Otoscopic diagnosis using computer vision: An automated machine learning approach
Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained...
Saved in:
| Published in | The Laryngoscope Vol. 130; no. 6; p. 1408 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
United States
01.06.2020
|
| Subjects | |
| Online Access | Get more information |
| ISSN | 1531-4995 |
| DOI | 10.1002/lary.28292 |
Cover
| Abstract | Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained physicians. This algorithm could be used by primary care providers to facilitate timely referral, triage, and effective treatment.
Otoscopic images were obtained from Google Images (Google Inc., Mountain View, CA), from open access repositories, and within otolaryngology clinics associated with our institution. After preprocessing, 1,366 unique images were uploaded to the Google Cloud Vision AutoML platform (Google Inc.) and annotated with one or more of 14 otologic diagnoses. A consensus set of labels for each otoscopic image was attained, and a multilabel classifier architecture algorithm was trained. The performance of the algorithm on an 89-image test set was compared to the performance of physicians from pediatrics, emergency medicine, otolaryngology, and family medicine.
For all diagnoses combined, the average precision (positive predictive value) of the algorithm was 90.9%, and the average recall (sensitivity) was 86.1%. The algorithm made 79 correct diagnoses with an accuracy of 88.7%. The average physician accuracy was 58.9%.
We have created a computer vision algorithm using automated machine learning that on average rivals the accuracy of the physicians we tested. Fourteen different otologic diagnoses were analyzed. The field of medicine will be changed dramatically by artificial intelligence within the next few decades, and physicians of all specialties must be prepared to guide that process.
NA Laryngoscope, 130:1408-1413, 2020. |
|---|---|
| AbstractList | Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use an automated machine learning approach to build a computer vision algorithm for otoscopic diagnosis capable of greater accuracy than trained physicians. This algorithm could be used by primary care providers to facilitate timely referral, triage, and effective treatment.
Otoscopic images were obtained from Google Images (Google Inc., Mountain View, CA), from open access repositories, and within otolaryngology clinics associated with our institution. After preprocessing, 1,366 unique images were uploaded to the Google Cloud Vision AutoML platform (Google Inc.) and annotated with one or more of 14 otologic diagnoses. A consensus set of labels for each otoscopic image was attained, and a multilabel classifier architecture algorithm was trained. The performance of the algorithm on an 89-image test set was compared to the performance of physicians from pediatrics, emergency medicine, otolaryngology, and family medicine.
For all diagnoses combined, the average precision (positive predictive value) of the algorithm was 90.9%, and the average recall (sensitivity) was 86.1%. The algorithm made 79 correct diagnoses with an accuracy of 88.7%. The average physician accuracy was 58.9%.
We have created a computer vision algorithm using automated machine learning that on average rivals the accuracy of the physicians we tested. Fourteen different otologic diagnoses were analyzed. The field of medicine will be changed dramatically by artificial intelligence within the next few decades, and physicians of all specialties must be prepared to guide that process.
NA Laryngoscope, 130:1408-1413, 2020. |
| Author | Chau, Justin Livingstone, Devon |
| Author_xml | – sequence: 1 givenname: Devon orcidid: 0000-0002-4734-0980 surname: Livingstone fullname: Livingstone, Devon organization: Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Calgary, Calgary, Alberta, Canada – sequence: 2 givenname: Justin surname: Chau fullname: Chau, Justin |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31532858$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1j9tKxDAURYMozkVf_ADJD3RMThqT-jYM3mBgEPR5yOV0jLRJaFrBv3dEfdqw92LDWpDTmCIScsXZijMGN50ZvlagoYETMudS8KpuGjkji1I-GONKSHZOZuK4gJZ6Tl52Yyou5eCoD-YQUwmFTiXEA3Wpz9OIA_0MJaR4R9eRmmlMvRnR09649xCRdmiG-IObnId0LC_IWWu6gpd_uSRvD_evm6dqu3t83qy3latBQMUBW8mVE9JbZLX2VrhboZpWu1p5aJQGj96CUVy13LYWtFHSO-4MKgE1LMn172-ebI9-n4fQH-X3_27wDRdCUZw |
| CitedBy_id | crossref_primary_10_1121_10_0013706 crossref_primary_10_1177_01945998221119156 crossref_primary_10_1007_s00521_025_10990_4 crossref_primary_10_1016_j_ijporl_2022_111229 crossref_primary_10_1542_peds_2020_034546 crossref_primary_10_3390_jcm12226973 crossref_primary_10_21053_ceo_2020_00654 crossref_primary_10_1186_s12875_023_01969_y crossref_primary_10_1002_lary_30291 crossref_primary_10_3390_electronics12051202 crossref_primary_10_3390_diagnostics13132309 crossref_primary_10_1038_s41746_024_01159_9 crossref_primary_10_1136_jim_2021_001870 crossref_primary_10_3390_bioengineering11020104 crossref_primary_10_1111_coa_13756 crossref_primary_10_1177_01455613231185074 crossref_primary_10_1067_j_cpradiol_2022_11_004 crossref_primary_10_1136_bjophthalmol_2020_316108 crossref_primary_10_3342_kjorl_hns_2020_00633 crossref_primary_10_3390_diagnostics12061318 crossref_primary_10_3390_jcm13247577 crossref_primary_10_3389_fmars_2022_918104 crossref_primary_10_1097_MAO_0000000000003484 crossref_primary_10_1111_coa_13925 crossref_primary_10_1016_j_ipha_2024_05_007 crossref_primary_10_1016_j_measurement_2024_114488 crossref_primary_10_1007_s10439_023_03422_8 crossref_primary_10_1007_s00106_021_01095_0 crossref_primary_10_1002_jum_16194 crossref_primary_10_1002_lio2_1008 crossref_primary_10_1002_ohn_391 crossref_primary_10_1145_3676499 crossref_primary_10_2196_51706 crossref_primary_10_1097_PRS_0000000000009312 crossref_primary_10_1136_bmj_2023_076703 crossref_primary_10_1371_journal_pdig_0000058 crossref_primary_10_1097_ICU_0000000000000779 crossref_primary_10_3390_jcm12185831 crossref_primary_10_1097_MAO_0000000000004267 crossref_primary_10_3390_bios11050143 crossref_primary_10_3390_diagnostics11122392 crossref_primary_10_1002_lary_29302 crossref_primary_10_1016_j_eclinm_2022_101543 crossref_primary_10_1371_journal_pone_0279636 crossref_primary_10_1038_s41598_021_89369_z crossref_primary_10_1038_s41598_021_91736_9 crossref_primary_10_3390_bioengineering11060628 crossref_primary_10_1177_01455613241245198 crossref_primary_10_1097_RUQ_0000000000000683 crossref_primary_10_1007_s00405_023_08424_9 crossref_primary_10_3171_2022_1_FOCUS21652 crossref_primary_10_1002_emp2_12277 crossref_primary_10_1097_MOO_0000000000000754 |
| ContentType | Journal Article |
| Copyright | 2019 The American Laryngological, Rhinological and Otological Society, Inc. |
| Copyright_xml | – notice: 2019 The American Laryngological, Rhinological and Otological Society, Inc. |
| DBID | NPM |
| DOI | 10.1002/lary.28292 |
| DatabaseName | PubMed |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1531-4995 |
| ExternalDocumentID | 31532858 |
| Genre | Journal Article |
| GroupedDBID | --- --Z .55 .GJ 05W 08G 08P 0R~ 123 1L6 1OB 1OC 31~ 33P 354 3WU 4.4 4Q1 4Q2 4Q3 53G 5RE 8-1 85S 8UM AAESR AAHQN AAIPD AAKAS AAMMB AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAZKR ABCUV ABJNI ABOCM ABPPZ ABQWH ABXGK ACAHQ ACBWZ ACCZN ACGFS ACGOF ACMXC ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADBIZ ADBTR ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN AE3 AEFGJ AEGXH AEIGN AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFTRI AFUWQ AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AHRYX AIACR AIDQK AIDYY AITYG AIURR AIZYK ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AVWKF AZBYB AZFZN AZVAB BDRZF BFHJK BHBCM BMXJE BRXPI CS3 DCZOG DRFUL DRMAN DRSTM DUUFO EBS EJD EMOBN EX3 F5P FEDTE FUBAC G-S GODZA H0~ HGLYW HVGLF HZ~ H~9 IH2 J5H JF9 JG8 KBYEO KMI L7B LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES M18 MEWTI MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ N4W NNB NPM NTWIH O66 O9- OAG OAH OHT OL1 OLG OLH OLU OLV OLY OLZ OVD OWU OWV OWW OWX OWY OWZ P-K P2P P2W PALCI PQQKQ QRW RIWAO RJQFR ROL SAMSI SUPJJ T8P TEORI TN5 UHB V9Y VVN WBKPD WH7 WHWMO WIH WIJ WIK WOHZO WOQ WOW WVDHM WXSBR X7M XOL XV2 XXN XYM YFH YOC YQY ZFV ZGI ZXP ZZTAW ~S- |
| ID | FETCH-LOGICAL-c4232-12ef517c35dbe048db3c6379f8c47d29782dedb2a717f1bfb28a75dc1cae73242 |
| IngestDate | Mon Jul 21 06:03:09 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Computer vision diagnosis machine learning otoscopy artificial intelligence |
| Language | English |
| License | 2019 The American Laryngological, Rhinological and Otological Society, Inc. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c4232-12ef517c35dbe048db3c6379f8c47d29782dedb2a717f1bfb28a75dc1cae73242 |
| ORCID | 0000-0002-4734-0980 |
| PMID | 31532858 |
| ParticipantIDs | pubmed_primary_31532858 |
| PublicationCentury | 2000 |
| PublicationDate | June 2020 |
| PublicationDateYYYYMMDD | 2020-06-01 |
| PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | The Laryngoscope |
| PublicationTitleAlternate | Laryngoscope |
| PublicationYear | 2020 |
| SSID | ssj0017350 |
| Score | 2.5215616 |
| Snippet | Access to otolaryngology is limited by lengthy wait lists and lack of specialists, especially in rural and remote areas. The objective of this study was to use... |
| SourceID | pubmed |
| SourceType | Index Database |
| StartPage | 1408 |
| Title | Otoscopic diagnosis using computer vision: An automated machine learning approach |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/31532858 |
| Volume | 130 |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ja8JAFB5sC-KldN_LHHqT2DhJnKSHgkiLFLUUFLzJZDKxQl2oWmh_fd_LZKJYS5fLEDLZv8njezshV6GQLlJbyxbctlxsbeLHsbCAvNpxFMEg0A7ZbFXqHfeh63VzudulqKX5LCzJj7V5Jf9BFfYBrpgl-wdks4vCDtgGfGEEhGH8FcaPszFmlQwkmlAxYm4wLc5NGm3SrKGoc8dT85-Yz8bAUIFjDpMYSmWaRvSz2uLLZBWXUEO8vo_6yW2yJdAYoBUCWaPSIutt4cuvPYu5zvaYmqLeqU2B2YvYp5IychBUy0D3v8wEZepBGXwRe6Cl-Wvlsa7v-oLGU3TZsuWD4NUnwwQZB27HfM__eXalNraZ2iAbnGPjjhbaalIfEnc8OytIy64XD1EgeXPiijKRkIr2DtlOtQFa1dDukpwa7ZF8M4132CdPGcI0Q5gmCFODMNUI39DqiGb40hRfavClBt8D0rm_a9fqVtoEw5LoQ7fKTMVemUvHi0IF4jYKHVlxeBD70uURC4DhRSoKmQC9PC6Hcch8wb1IlqVQHNnyIdkcwXo4JtRToMsLBoTfcV2scsRlIB0VuMqGH9mVJ-RIf4zeRFc66ZnPdPrtzBkpLBbQOdmK4ddSF8DTZuFlAscndilAJw |
| linkProvider | National Library of Medicine |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Otoscopic+diagnosis+using+computer+vision%3A+An+automated+machine+learning+approach&rft.jtitle=The+Laryngoscope&rft.au=Livingstone%2C+Devon&rft.au=Chau%2C+Justin&rft.date=2020-06-01&rft.eissn=1531-4995&rft.volume=130&rft.issue=6&rft.spage=1408&rft_id=info:doi/10.1002%2Flary.28292&rft_id=info%3Apmid%2F31532858&rft_id=info%3Apmid%2F31532858&rft.externalDocID=31532858 |