Protein‐Coated Biodegradable Gas‐Stabilizing Nanoparticles for Cancer Therapy and Diagnosis Using Focused Ultrasound

Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradabl...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 10; no. 2
Main Authors Sabuncu, Sinan, Montoya Mira, Jose, Quentel, Arnaud, Gomes, Michelle M., Civitci, Fehmi, Fischer, Jared M., Yildirim, Adem
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 01.01.2023
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2196-7350
2196-7350
DOI10.1002/admi.202201543

Cover

Abstract Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy. Biodegradable gas‐stabilizing nanoparticles are developed for ultrasound theranostics by coating hydrophobic mesoporous silica nanoparticles with different protein solutions. These biodegradable nanoparticles enhance the mechanical effects of focused ultrasound to ablate tumor xenografts in mice at low ultrasound intensities. The nanoparticle‐enhanced tumor ablation also enhances the concentration of circulating tumor DNA to enable a more sensitive liquid biopsy of cancer.
AbstractList Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy. Biodegradable gas‐stabilizing nanoparticles are developed for ultrasound theranostics by coating hydrophobic mesoporous silica nanoparticles with different protein solutions. These biodegradable nanoparticles enhance the mechanical effects of focused ultrasound to ablate tumor xenografts in mice at low ultrasound intensities. The nanoparticle‐enhanced tumor ablation also enhances the concentration of circulating tumor DNA to enable a more sensitive liquid biopsy of cancer.
Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy.
Abstract Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy.
Author Montoya Mira, Jose
Sabuncu, Sinan
Fischer, Jared M.
Yildirim, Adem
Gomes, Michelle M.
Civitci, Fehmi
Quentel, Arnaud
Author_xml – sequence: 1
  givenname: Sinan
  surname: Sabuncu
  fullname: Sabuncu, Sinan
  organization: Oregon Health and Science University
– sequence: 2
  givenname: Jose
  surname: Montoya Mira
  fullname: Montoya Mira, Jose
  organization: Oregon Health and Science University
– sequence: 3
  givenname: Arnaud
  surname: Quentel
  fullname: Quentel, Arnaud
  organization: Oregon Health and Science University
– sequence: 4
  givenname: Michelle M.
  surname: Gomes
  fullname: Gomes, Michelle M.
  organization: Oregon Health and Science University
– sequence: 5
  givenname: Fehmi
  surname: Civitci
  fullname: Civitci, Fehmi
  organization: Oregon Health and Science University
– sequence: 6
  givenname: Jared M.
  surname: Fischer
  fullname: Fischer, Jared M.
  email: fischerj@ohsu.edu
  organization: Oregon Health and Science University
– sequence: 7
  givenname: Adem
  orcidid: 0000-0001-6787-0148
  surname: Yildirim
  fullname: Yildirim, Adem
  email: yildirim@ohsu.edu
  organization: Oregon Health and Science University
BookMark eNqFkctuUzEQhi1UJErbLWtLrBN8PcdnWVJaIvWCRLO2xrfg6NQO9olKWPEIPCNPwklTCkJCbMaj8f_9mtH_Eh2knDxCryiZUkLYG3B3ccoIY4RKwZ-hQ0a7ZtJySQ7-6F-gk1pXhBBKGWWKH6IvH0oefEw_vn2fZRi8w29jdn5ZwIHpPb6AOn59HMDEPn6NaYmvIeU1lCHa3lcccsEzSNYXfPvJF1hvMSSHzyIsU66x4kXdQefZbupovuiHAjVvkjtGzwP01Z88vkdocf7udvZ-cnlzMZ-dXk6sYJxPaBDMK9FS6VvpeCBSBUssBalcMB0fizVBNcxRydrWdEZ1RlremCAsocCP0Hzv6zKs9LrEOyhbnSHqh0EuS_14jG6MkZQE0TpKhDBUscY7K4MTVJpGNKPX673XuuTPG18Hvcqbksb1NWsbJVUrBB9VYq-yJddafNA2DjDEnMbbY68p0bvI9C4y_RTZiE3_wn4t-0-g2wP3sffb_6j16dnV_Df7E40CrlQ
CitedBy_id crossref_primary_10_1002_smll_202302744
crossref_primary_10_1021_acs_nanolett_2c04504
crossref_primary_10_1007_s41204_023_00344_7
crossref_primary_10_1016_j_eng_2024_01_030
crossref_primary_10_1021_acs_chemmater_4c01518
Cites_doi 10.1016/j.ultsonch.2016.12.001
10.1016/j.ultrasmedbio.2014.05.005
10.1021/acs.biomac.7b01472
10.1002/adma.202007073
10.1002/advs.201500223
10.1021/acsami.7b11007
10.1021/acsami.8b15368
10.1038/nrd1417
10.1038/nrc1591
10.1016/S0022-5347(05)00141-2
10.1126/science.1114397
10.1021/acsami.8b22659
10.1002/smll.201303635
10.1002/smll.201501322
10.1002/smll.200700595
10.1016/j.ultrasmedbio.2018.10.035
10.1021/acsomega.0c03377
10.1002/adhm.201700514
10.1038/s41565-021-00924-1
10.1002/anie.200200550
10.1021/acsbiomaterials.9b01065
10.1002/smll.201001459
10.1016/j.micromeso.2010.01.009
10.1002/adhm.201700646
10.1002/asia.201301333
10.1186/s40580-021-00287-2
10.1016/j.ultrasmedbio.2012.12.015
10.1110/ps.04831804
10.1016/j.jss.2014.05.009
10.1021/acsnano.7b08008
10.1016/j.jconrel.2016.07.016
10.1021/jp9724941
10.1016/j.ultsonch.2007.09.015
10.1038/s42254-019-0074-y
10.1021/acs.langmuir.9b00795
10.7150/thno.32424
10.1002/adfm.200600578
10.1021/acs.chemmater.6b02634
10.1016/j.ultrasmedbio.2015.02.006
10.1021/ja208567v
10.1002/adhm.201800184
10.1016/j.biomaterials.2019.119723
10.2217/nnm-2020-0263
10.1016/j.urology.2017.12.033
10.1021/acs.chemmater.9b00221
10.1021/acs.langmuir.7b02993
10.1002/adhm.201600030
10.1021/acs.nanolett.8b04632
10.1016/j.ultsonch.2016.02.009
10.1038/s41598-018-24516-7
10.1021/acsami.9b11095
10.1016/j.ultrasmedbio.2018.10.033
10.1148/radiol.2016160024
10.1021/nl304273u
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOA
DOI 10.1002/admi.202201543
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
CrossRef
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6bb510f47d1044b1826edc5fd415b646
10_1002_admi_202201543
ADMI202201543
Genre article
GrantInformation_xml – fundername: Cancer Early Detection Advanced Research
– fundername: Oregon Health & Science University's Knight Cancer Institute
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ABJCF
ACAHQ
ACCFJ
ACCMX
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
G-S
GODZA
GROUPED_DOAJ
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
AAFWJ
AAYXX
ABJNI
ADMLS
AFKRA
AFPKN
AIURR
ARAPS
BENPR
BFHJK
BGLVJ
CCPQU
CITATION
EJD
HCIFZ
KB.
M7S
PDBOC
PHGZM
PHGZT
PTHSS
SUPJJ
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c4233-1f42e84715e75d3f058fc0c1a58dfb93dfbcbf862d15277b9b89b5c36bf4c01a3
IEDL.DBID 24P
ISSN 2196-7350
IngestDate Wed Aug 27 01:07:38 EDT 2025
Fri Jul 25 12:08:01 EDT 2025
Tue Jul 01 00:39:49 EDT 2025
Thu Apr 24 23:09:03 EDT 2025
Wed Jan 22 16:24:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4233-1f42e84715e75d3f058fc0c1a58dfb93dfbcbf862d15277b9b89b5c36bf4c01a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6787-0148
OpenAccessLink https://doaj.org/article/6bb510f47d1044b1826edc5fd415b646
PQID 2768587443
PQPubID 2034582
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_6bb510f47d1044b1826edc5fd415b646
proquest_journals_2768587443
crossref_citationtrail_10_1002_admi_202201543
crossref_primary_10_1002_admi_202201543
wiley_primary_10_1002_admi_202201543_ADMI202201543
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 6
2019; 11
2016; 32
2004; 3
2019; 19
2006; 175
2008; 4
2017; 9
2018; 7
2020; 5
2018; 8
2021; 33
2017; 36
2013; 13
2015; 41
1997; 101
2016; 238
2017; 283
2018; 34
2014; 9
2003; 42
2014; 10
2007; 17
2021; 8
2019; 9
2019; 5
2019; 31
2019; 1
2019; 35
2015; 11
2014; 190
2008; 15
2008; 13
2014; 40
2011; 133
2011; 7
2006; 311
2016; 5
2018; 19
2021; 16
2013; 39
2016; 3
2017; 11
2019; 45
2018; 114
2005; 5
2010; 131
2020; 232
2016; 28
2018; 10
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  start-page: 1047
  year: 2013
  publication-title: Nano Lett.
– volume: 5
  start-page: 1290
  year: 2016
  publication-title: Adv. Healthcare Mater.
– volume: 1
  start-page: 495
  year: 2019
  publication-title: Nat. Rev. Phys.
– volume: 13
  start-page: 3017
  year: 2008
  publication-title: Protein Sci.
– volume: 238
  start-page: 22
  year: 2016
  publication-title: J. Controlled Release
– volume: 45
  start-page: 954
  year: 2019
  publication-title: Ultrasound Med. Biol.
– volume: 31
  start-page: 4364
  year: 2019
  publication-title: Chem. Mater.
– volume: 34
  start-page: 1256
  year: 2018
  publication-title: Langmuir
– volume: 16
  start-page: 617
  year: 2021
  publication-title: Nat. Nanotechnol.
– volume: 190
  start-page: 391
  year: 2014
  publication-title: J. Surg. Res.
– volume: 283
  start-page: 158
  year: 2017
  publication-title: Radiology
– volume: 5
  start-page: 5888
  year: 2019
  publication-title: ACS Biomater. Sci. Eng.
– volume: 35
  year: 2019
  publication-title: Langmuir
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 28
  start-page: 5962
  year: 2016
  publication-title: Chem. Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Sci.
– volume: 131
  start-page: 314
  year: 2010
  publication-title: Microporous Mesoporous Mater.
– volume: 15
  start-page: 294
  year: 2008
  publication-title: Ultrason. Sonochem.
– volume: 7
  start-page: 271
  year: 2011
  publication-title: Small
– volume: 7
  year: 2018
  publication-title: Adv. Healthcare Mater.
– volume: 42
  start-page: 3218
  year: 2003
  publication-title: Angew. Chem., Int. Ed.
– volume: 175
  start-page: 734
  year: 2006
  publication-title: J. Urol.
– volume: 5
  year: 2020
  publication-title: ACS Omega
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 36
  start-page: 262
  year: 2017
  publication-title: Ultrason. Sonochem.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 5
  start-page: 321
  year: 2005
  publication-title: Nat. Rev. Cancer
– volume: 8
  start-page: 39
  year: 2021
  publication-title: Nano Convergence
– volume: 32
  start-page: 1
  year: 2016
  publication-title: Ultrason. Sonochem.
– volume: 17
  start-page: 605
  year: 2007
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 6553
  year: 2018
  publication-title: Sci. Rep.
– volume: 16
  start-page: 37
  year: 2021
  publication-title: Nanomedicine
– volume: 40
  start-page: 2207
  year: 2014
  publication-title: Ultrasound Med. Biol.
– volume: 114
  start-page: 184
  year: 2018
  publication-title: Urology
– volume: 3
  start-page: 527
  year: 2004
  publication-title: Nat. Rev. Drug Discovery
– volume: 9
  start-page: 2572
  year: 2019
  publication-title: Theranostics
– volume: 19
  start-page: 374
  year: 2018
  publication-title: Biomacromolecules
– volume: 41
  start-page: 1500
  year: 2015
  publication-title: Ultrasound Med. Biol.
– volume: 11
  start-page: 5305
  year: 2015
  publication-title: Small
– volume: 45
  start-page: 1056
  year: 2019
  publication-title: Ultrasound Med. Biol.
– volume: 311
  start-page: 622
  year: 2006
  publication-title: Science
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 790
  year: 2014
  publication-title: Chem. ‐ Asian J.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 26
  year: 2008
  publication-title: Small
– volume: 10
  start-page: 3603
  year: 2014
  publication-title: Small
– volume: 101
  start-page: 9436
  year: 1997
  publication-title: J. Phys. Chem. B
– volume: 133
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 1087
  year: 2013
  publication-title: Ultrasound Med. Biol.
– volume: 232
  year: 2020
  publication-title: Biomaterials
– volume: 19
  start-page: 2251
  year: 2019
  publication-title: Nano Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– ident: e_1_2_8_31_1
  doi: 10.1016/j.ultsonch.2016.12.001
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ultrasmedbio.2014.05.005
– ident: e_1_2_8_37_1
  doi: 10.1021/acs.biomac.7b01472
– ident: e_1_2_8_21_1
  doi: 10.1002/adma.202007073
– ident: e_1_2_8_28_1
  doi: 10.1002/advs.201500223
– ident: e_1_2_8_11_1
  doi: 10.1021/acsami.7b11007
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.8b15368
– ident: e_1_2_8_24_1
  doi: 10.1038/nrd1417
– ident: e_1_2_8_47_1
  doi: 10.1038/nrc1591
– ident: e_1_2_8_43_1
  doi: 10.1016/S0022-5347(05)00141-2
– ident: e_1_2_8_27_1
  doi: 10.1126/science.1114397
– ident: e_1_2_8_54_1
  doi: 10.1021/acsami.8b22659
– ident: e_1_2_8_26_1
  doi: 10.1002/smll.201303635
– ident: e_1_2_8_1_1
  doi: 10.1002/smll.201501322
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.200700595
– ident: e_1_2_8_44_1
  doi: 10.1016/j.ultrasmedbio.2018.10.035
– ident: e_1_2_8_9_1
  doi: 10.1021/acsomega.0c03377
– ident: e_1_2_8_10_1
  doi: 10.1002/adhm.201700514
– ident: e_1_2_8_35_1
  doi: 10.1038/s41565-021-00924-1
– ident: e_1_2_8_22_1
  doi: 10.1002/anie.200200550
– ident: e_1_2_8_20_1
  doi: 10.1021/acsbiomaterials.9b01065
– ident: e_1_2_8_41_1
  doi: 10.1002/smll.201001459
– ident: e_1_2_8_39_1
  doi: 10.1016/j.micromeso.2010.01.009
– ident: e_1_2_8_12_1
  doi: 10.1002/adhm.201700646
– ident: e_1_2_8_19_1
  doi: 10.1002/asia.201301333
– ident: e_1_2_8_6_1
  doi: 10.1186/s40580-021-00287-2
– ident: e_1_2_8_48_1
  doi: 10.1016/j.ultrasmedbio.2012.12.015
– ident: e_1_2_8_34_1
  doi: 10.1110/ps.04831804
– ident: e_1_2_8_45_1
  doi: 10.1016/j.jss.2014.05.009
– ident: e_1_2_8_36_1
  doi: 10.1021/acsnano.7b08008
– ident: e_1_2_8_18_1
  doi: 10.1016/j.jconrel.2016.07.016
– ident: e_1_2_8_32_1
  doi: 10.1021/jp9724941
– ident: e_1_2_8_38_1
  doi: 10.1016/j.ultsonch.2007.09.015
– ident: e_1_2_8_23_1
  doi: 10.1038/s42254-019-0074-y
– ident: e_1_2_8_5_1
  doi: 10.1021/acs.langmuir.9b00795
– ident: e_1_2_8_4_1
  doi: 10.7150/thno.32424
– ident: e_1_2_8_52_1
  doi: 10.1002/adfm.200600578
– ident: e_1_2_8_3_1
  doi: 10.1021/acs.chemmater.6b02634
– ident: e_1_2_8_42_1
  doi: 10.1016/j.ultrasmedbio.2015.02.006
– ident: e_1_2_8_33_1
  doi: 10.1021/ja208567v
– ident: e_1_2_8_17_1
  doi: 10.1002/adhm.201800184
– ident: e_1_2_8_13_1
  doi: 10.1016/j.biomaterials.2019.119723
– ident: e_1_2_8_15_1
  doi: 10.2217/nnm-2020-0263
– ident: e_1_2_8_46_1
  doi: 10.1016/j.urology.2017.12.033
– ident: e_1_2_8_40_1
  doi: 10.1021/acs.chemmater.9b00221
– ident: e_1_2_8_8_1
  doi: 10.1021/acs.langmuir.7b02993
– ident: e_1_2_8_2_1
  doi: 10.1002/adhm.201600030
– ident: e_1_2_8_7_1
  doi: 10.1021/acs.nanolett.8b04632
– ident: e_1_2_8_30_1
  doi: 10.1016/j.ultsonch.2016.02.009
– ident: e_1_2_8_51_1
  doi: 10.1038/s41598-018-24516-7
– ident: e_1_2_8_14_1
  doi: 10.1021/acsami.9b11095
– ident: e_1_2_8_25_1
  doi: 10.1016/j.ultrasmedbio.2018.10.033
– ident: e_1_2_8_50_1
  doi: 10.1148/radiol.2016160024
– ident: e_1_2_8_53_1
  doi: 10.1021/nl304273u
SSID ssj0001121283
Score 2.3039656
Snippet Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been...
Abstract Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Ablation
Biodegradability
biodegradable nanoparticles
Biomedical materials
Body fluids
Cancer
Cavitation
Degradation
Diagnosis
focused ultrasound
Gas pockets
Heterogeneity
hydrophobic surface modification
liquid biopsy
mesoporous silica nanoparticles
Nanoparticles
Phospholipids
Poloxamers
Proteins
Side effects
tumor ablation
Tumors
Ultrasonic imaging
Xenotransplantation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NShxBEG5EEHIJ0USyUUMfAjkN9vTPzPRR16wmYMjBBW9N_8KCmQ07K4gnH8Fn9Ems6pld1oN4yWVgppuZoqqm66um-itCvnFneV1GVUgpWCGVaopGyFhIbnWyzDFt8ezw5e_qYip_XavrjVZfWBPW0wP3ijuunAO3SbIOkDhIh3A4Bq9SgMjjKpnJtplmG8lU3l0pYUluxIqlkfFjG_7OIB3kHEGDeBGFMln_C4S5iVNzoJl8IO8HhEhPesl2yVZs98hOrtT03Udy9weZFWbt08PjeA5AMdDT2Twg5UPAU1D03HYwBBgSq17vITBRWEAhMx4K4CiAVDpGUy_oVc8oQG0b6FlfcjfraC4ioJO5v-3g5dOb5cJ22HvpE5lOflyNL4qhfULhASOJokySRww-KtYqiMRUkzzzpVVNSE4LuHiXIKMJ2Nq2dto12ikvKpekZ6UV-2S7nbfxM6E-elbp5DjYW-pG2Dpy1fhky6gBH_oRKVbqNH7gFscWFzemZ0XmBtVv1uofke_r-f96Vo1XZ56iddazkA07PwAfMYPqzFs-MiKHK9ua4RftDK-Rer-W-A2e7f2GKObk7PLn-u7L_xDsgLzD9vX9ls4h2V4ubuMRgJyl-5r9-RkGUfl0
  priority: 102
  providerName: Directory of Open Access Journals
Title Protein‐Coated Biodegradable Gas‐Stabilizing Nanoparticles for Cancer Therapy and Diagnosis Using Focused Ultrasound
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202201543
https://www.proquest.com/docview/2768587443
https://doaj.org/article/6bb510f47d1044b1826edc5fd415b646
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG40IngRn7gaQx8ET016-jGPY7JxjUIkhyzk1vRTFuJM2NmAePIn-Bv9JVb1zE6yBxG8DMxMz4OqruqviuqvCHknnBVVETVTSnKmtK5ZLVVkStgmWe54Y3Hv8NmX8nSpPl_qyzu7-Ad-iCnhhpaR_TUauHX94S1pqA3fVhDfCYEoQN4nDwDZS5zjQp3fZlkKcM2ZixMss2SV1HzL3MjF4e4rdlamTOC_gzrvYte8-CyekMcjaqRHg5qfknuxfUYe5upN3z8n38-RbWHV_v75a94BeAz0eNUFpIEIuDOKfrQ93AJciZWwP2CxouBUIVoei-IoAFc6R_Wv6cXAMkBtG-jJUIa36mkuLKCLzt_08PLl1WZte-zH9IIsFx8u5qdsbKnAPOAmyYqkRMQFScdKB5m4rpPnvrC6Dsk1Eg7eJYhyAra7rVzj6sZpL0uXlOeFlS_JXtu18RWhPnpeNskJmAOqqaWtotC1T7aIDWBGPyNsK07jR75xbHtxZQamZGFQ_GYS_4y8n8ZfD0wbfx15jNqZRiFDdr7Qrb-aUXSmdA7cTVJVgIBTOQyjYvA6BUAsrlTljOxvdWtGs-2NqJCOv1L4DZH1_Y9fMUcnZ5-ms9f_89Ab8ghb2A9pnX2yt1nfxLcAdDbuIM_lg5wm-APZpfdy
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKwQXxCpSSpkDEier9ixejmlKmkJTcYgR4jKatYpUbBSnUtVTfwK_kV_Ce7bjkgNC4mLJ9njRvO17ozffI-QdM5pliZeREDyOhJR5lHPhI8F0EXRs4kLj3uH5eTorxcevclNNiHthOn6IYcENLaP112jguCB9eMcaqt33JSR4jCEM4PfJroRwCkq-O_5SfivvFloS8M4tHScYZxplXMYb8saYHW6_ZCs4tRz-W8DzT_jaxp_pE_K4B4503En6Kbnnq2fkQVvAaZvn5PozEi4sq1-3Pyc14EdHj5a1QyYIh5uj6Ilu4BZASyyGvYF4RcGvQsLc18VRwK50ghqwoouOaIDqytHjrhJv2dC2toBOa3vVwMvLy_VKN9iS6QUppx8Wk1nUd1WILEAnHiVBMI8xSfpMOh5imQcb20TL3AVTcDhYEyDRcdjxNjOFyQsjLU9NEDZONH9Jdqq68q8Itd7GaREMAzUQRc515pnMbdCJLwA22hGJNtOpbE85jp0vLlVHlswUTr8apn9E3g_jf3RkG38deYTSGUYhSXZ7oV5dqH7qVGoMeJwgMgc5pzCYSXlnZXAAWkwq0hHZ38hW9ZbbKJYhI38m8Buslfc_fkWNj-enw9ne_zz0ljycLeZn6uz0_NNr8gg72nerPPtkZ7268m8A96zNQa_ZvwE8Jvu6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JatxAEG0Sh4RcTFYyjpP0IZBTY6kXLUd7JhM7ic0cPOBb06sZcCQzGkPwyZ_gb8yXuErSyJ5DCOQikNRaqK1fNdWvCPnMreF5GhSTUiRMKlWwQsjAJDdlNIlNSoN7h49PssO5_H6mzh7s4u_4IYYFN_SMNl6jg1_6uHdPGmr8rwXkd5wjChCPyRMJxoc2zuXsfpUlhdDccnGCZ2YsFypZMzcmfG_zFRszU0vgv4E6H2LXdvKZviDbPWqk-52aX5JHoXpFnrbVm655TX7PkG1hUf25uR3XAB49PVjUHmkgPO6Mot9MA7cAV2Il7DVMVhSCKmTLfVEcBeBKx6j-JT3tWAaoqTyddGV4i4a2hQV0WrurBl4-v1gtTYP9mN6Q-fTr6fiQ9S0VmAPcJFgaJQ84IamQKy9iooroEpcaVfhoSwEHZyNkOR7b3ea2tEVplROZjdIlqRFvyVZVV-EdoS64JCuj5WADsiyEyQNXhYsmDSVgRjcibC1O7Xq-cWx7caE7pmSuUfx6EP-IfBnGX3ZMG38deYDaGUYhQ3Z7oV6e6150OrMWwk2UuYeEU1pMo4J3KnpALDaT2YjsrnWre7dtNM-Rjj-X-A3e6vsfv6L3J8dHw9nO_zz0iTybTab659HJj_fkOXaz71Z4dsnWankVPgDmWdmPrVnfAfmT-R4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein%E2%80%90Coated+Biodegradable+Gas%E2%80%90Stabilizing+Nanoparticles+for+Cancer+Therapy+and+Diagnosis+Using+Focused+Ultrasound&rft.jtitle=Advanced+materials+interfaces&rft.au=Sabuncu%2C+Sinan&rft.au=Montoya+Mira%2C+Jose&rft.au=Quentel%2C+Arnaud&rft.au=Gomes%2C+Michelle+M.&rft.date=2023-01-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202201543&rft.externalDBID=10.1002%252Fadmi.202201543&rft.externalDocID=ADMI202201543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon