Otoscopic diagnosis using computer vision: An automated machine learning approach

Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained...

Full description

Saved in:
Bibliographic Details
Published inThe Laryngoscope Vol. 130; no. 6; p. 1408
Main Authors Livingstone, Devon, Chau, Justin
Format Journal Article
LanguageEnglish
Published United States 01.06.2020
Subjects
Online AccessGet more information
ISSN1531-4995
DOI10.1002/lary.28292

Cover

Abstract Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained physicians. This algorithm could be used by primary care providers to facilitate timely referral, triage, and effective treatment. Otoscopic images were obtained from Google Images (Google Inc., Mountain View, CA), from open access repositories, and within otolaryngology clinics associated with our institution. After preprocessing, 1,366 unique images were uploaded to the Google Cloud Vision AutoML platform (Google Inc.) and annotated with one or more of 14 otologic diagnoses. A consensus set of labels for each otoscopic image was attained, and a multilabel classifier architecture algorithm was trained. The performance of the algorithm on an 89-image test set was compared to the performance of physicians from pediatrics, emergency medicine, otolaryngology, and family medicine. For all diagnoses combined, the average precision (positive predictive value) of the algorithm was 90.9%, and the average recall (sensitivity) was 86.1%. The algorithm made 79 correct diagnoses with an accuracy of 88.7%. The average physician accuracy was 58.9%. We have created a computer vision algorithm using automated machine learning that on average rivals the accuracy of the physicians we tested. Fourteen different otologic diagnoses were analyzed. The field of medicine will be changed dramatically by artificial intelligence within the next few decades, and physicians of all specialties must be prepared to guide that process. NA Laryngoscope, 130:1408-1413, 2020.
AbstractList Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained physicians. This algorithm could be used by primary care providers to facilitate timely referral, triage, and effective treatment. Otoscopic images were obtained from Google Images (Google Inc., Mountain View, CA), from open access repositories, and within otolaryngology clinics associated with our institution. After preprocessing, 1,366 unique images were uploaded to the Google Cloud Vision AutoML platform (Google Inc.) and annotated with one or more of 14 otologic diagnoses. A consensus set of labels for each otoscopic image was attained, and a multilabel classifier architecture algorithm was trained. The performance of the algorithm on an 89-image test set was compared to the performance of physicians from pediatrics, emergency medicine, otolaryngology, and family medicine. For all diagnoses combined, the average precision (positive predictive value) of the algorithm was 90.9%, and the average recall (sensitivity) was 86.1%. The algorithm made 79 correct diagnoses with an accuracy of 88.7%. The average physician accuracy was 58.9%. We have created a computer vision algorithm using automated machine learning that on average rivals the accuracy of the physicians we tested. Fourteen different otologic diagnoses were analyzed. The field of medicine will be changed dramatically by artificial intelligence within the next few decades, and physicians of all specialties must be prepared to guide that process. NA Laryngoscope, 130:1408-1413, 2020.
Author Chau, Justin
Livingstone, Devon
Author_xml – sequence: 1
  givenname: Devon
  orcidid: 0000-0002-4734-0980
  surname: Livingstone
  fullname: Livingstone, Devon
  organization: Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada
– sequence: 2
  givenname: Justin
  surname: Chau
  fullname: Chau, Justin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31532858$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKxDAURYMozkVf_ADJD3RMThqT-jYM3mBgEPR5yOV0jLRJaFrBv3dEfdqw92LDWpDTmCIScsXZijMGN50ZvlagoYETMudS8KpuGjkji1I-GONKSHZOZuK4gJZ6Tl52Yyou5eCoD-YQUwmFTiXEA3Wpz9OIA_0MJaR4R9eRmmlMvRnR09649xCRdmiG-IObnId0LC_IWWu6gpd_uSRvD_evm6dqu3t83qy3latBQMUBW8mVE9JbZLX2VrhboZpWu1p5aJQGj96CUVy13LYWtFHSO-4MKgE1LMn172-ebI9-n4fQH-X3_27wDRdCUZw
CitedBy_id crossref_primary_10_1121_10_0013706
crossref_primary_10_1177_01945998221119156
crossref_primary_10_1007_s00521_025_10990_4
crossref_primary_10_1016_j_ijporl_2022_111229
crossref_primary_10_1542_peds_2020_034546
crossref_primary_10_3390_jcm12226973
crossref_primary_10_21053_ceo_2020_00654
crossref_primary_10_1186_s12875_023_01969_y
crossref_primary_10_1002_lary_30291
crossref_primary_10_3390_electronics12051202
crossref_primary_10_3390_diagnostics13132309
crossref_primary_10_1038_s41746_024_01159_9
crossref_primary_10_1136_jim_2021_001870
crossref_primary_10_3390_bioengineering11020104
crossref_primary_10_1111_coa_13756
crossref_primary_10_1177_01455613231185074
crossref_primary_10_1067_j_cpradiol_2022_11_004
crossref_primary_10_1136_bjophthalmol_2020_316108
crossref_primary_10_3342_kjorl_hns_2020_00633
crossref_primary_10_3390_diagnostics12061318
crossref_primary_10_3390_jcm13247577
crossref_primary_10_3389_fmars_2022_918104
crossref_primary_10_1097_MAO_0000000000003484
crossref_primary_10_1111_coa_13925
crossref_primary_10_1016_j_ipha_2024_05_007
crossref_primary_10_1016_j_measurement_2024_114488
crossref_primary_10_1007_s10439_023_03422_8
crossref_primary_10_1007_s00106_021_01095_0
crossref_primary_10_1002_jum_16194
crossref_primary_10_1002_lio2_1008
crossref_primary_10_1002_ohn_391
crossref_primary_10_1145_3676499
crossref_primary_10_2196_51706
crossref_primary_10_1097_PRS_0000000000009312
crossref_primary_10_1136_bmj_2023_076703
crossref_primary_10_1371_journal_pdig_0000058
crossref_primary_10_1097_ICU_0000000000000779
crossref_primary_10_3390_jcm12185831
crossref_primary_10_1097_MAO_0000000000004267
crossref_primary_10_3390_bios11050143
crossref_primary_10_3390_diagnostics11122392
crossref_primary_10_1002_lary_29302
crossref_primary_10_1016_j_eclinm_2022_101543
crossref_primary_10_1371_journal_pone_0279636
crossref_primary_10_1038_s41598_021_89369_z
crossref_primary_10_1038_s41598_021_91736_9
crossref_primary_10_3390_bioengineering11060628
crossref_primary_10_1177_01455613241245198
crossref_primary_10_1097_RUQ_0000000000000683
crossref_primary_10_1007_s00405_023_08424_9
crossref_primary_10_3171_2022_1_FOCUS21652
crossref_primary_10_1002_emp2_12277
crossref_primary_10_1097_MOO_0000000000000754
ContentType Journal Article
Copyright 2019 The American Laryngological, Rhinological and Otological Society, Inc.
Copyright_xml – notice: 2019 The American Laryngological, Rhinological and Otological Society, Inc.
DBID NPM
DOI 10.1002/lary.28292
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1531-4995
ExternalDocumentID 31532858
Genre Journal Article
GroupedDBID ---
--Z
.55
.GJ
05W
08G
08P
0R~
123
1L6
1OB
1OC
31~
33P
354
3WU
4.4
4Q1
4Q2
4Q3
53G
5RE
8-1
85S
8UM
AAESR
AAHQN
AAIPD
AAKAS
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABOCM
ABPPZ
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADBIZ
ADBTR
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
AE3
AEFGJ
AEGXH
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFTRI
AFUWQ
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AHRYX
AIACR
AIDQK
AIDYY
AITYG
AIURR
AIZYK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AVWKF
AZBYB
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DUUFO
EBS
EJD
EMOBN
EX3
F5P
FEDTE
FUBAC
G-S
GODZA
H0~
HGLYW
HVGLF
HZ~
H~9
IH2
J5H
JF9
JG8
KBYEO
KMI
L7B
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
M18
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
N4W
NNB
NPM
NTWIH
O66
O9-
OAG
OAH
OHT
OL1
OLG
OLH
OLU
OLV
OLY
OLZ
OVD
OWU
OWV
OWW
OWX
OWY
OWZ
P-K
P2P
P2W
PALCI
PQQKQ
QRW
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
T8P
TEORI
TN5
UHB
V9Y
VVN
WBKPD
WH7
WHWMO
WIH
WIJ
WIK
WOHZO
WOQ
WOW
WVDHM
WXSBR
X7M
XOL
XV2
XXN
XYM
YFH
YOC
YQY
ZFV
ZGI
ZXP
ZZTAW
~S-
ID FETCH-LOGICAL-c4232-12ef517c35dbe048db3c6379f8c47d29782dedb2a717f1bfb28a75dc1cae73242
IngestDate Mon Jul 21 06:03:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Computer vision
diagnosis
machine learning
otoscopy
artificial intelligence
Language English
License 2019 The American Laryngological, Rhinological and Otological Society, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4232-12ef517c35dbe048db3c6379f8c47d29782dedb2a717f1bfb28a75dc1cae73242
ORCID 0000-0002-4734-0980
PMID 31532858
ParticipantIDs pubmed_primary_31532858
PublicationCentury 2000
PublicationDate June 2020
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Laryngoscope
PublicationTitleAlternate Laryngoscope
PublicationYear 2020
SSID ssj0017350
Score 2.5215616
Snippet Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use...
SourceID pubmed
SourceType Index Database
StartPage 1408
Title Otoscopic diagnosis using computer vision: An automated machine learning approach
URI https://www.ncbi.nlm.nih.gov/pubmed/31532858
Volume 130
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JAFB5sC-KldN_LHHqT2DhJnKSHgkiLFLUUFLzJZDKxQl2oWmh_fd_LZKJYS5fLEDLZv8njezshV6GQLlJbyxbctlxsbeLHsbCAvNpxFMEg0A7ZbFXqHfeh63VzudulqKX5LCzJj7V5Jf9BFfYBrpgl-wdks4vCDtgGfGEEhGH8FcaPszFmlQwkmlAxYm4wLc5NGm3SrKGoc8dT85-Yz8bAUIFjDpMYSmWaRvSz2uLLZBWXUEO8vo_6yW2yJdAYoBUCWaPSIutt4cuvPYu5zvaYmqLeqU2B2YvYp5IychBUy0D3v8wEZepBGXwRe6Cl-Wvlsa7v-oLGU3TZsuWD4NUnwwQZB27HfM__eXalNraZ2iAbnGPjjhbaalIfEnc8OytIy64XD1EgeXPiijKRkIr2DtlOtQFa1dDukpwa7ZF8M4132CdPGcI0Q5gmCFODMNUI39DqiGb40hRfavClBt8D0rm_a9fqVtoEw5LoQ7fKTMVemUvHi0IF4jYKHVlxeBD70uURC4DhRSoKmQC9PC6Hcch8wb1IlqVQHNnyIdkcwXo4JtRToMsLBoTfcV2scsRlIB0VuMqGH9mVJ-RIf4zeRFc66ZnPdPrtzBkpLBbQOdmK4ddSF8DTZuFlAscndilAJw
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Otoscopic+diagnosis+using+computer+vision%3A+An+automated+machine+learning+approach&rft.jtitle=The+Laryngoscope&rft.au=Livingstone%2C+Devon&rft.au=Chau%2C+Justin&rft.date=2020-06-01&rft.eissn=1531-4995&rft.volume=130&rft.issue=6&rft.spage=1408&rft_id=info:doi/10.1002%2Flary.28292&rft_id=info%3Apmid%2F31532858&rft_id=info%3Apmid%2F31532858&rft.externalDocID=31532858