Protein‐Coated Biodegradable Gas‐Stabilizing Nanoparticles for Cancer Therapy and Diagnosis Using Focused Ultrasound
Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradabl...
Saved in:
Published in | Advanced materials interfaces Vol. 10; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.01.2023
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2196-7350 2196-7350 |
DOI | 10.1002/admi.202201543 |
Cover
Abstract | Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy.
Biodegradable gas‐stabilizing nanoparticles are developed for ultrasound theranostics by coating hydrophobic mesoporous silica nanoparticles with different protein solutions. These biodegradable nanoparticles enhance the mechanical effects of focused ultrasound to ablate tumor xenografts in mice at low ultrasound intensities. The nanoparticle‐enhanced tumor ablation also enhances the concentration of circulating tumor DNA to enable a more sensitive liquid biopsy of cancer. |
---|---|
AbstractList | Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy.
Biodegradable gas‐stabilizing nanoparticles are developed for ultrasound theranostics by coating hydrophobic mesoporous silica nanoparticles with different protein solutions. These biodegradable nanoparticles enhance the mechanical effects of focused ultrasound to ablate tumor xenografts in mice at low ultrasound intensities. The nanoparticle‐enhanced tumor ablation also enhances the concentration of circulating tumor DNA to enable a more sensitive liquid biopsy of cancer. Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy. Abstract Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been recently shown to be excellent contrast and cavitation agents for ultrasound theranostics. However, previously developed GSNs are not biodegradable, which limits their clinical translation potential. Here the development of biodegradable GSNs is shown by coating hydrophobically modified mesoporous silica nanoparticles with different protein solutions. It is found that these novel GSNs retain strong cavitation activity while rapidly degrading in simulated body fluid (SBF) or in vivo in days or a few weeks, respectively. Interestingly, GSNs coated with other stabilizing layers, Pluronic F127 polymer or phospholipids, demonstrated significantly slower degradation rates with only partial degradation even after a month of incubation in SBF. Next, it is shown that these biodegradable GSNs can be used to ablate tumor xenografts at lower ultrasound intensities, thus avoiding the side effects of high‐intensity ultrasound. Finally, it is shown that only tumors treated with GSNs and ultrasound can specifically enrich for circulating tumor DNA, which will improve liquid biopsies for understanding tumor heterogeneity and treatment response. Overall, this study details a simple yet effective method for preparing biodegradable GSNs with broad potential for applications in cancer diagnosis and therapy. |
Author | Montoya Mira, Jose Sabuncu, Sinan Fischer, Jared M. Yildirim, Adem Gomes, Michelle M. Civitci, Fehmi Quentel, Arnaud |
Author_xml | – sequence: 1 givenname: Sinan surname: Sabuncu fullname: Sabuncu, Sinan organization: Oregon Health and Science University – sequence: 2 givenname: Jose surname: Montoya Mira fullname: Montoya Mira, Jose organization: Oregon Health and Science University – sequence: 3 givenname: Arnaud surname: Quentel fullname: Quentel, Arnaud organization: Oregon Health and Science University – sequence: 4 givenname: Michelle M. surname: Gomes fullname: Gomes, Michelle M. organization: Oregon Health and Science University – sequence: 5 givenname: Fehmi surname: Civitci fullname: Civitci, Fehmi organization: Oregon Health and Science University – sequence: 6 givenname: Jared M. surname: Fischer fullname: Fischer, Jared M. email: fischerj@ohsu.edu organization: Oregon Health and Science University – sequence: 7 givenname: Adem orcidid: 0000-0001-6787-0148 surname: Yildirim fullname: Yildirim, Adem email: yildirim@ohsu.edu organization: Oregon Health and Science University |
BookMark | eNqFkctuUzEQhi1UJErbLWtLrBN8PcdnWVJaIvWCRLO2xrfg6NQO9olKWPEIPCNPwklTCkJCbMaj8f_9mtH_Eh2knDxCryiZUkLYG3B3ccoIY4RKwZ-hQ0a7ZtJySQ7-6F-gk1pXhBBKGWWKH6IvH0oefEw_vn2fZRi8w29jdn5ZwIHpPb6AOn59HMDEPn6NaYmvIeU1lCHa3lcccsEzSNYXfPvJF1hvMSSHzyIsU66x4kXdQefZbupovuiHAjVvkjtGzwP01Z88vkdocf7udvZ-cnlzMZ-dXk6sYJxPaBDMK9FS6VvpeCBSBUssBalcMB0fizVBNcxRydrWdEZ1RlremCAsocCP0Hzv6zKs9LrEOyhbnSHqh0EuS_14jG6MkZQE0TpKhDBUscY7K4MTVJpGNKPX673XuuTPG18Hvcqbksb1NWsbJVUrBB9VYq-yJddafNA2DjDEnMbbY68p0bvI9C4y_RTZiE3_wn4t-0-g2wP3sffb_6j16dnV_Df7E40CrlQ |
CitedBy_id | crossref_primary_10_1002_smll_202302744 crossref_primary_10_1021_acs_nanolett_2c04504 crossref_primary_10_1007_s41204_023_00344_7 crossref_primary_10_1016_j_eng_2024_01_030 crossref_primary_10_1021_acs_chemmater_4c01518 |
Cites_doi | 10.1016/j.ultsonch.2016.12.001 10.1016/j.ultrasmedbio.2014.05.005 10.1021/acs.biomac.7b01472 10.1002/adma.202007073 10.1002/advs.201500223 10.1021/acsami.7b11007 10.1021/acsami.8b15368 10.1038/nrd1417 10.1038/nrc1591 10.1016/S0022-5347(05)00141-2 10.1126/science.1114397 10.1021/acsami.8b22659 10.1002/smll.201303635 10.1002/smll.201501322 10.1002/smll.200700595 10.1016/j.ultrasmedbio.2018.10.035 10.1021/acsomega.0c03377 10.1002/adhm.201700514 10.1038/s41565-021-00924-1 10.1002/anie.200200550 10.1021/acsbiomaterials.9b01065 10.1002/smll.201001459 10.1016/j.micromeso.2010.01.009 10.1002/adhm.201700646 10.1002/asia.201301333 10.1186/s40580-021-00287-2 10.1016/j.ultrasmedbio.2012.12.015 10.1110/ps.04831804 10.1016/j.jss.2014.05.009 10.1021/acsnano.7b08008 10.1016/j.jconrel.2016.07.016 10.1021/jp9724941 10.1016/j.ultsonch.2007.09.015 10.1038/s42254-019-0074-y 10.1021/acs.langmuir.9b00795 10.7150/thno.32424 10.1002/adfm.200600578 10.1021/acs.chemmater.6b02634 10.1016/j.ultrasmedbio.2015.02.006 10.1021/ja208567v 10.1002/adhm.201800184 10.1016/j.biomaterials.2019.119723 10.2217/nnm-2020-0263 10.1016/j.urology.2017.12.033 10.1021/acs.chemmater.9b00221 10.1021/acs.langmuir.7b02993 10.1002/adhm.201600030 10.1021/acs.nanolett.8b04632 10.1016/j.ultsonch.2016.02.009 10.1038/s41598-018-24516-7 10.1021/acsami.9b11095 10.1016/j.ultrasmedbio.2018.10.033 10.1148/radiol.2016160024 10.1021/nl304273u |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M DOA |
DOI | 10.1002/admi.202201543 |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_6bb510f47d1044b1826edc5fd415b646 10_1002_admi_202201543 ADMI202201543 |
Genre | article |
GrantInformation_xml | – fundername: Cancer Early Detection Advanced Research – fundername: Oregon Health & Science University's Knight Cancer Institute |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ABJCF ACAHQ ACCFJ ACCMX ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS G-S GODZA GROUPED_DOAJ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL WBKPD WOHZO WXSBR WYJ ZZTAW AAFWJ AAYXX ABJNI ADMLS AFKRA AFPKN AIURR ARAPS BENPR BFHJK BGLVJ CCPQU CITATION EJD HCIFZ KB. M7S PDBOC PHGZM PHGZT PTHSS SUPJJ 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-c4233-1f42e84715e75d3f058fc0c1a58dfb93dfbcbf862d15277b9b89b5c36bf4c01a3 |
IEDL.DBID | 24P |
ISSN | 2196-7350 |
IngestDate | Wed Aug 27 01:07:38 EDT 2025 Fri Jul 25 12:08:01 EDT 2025 Tue Jul 01 00:39:49 EDT 2025 Thu Apr 24 23:09:03 EDT 2025 Wed Jan 22 16:24:42 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4233-1f42e84715e75d3f058fc0c1a58dfb93dfbcbf862d15277b9b89b5c36bf4c01a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-6787-0148 |
OpenAccessLink | https://doaj.org/article/6bb510f47d1044b1826edc5fd415b646 |
PQID | 2768587443 |
PQPubID | 2034582 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6bb510f47d1044b1826edc5fd415b646 proquest_journals_2768587443 crossref_citationtrail_10_1002_admi_202201543 crossref_primary_10_1002_admi_202201543 wiley_primary_10_1002_admi_202201543_ADMI202201543 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 6 2019; 11 2016; 32 2004; 3 2019; 19 2006; 175 2008; 4 2017; 9 2018; 7 2020; 5 2018; 8 2021; 33 2017; 36 2013; 13 2015; 41 1997; 101 2016; 238 2017; 283 2018; 34 2014; 9 2003; 42 2014; 10 2007; 17 2021; 8 2019; 9 2019; 5 2019; 31 2019; 1 2019; 35 2015; 11 2014; 190 2008; 15 2008; 13 2014; 40 2011; 133 2011; 7 2006; 311 2016; 5 2018; 19 2021; 16 2013; 39 2016; 3 2017; 11 2019; 45 2018; 114 2005; 5 2010; 131 2020; 232 2016; 28 2018; 10 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 start-page: 1047 year: 2013 publication-title: Nano Lett. – volume: 5 start-page: 1290 year: 2016 publication-title: Adv. Healthcare Mater. – volume: 1 start-page: 495 year: 2019 publication-title: Nat. Rev. Phys. – volume: 13 start-page: 3017 year: 2008 publication-title: Protein Sci. – volume: 238 start-page: 22 year: 2016 publication-title: J. Controlled Release – volume: 45 start-page: 954 year: 2019 publication-title: Ultrasound Med. Biol. – volume: 31 start-page: 4364 year: 2019 publication-title: Chem. Mater. – volume: 34 start-page: 1256 year: 2018 publication-title: Langmuir – volume: 16 start-page: 617 year: 2021 publication-title: Nat. Nanotechnol. – volume: 190 start-page: 391 year: 2014 publication-title: J. Surg. Res. – volume: 283 start-page: 158 year: 2017 publication-title: Radiology – volume: 5 start-page: 5888 year: 2019 publication-title: ACS Biomater. Sci. Eng. – volume: 35 year: 2019 publication-title: Langmuir – volume: 6 year: 2017 publication-title: Adv. Healthcare Mater. – volume: 28 start-page: 5962 year: 2016 publication-title: Chem. Mater. – volume: 3 year: 2016 publication-title: Adv. Sci. – volume: 131 start-page: 314 year: 2010 publication-title: Microporous Mesoporous Mater. – volume: 15 start-page: 294 year: 2008 publication-title: Ultrason. Sonochem. – volume: 7 start-page: 271 year: 2011 publication-title: Small – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 42 start-page: 3218 year: 2003 publication-title: Angew. Chem., Int. Ed. – volume: 175 start-page: 734 year: 2006 publication-title: J. Urol. – volume: 5 year: 2020 publication-title: ACS Omega – volume: 11 year: 2017 publication-title: ACS Nano – volume: 36 start-page: 262 year: 2017 publication-title: Ultrason. Sonochem. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 5 start-page: 321 year: 2005 publication-title: Nat. Rev. Cancer – volume: 8 start-page: 39 year: 2021 publication-title: Nano Convergence – volume: 32 start-page: 1 year: 2016 publication-title: Ultrason. Sonochem. – volume: 17 start-page: 605 year: 2007 publication-title: Adv. Funct. Mater. – volume: 8 start-page: 6553 year: 2018 publication-title: Sci. Rep. – volume: 16 start-page: 37 year: 2021 publication-title: Nanomedicine – volume: 40 start-page: 2207 year: 2014 publication-title: Ultrasound Med. Biol. – volume: 114 start-page: 184 year: 2018 publication-title: Urology – volume: 3 start-page: 527 year: 2004 publication-title: Nat. Rev. Drug Discovery – volume: 9 start-page: 2572 year: 2019 publication-title: Theranostics – volume: 19 start-page: 374 year: 2018 publication-title: Biomacromolecules – volume: 41 start-page: 1500 year: 2015 publication-title: Ultrasound Med. Biol. – volume: 11 start-page: 5305 year: 2015 publication-title: Small – volume: 45 start-page: 1056 year: 2019 publication-title: Ultrasound Med. Biol. – volume: 311 start-page: 622 year: 2006 publication-title: Science – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 790 year: 2014 publication-title: Chem. ‐ Asian J. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 26 year: 2008 publication-title: Small – volume: 10 start-page: 3603 year: 2014 publication-title: Small – volume: 101 start-page: 9436 year: 1997 publication-title: J. Phys. Chem. B – volume: 133 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 1087 year: 2013 publication-title: Ultrasound Med. Biol. – volume: 232 year: 2020 publication-title: Biomaterials – volume: 19 start-page: 2251 year: 2019 publication-title: Nano Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – ident: e_1_2_8_31_1 doi: 10.1016/j.ultsonch.2016.12.001 – ident: e_1_2_8_49_1 doi: 10.1016/j.ultrasmedbio.2014.05.005 – ident: e_1_2_8_37_1 doi: 10.1021/acs.biomac.7b01472 – ident: e_1_2_8_21_1 doi: 10.1002/adma.202007073 – ident: e_1_2_8_28_1 doi: 10.1002/advs.201500223 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.7b11007 – ident: e_1_2_8_16_1 doi: 10.1021/acsami.8b15368 – ident: e_1_2_8_24_1 doi: 10.1038/nrd1417 – ident: e_1_2_8_47_1 doi: 10.1038/nrc1591 – ident: e_1_2_8_43_1 doi: 10.1016/S0022-5347(05)00141-2 – ident: e_1_2_8_27_1 doi: 10.1126/science.1114397 – ident: e_1_2_8_54_1 doi: 10.1021/acsami.8b22659 – ident: e_1_2_8_26_1 doi: 10.1002/smll.201303635 – ident: e_1_2_8_1_1 doi: 10.1002/smll.201501322 – ident: e_1_2_8_29_1 doi: 10.1002/smll.200700595 – ident: e_1_2_8_44_1 doi: 10.1016/j.ultrasmedbio.2018.10.035 – ident: e_1_2_8_9_1 doi: 10.1021/acsomega.0c03377 – ident: e_1_2_8_10_1 doi: 10.1002/adhm.201700514 – ident: e_1_2_8_35_1 doi: 10.1038/s41565-021-00924-1 – ident: e_1_2_8_22_1 doi: 10.1002/anie.200200550 – ident: e_1_2_8_20_1 doi: 10.1021/acsbiomaterials.9b01065 – ident: e_1_2_8_41_1 doi: 10.1002/smll.201001459 – ident: e_1_2_8_39_1 doi: 10.1016/j.micromeso.2010.01.009 – ident: e_1_2_8_12_1 doi: 10.1002/adhm.201700646 – ident: e_1_2_8_19_1 doi: 10.1002/asia.201301333 – ident: e_1_2_8_6_1 doi: 10.1186/s40580-021-00287-2 – ident: e_1_2_8_48_1 doi: 10.1016/j.ultrasmedbio.2012.12.015 – ident: e_1_2_8_34_1 doi: 10.1110/ps.04831804 – ident: e_1_2_8_45_1 doi: 10.1016/j.jss.2014.05.009 – ident: e_1_2_8_36_1 doi: 10.1021/acsnano.7b08008 – ident: e_1_2_8_18_1 doi: 10.1016/j.jconrel.2016.07.016 – ident: e_1_2_8_32_1 doi: 10.1021/jp9724941 – ident: e_1_2_8_38_1 doi: 10.1016/j.ultsonch.2007.09.015 – ident: e_1_2_8_23_1 doi: 10.1038/s42254-019-0074-y – ident: e_1_2_8_5_1 doi: 10.1021/acs.langmuir.9b00795 – ident: e_1_2_8_4_1 doi: 10.7150/thno.32424 – ident: e_1_2_8_52_1 doi: 10.1002/adfm.200600578 – ident: e_1_2_8_3_1 doi: 10.1021/acs.chemmater.6b02634 – ident: e_1_2_8_42_1 doi: 10.1016/j.ultrasmedbio.2015.02.006 – ident: e_1_2_8_33_1 doi: 10.1021/ja208567v – ident: e_1_2_8_17_1 doi: 10.1002/adhm.201800184 – ident: e_1_2_8_13_1 doi: 10.1016/j.biomaterials.2019.119723 – ident: e_1_2_8_15_1 doi: 10.2217/nnm-2020-0263 – ident: e_1_2_8_46_1 doi: 10.1016/j.urology.2017.12.033 – ident: e_1_2_8_40_1 doi: 10.1021/acs.chemmater.9b00221 – ident: e_1_2_8_8_1 doi: 10.1021/acs.langmuir.7b02993 – ident: e_1_2_8_2_1 doi: 10.1002/adhm.201600030 – ident: e_1_2_8_7_1 doi: 10.1021/acs.nanolett.8b04632 – ident: e_1_2_8_30_1 doi: 10.1016/j.ultsonch.2016.02.009 – ident: e_1_2_8_51_1 doi: 10.1038/s41598-018-24516-7 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.9b11095 – ident: e_1_2_8_25_1 doi: 10.1016/j.ultrasmedbio.2018.10.033 – ident: e_1_2_8_50_1 doi: 10.1148/radiol.2016160024 – ident: e_1_2_8_53_1 doi: 10.1021/nl304273u |
SSID | ssj0001121283 |
Score | 2.3039656 |
Snippet | Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have been... Abstract Surface‐engineered hydrophobic nanoparticles that can stabilize small gas pockets on their surfaces (i.e., gas‐stabilizing nanoparticles, GSNs) have... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Ablation Biodegradability biodegradable nanoparticles Biomedical materials Body fluids Cancer Cavitation Degradation Diagnosis focused ultrasound Gas pockets Heterogeneity hydrophobic surface modification liquid biopsy mesoporous silica nanoparticles Nanoparticles Phospholipids Poloxamers Proteins Side effects tumor ablation Tumors Ultrasonic imaging Xenotransplantation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NShxBEG5EEHIJ0USyUUMfAjkN9vTPzPRR16wmYMjBBW9N_8KCmQ07K4gnH8Fn9Ems6pld1oN4yWVgppuZoqqm66um-itCvnFneV1GVUgpWCGVaopGyFhIbnWyzDFt8ezw5e_qYip_XavrjVZfWBPW0wP3ijuunAO3SbIOkDhIh3A4Bq9SgMjjKpnJtplmG8lU3l0pYUluxIqlkfFjG_7OIB3kHEGDeBGFMln_C4S5iVNzoJl8IO8HhEhPesl2yVZs98hOrtT03Udy9weZFWbt08PjeA5AMdDT2Twg5UPAU1D03HYwBBgSq17vITBRWEAhMx4K4CiAVDpGUy_oVc8oQG0b6FlfcjfraC4ioJO5v-3g5dOb5cJ22HvpE5lOflyNL4qhfULhASOJokySRww-KtYqiMRUkzzzpVVNSE4LuHiXIKMJ2Nq2dto12ikvKpekZ6UV-2S7nbfxM6E-elbp5DjYW-pG2Dpy1fhky6gBH_oRKVbqNH7gFscWFzemZ0XmBtVv1uofke_r-f96Vo1XZ56iddazkA07PwAfMYPqzFs-MiKHK9ua4RftDK-Rer-W-A2e7f2GKObk7PLn-u7L_xDsgLzD9vX9ls4h2V4ubuMRgJyl-5r9-RkGUfl0 priority: 102 providerName: Directory of Open Access Journals |
Title | Protein‐Coated Biodegradable Gas‐Stabilizing Nanoparticles for Cancer Therapy and Diagnosis Using Focused Ultrasound |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.202201543 https://www.proquest.com/docview/2768587443 https://doaj.org/article/6bb510f47d1044b1826edc5fd415b646 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEG40IngRn7gaQx8ET016-jGPY7JxjUIkhyzk1vRTFuJM2NmAePIn-Bv9JVb1zE6yBxG8DMxMz4OqruqviuqvCHknnBVVETVTSnKmtK5ZLVVkStgmWe54Y3Hv8NmX8nSpPl_qyzu7-Ad-iCnhhpaR_TUauHX94S1pqA3fVhDfCYEoQN4nDwDZS5zjQp3fZlkKcM2ZixMss2SV1HzL3MjF4e4rdlamTOC_gzrvYte8-CyekMcjaqRHg5qfknuxfUYe5upN3z8n38-RbWHV_v75a94BeAz0eNUFpIEIuDOKfrQ93AJciZWwP2CxouBUIVoei-IoAFc6R_Wv6cXAMkBtG-jJUIa36mkuLKCLzt_08PLl1WZte-zH9IIsFx8u5qdsbKnAPOAmyYqkRMQFScdKB5m4rpPnvrC6Dsk1Eg7eJYhyAra7rVzj6sZpL0uXlOeFlS_JXtu18RWhPnpeNskJmAOqqaWtotC1T7aIDWBGPyNsK07jR75xbHtxZQamZGFQ_GYS_4y8n8ZfD0wbfx15jNqZRiFDdr7Qrb-aUXSmdA7cTVJVgIBTOQyjYvA6BUAsrlTljOxvdWtGs-2NqJCOv1L4DZH1_Y9fMUcnZ5-ms9f_89Ab8ghb2A9pnX2yt1nfxLcAdDbuIM_lg5wm-APZpfdy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKwQXxCpSSpkDEier9ixejmlKmkJTcYgR4jKatYpUbBSnUtVTfwK_kV_Ce7bjkgNC4mLJ9njRvO17ozffI-QdM5pliZeREDyOhJR5lHPhI8F0EXRs4kLj3uH5eTorxcevclNNiHthOn6IYcENLaP112jguCB9eMcaqt33JSR4jCEM4PfJroRwCkq-O_5SfivvFloS8M4tHScYZxplXMYb8saYHW6_ZCs4tRz-W8DzT_jaxp_pE_K4B4503En6Kbnnq2fkQVvAaZvn5PozEi4sq1-3Pyc14EdHj5a1QyYIh5uj6Ilu4BZASyyGvYF4RcGvQsLc18VRwK50ghqwoouOaIDqytHjrhJv2dC2toBOa3vVwMvLy_VKN9iS6QUppx8Wk1nUd1WILEAnHiVBMI8xSfpMOh5imQcb20TL3AVTcDhYEyDRcdjxNjOFyQsjLU9NEDZONH9Jdqq68q8Itd7GaREMAzUQRc515pnMbdCJLwA22hGJNtOpbE85jp0vLlVHlswUTr8apn9E3g_jf3RkG38deYTSGUYhSXZ7oV5dqH7qVGoMeJwgMgc5pzCYSXlnZXAAWkwq0hHZ38hW9ZbbKJYhI38m8Buslfc_fkWNj-enw9ne_zz0ljycLeZn6uz0_NNr8gg72nerPPtkZ7268m8A96zNQa_ZvwE8Jvu6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JatxAEG0Sh4RcTFYyjpP0IZBTY6kXLUd7JhM7ic0cPOBb06sZcCQzGkPwyZ_gb8yXuErSyJ5DCOQikNRaqK1fNdWvCPnMreF5GhSTUiRMKlWwQsjAJDdlNIlNSoN7h49PssO5_H6mzh7s4u_4IYYFN_SMNl6jg1_6uHdPGmr8rwXkd5wjChCPyRMJxoc2zuXsfpUlhdDccnGCZ2YsFypZMzcmfG_zFRszU0vgv4E6H2LXdvKZviDbPWqk-52aX5JHoXpFnrbVm655TX7PkG1hUf25uR3XAB49PVjUHmkgPO6Mot9MA7cAV2Il7DVMVhSCKmTLfVEcBeBKx6j-JT3tWAaoqTyddGV4i4a2hQV0WrurBl4-v1gtTYP9mN6Q-fTr6fiQ9S0VmAPcJFgaJQ84IamQKy9iooroEpcaVfhoSwEHZyNkOR7b3ea2tEVplROZjdIlqRFvyVZVV-EdoS64JCuj5WADsiyEyQNXhYsmDSVgRjcibC1O7Xq-cWx7caE7pmSuUfx6EP-IfBnGX3ZMG38deYDaGUYhQ3Z7oV6e6150OrMWwk2UuYeEU1pMo4J3KnpALDaT2YjsrnWre7dtNM-Rjj-X-A3e6vsfv6L3J8dHw9nO_zz0iTybTab659HJj_fkOXaz71Z4dsnWankVPgDmWdmPrVnfAfmT-R4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein%E2%80%90Coated+Biodegradable+Gas%E2%80%90Stabilizing+Nanoparticles+for+Cancer+Therapy+and+Diagnosis+Using+Focused+Ultrasound&rft.jtitle=Advanced+materials+interfaces&rft.au=Sabuncu%2C+Sinan&rft.au=Montoya+Mira%2C+Jose&rft.au=Quentel%2C+Arnaud&rft.au=Gomes%2C+Michelle+M.&rft.date=2023-01-01&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=10&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.202201543&rft.externalDBID=10.1002%252Fadmi.202201543&rft.externalDocID=ADMI202201543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |