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 18
  start-page: 253
  year: 2006
  end-page: 265
  article-title: Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype
  publication-title: Journal of Neuroendocrinology
– volume: 242
  start-page: 9
  year: 1985
  end-page: 15
  article-title: Lactation‐associated redistribution of the glial fibrillary acidic protein within the supraoptic nucleus. An immunocytochemical study
  publication-title: Cell and Tissue Research
– volume: 77
  start-page: 181
  year: 2006
  end-page: 184
  article-title: Serum glial fibrillary acidic protein as a biomarker for intracerebral haemorrhage in patients with acute stroke
  publication-title: Journal of Neurology, Neurosurgery & Psychiatry
– volume: 9
  start-page: 65
  year: 2012
  end-page: 72
  article-title: Novel treatment targets for cerebral edema
  publication-title: Neurotherapeutics
– volume: 316
  start-page: 209
  year: 2016
  end-page: 220
  article-title: Density of GFAP‐immunoreactive astrocytes is decreased in left hippocampi in major depressive disorder
  publication-title: Neuroscience
– volume: 502
  start-page: 375
  year: 2018
  end-page: 381
  article-title: Mechanisms involved in epigenetic down‐regulation of Gfap under maternal hypothyroidism
  publication-title: Biochemical and Biophysical Research Communications
– volume: 90
  start-page: 99
  year: 2010
  end-page: 109
  article-title: Immunohistochemical characterization of the out‐of frame splice variants GFAP Delta164/Deltaexon 6 in focal lesions associated with chronic epilepsy
  publication-title: Epilepsy Research
– volume: 146
  start-page: 259
  year: 2016
  end-page: 268
  article-title: Glio‐vascular modifications caused by Aquaporin‐4 deletion in the mouse retina
  publication-title: Experimental Eye Research
– volume: 137
  start-page: 313
  year: 2010
  end-page: 321
  article-title: GFAPdelta in radial glia and subventricular zone progenitors in the developing human cortex
  publication-title: Development
– volume: 79
  start-page: 11
  year: 2015
  end-page: 15
  article-title: Synthesis of (+/−)‐terpendole E
  publication-title: Bioscience, Biotechnology, and Biochemistry
– volume: 95
  start-page: 1503
  year: 2017
  end-page: 1512
  article-title: Induction of peptidylarginine deiminase 2 and 3 by dibutyryl cAMP via cAMP‐PKA signaling in human astrocytoma U‐251MG cells
  publication-title: Journal of Neuroscience Research
– volume: 21
  start-page: 927
  year: 2015
  end-page: 931
  article-title: STAT3‐dependent reactive astrogliosis in the spinal dorsal horn underlies chronic itch
  publication-title: Nature Medicine
– volume: 125
  start-page: 1505
  year: 2009
  end-page: 1513
  article-title: Expression of esophageal cancer related gene 4 (ECRG4), a novel tumor suppressor gene, in esophageal cancer and its inhibitory effect on the tumor growth in vitro and in vivo
  publication-title: International Journal of Cancer
– volume: 29
  start-page: 2075
  year: 1994
  end-page: 2093
  article-title: Structure and transcriptional regulation of the GFAP gene
  publication-title: Brain Pathology
– volume: 10
  start-page: 174
  year: 2016
  article-title: Dystrophin distribution and expression in human and experimental temporal lobe epilepsy
  publication-title: Frontiers in Cellular Neuroscience
– volume: 222
  start-page: 1753
  year: 2017
  end-page: 1766
  article-title: Factors determining the density of AQP4 water channel molecules at the brain‐blood interface
  publication-title: Brain Structure & Function
– volume: 98
  start-page: 14108
  year: 2001
  end-page: 14113
  article-title: Syntrophin‐dependent expression and localization of Aquaporin‐4 water channel protein
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 34
  start-page: 1658
  year: 2017
  end-page: 1665
  article-title: Leukemia inhibitory factor contributes to reactive astrogliosis via activation of signal transducer and activator of transcription 3 signaling after intracerebral hemorrhage in rats
  publication-title: Journal of Neurotrauma
– volume: 18
  start-page: 1001
  year: 2019
  end-page: 1018
  article-title: NF‐kappaB signaling pathway inhibition suppresses hippocampal neuronal apoptosis and cognitive impairment via RCAN1 in neonatal rats with hypoxic‐ischemic brain damage
  publication-title: Cell Cycle
– volume: 20
  start-page: 1040
  year: 2000
  end-page: 1044
  article-title: High susceptibility to cerebral ischemia in GFAP‐null mice
  publication-title: Journal of Cerebral Blood Flow and Metabolism
– volume: 9
  start-page: 1308
  year: 2009
  end-page: 1320
  article-title: Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: Role of glial fibrillary acidic protein plasticity
  publication-title: ScientificWorldJournal
– volume: 4
  year: 2012
  article-title: Astroglial excitability and gliotransmission: An appraisal of Ca2+ as a signalling route
  publication-title: ASN Neuro
– volume: 22
  start-page: 1690
  year: 2012
  end-page: 1697
  article-title: Immunogold detection of L‐glutamate and D‐serine in small synaptic‐like microvesicles in adult hippocampal astrocytes
  publication-title: Cerebral Cortex
– volume: 142
  start-page: 901
  year: 2017
  end-page: 907
  article-title: PRMT1 regulates astrocytic differentiation of embryonic neural stem/precursor cells
  publication-title: Journal of Neurochemistry
– volume: 36
  start-page: 17
  year: 2006
  end-page: 22
  article-title: Neuropoietin induces neuroepithelial cells to differentiate into astrocytes via activation of STAT3
  publication-title: Cytokine
– volume: 24
  start-page: 5016
  year: 2004
  end-page: 5021
  article-title: Absence of glial fibrillary acidic protein and vimentin prevents hypertrophy of astrocytic processes and improves post‐traumatic regeneration
  publication-title: The Journal of Neuroscience
– volume: 387
  start-page: 73
  year: 2014
  end-page: 92
  article-title: Kif11 dependent cell cycle progression in radial glial cells is required for proper neurogenesis in the zebrafish neural tube
  publication-title: Developmental Biology
– volume: 7
  start-page: 29725
  year: 2012
  article-title: Distinct expression/function of potassium and chloride channels contributes to the diverse volume regulation in cortical astrocytes of GFAP/EGFP mice
  publication-title: PLoS One
– volume: 295
  start-page: 62
  year: 2018
  end-page: 66
  article-title: Extracellular volume depletion and resultant hypotonic hyponatremia: A novel translational approach
  publication-title: Mathematical Biosciences
– volume: 123
  start-page: 93
  year: 2016
  end-page: 102
  article-title: Sevoflurane inhibits glutamate‐aspartate transporter and glial fibrillary acidic protein expression in hippocampal astrocytes of neonatal rats through the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway
  publication-title: Anesthesia and Analgesia
– volume: 58
  start-page: 237
  year: 2011
  end-page: 245
  article-title: Diagnostic accuracy of plasma glial fibrillary acidic protein for differentiating Intracerebral hemorrhage and cerebral ischemia in patients with symptoms of acute stroke
  publication-title: Clinical Chemistry
– volume: 21
  start-page: 509
  year: 2016
  end-page: 515
  article-title: Glial fibrillary acidic protein is differentially expressed across cortical and subcortical regions in healthy brains and downregulated in the thalamus and caudate nucleus of depressed suicides
  publication-title: Molecular Psychiatry
– volume: 72
  start-page: 1353
  year: 1999
  end-page: 1361
  article-title: Glial fibrillary acidic protein transcription responses to transforming growth factor‐beta1 and interleukin‐1beta are mediated by a nuclear factor‐1‐like site in the near‐upstream promoter
  publication-title: Journal of Neurochemistry
– volume: 42
  start-page: 2730
  year: 2017
  end-page: 2742
  article-title: Phase‐dependent astroglial alterations in Li–Pilocarpine‐induced status epilepticus in young rats
  publication-title: Neurochemical Research
– volume: 37
  start-page: 420
  year: 2017
  end-page: 425
  article-title: MM1‐type sporadic Creutzfeldt‐Jakob disease with 1‐month total disease duration and early pathologic indicators
  publication-title: Neuropathology
– volume: 29
  start-page: 209
  year: 2018
  end-page: 219
  article-title: Gfap and Osmr regulation by BRG1 and STAT3 via interchromosomal gene clustering in astrocytes
  publication-title: Molecular Biology of the Cell
– volume: 56
  start-page: 1755
  year: 2008
  end-page: 1766
  article-title: Actin cytoskeleton remodeling governs aquaporin‐4 localization in astrocytes
  publication-title: Glia
– volume: 356
  year: 2017
  article-title: Three‐dimensional Ca(2+) imaging advances understanding of astrocyte biology
  publication-title: Science
– volume: 7
  start-page: 52
  year: 2001
  end-page: 55
  article-title: HIV‐1 Nef co‐localizes with the astrocyte‐specific cytoskeleton protein GFAP in persistently nef‐expressing human astrocytes
  publication-title: Journal of Neurovirology
– volume: 149
  start-page: 1358
  year: 2008
  end-page: 1365
  article-title: Oxytocin facilitates female sexual maturation through a glia‐to‐neuron signaling pathway
  publication-title: Endocrinology
– volume: 17
  start-page: 1508
  year: 2003
  end-page: 1510
  article-title: Inhibition of aquaporin‐4 expression in astrocytes by RNAi determines alteration in cell morphology, growth, and water transport and induces changes in ischemia‐related genes
  publication-title: The FASEB Journal
– volume: 279
  start-page: 19936
  year: 2004
  end-page: 19947
  article-title: Induction of gp130‐related cytokines and activation of JAK2/STAT3 pathway in astrocytes precedes up‐regulation of glial fibrillary acidic protein in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine model of neurodegeneration. Key signaling pathway for astrogliosis in vivo?
  publication-title: Journal of Biological Chemistry
– volume: 10
  start-page: 122
  year: 2018
  article-title: Glutamate transporter GLT1 expression in Alzheimer disease and dementia with Lewy bodies
  publication-title: Frontiers in Aging Neuroscience
– volume: 10
  start-page: 53
  year: 2019
  article-title: Receptor‐receptor interactions as a widespread phenomenon: Novel targets for drug development?
  publication-title: Frontiers in Endocrinology
– volume: 93
  start-page: 1664
  year: 2015
  end-page: 1674
  article-title: Mass spectrometric identification of citrullination sites and immunohistochemical detection of citrullinated glial fibrillary acidic protein in Alzheimer's disease brains
  publication-title: Journal of Neuroscience Research
– volume: 81
  start-page: 298
  year: 2017
  end-page: 309
  article-title: Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: Analysis of 102 patients
  publication-title: Annals of Neurology
– volume: 1763
  start-page: 1175
  year: 2006
  end-page: 1183
  article-title: Exocytosis in neuroendocrine cells: New tasks for Actin
  publication-title: Biochimica et Biophysica Acta
– volume: 7
  start-page: 613
  year: 2004
  end-page: 620
  article-title: Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate
  publication-title: Nature Neuroscience
– volume: 265
  start-page: 4722
  year: 1990
  end-page: 4729
  article-title: Phosphorylation sites linked to glial filament disassembly in vitro locate in a non‐alpha‐helical head domain
  publication-title: The Journal of Biological Chemistry
– volume: 14
  start-page: 0214156
  year: 2019
  article-title: Amelioration of Huntington's disease phenotype in astrocytes derived from iPSC‐derived neural progenitor cells of Huntington's disease monkeys
  publication-title: PLoS One
– volume: 86
  start-page: 58
  year: 2018
  end-page: 64
  article-title: Heat shock protein 70 suppresses neuroinflammation induced by alpha‐synuclein in astrocytes
  publication-title: Molecular and Cellular Neurosciences
– volume: 292
  start-page: 5814
  year: 2017
  end-page: 5824
  article-title: Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease
  publication-title: The Journal of Biological Chemistry
– volume: 39
  start-page: 564
  year: 2016
  end-page: 569
  article-title: Expression of vesicular nucleotide transporter in the mouse retina
  publication-title: Biological & Pharmaceutical Bulletin
– volume: 24
  start-page: 156
  year: 2018
  end-page: 167
  article-title: Transgenic mice expressing HIV‐1 envelope protein gp120 in the brain as an animal model in neuroAIDS research
  publication-title: Journal of Neurovirology
– volume: 24
  start-page: 1357
  year: 1999
  end-page: 1362
  article-title: The impact of genetic removal of GFAP and/or vimentin on glutamine levels and transport of glucose and ascorbate in astrocytes
  publication-title: Neurochemical Research
– volume: 11
  start-page: 204
  year: 2018
  article-title: Astroglial modulation of hydromineral balance and cerebral edema
  publication-title: Frontiers in Molecular Neuroscience
– volume: 5
  start-page: 1033
  year: 2014
  article-title: CDK5‐induced p‐PPARgamma(Ser 112) downregulates GFAP via PPREs in developing rat brain: Effect of metal mixture and troglitazone in astrocytes
  publication-title: Cell Death & Disease
– volume: 7
  start-page: 42823
  year: 2012
  article-title: GFAP isoforms in adult mouse brain with a focus on neurogenic astrocytes and reactive astrogliosis in mouse models of Alzheimer disease
  publication-title: PLoS One
– volume: 10
  start-page: 96
  year: 2017
  article-title: Interactions of the mechanosensitive channels with extracellular matrix, Integrins, and cytoskeletal network in osmosensation
  publication-title: Frontiers in Molecular Neuroscience
– volume: 97
  start-page: 1011
  year: 2018
  end-page: 1019
  article-title: Juglanin ameliorates LPS‐induced neuroinflammation in animal models of Parkinson's disease and cell culture via inactivating TLR4/NF‐kappaB pathway
  publication-title: Biomedicine & Pharmacotherapy
– year: 2016
– volume: 25
  start-page: 1439
  year: 2000
  end-page: 1451
  article-title: Glial fibrillary acidic protein: GFAP‐thirty‐one years (1969‐2000)
  publication-title: Neurochemical Research
– volume: 17
  start-page: 607
  year: 1996
  end-page: 615
  article-title: GFAP is necessary for the integrity of CNS white matter architecture and long‐term maintenance of myelination
  publication-title: Neuron
– volume: 17
  start-page: 3356
  year: 2018
  end-page: 3363
  article-title: Time‐course behavioral features are correlated with Parkinson's diseaseassociated pathology in a 6‐hydroxydopamine hemiparkinsonian rat model
  publication-title: Molecular Medicine Reports
– volume: 45
  start-page: 177
  year: 2014
  end-page: 184
  article-title: Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity
  publication-title: Sheng Li Ke Xue Jin Zhan
– volume: 282
  start-page: 29414
  year: 2007
  end-page: 29423
  article-title: Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: An identified role for GFAP
  publication-title: The Journal of Biological Chemistry
– volume: 25
  start-page: 1289
  year: 2016
  end-page: 1300
  article-title: Vasopressin Hypersecretion‐associated brain edema formation in ischemic stroke: Underlying mechanisms
  publication-title: Journal of Stroke and Cerebrovascular Diseases
– volume: 426
  start-page: 3467
  year: 2014
  end-page: 3477
  article-title: Gene‐specific methylation control of H3K9 and H3K36 on neurotrophic BDNF versus astroglial GFAP genes by KDM4A/C regulates neural stem cell differentiation
  publication-title: Journal of Molecular Biology
– volume: 60
  start-page: 1087
  year: 2001
  end-page: 1098
  article-title: Effects of oncostatin M on human cerebral endothelial cells and expression in inflammatory brain lesions
  publication-title: Journal of Neuropathology and Experimental Neurology
– volume: 10
  start-page: 331
  year: 2007
  end-page: 339
  article-title: Glutamate exocytosis from astrocytes controls synaptic strength
  publication-title: Nature Neuroscience
– volume: 278
  start-page: 477
  year: 1997
  end-page: 483
  article-title: Regulation of gliogenesis in the central nervous system by the JAK‐STAT signaling pathway
  publication-title: Science
– volume: 13
  start-page: 144
  year: 2016
  article-title: Oncostatin M promotes excitotoxicity by inhibiting glutamate uptake in astrocytes: Implications in HIV‐associated neurotoxicity
  publication-title: Journal of Neuroinflammation
– volume: 89
  start-page: 123
  year: 2011
  end-page: 128
  article-title: Short‐ and long‐term treatment with estradiol or progesterone modifies the expression of GFAP, MAP2 and tau in prefrontal cortex and hippocampus
  publication-title: Life Sciences
– volume: 9
  start-page: 105219
  year: 2014
  article-title: Activated CD8+ T lymphocytes inhibit neural stem/progenitor cell proliferation: Role of interferon‐gamma
  publication-title: PLoS One
– volume: 340
  start-page: 137
  year: 2018
  end-page: 146
  article-title: Does time heal all wounds? Experimental diffuse traumatic brain injury results in persisting histopathology in the thalamus
  publication-title: Behavioural Brain Research
– volume: 61
  start-page: 1488
  year: 2013
  end-page: 1499
  article-title: Transgenic analysis of GFAP promoter elements
  publication-title: Glia
– volume: 29
  start-page: 113
  year: 2010
  end-page: 121
  article-title: Magnetic stimulation influences injury‐induced migration of white matter astrocytes
  publication-title: Electromagnetic Biology and Medicine
– volume: 143
  start-page: 851
  year: 2006
  end-page: 861
  article-title: Expression of ezrin in glial tubes in the adult subventricular zone and rostral migratory stream
  publication-title: Neuroscience
– volume: 223
  start-page: 22
  year: 2013
  end-page: 37
  article-title: Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti)
  publication-title: Journal of Anatomy
– volume: 25
  start-page: 10
  year: 1999
  end-page: 20
  article-title: The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative beta‐Ala‐Lys‐Nepsilon‐AMCA in astrocytes
  publication-title: Glia
– volume: 33
  start-page: 615
  year: 2016
  end-page: 624
  article-title: Hyponatremia in neurotrauma: The role of vasopressin
  publication-title: Journal of Neurotrauma
– volume: 82
  start-page: 95
  year: 2007
  end-page: 111
  article-title: The role of astrocytes and complement system in neural plasticity
  publication-title: International Review of Neurobiology
– volume: 35
  start-page: 157
  year: 2018
  end-page: 173
  article-title: Role of Caspase‐3‐mediated apoptosis in chronic Caspase‐3‐cleaved tau accumulation and blood‐brain barrier damage in the Corpus callosum after traumatic brain injury in rats
  publication-title: Journal of Neurotrauma
– volume: 10
  start-page: 262
  year: 2017
  article-title: Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A
  publication-title: Frontiers in Molecular Neuroscience
– volume: 10
  start-page: 129
  year: 2016
  article-title: Central role of maladapted astrocytic plasticity in ischemic brain edema formation
  publication-title: Frontiers in Cellular Neuroscience
– volume: 16
  start-page: 601
  year: 2017
  end-page: 613
  article-title: 15alpha‐methoxypuupehenol induces antitumor effects in vitro and in vivo against human Glioblastoma and breast Cancer models
  publication-title: Molecular Cancer Therapeutics
– volume: 10
  start-page: 1355
  year: 2007
  end-page: 1360
  article-title: Glial cells as intrinsic components of non‐cell‐autonomous neurodegenerative disease
  publication-title: Nature Neuroscience
– volume: 148
  start-page: 219
  year: 2019
  end-page: 237
  article-title: Diet‐induced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AbetaPP/PS1 mice
  publication-title: Journal of Neurochemistry
– volume: 37
  start-page: 267
  year: 2019
  end-page: 275
  article-title: NFIA is a gliogenic switch enabling rapid derivation of functional human astrocytes from pluripotent stem cells
  publication-title: Nature Biotechnology
– volume: 53
  start-page: 1329
  year: 2016
  end-page: 1342
  article-title: Role of sigma receptor in cocaine‐mediated induction of glial fibrillary acidic protein: Implications for HAND
  publication-title: Molecular Neurobiology
– volume: 568
  start-page: 537
  year: 2016
  end-page: 555
  article-title: Synemin: Molecular features and the use of proximity ligation assay to study its interactions
  publication-title: Methods in Enzymology
– volume: 61
  start-page: 529
  year: 2013
  end-page: 538
  article-title: Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus
  publication-title: Glia
– volume: 29
  start-page: 94
  year: 2019
  end-page: 99
  article-title: Astrocytic damage in glial fibrillary acidic protein astrocytopathy during initial attack
  publication-title: Multiple Sclerosis and Related Disorders
– volume: 32
  start-page: 121
  year: 2015
  end-page: 130
  article-title: Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system
  publication-title: Current Opinion in Cell Biology
– volume: 19
  start-page: 1674
  year: 2005
  end-page: 1676
  article-title: New possible roles for aquaporin‐4 in astrocytes: Cell cytoskeleton and functional relationship with connexin43
  publication-title: The FASEB Journal
– start-page: 99
  year: 2004
  end-page: 124
– volume: 32
  start-page: 1108
  year: 2018
  end-page: 1119
  article-title: The histone demethylase KDM5A is required for the repression of astrocytogenesis and regulated by the translational machinery in neural progenitor cells
  publication-title: The FASEB Journal
– volume: 88
  start-page: 50
  year: 2011
  end-page: 56
  article-title: CysLT2 receptor‐mediated AQP4 up‐regulation is involved in ischemic‐like injury through activation of ERK and p38 MAPK in rat astrocytes
  publication-title: Life Sciences
– volume: 62
  start-page: 77
  year: 1998
  end-page: 81
  article-title: Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin
  publication-title: Brain Research. Molecular Brain Research
– volume: 22
  start-page: 1137
  year: 2016
  end-page: 1155
  article-title: Citrullination of glial intermediate filaments is an early response in retinal injury
  publication-title: Molecular Vision
– volume: 2
  start-page: 3
  year: 2011
  article-title: Neurophysiological involvement in hypervolemic hyponatremia‐evoked by hypersecretion of vasopressin
  publication-title: Translational Biomedicine
– volume: 9
  start-page: 352
  year: 2018
  article-title: Astrocytic JWA deletion exacerbates dopaminergic neurodegeneration by decreasing glutamate transporters in mice
  publication-title: Cell Death & Disease
– volume: 67
  start-page: 1109
  year: 2019
  end-page: 1122
  article-title: Potential astrocytic receptors and transporters in the pathogenesis of Alzheimer's disease
  publication-title: Journal of Alzheimer's Disease
– volume: 97
  start-page: 149
  year: 2019
  end-page: 161
  article-title: AP‐1 and the injury response of the GFAP gene
  publication-title: Journal of Neuroscience Research
– volume: 32
  start-page: 1627
  year: 2017
  end-page: 1637
  article-title: Inhibition of NF‐kappaB activity by aminoguanidine alleviates neuroinflammation induced by hyperglycemia
  publication-title: Metabolic Brain Disease
– volume: 120
  start-page: 710
  year: 2012
  end-page: 720
  article-title: STAT3 signaling after traumatic brain injury
  publication-title: Journal of Neurochemistry
– volume: 38
  start-page: 55
  year: 2013
  end-page: 66
  article-title: Chromatin accessibility at a STAT3 target site is altered prior to astrocyte differentiation
  publication-title: Cell Structure and Function
– volume: 108
  start-page: 12915
  year: 2011
  end-page: 12919
  article-title: Structural plasticity of perisynaptic astrocyte processes involves ezrin and metabotropic glutamate receptors
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 8
  start-page: 255
  year: 2017
  article-title: Alexander disease mutations produce cells with coexpression of glial fibrillary acidic protein and NG2 in neurosphere cultures and inhibit differentiation into mature oligodendrocytes
  publication-title: Frontiers in Neurology
– volume: 8
  start-page: 12
  year: 2007
  end-page: 20
  article-title: Cytoskeleton and vesicle mobility in astrocytes
  publication-title: Traffic
– volume: 61
  start-page: 187
  year: 2014
  end-page: 200
  article-title: The histone lysine demethylase Kdm6b is required for activity‐dependent preconditioning of hippocampal neuronal survival
  publication-title: Molecular and Cellular Neurosciences
– volume: 202
  start-page: 58
  year: 2012
  end-page: 68
  article-title: High glucose‐induced expression of inflammatory cytokines and reactive oxygen species in cultured astrocytes
  publication-title: Neuroscience
– volume: 9
  start-page: a021642
  year: 2017
  article-title: Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin
  publication-title: Cold Spring Harbor Perspectives in Biology
– volume: 70
  start-page: 236
  year: 2013
  end-page: 246
  article-title: PPARgamma activation blocks development and reduces established neuropathic pain in rats
  publication-title: Neuropharmacology
– volume: 803
  start-page: 148
  year: 2017
  end-page: 158
  article-title: Simultaneous blockade of NMDA receptors and PARP‐1 activity synergistically alleviate immunoexcitotoxicity and bioenergetics in 3‐nitropropionic acid intoxicated mice: Evidences from memantine and 3‐aminobenzamide interventions
  publication-title: European Journal of Pharmacology
– volume: 37
  start-page: 41
  year: 2016
  end-page: 45
  article-title: Expression of glial fibrillary acidic protein in astrocytes of rat supraoptic nucleus throughout estrous cycle
  publication-title: Neuro Endocrinology Letters
– volume: 73
  start-page: 4101
  year: 2016
  end-page: 4120
  article-title: GFAP isoforms control intermediate filament network dynamics, cell morphology, and focal adhesions
  publication-title: Cellular and Molecular Life Sciences
– volume: 140
  start-page: 96
  year: 2017
  end-page: 113
  article-title: Docosahexaenoic acid up‐regulates both PI3K/AKT‐dependent FABP7‐PPARgamma interaction and MKP3 that enhance GFAP in developing rat brain astrocytes
  publication-title: Journal of Neurochemistry
– volume: 152
  start-page: 251
  year: 1998
  end-page: 259
  article-title: Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion
  publication-title: The American Journal of Pathology
– volume: 13
  start-page: 454
  year: 2019
  article-title: Therapeutic potential of oxytocin in atherosclerotic cardiovascular disease: Mechanisms and signaling pathways
  publication-title: Frontiers in Neuroscience
– volume: 35
  start-page: 492
  year: 2014
  end-page: 510
  article-title: Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease
  publication-title: Neurobiology of Aging
– volume: 487
  start-page: 134
  year: 2017
  end-page: 139
  article-title: Expression of peptidylarginine deiminase 4 in an alkali injury model of retinal gliosis
  publication-title: Biochemical and Biophysical Research Communications
– volume: 1861
  start-page: 2293
  year: 2017
  end-page: 2303
  article-title: Dynamin regulates the fusion pore of endo‐ and exocytotic vesicles as revealed by membrane capacitance measurements
  publication-title: Biochimica et Biophysica Acta
– volume: 10
  start-page: 99
  year: 2019
  article-title: Astrocyte mechano‐activation by high‐rate overpressure involves alterations in structural and junctional proteins
  publication-title: Frontiers in Neurology
– volume: 21
  start-page: 218
  year: 2016
  end-page: 225
  article-title: Increase in GFAP‐positive astrocytes in histone demethylase GASC1/KDM4C/JMJD2C hypomorphic mutant mice
  publication-title: Genes to Cells
– volume: 29
  start-page: 1743
  year: 2009
  end-page: 1754
  article-title: Astrocytic plasticity and patterned oxytocin neuronal activity: Dynamic interactions
  publication-title: The Journal of Neuroscience
– volume: 7
  start-page: 52659
  year: 2012
  article-title: GFAPdelta expression in glia of the developmental and adolescent mouse brain
  publication-title: PLoS One
– volume: 521
  start-page: 73
  year: 1990
  end-page: 80
  article-title: Characterization of the origins of astrocyte response to injury using the dopaminergic neurotoxicant, 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine
  publication-title: Brain Research
– volume: 11
  start-page: 0165439
  year: 2016
  article-title: Aquaporin‐4 cell‐surface expression and turnover are regulated by dystroglycan, dynamin, and the extracellular matrix in astrocytes
  publication-title: PLoS One
– volume: 345
  start-page: 295
  year: 2011
  end-page: 311
  article-title: Development of astroglia heterogeneously expressing Pax2, vimentin and GFAP during the ontogeny of the optic pathway of the lizard (Gallotia galloti): An immunohistochemical and ultrastructural study
  publication-title: Cell and Tissue Research
– volume: 100
  start-page: 87
  year: 2007
  end-page: 104
  article-title: Functional down‐regulation of volume‐regulated anion channels in AQP4 knockdown cultured rat cortical astrocytes
  publication-title: Journal of Neurochemistry
– volume: 149
  start-page: 272
  year: 2018
  end-page: 285
  article-title: Rosiglitazone up‐regulates glial fibrillary acidic protein via HB‐EGF secreted from astrocytes and neurons through PPARgamma pathway and reduces apoptosis in high‐fat diet‐fed mice
  publication-title: Journal of Neurochemistry
– volume: 16
  start-page: 785
  year: 2017
  end-page: 794
  article-title: High salt‐induced activation and expression of inflammatory cytokines in cultured astrocytes
  publication-title: Cell Cycle
– volume: 119
  start-page: 199
  year: 2010
  end-page: 210
  article-title: Involvement of peptidylarginine deiminase‐mediated post‐translational citrullination in pathogenesis of sporadic Creutzfeldt‐Jakob disease
  publication-title: Acta Neuropathologica
– volume: 1860
  start-page: 2239
  year: 2016
  end-page: 2248
  article-title: Interactions of GFAP with ceftriaxone and phenytoin: SRCD and molecular docking and dynamic simulation
  publication-title: Biochimica et Biophysica Acta (BBA) ‐ General Subjects
– volume: 279
  start-page: 41537
  year: 2004
  end-page: 41545
  article-title: Self‐assembly of the cytoskeletal glial fibrillary acidic protein is inhibited by an isoform‐specific C terminus
  publication-title: The Journal of Biological Chemistry
– volume: 5
  start-page: 142
  year: 2000
  end-page: 149
  article-title: Disease‐specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium
  publication-title: Molecular Psychiatry
– volume: 17
  start-page: 195
  year: 2019
  end-page: 205
  article-title: Revealing gene function and transcription relationship by reconstructing gene‐level chromatin interaction
  publication-title: Computational and Structural Biotechnology Journal
– volume: 252
  start-page: 367
  year: 2013
  end-page: 383
  article-title: IL‐1beta induces GFAP expression in vitro and in vivo and protects neurons from traumatic injury‐associated apoptosis in rat brain striatum via NFkappaB/Ca(2)(+)‐calmodulin/ERK mitogen‐activated protein kinase signaling pathway
  publication-title: Neuroscience
– year: 2019
  article-title: Spinal IL‐33/ST2 signaling mediates chronic itch in mice through the astrocytic JAK2‐STAT3 cascade
  publication-title: Glia
– volume: 311
  start-page: 15
  year: 2019
  end-page: 32
  article-title: Mesenchymal stem cells‐derived IL‐6 activates AMPK/mTOR signaling to inhibit the proliferation of reactive astrocytes induced by hypoxic‐ischemic brain damage
  publication-title: Experimental Neurology
– volume: 89
  start-page: 138
  year: 2018
  end-page: 146
  article-title: Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: A case series of 22 patients
  publication-title: Journal of Neurology, Neurosurgery, and Psychiatry
– volume: 28
  start-page: 607
  year: 2011
  end-page: 618
  article-title: Down‐regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats
  publication-title: Journal of Neurotrauma
– volume: 23
  start-page: 99
  year: 2013
  end-page: 107
  article-title: Down‐regulated GFAPalpha: A major player in heavy metal induced astrocyte damage
  publication-title: Toxicology Mechanisms and Methods
– volume: 37
  start-page: 1260
  year: 2013
  end-page: 1269
  article-title: GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge
  publication-title: The European Journal of Neuroscience
– volume: 8
  start-page: 6
  year: 2011
  article-title: Ecrg4 expression and its product augurin in the choroid plexus: Impact on fetal brain development, cerebrospinal fluid homeostasis and neuroprogenitor cell response to CNS injury
  publication-title: Fluids and Barriers of the CNS
– volume: 58
  start-page: 320
  year: 1992
  end-page: 327
  article-title: Phosphorylation of glial fibrillary acidic protein and vimentin by cytoskeletal‐associated intermediate filament protein kinase activity in astrocytes
  publication-title: Journal of Neurochemistry
– volume: 14
  start-page: 264
  year: 2001
  end-page: 271
  article-title: Astrocyte differentiation of fetal neuroepithelial cells involving cardiotrophin‐1‐induced activation of STAT3
  publication-title: Cytokine
– volume: 64
  start-page: 716
  year: 2016
  end-page: 729
  article-title: Altered astrocyte morphology and vascular development in dystrophin‐Dp71‐null mice
  publication-title: Glia
– volume: 5
  start-page: 265
  year: 2011
  end-page: 272
  article-title: Activation of a pro‐survival pathway IL‐6/JAK2/STAT3 contributes to glial fibrillary acidic protein induction during the cholera toxin‐induced differentiation of C6 malignant glioma cells
  publication-title: Molecular Oncology
– volume: 61
  start-page: 2063
  year: 2013
  end-page: 2077
  article-title: Traumatic scratch injury in astrocytes triggers calcium influx to activate the JNK/c‐Jun/AP‐1 pathway and switch on GFAP expression
  publication-title: Glia
– volume: 636
  start-page: 27
  year: 2017
  end-page: 31
  article-title: Significance of aberrant glial cell phenotypes in pathophysiology of amyotrophic lateral sclerosis
  publication-title: Neuroscience Letters
– volume: 463
  start-page: 232
  year: 2010
  end-page: 236
  article-title: Long‐term potentiation depends on release of D‐serine from astrocytes
  publication-title: Nature
– volume: 72
  start-page: 358
  year: 2019
  end-page: 366
  article-title: Neuroprotective and anti‐inflammatory effects of isoliquiritigenin in kainic acid‐induced epileptic rats via the TLR4/MYD88 signaling pathway
  publication-title: Inflammopharmacology
– volume: 12
  start-page: 131
  year: 2017
  end-page: 152
  article-title: Disorders of astrocytes: Alexander disease as a model
  publication-title: Annual Review of Pathology
– volume: 43
  start-page: 281
  year: 2017
  end-page: 298
  article-title: Review: Astrocytes in Alzheimer's disease and other age‐associated dementias; a supporting player with a central role
  publication-title: Neuropathology and Applied Neurobiology
– volume: 4
  start-page: 605
  year: 2018
  end-page: 614
  article-title: Astroglial responses to amyloid‐Beta progression in a mouse model of Alzheimer's disease
  publication-title: Molecular Imaging and Biology
– volume: 44
  start-page: 423
  year: 2017
  end-page: 435
  article-title: Roscovitine, a CDK5 inhibitor, alleviates Sevoflurane‐induced cognitive dysfunction via regulation tau/GSK3beta and ERK/PPARgamma/CREB signaling
  publication-title: Cellular Physiology and Biochemistry
– volume: 1860
  start-page: 2510
  year: 2016
  end-page: 2520
  article-title: Calcium signaling mechanisms disrupt the cytoskeleton of primary astrocytes and neurons exposed to diphenylditelluride
  publication-title: Biochimica et Biophysica Acta
– volume: 52
  start-page: 341
  year: 2015
  end-page: 352
  article-title: Neuroinflammatory and amyloidogenic activities of IL‐32beta in Alzheimer's disease
  publication-title: Molecular Neurobiology
– volume: 6
  start-page: ra55
  year: 2013
  article-title: Blockade of glioma proliferation through allosteric inhibition of JAK2
  publication-title: Science Signaling
– volume: 27
  start-page: 13822
  year: 2007
  end-page: 13834
  article-title: Interaction of extracellular signal‐regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: Role in burst firing
  publication-title: The Journal of Neuroscience
– volume: 44
  start-page: 103
  year: 2016
  end-page: 117
  article-title: Oleanolic acid inhibiting the differentiation of neural stem cells into astrocyte by down‐regulating JAK/STAT signaling pathway
  publication-title: The American Journal of Chinese Medicine
– volume: 124
  start-page: 114
  year: 2004
  end-page: 123
  article-title: Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA‐induced EAAT2 cell surface trafficking
  publication-title: Brain Research. Molecular Brain Research
– volume: 14
  start-page: 045005
  year: 2019
  article-title: Gliosis of astrocytes cultivated on coral skeleton is regulated by the matrix surface topography
  publication-title: Biomedical Materials
– volume: 6
  start-page: 23903
  year: 2016
  article-title: Identification of genes associated with the astrocyte‐specific gene Gfap during astrocyte differentiation
  publication-title: Scientific Reports
– volume: 269
  start-page: 169
  year: 1999
  end-page: 172
  article-title: STAT3‐mediated astrocyte differentiation from mouse fetal neuroepithelial cells by mouse oncostatin M
  publication-title: Neuroscience Letters
– volume: 17
  start-page: 533
  year: 2011
  end-page: 542
  article-title: Anti‐inflammatory and anti‐oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells
  publication-title: Molecular Vision
– volume: 65
  start-page: 87
  year: 2006
  end-page: 96
  article-title: Ezrin immunoreactivity reveals specific astrocyte activation in cerebral HIV
  publication-title: Journal of Neuropathology and Experimental Neurology
– volume: 149
  start-page: 149
  year: 2017
  end-page: 170
  article-title: A novel method for culturing stellate astrocytes reveals spatially distinct Ca2+ signaling and vesicle recycling in astrocytic processes
  publication-title: The Journal of General Physiology
– volume: 10
  year: 2015
  article-title: Basic properties of the p38 signaling pathway in response to hyperosmotic shock
  publication-title: PLoS One
– volume: 4
  start-page: 76
  year: 2016
  article-title: Astroglial NF‐kB contributes to white matter damage and cognitive impairment in a mouse model of vascular dementia
  publication-title: Acta Neuropathologica Communications
– volume: 657
  start-page: 166
  year: 2017
  end-page: 170
  article-title: GFAP in early multiple sclerosis: A biomarker for inflammation
  publication-title: Neuroscience Letters
– volume: 60
  start-page: 229
  year: 2012
  end-page: 238
  article-title: VGLUT1 is localized in astrocytic processes in several brain regions
  publication-title: Glia
– volume: 129
  start-page: 896
  year: 2019
  end-page: 903
  article-title: Thalidomide alleviates bone cancer pain by down‐regulating expressions of NF‐kappaB and GFAP in spinal astrocytes in a mouse model
  publication-title: The International Journal of Neuroscience
– volume: 17
  start-page: 426
  year: 2001
  end-page: 443
  article-title: Selective introduction of antisense oligonucleotides into single adult CNS progenitor cells using electroporation demonstrates the requirement of STAT3 activation for CNTF‐induced gliogenesis
  publication-title: Molecular and Cellular Neurosciences
– volume: 1103
  start-page: 25
  year: 2006
  end-page: 31
  article-title: Growing axons in fish optic nerve are accompanied by astrocytes interconnected by tight junctions
  publication-title: Brain Research
– volume: 67
  start-page: 481
  year: 2019
  end-page: 488
  article-title: Glial fibrillary acidic protein in serum is increased in Alzheimer's disease and correlates with cognitive impairment
  publication-title: Journal of Alzheimer's Disease
– year: 2017
– volume: 135
  start-page: 193
  year: 2017
  end-page: 199
  article-title: Serum concentrations of glial fibrillary acidic protein (GFAP) do not indicate tumor recurrence in patients with glioblastoma
  publication-title: Journal of Neuro‐Oncology
– volume: 254
  start-page: 180
  year: 2014
  end-page: 189
  article-title: SN79, a sigma receptor antagonist, attenuates methamphetamine‐induced astrogliosis through a blockade of OSMR/gp130 signaling and STAT3 phosphorylation
  publication-title: Experimental Neurology
– ident: e_1_2_11_53_1
  doi: 10.1101/cshperspect.a021642
– ident: e_1_2_11_56_1
  doi: 10.1371/journal.pone.0105219
– ident: e_1_2_11_181_1
  doi: 10.1142/S0192415X16500075
– ident: e_1_2_11_9_1
  doi: 10.1016/j.eplepsyres.2010.03.014
– ident: e_1_2_11_142_1
  doi: 10.1016/j.bbr.2016.12.038
– ident: e_1_2_11_89_1
  doi: 10.1016/j.brainres.2006.04.135
– ident: e_1_2_11_41_1
  doi: 10.1111/j.1471-4159.1992.tb09313.x
– ident: e_1_2_11_81_1
  doi: 10.1073/pnas.90.4.1541
– ident: e_1_2_11_152_1
  doi: 10.1016/j.mbs.2017.11.005
– ident: e_1_2_11_95_1
  doi: 10.1186/s12974-016-0613-8
– ident: e_1_2_11_3_1
  doi: 10.1371/journal.pone.0135249
– ident: e_1_2_11_18_1
  doi: 10.1371/journal.pone.0214156
– ident: e_1_2_11_73_1
  doi: 10.1089/neu.2015.3981
– ident: e_1_2_11_166_1
  doi: 10.1002/glia.22453
– ident: e_1_2_11_111_1
  doi: 10.1146/annurev-pathol-052016-100218
– ident: e_1_2_11_93_1
  doi: 10.1242/dev.041632
– ident: e_1_2_11_31_1
  doi: 10.1002/glia.22577
– ident: e_1_2_11_69_1
  doi: 10.1038/sj.mp.4000696
– volume: 4
  start-page: 903
  year: 2014
  ident: e_1_2_11_50_1
  article-title: Type 1 equilibrative nucleoside transporter regulates astrocyte‐specific glial fibrillary acidic protein expression in the striatum
  publication-title: Brain and Behavior: A Cognitive Neuroscience Perspective
  doi: 10.1002/brb3.283
– ident: e_1_2_11_49_1
  doi: 10.1158/1535-7163.MCT-16-0291
– ident: e_1_2_11_57_1
  doi: 10.1016/j.molbrainres.2004.02.021
– ident: e_1_2_11_125_1
  doi: 10.1111/joa.12053
– ident: e_1_2_11_139_1
  doi: 10.1080/09168451.2014.955455
– ident: e_1_2_11_158_1
  doi: 10.1213/ANE.0000000000001238
– volume: 17
  start-page: 3356
  year: 2018
  ident: e_1_2_11_135_1
  article-title: Time‐course behavioral features are correlated with Parkinson's diseaseassociated pathology in a 6‐hydroxydopamine hemiparkinsonian rat model
  publication-title: Molecular Medicine Reports
– ident: e_1_2_11_96_1
  doi: 10.1074/jbc.M116.772020
– ident: e_1_2_11_17_1
  doi: 10.1016/j.ejphar.2017.03.023
– ident: e_1_2_11_71_1
  doi: 10.1016/j.neurobiolaging.2013.09.035
– ident: e_1_2_11_34_1
  doi: 10.1097/01.jnen.0000195943.32786.39
– ident: e_1_2_11_143_1
  doi: 10.1080/00207454.2019.1586687
– ident: e_1_2_11_98_1
  doi: 10.1016/j.neuropharm.2013.01.020
– ident: e_1_2_11_132_1
  doi: 10.1007/s11011-017-0013-5
– ident: e_1_2_11_43_1
  doi: 10.1007/978-1-4020-7937-5_4
– ident: e_1_2_11_176_1
  doi: 10.1002/glia.22536
– ident: e_1_2_11_36_1
– ident: e_1_2_11_131_1
  doi: 10.1016/j.molonc.2011.03.003
– ident: e_1_2_11_103_1
  doi: 10.1016/j.exer.2016.03.019
– ident: e_1_2_11_77_1
  doi: 10.1016/j.bbrc.2018.05.173
– volume: 2
  start-page: 3
  year: 2011
  ident: e_1_2_11_162_1
  article-title: Neurophysiological involvement in hypervolemic hyponatremia‐evoked by hypersecretion of vasopressin
  publication-title: Translational Biomedicine
– ident: e_1_2_11_117_1
  doi: 10.1023/A:1022572304626
– ident: e_1_2_11_106_1
  doi: 10.1074/jbc.M406601200
– ident: e_1_2_11_33_1
  doi: 10.1111/nan.12338
– volume: 45
  start-page: 177
  year: 2014
  ident: e_1_2_11_167_1
  article-title: Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity
  publication-title: Sheng Li Ke Xue Jin Zhan
– ident: e_1_2_11_110_1
  doi: 10.1016/j.cyto.2006.10.007
– ident: e_1_2_11_141_1
  doi: 10.1007/s13365-017-0584-2
– ident: e_1_2_11_172_1
  doi: 10.1085/jgp.201611607
– ident: e_1_2_11_68_1
  doi: 10.1016/j.ydbio.2013.12.021
– ident: e_1_2_11_80_1
  doi: 10.1073/pnas.1100957108
– ident: e_1_2_11_100_1
  doi: 10.1097/00004647-200007000-00003
– ident: e_1_2_11_169_1
  doi: 10.1523/JNEUROSCI.0820-04.2004
– ident: e_1_2_11_154_1
  doi: 10.1016/j.neuroscience.2011.11.062
– ident: e_1_2_11_8_1
  doi: 10.1126/science.aai8185
– ident: e_1_2_11_26_1
  doi: 10.1080/15384101.2019.1608128
– ident: e_1_2_11_137_1
  doi: 10.1074/jbc.M704152200
– ident: e_1_2_11_151_1
  doi: 10.1007/s11064-017-2276-y
– ident: e_1_2_11_66_1
  doi: 10.1016/j.jstrokecerebrovasdis.2016.02.002
– ident: e_1_2_11_10_1
  doi: 10.1126/science.278.5337.477
– ident: e_1_2_11_38_1
  doi: 10.3389/fneur.2017.00255
– ident: e_1_2_11_170_1
  doi: 10.1016/j.bbrc.2017.04.031
– ident: e_1_2_11_115_1
  doi: 10.1210/en.2007-1054
– ident: e_1_2_11_161_1
  doi: 10.1523/JNEUROSCI.4669-08.2009
– volume: 17
  start-page: 533
  year: 2011
  ident: e_1_2_11_16_1
  article-title: Anti‐inflammatory and anti‐oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells
  publication-title: Molecular Vision
– ident: e_1_2_11_129_1
  doi: 10.1007/BF00225557
– ident: e_1_2_11_23_1
  doi: 10.1016/S0169-328X(98)00240-X
– ident: e_1_2_11_144_1
  doi: 10.1038/mp.2015.65
– ident: e_1_2_11_30_1
  doi: 10.1373/clinchem.2011.172676
– ident: e_1_2_11_54_1
  doi: 10.1016/j.ceb.2015.02.004
– ident: e_1_2_11_163_1
  doi: 10.3389/fncel.2016.00129
– ident: e_1_2_11_112_1
  doi: 10.1111/j.1471-4159.2011.07610.x
– ident: e_1_2_11_22_1
  doi: 10.1002/(SICI)1098-1136(19990101)25:1<10::AID-GLIA2>3.0.CO;2-Y
– ident: e_1_2_11_118_1
  doi: 10.1016/S0074-7742(07)82005-8
– ident: e_1_2_11_121_1
  doi: 10.1016/j.lfs.2010.10.025
– ident: e_1_2_11_168_1
  doi: 10.1016/j.mcn.2014.06.008
– ident: e_1_2_11_40_1
  doi: 10.3389/fendo.2019.00053
– ident: e_1_2_11_55_1
  doi: 10.1111/jnc.14123
– ident: e_1_2_11_92_1
  doi: 10.1002/jnr.23959
– ident: e_1_2_11_165_1
  doi: 10.1111/ejn.12137
– ident: e_1_2_11_29_1
  doi: 10.1136/jnnp.2005.074823
– ident: e_1_2_11_99_1
  doi: 10.1248/bpb.b15-00872
– ident: e_1_2_11_20_1
  doi: 10.1016/j.neuroscience.2015.12.044
– ident: e_1_2_11_27_1
  doi: 10.3109/15368378.2010.500568
– ident: e_1_2_11_157_1
  doi: 10.1038/s41419-018-0381-8
– ident: e_1_2_11_6_1
  doi: 10.1093/cercor/bhr254
– ident: e_1_2_11_14_1
  doi: 10.1007/s00441-011-1211-9
– ident: e_1_2_11_145_1
  doi: 10.1038/mp.2015.65
– ident: e_1_2_11_105_1
  doi: 10.1096/fj.04-3281fje
– ident: e_1_2_11_102_1
  doi: 10.1096/fj.02-1183fje
– ident: e_1_2_11_74_1
  doi: 10.1080/135502801300069674
– ident: e_1_2_11_48_1
  doi: 10.1038/nature08673
– ident: e_1_2_11_61_1
  doi: 10.1002/jnr.23620
– ident: e_1_2_11_82_1
  doi: 10.1002/ijc.24513
– ident: e_1_2_11_185_1
  doi: 10.1042/AN20110061
– ident: e_1_2_11_44_1
  doi: 10.1126/scisignal.2003900
– ident: e_1_2_11_85_1
  doi: 10.1159/000485008
– ident: e_1_2_11_39_1
  doi: 10.1186/2045-8118-8-6
– ident: e_1_2_11_140_1
  doi: 10.1371/journal.pone.0165439
– ident: e_1_2_11_25_1
  doi: 10.1023/A:1007677003387
– ident: e_1_2_11_155_1
  doi: 10.3389/fnmol.2017.00262
– ident: e_1_2_11_37_1
  doi: 10.1089/neu.2017.4999
– ident: e_1_2_11_90_1
  doi: 10.1016/j.bbamcr.2006.09.004
– ident: e_1_2_11_126_1
  doi: 10.1093/jnen/60.11.1087
– ident: e_1_2_11_153_1
  doi: 10.1007/s13311-011-0087-4
– ident: e_1_2_11_24_1
  doi: 10.1002/glia.23639
– ident: e_1_2_11_91_1
  doi: 10.1371/journal.pone.0052659
– ident: e_1_2_11_119_1
  doi: 10.1111/j.1365-2826.2006.01410.x
– ident: e_1_2_11_113_1
  doi: 10.1007/s11307-017-1153-z
– ident: e_1_2_11_58_1
  doi: 10.1371/journal.pone.0042823
– ident: e_1_2_11_72_1
  doi: 10.1016/j.neulet.2017.07.050
– ident: e_1_2_11_2_1
  doi: 10.1006/mcne.2000.0947
– ident: e_1_2_11_7_1
  doi: 10.1038/nn1246
– ident: e_1_2_11_136_1
  doi: 10.1111/gtc.12331
– ident: e_1_2_11_173_1
  doi: 10.1016/S0304-3940(99)00447-4
– volume: 72
  start-page: 358
  year: 2019
  ident: e_1_2_11_184_1
  article-title: Neuroprotective and anti‐inflammatory effects of isoliquiritigenin in kainic acid‐induced epileptic rats via the TLR4/MYD88 signaling pathway
  publication-title: Inflammopharmacology
– ident: e_1_2_11_65_1
  doi: 10.1007/s00401-009-0625-x
– ident: e_1_2_11_46_1
  doi: 10.1016/j.bbagen.2016.07.023
– ident: e_1_2_11_63_1
  doi: 10.1038/srep23903
– ident: e_1_2_11_175_1
  doi: 10.1016/j.msard.2019.01.036
– ident: e_1_2_11_86_1
  doi: 10.1016/j.csbj.2019.01.011
– ident: e_1_2_11_116_1
  doi: 10.1016/bs.mie.2015.08.005
– ident: e_1_2_11_146_1
  doi: 10.1089/neu.2010.1520
– ident: e_1_2_11_134_1
  doi: 10.1016/j.neuroscience.2013.07.061
– ident: e_1_2_11_97_1
  doi: 10.1088/1748-605X/ab0d69
– ident: e_1_2_11_114_1
  doi: 10.1002/glia.21258
– ident: e_1_2_11_94_1
  doi: 10.1007/s00018-016-2239-5
– ident: e_1_2_11_4_1
  doi: 10.1371/journal.pone.0029725
– ident: e_1_2_11_70_1
  doi: 10.1038/nn1849
– ident: e_1_2_11_124_1
  doi: 10.1016/j.expneurol.2014.01.020
– volume: 29
  start-page: 2075
  year: 1994
  ident: e_1_2_11_11_1
  article-title: Structure and transcriptional regulation of the GFAP gene
  publication-title: Brain Pathology
– ident: e_1_2_11_120_1
  doi: 10.1111/j.1600-0854.2006.00509.x
– ident: e_1_2_11_138_1
  doi: 10.1038/s41587-019-0035-0
– ident: e_1_2_11_179_1
  doi: 10.1016/j.biopha.2017.08.132
– ident: e_1_2_11_108_1
  doi: 10.1006/cyto.2001.0883
– ident: e_1_2_11_47_1
  doi: 10.3389/fncel.2016.00174
– ident: e_1_2_11_79_1
  doi: 10.1016/j.bbagen.2017.06.022
– volume: 22
  start-page: 1137
  year: 2016
  ident: e_1_2_11_171_1
  article-title: Citrullination of glial intermediate filaments is an early response in retinal injury
  publication-title: Molecular Vision
– volume: 152
  start-page: 251
  year: 1998
  ident: e_1_2_11_84_1
  article-title: Experimental autoimmune encephalomyelitis in mice lacking glial fibrillary acidic protein is characterized by a more severe clinical course and an infiltrative central nervous system lesion
  publication-title: The American Journal of Pathology
– ident: e_1_2_11_178_1
  doi: 10.1007/s12035-014-8860-0
– ident: e_1_2_11_12_1
  doi: 10.1002/jnr.24338
– ident: e_1_2_11_122_1
  doi: 10.3109/15376516.2012.721809
– ident: e_1_2_11_45_1
  doi: 10.1016/j.expneurol.2018.09.006
– ident: e_1_2_11_148_1
  doi: 10.1111/jnc.13879
– ident: e_1_2_11_174_1
  doi: 10.1007/s12035-015-9094-5
– ident: e_1_2_11_51_1
  doi: 10.3389/fneur.2019.00099
– ident: e_1_2_11_127_1
  doi: 10.1016/j.bbagen.2016.04.021
– ident: e_1_2_11_156_1
  doi: 10.3389/fnins.2019.00454
– ident: e_1_2_11_52_1
  doi: 10.1007/s00429-016-1305-y
– ident: e_1_2_11_75_1
  doi: 10.1096/fj.201700780R
– ident: e_1_2_11_28_1
  doi: 10.1002/ana.24881
– ident: e_1_2_11_133_1
  doi: 10.1074/jbc.M309304200
– ident: e_1_2_11_35_1
  doi: 10.1002/glia.22956
– ident: e_1_2_11_88_1
  doi: 10.1038/nn1988
– ident: e_1_2_11_67_1
  doi: 10.3389/fnmol.2017.00096
– ident: e_1_2_11_19_1
  doi: 10.1016/j.neuroscience.2006.08.028
– ident: e_1_2_11_62_1
  doi: 10.1091/mbc.E17-05-0271
– ident: e_1_2_11_130_1
  doi: 10.1038/nm.3912
– ident: e_1_2_11_32_1
  doi: 10.3389/fnagi.2018.00122
– ident: e_1_2_11_60_1
  doi: 10.1136/jnnp-2017-316583
– ident: e_1_2_11_64_1
  doi: 10.1111/neup.12379
– ident: e_1_2_11_180_1
  doi: 10.3233/JAD-181084
– ident: e_1_2_11_5_1
  doi: 10.1111/j.1471-4159.2006.04164.x
– ident: e_1_2_11_13_1
  doi: 10.1016/j.lfs.2011.05.008
– ident: e_1_2_11_15_1
  doi: 10.1016/j.jmb.2014.04.008
– ident: e_1_2_11_123_1
  doi: 10.1038/cddis.2013.514
– ident: e_1_2_11_159_1
  doi: 10.1100/tsw.2009.148
– ident: e_1_2_11_164_1
  doi: 10.3389/fnmol.2018.00204
– ident: e_1_2_11_76_1
  doi: 10.1046/j.1471-4159.1999.721353.x
– ident: e_1_2_11_128_1
  doi: 10.1186/s40478-016-0350-3
– ident: e_1_2_11_109_1
  doi: 10.3233/JAD-180325
– ident: e_1_2_11_147_1
  doi: 10.1016/j.neulet.2016.07.052
– ident: e_1_2_11_177_1
  doi: 10.1016/j.mcn.2017.11.013
– ident: e_1_2_11_160_1
  doi: 10.1523/JNEUROSCI.4119-07.2007
– ident: e_1_2_11_83_1
  doi: 10.1016/S0896-6273(00)80194-4
– ident: e_1_2_11_101_1
  doi: 10.1073/pnas.241508198
– ident: e_1_2_11_21_1
  doi: 10.1080/15384101.2017.1301330
– ident: e_1_2_11_42_1
  doi: 10.1111/jnc.14634
– volume: 265
  start-page: 4722
  year: 1990
  ident: e_1_2_11_59_1
  article-title: Phosphorylation sites linked to glial filament disassembly in vitro locate in a non‐alpha‐helical head domain
  publication-title: The Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(19)39622-X
– volume: 149
  start-page: 272
  year: 2018
  ident: e_1_2_11_78_1
  article-title: Rosiglitazone up‐regulates glial fibrillary acidic protein via HB‐EGF secreted from astrocytes and neurons through PPARgamma pathway and reduces apoptosis in high‐fat diet‐fed mice
  publication-title: Journal of Neurochemistry
– ident: e_1_2_11_149_1
  doi: 10.1247/csf.12034
– ident: e_1_2_11_107_1
  doi: 10.1016/0006-8993(90)91526-M
– ident: e_1_2_11_182_1
  doi: 10.1210/en.2002-221039
– volume: 37
  start-page: 41
  year: 2016
  ident: e_1_2_11_87_1
  article-title: Expression of glial fibrillary acidic protein in astrocytes of rat supraoptic nucleus throughout estrous cycle
  publication-title: Neuro Endocrinology Letters
– ident: e_1_2_11_183_1
  doi: 10.1089/neu.2016.4711
– ident: e_1_2_11_150_1
  doi: 10.1007/s11060-017-2565-y
– ident: e_1_2_11_104_1
  doi: 10.1002/glia.20724
SSID ssj0011497
Score 2.625296
SecondaryResourceType review_article
Snippet Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 878
SubjectTerms astrocyte
Astrocytes
Barriers
Brain
Cytoskeleton
Edema
expression
function
Gene expression
Glial fibrillary acidic protein
Head injuries
Hormones
Inflammation
Janus kinase
Kinases
Localization
Membrane proteins
Mental disorders
Morphology
Neurodegeneration
Neuronal-glial interactions
Plastic foam
Plastic properties
Plasticity
Protein kinase
Protein transport
Proteins
regulation
Signaling
Transcription factors
Traumatic brain injury
Title Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23734
https://www.ncbi.nlm.nih.gov/pubmed/31626364
https://www.proquest.com/docview/2375701985
https://www.proquest.com/docview/2307147456
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0894-1491
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-1136
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011497
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxwxEB_Ep75UrVVPryVSKSjsuZvsbjbQl0O0tlgfRMEXWZJsoofnntwH9PzrnWQ_xA8KFfYhkEmy2ckkv2RnfgHYsbGyqeJpgIsJD2KOJiVjGQWFjIUWikUydQHOf07T44v492VyuQA_mliYih-iPXBzluHna2fgUk32n0hDr4cD2aOMM0cGGrHU76fOWu4oxPmiovkUcYDpqOUmpftPRZ-vRq8g5nPE6pecoyW4al628jS57c2mqqcfXvA4vrc3y_CxxqKkXw2eFVgw5SdY7Ze4D7-bk-_Ee4f6Y_dVuPEsHrqmFyDj6gp7VCoZWYIgkpi_tUttSWRZELdeNtmu1SGxLrgAB914TqQeFANNPEfEoCT4yMkUa58j7v0MF0eH5wfHQX1LQ6ARisWBVYiiFM4DWlijskhzaVNqeSRppqUIDRVWZIVVzNhIIaAoEIIloTEhN4aZkK3BYjkqzQYQKjKjLWdYDOtWLCt0zJgwkieUh5nuwG6jrVzXFObuJo1hXpEv09x1KPefsQPfWtn7irjjTaluo_S8Nt6Jy0kcS32WdGC7zUazc_9SZGlGMyfjIr84ws8OrFeDpW2GRY7iJ8XK97zK_9F-_vPkV9-nNv9HeAs-ULfv946XXVicjmfmC4KjqfrqjeAR2uUMFg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0fNAXv07P1VMjiqDQvTZJm-ZxEc893bsHuYN7K0ma6OLalf0A17_embTb41QEhT4EMklIJ9P5JZ35BeBFkDYUVhUJOhOVSIUmZaTJktpI7bQVmSkowfn4pBifyffn-XkXm0O5MC0_RH_gRpYRv9dk4HQgfXDBGvppNjVDLpSQV-GaLHCjQpjoY88ehUhft0SfWiZYznp2Un5w0fayP_oNZF7GrNHpHN5qb1ZdRq5CijX5Mlyv7ND9-IXJ8b_ncxtudnCUjdr1cweu-OYu7I4a3Ip_3bCXLAaIxpP3XfgciTxcxzDAFu0t9qhXNg8McSTz37uo2oaZpmbkMrfVNOqMBcovwHW32DDjpvXUsUgTMW0YPma5wt43CH3vwdnh29M346S7qCFxiMZkEiwCKYufAqeDt2XmlAkFDyozvHRGp57roMs6WOFDZhFT1IjC8tT7VHkvfCruw04zb_wDYFyX3gUlsBn2bUVZOymE9kblXKWlG8Crrboq17GY02Uas6rlX-YVTaiKr3EAz3vZby13xx-l9rdarzr7XVJNTkT1ZT6AZ301Wh79TjGNn69JhpK_FCLQAey1q6UfRmTE8lNg56-jzv8yfvVucjSKpYf_IvwUro9PjyfV5OjkwyO4wekYIMZh7sPOarH2jxErreyTaBE_AZjwEDc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_0BPHFr9Nz9dSIIih0r03SpnlcPNc7PQ8RD-6tJGmii2v32A9w_eudSbs9TkVQ6EMgk4R0Msmv6cxvAJ4FaUNhVZHgYaISqdCkjDRZUhupnbYiMwUFOL8_Lg5O5NvT_LTzzaFYmJYfor9wI8uI-zUZuD-rw945a-jn6cQMuVBCXoYrMtclefTtf-zZoxDp65boU8sEy1nPTsr3zttePI9-A5kXMWs8dMY32syqi8hVSL4mX4erpR26H78wOf73fG7C9Q6OslG7fm7BJd_chu1Rg5_i39bsOYsOovHmfRu-RCIP1zEMsHmbxR71ymaBIY5k_nvnVdsw09SMjsxNNY06ZYHiC3DdzdfMuEk9cSzSREwaho9ZLLH3NULfO3Ayfv3p1UHSJWpIHKIxmQSLQMriVuB08LbMnDKh4EFlhpfO6NRzHXRZByt8yCxiihpRWJ56nyrvhU_FXdhqZo2_B4zr0rugBDbDvq0oayeF0N6onKu0dAN4sVFX5ToWc0qmMa1a_mVe0YSq-BoH8LSXPWu5O_4otbvRetXZ74JqciKqL_MBPOmr0fLod4pp_GxFMhT8pRCBDmCnXS39MCIjlp8CO38Zdf6X8as3R4ejWLr_L8KP4eqH_XF1dHj87gFc43QLEN0wd2FrOV_5hwiVlvZRNIifK8EPuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neurochemical+regulation+of+the+expression+and+function+of+glial+fibrillary+acidic+protein+in+astrocytes&rft.jtitle=Glia&rft.au=Li%2C+Dongyang&rft.au=Liu%2C+Xiaoyu&rft.au=Liu%2C+Tianming&rft.au=Liu%2C+Haitao&rft.date=2020-05-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=68&rft.issue=5&rft.spage=878&rft.epage=897&rft_id=info:doi/10.1002%2Fglia.23734&rft.externalDBID=10.1002%252Fglia.23734&rft.externalDocID=GLIA23734
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon