Detection of Salmonella Typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms
Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commer...
        Saved in:
      
    
          | Published in | Journal of food science and technology Vol. 58; no. 10; pp. 3861 - 3870 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New Delhi
          Springer India
    
        01.10.2021
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0022-1155 0975-8402 0975-8402  | 
| DOI | 10.1007/s13197-020-04847-y | 
Cover
| Abstract | Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of
Salmonella Typhimurium
contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S.
Typhimurium
quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (
R
P
2
 = 0.989; RMSE
P
 = 0.137; RPD = 14.93) > PSO-SVMR (
R
P
2
 = 0.986; RMSE
P
 = 0.145; RPD = 14.11) > GS-SVMR (
R
P
2
 = 0.966; RMSE
P
 = 0.148; RPD = 13.82) > SVMR (
R
P
2
 = 0.949; RMSE
P
 = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S.
Typhimurium
in a food matrix. | 
    
|---|---|
| AbstractList | Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of
contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S.
quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (
 = 0.989; RMSE
 = 0.137; RPD = 14.93) > PSO-SVMR (
 = 0.986; RMSE
 = 0.145; RPD = 14.11) > GS-SVMR (
 = 0.966; RMSE
 = 0.148; RPD = 13.82) > SVMR (
 = 0.949; RMSE
 = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S.
in a food matrix. Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P 2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P 2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P 2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P 2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P 2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P 2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P 2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P 2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix. Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (RP2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (RP2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (RP2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (RP2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix. Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR ( R P 2 = 0.989; RMSE P = 0.137; RPD = 14.93) > PSO-SVMR ( R P 2 = 0.986; RMSE P = 0.145; RPD = 14.11) > GS-SVMR ( R P 2 = 0.966; RMSE P = 0.148; RPD = 13.82) > SVMR ( R P 2 = 0.949; RMSE P = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix. Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P² = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P² = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P² = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P² = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.  | 
    
| Author | Huang, Xingyi Yi, Ren Bonah, Ernest Hongying, Yang Tu, Hongyang Yu, Shanshan Aheto, Joshua Harrington  | 
    
| Author_xml | – sequence: 1 givenname: Ernest surname: Bonah fullname: Bonah, Ernest organization: School of Food and Biological Engineering, Jiangsu University, Laboratory Services Department, Food and Drugs Authority – sequence: 2 givenname: Xingyi orcidid: 0000-0002-7904-4561 surname: Huang fullname: Huang, Xingyi email: h_xingyi@163.com organization: School of Food and Biological Engineering, Jiangsu University – sequence: 3 givenname: Yang surname: Hongying fullname: Hongying, Yang organization: School of Food and Biological Engineering, Jiangsu University – sequence: 4 givenname: Joshua Harrington surname: Aheto fullname: Aheto, Joshua Harrington organization: School of Food and Biological Engineering, Jiangsu University – sequence: 5 givenname: Ren surname: Yi fullname: Yi, Ren organization: School of Food and Biological Engineering, Jiangsu University, School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture – sequence: 6 givenname: Shanshan surname: Yu fullname: Yu, Shanshan organization: School of Food and Biological Engineering, Jiangsu University – sequence: 7 givenname: Hongyang surname: Tu fullname: Tu, Hongyang organization: School of Food and Biological Engineering, Jiangsu University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34471310$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNks1u1DAUhSNUREvpC7BAltiwCdhOYjsbJNTyJ1ViQVlbTuZm4uKfYDtTDa_IS-HMDBS6KGSTSPnOucf3-HFx5LyDonhK8EuCMX8VSUVaXmKKS1yLmpfbB8UJbnlTihrTo_yNKS0JaZrj4izGa5yfinJB8aPiuKprnvX4pPhxAQn6pL1DfkCflbF5jDEKXW2nUds56Nmi3rukrHZqxxnYgIlIOzQEiCOafPiKorKTgYjmqN0agcmewTvdI-cjoGiz5xS0SztdUm4FFt3oNKI4T9kgoU1W-ICs6kftAAVYZ_O4zMswspDUCDlNTNnTT0lb_X0fR5m1D9nJxifFw0GZCGeH92nx5d3bq_MP5eWn9x_P31yWfU3ptqyEYqxtOlEPbU_zxhgHJjpcE4FZ07Uw4IrTVnDOGsFWqus44ZwICgwYa6rqtKj2vrOb1PZGGSPz2awKW0mwXNqR-3Zkbkfu2pHbrHq9V01zZ2HVg0tB3Sq90vLvP06Pcu03UlQNbwnJBi8OBsF_myEmaXXsl7Ic-DlKyirGc2zB_o02TDQtryuc0ed30Gs_B5f3t1CYZFIss5_9Gf536l8XKQNiD_TBxxhgkL1Ou4LyWbS5fzH0jvS_tnnoIC7Xag3hNvY9qp8aVARP | 
    
| CitedBy_id | crossref_primary_10_3390_s22072800 crossref_primary_10_1016_j_fbp_2022_10_005 crossref_primary_10_1016_j_energy_2024_131510 crossref_primary_10_1016_j_jfca_2023_105665 crossref_primary_10_3390_s23020672 crossref_primary_10_1016_j_ccr_2025_216588 crossref_primary_10_1016_j_compag_2025_110109 crossref_primary_10_1016_j_foodchem_2023_135950 crossref_primary_10_1155_2024_6612162 crossref_primary_10_3390_foods13172656 crossref_primary_10_1016_j_cej_2024_155894 crossref_primary_10_1155_2024_6711621 crossref_primary_10_1007_s00217_023_04381_z crossref_primary_10_1016_j_tifs_2024_104787 crossref_primary_10_1002_aic_18115 crossref_primary_10_1016_j_jafr_2023_100917 crossref_primary_10_1016_j_tifs_2023_104297 crossref_primary_10_3390_s24134126 crossref_primary_10_1038_s41538_025_00394_y crossref_primary_10_3390_pathogens12010104  | 
    
| Cites_doi | 10.1007/s00216-019-02345-5 10.1016/j.cherd.2019.06.034 10.1007/BF00994018 10.1016/j.snb.2014.10.051 10.1007/s13197-019-04143-4 10.1007/s12161-018-01407-1 10.1016/j.advengsoft.2011.09.026 10.1016/j.neucom.2013.01.027 10.1016/j.foodchem.2019.126050 10.1016/j.proeng.2014.11.686 10.1371/journal.pmed.1001923 10.1016/j.snb.2008.02.046 10.1016/j.foodpol.2015.12.007 10.1111/jfs.12708 10.1007/s12182-014-0010-9 10.1007/s10489-016-0843-6 10.1007/s12205-015-0210-x 10.1145/1961189.1961199 10.1016/j.trac.2015.08.010 10.1007/978-3-319-91086-4_9 10.1016/j.biosystemseng.2016.09.005 10.1093/femsre/fuu013 10.1016/j.compag.2018.06.047 10.1016/j.renene.2003.11.009 10.1016/j.foodres.2018.07.067 10.1016/j.catena.2017.05.008 10.1016/j.lwt.2019.108914 10.1016/j.epsr.2019.106031 10.1016/j.microc.2020.104660 10.1016/S0305-0483(01)00026-3 10.1016/j.talanta.2005.03.025 10.4315/0362-028X-69.8.1844 10.1111/jfpe.13236 10.1017/s0263574700232827 10.1109/iccsce.2017.8284413  | 
    
| ContentType | Journal Article | 
    
| Copyright | Association of Food Scientists & Technologists (India) 2020 Association of Food Scientists & Technologists (India) 2020.  | 
    
| Copyright_xml | – notice: Association of Food Scientists & Technologists (India) 2020 – notice: Association of Food Scientists & Technologists (India) 2020.  | 
    
| DBID | AAYXX CITATION NPM 04Q 04S 04W 3V. 7QL 7QO 7QR 7RQ 7ST 7T7 7TM 7WY 7WZ 7X2 7XB 87Z 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS BENPR BEZIV BGLVJ BHPHI C1K CCPQU DWQXO FR3 FRNLG F~G HCIFZ K60 K6~ L.- L6V M0C M0K M7S P64 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS Q9U SOI 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| DOI | 10.1007/s13197-020-04847-y | 
    
| DatabaseName | CrossRef PubMed India Database India Database: Business India Database: Science & Technology ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Chemoreception Abstracts Career & Technical Education Database Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) Agricultural Science Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection (ProQuest) ProQuest Central Business Premium Collection (Proquest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ABI/INFORM Global Agriculture Science Database Engineering Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Agricultural Science Database ProQuest Business Collection (Alumni Edition) Nucleic Acids Abstracts SciTech Premium Collection ABI/INFORM Complete Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) Engineering Collection ProQuest Indian Journals Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest Business Collection Biotechnology and BioEngineering Abstracts ProQuest Career and Technical Education Indian Journals: Business ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest SciTech Collection Materials Science & Engineering Collection ProQuest One Business (Alumni) Indian Journals: Science & Technology Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic Agricultural Science Database AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry Diet & Clinical Nutrition  | 
    
| EISSN | 0975-8402 | 
    
| EndPage | 3870 | 
    
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8357911 PMC8357911 34471310 10_1007_s13197_020_04847_y  | 
    
| Genre | Journal Article | 
    
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFD04001002 – fundername: ; grantid: 2017YFD04001002  | 
    
| GroupedDBID | -58 -5G -BR -EM -~C 04Q 04S 04W 06D 0R~ 0VY 203 2JN 2KG 2KM 2VQ 30V 3V. 4.4 406 408 40D 53G 67Z 7RQ 7WY 7X2 8FE 8FG 8FH 8FL 95. 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABXPI ACAOD ACBXY ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AOIJS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN BAWUL BENPR BEZIV BGLVJ BGNMA BHPHI BPHCQ CAG CCPQU COF CSCUP DDRTE DIK DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GX1 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HYE HZ~ I0C IKXTQ ITM IWAJR J-C J0Z JBSCW JZLTJ K60 K6~ KOV L6V L7B LLZTM M0C M0K M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J OK1 P2P P9N PQBIZ PQBZA PQQKQ PROAC PT4 PTHSS Q2X R9I RLLFE ROL RPM RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W48 WK8 Z45 Z7U Z7V Z7W ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABRTQ AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 7QL 7QO 7QR 7ST 7T7 7TM 7XB 8FD 8FK C1K FR3 L.- P64 PKEHL PQEST PQUKI Q9U SOI 7X8 7S9 L.6 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c422y-38a6695b84f9c297567e68b0418065b9ef037298776586dabb7177182e6e66533 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0022-1155 0975-8402  | 
    
| IngestDate | Sun Oct 26 04:05:56 EDT 2025 Tue Sep 30 17:19:00 EDT 2025 Thu Oct 02 12:01:22 EDT 2025 Thu Sep 04 20:33:55 EDT 2025 Fri Jul 25 12:11:20 EDT 2025 Wed Feb 19 02:08:54 EST 2025 Wed Oct 01 01:55:22 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Fri Feb 21 02:47:47 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Foodborne pathogens Chemometric algorithms Electronic nose Longissimus pork muscle Metaheuristic algorithms Salmonella  | 
    
| Language | English | 
    
| License | Association of Food Scientists & Technologists (India) 2020. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c422y-38a6695b84f9c297567e68b0418065b9ef037298776586dabb7177182e6e66533 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0002-7904-4561 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8357911 | 
    
| PMID | 34471310 | 
    
| PQID | 2560156881 | 
    
| PQPubID | 326253 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s13197_020_04847_y pubmedcentral_primary_oai_pubmedcentral_nih_gov_8357911 proquest_miscellaneous_2636798786 proquest_miscellaneous_2568597430 proquest_journals_2560156881 pubmed_primary_34471310 crossref_citationtrail_10_1007_s13197_020_04847_y crossref_primary_10_1007_s13197_020_04847_y springer_journals_10_1007_s13197_020_04847_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20211000 | 
    
| PublicationDateYYYYMMDD | 2021-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2021 text: 20211000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New Delhi | 
    
| PublicationPlace_xml | – name: New Delhi – name: India  | 
    
| PublicationTitle | Journal of food science and technology | 
    
| PublicationTitleAbbrev | J Food Sci Technol | 
    
| PublicationTitleAlternate | J Food Sci Technol | 
    
| PublicationYear | 2021 | 
    
| Publisher | Springer India Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer India – name: Springer Nature B.V  | 
    
| References | Chang, Chih-Jen (CR8) 2011; 2 Havelaar, Kirk, Torgerson, Gibb, Hald, Lake, Praet, Bellinger, de Silva, Gargouri, Speybroeck, Cawthorne, Mathers, Stein, Angulo, Devleesschauwer (CR15) 2015; 12 Xu, Zhao, Wang, Shi (CR33) 2017; 157 Gobbi, Falasconi, Zambotti, Sberveglieri, Pulvirenti, Sberveglieri (CR14) 2015; 207 Bao, Hu, Xiong (CR5) 2013; 117 Timsorn, Thoopboochagorn, Lertwattanasakul, Wongchoosuk (CR31) 2016; 151 Chang, Huang, Tian, Wang, Aheto, Ernest, Yi (CR9) 2020; 312 Shokri, Sadeghi, Marvast, Narasimhan (CR27) 2015; 12 Huang, Yu, Xu, Aheto, Bonah, Ma, Wu, Zhang (CR18) 2019; 39 Elbisy (CR11) 2015; 19 Audrain, Farag, Ryu, Ghigo (CR3) 2015; 39 Aheto, Huang, Tian, Ren, Ernest, Alenyorege, Dai, Hongyang, Xiaorui, Wang (CR1) 2020; 412 Patil, Mandal, Hegde (CR23) 2012; 45 Nadi, Salehi, Tamai, Foroushani, Sillanpaa, Dallal (CR21) 2020; 155 Pozo, Schroeder (CR25) 2016; 59 Siripatrawan (CR28) 2008; 133 Zambotti, Sberveglieri, Gobbi, Falasconi, Nunez, Pulvirenti (CR35) 2014; 87 CR2 Mohandes, Halawani, Rehman, Hussain (CR19) 2004; 29 Galvão, Araujo, José, Pontes, Silva, Saldanha (CR12) 2005; 67 CR4 Cortes, Vapnik (CR10) 1995; 20 Giungato, Renna, Rana, Licen, Barbieri (CR13) 2019; 115 Osaili, Hasan, Dhanasekaran, Obaid, Al-Nabulsi, Rao, Fatima, Ayyash, Savvaidis, Holley (CR22) 2020; 120 Wang, Li, Yang, Ruan, Sun (CR32) 2016; 78 Siripatrawan, Linz, Harte (CR29) 2006; 69 Xu, Zhou, Tian, Lu, Luo, Lan (CR34) 2018; 152 Bonah, Huang, Aheto, Osae (CR6) 2019 Herceg, Ujević Andrijić, Bolf (CR16) 2019; 149 Hu, Yin, Ma, Liu (CR17) 2019; 12 Phan, Nguyen, Bui (CR24) 2017; 46 Tay, Cao (CR30) 2001; 29 Bonah, Huang, Yi, Aheto, Osae, Golly (CR7) 2019 Saddique, Bhatti, Haroon, Sattar, Amin, Sajjad, ul Haq, Awan, Rasheed (CR26) 2020; 178 Moscato, Cotta, Gendreau, Potvin (CR20) 2019 MS Elbisy (4847_CR11) 2015; 19 L Hu (4847_CR17) 2019; 12 S Xu (4847_CR34) 2018; 152 MS Saddique (4847_CR26) 2020; 178 P Giungato (4847_CR13) 2019; 115 Y Bao (4847_CR5) 2013; 117 U Siripatrawan (4847_CR28) 2008; 133 AV Phan (4847_CR24) 2017; 46 E Bonah (4847_CR7) 2019 RKH Galvão (4847_CR12) 2005; 67 E Gobbi (4847_CR14) 2015; 207 ZR Nadi (4847_CR21) 2020; 155 SG Patil (4847_CR23) 2012; 45 S Herceg (4847_CR16) 2019; 149 VF Pozo (4847_CR25) 2016; 59 K Timsorn (4847_CR31) 2016; 151 4847_CR2 4847_CR4 C Cortes (4847_CR10) 1995; 20 S Shokri (4847_CR27) 2015; 12 P Moscato (4847_CR20) 2019 C Chang (4847_CR8) 2011; 2 E Bonah (4847_CR6) 2019 Y Wang (4847_CR32) 2016; 78 TM Osaili (4847_CR22) 2020; 120 S Xu (4847_CR33) 2017; 157 G Zambotti (4847_CR35) 2014; 87 AH Havelaar (4847_CR15) 2015; 12 JH Aheto (4847_CR1) 2020; 412 B Audrain (4847_CR3) 2015; 39 FEH Tay (4847_CR30) 2001; 29 X Chang (4847_CR9) 2020; 312 X Huang (4847_CR18) 2019; 39 MA Mohandes (4847_CR19) 2004; 29 U Siripatrawan (4847_CR29) 2006; 69  | 
    
| References_xml | – volume: 412 start-page: 1169 year: 2020 end-page: 1179 ident: CR1 article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat publication-title: Anal Bioanal Chem doi: 10.1007/s00216-019-02345-5 – volume: 149 start-page: 95 year: 2019 end-page: 103 ident: CR16 article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.06.034 – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: CR10 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 207 start-page: 1104 year: 2015 end-page: 1113 ident: CR14 article-title: Rapid diagnosis of Enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2014.10.051 – year: 2019 ident: CR6 article-title: Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review publication-title: J Food Sci Technol doi: 10.1007/s13197-019-04143-4 – volume: 12 start-page: 633 year: 2019 end-page: 643 ident: CR17 article-title: Vis-NIR spectroscopy combined with wavelengths selection by PSO optimization algorithm for simultaneous determination of four quality parameters and classification of Soy Sauce publication-title: Food Anal Methods doi: 10.1007/s12161-018-01407-1 – ident: CR4 – volume: 45 start-page: 203 year: 2012 end-page: 212 ident: CR23 article-title: Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2011.09.026 – ident: CR2 – volume: 117 start-page: 98 year: 2013 end-page: 106 ident: CR5 article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.027 – volume: 312 start-page: 126050 year: 2020 ident: CR9 article-title: Dynamic characteristics of dough during the fermentation process of Chinese steamed bread publication-title: Food Chem doi: 10.1016/j.foodchem.2019.126050 – volume: 87 start-page: 1302 year: 2014 end-page: 1305 ident: CR35 article-title: Fast identification of microbiological contamination in vegetable soup by electronic nose publication-title: Procedia Eng doi: 10.1016/j.proeng.2014.11.686 – volume: 12 start-page: e1001923 year: 2015 ident: CR15 article-title: World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010 publication-title: PLOS Med doi: 10.1371/journal.pmed.1001923 – volume: 133 start-page: 414 year: 2008 end-page: 419 ident: CR28 article-title: Rapid differentiation between and using metal oxide sensors integrated with pattern recognition publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2008.02.046 – volume: 59 start-page: 66 year: 2016 end-page: 77 ident: CR25 article-title: Evaluating the costs of meat and poultry recalls to food firms using stock returns publication-title: Food Policy doi: 10.1016/j.foodpol.2015.12.007 – volume: 39 start-page: e12708 year: 2019 ident: CR18 article-title: Rapid and non-destructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose publication-title: J Food Saf doi: 10.1111/jfs.12708 – volume: 12 start-page: 177 year: 2015 end-page: 188 ident: CR27 article-title: Improvement of the prediction performance of a soft sensor model based on support vector regression for production of ultra-low sulfur diesel publication-title: Pet Sci doi: 10.1007/s12182-014-0010-9 – volume: 46 start-page: 455 year: 2017 end-page: 469 ident: CR24 article-title: Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems publication-title: Appl Intell doi: 10.1007/s10489-016-0843-6 – volume: 19 start-page: 2307 year: 2015 end-page: 2316 ident: CR11 article-title: Support Vector Machine and regression analysis to predict the field hydraulic conductivity of sandy soil publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0210-x – volume: 2 start-page: 27:21 year: 2011 end-page: 27:27 ident: CR8 article-title: LIBSVM : a library for support vector machines publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 78 start-page: 1 year: 2016 end-page: 16 ident: CR32 article-title: Microbial volatile organic compounds and their application in microorganism identification in foodstuff publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2015.08.010 – start-page: 275 year: 2019 end-page: 309 ident: CR20 article-title: An accelerated introduction to memetic algorithms publication-title: Handbook of Metaheuristics doi: 10.1007/978-3-319-91086-4_9 – volume: 151 start-page: 116 year: 2016 end-page: 125 ident: CR31 article-title: Evaluation of bacterial population on chicken meats using a briefcase electronic nose publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2016.09.005 – volume: 39 start-page: 222 year: 2015 end-page: 233 ident: CR3 article-title: Role of bacterial volatile compounds in bacterial biology publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuu013 – volume: 152 start-page: 19 year: 2018 end-page: 25 ident: CR34 article-title: Study of the similarity and recognition between volatiles of brown rice plant hoppers and rice stem based on the electronic nose publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.06.047 – volume: 29 start-page: 939 year: 2004 end-page: 947 ident: CR19 article-title: Support vector machines for wind speed prediction publication-title: Renew Energy doi: 10.1016/j.renene.2003.11.009 – volume: 115 start-page: 65 year: 2019 end-page: 72 ident: CR13 article-title: Characterization of dried and freeze-dried sea fennel ( L.) samples with headspace gas-chromatography/mass spectrometry and evaluation of an electronic nose discrimination potential publication-title: Food Res Int doi: 10.1016/j.foodres.2018.07.067 – volume: 157 start-page: 12 year: 2017 end-page: 23 ident: CR33 article-title: Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques publication-title: CATENA doi: 10.1016/j.catena.2017.05.008 – volume: 120 start-page: 108914 year: 2020 ident: CR22 article-title: Thermal inactivation of Escherichia coli O157:H7 strains and spp. in camel meat burgers publication-title: LWT doi: 10.1016/j.lwt.2019.108914 – volume: 178 start-page: 106031 year: 2020 ident: CR26 article-title: Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques-Status and technological review publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.106031 – volume: 155 start-page: 104660 year: 2020 ident: CR21 article-title: Evaluation of antibiotic resistance and prevalence of common enterica serovars isolated from foodborne outbreaks publication-title: Microchem J doi: 10.1016/j.microc.2020.104660 – volume: 29 start-page: 309 year: 2001 end-page: 317 ident: CR30 article-title: Application of support vector machines in financial time series forecasting publication-title: Omega doi: 10.1016/S0305-0483(01)00026-3 – volume: 67 start-page: 736 year: 2005 end-page: 740 ident: CR12 article-title: A method for calibration and validation subset partitioning publication-title: Talanta doi: 10.1016/j.talanta.2005.03.025 – volume: 69 start-page: 1844 year: 2006 end-page: 1850 ident: CR29 article-title: Detection of escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network publication-title: J Food Prot doi: 10.4315/0362-028X-69.8.1844 – year: 2019 ident: CR7 article-title: Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm publication-title: J Food Process Eng doi: 10.1111/jfpe.13236 – volume: 149 start-page: 95 year: 2019 ident: 4847_CR16 publication-title: Chem Eng Res Des doi: 10.1016/j.cherd.2019.06.034 – volume: 120 start-page: 108914 year: 2020 ident: 4847_CR22 publication-title: LWT doi: 10.1016/j.lwt.2019.108914 – volume: 12 start-page: e1001923 year: 2015 ident: 4847_CR15 publication-title: PLOS Med doi: 10.1371/journal.pmed.1001923 – volume: 12 start-page: 177 year: 2015 ident: 4847_CR27 publication-title: Pet Sci doi: 10.1007/s12182-014-0010-9 – volume: 152 start-page: 19 year: 2018 ident: 4847_CR34 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.06.047 – volume: 29 start-page: 939 year: 2004 ident: 4847_CR19 publication-title: Renew Energy doi: 10.1016/j.renene.2003.11.009 – volume: 20 start-page: 273 year: 1995 ident: 4847_CR10 publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 2 start-page: 27:21 year: 2011 ident: 4847_CR8 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 87 start-page: 1302 year: 2014 ident: 4847_CR35 publication-title: Procedia Eng doi: 10.1016/j.proeng.2014.11.686 – volume: 19 start-page: 2307 year: 2015 ident: 4847_CR11 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-015-0210-x – volume: 133 start-page: 414 year: 2008 ident: 4847_CR28 publication-title: Sensors Actuators B Chem doi: 10.1016/j.snb.2008.02.046 – volume: 29 start-page: 309 year: 2001 ident: 4847_CR30 publication-title: Omega doi: 10.1016/S0305-0483(01)00026-3 – volume: 115 start-page: 65 year: 2019 ident: 4847_CR13 publication-title: Food Res Int doi: 10.1016/j.foodres.2018.07.067 – volume: 12 start-page: 633 year: 2019 ident: 4847_CR17 publication-title: Food Anal Methods doi: 10.1007/s12161-018-01407-1 – volume: 178 start-page: 106031 year: 2020 ident: 4847_CR26 publication-title: Electr Power Syst Res doi: 10.1016/j.epsr.2019.106031 – volume: 155 start-page: 104660 year: 2020 ident: 4847_CR21 publication-title: Microchem J doi: 10.1016/j.microc.2020.104660 – volume: 39 start-page: 222 year: 2015 ident: 4847_CR3 publication-title: FEMS Microbiol Rev doi: 10.1093/femsre/fuu013 – ident: 4847_CR2 doi: 10.1017/s0263574700232827 – volume: 117 start-page: 98 year: 2013 ident: 4847_CR5 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.027 – year: 2019 ident: 4847_CR6 publication-title: J Food Sci Technol doi: 10.1007/s13197-019-04143-4 – start-page: 275 volume-title: Handbook of Metaheuristics year: 2019 ident: 4847_CR20 doi: 10.1007/978-3-319-91086-4_9 – volume: 59 start-page: 66 year: 2016 ident: 4847_CR25 publication-title: Food Policy doi: 10.1016/j.foodpol.2015.12.007 – ident: 4847_CR4 doi: 10.1109/iccsce.2017.8284413 – volume: 46 start-page: 455 year: 2017 ident: 4847_CR24 publication-title: Appl Intell doi: 10.1007/s10489-016-0843-6 – volume: 412 start-page: 1169 year: 2020 ident: 4847_CR1 publication-title: Anal Bioanal Chem doi: 10.1007/s00216-019-02345-5 – volume: 157 start-page: 12 year: 2017 ident: 4847_CR33 publication-title: CATENA doi: 10.1016/j.catena.2017.05.008 – year: 2019 ident: 4847_CR7 publication-title: J Food Process Eng doi: 10.1111/jfpe.13236 – volume: 207 start-page: 1104 year: 2015 ident: 4847_CR14 publication-title: Sens Actuators B Chem doi: 10.1016/j.snb.2014.10.051 – volume: 69 start-page: 1844 year: 2006 ident: 4847_CR29 publication-title: J Food Prot doi: 10.4315/0362-028X-69.8.1844 – volume: 78 start-page: 1 year: 2016 ident: 4847_CR32 publication-title: TrAC Trends Anal Chem doi: 10.1016/j.trac.2015.08.010 – volume: 151 start-page: 116 year: 2016 ident: 4847_CR31 publication-title: Biosys Eng doi: 10.1016/j.biosystemseng.2016.09.005 – volume: 39 start-page: e12708 year: 2019 ident: 4847_CR18 publication-title: J Food Saf doi: 10.1111/jfs.12708 – volume: 45 start-page: 203 year: 2012 ident: 4847_CR23 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2011.09.026 – volume: 312 start-page: 126050 year: 2020 ident: 4847_CR9 publication-title: Food Chem doi: 10.1016/j.foodchem.2019.126050 – volume: 67 start-page: 736 year: 2005 ident: 4847_CR12 publication-title: Talanta doi: 10.1016/j.talanta.2005.03.025  | 
    
| SSID | ssj0000327820 | 
    
| Score | 2.4001563 | 
    
| Snippet | Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3861 | 
    
| SubjectTerms | Algorithms Chemistry Chemistry and Materials Science Chemistry/Food Science Contaminants Contamination Discrimination electronic nose Electronic noses Food contamination Food matrix Food Science Foodborne pathogens Genetic algorithms Heuristic methods Meat Meat products Metal oxide semiconductors Microorganisms Nutrition odors Olfactory discrimination Olfactory discrimination learning Optimization algorithms Organic compounds Original Original Article Particle swarm optimization Pathogens Pork prediction Predictions principal component analysis Principal components analysis rapid methods Salmonella Salmonella Typhimurium Search algorithms semiconductors Sensor arrays Support vector machines VOCs Volatile organic compounds  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHAoHBOUVKGiQEBcaafNykmPVUlUceoGVeoucZLKJyGO1SUD7G_lTzDiPZVW0gnMmlh1_8cx4Pn8W4oPleq6Kk9BUlgpNlxBjkhuyTCtIlY2eQx5Kq33eyOul--XWux0PhbUT230qSeqVenfYjdDim5zuEOpc39zeFw88lvMiFC_t83lnZeHYLAI3yYRTyOONp2X-3sy-R7oTZt5lS84l00fiuK_XavtTleUfXunqiXg8hpNwPsz_U3EP6xNxfDHd4nYijMsCO_gIo_5nCTeT_P4z8esSO83EqqHJ4KsqCZJMhgJKTvOi6jdFXwFz2RXzZbRdyRyjFooaMsrTc6Do_Tu0iiWGW2AO_Qp2F-tA3bQIbUVt8lA6_R5vXWAFvP8Lbb_m8B9-6NIBVJrYibDB1cDOrYGMocJO5dgPktLQ0BpXjYdHQZWrhkaTV-1zsbz6_O3i2hwvdzATQsTWdAIlZejFgZuFCR_vlT7KIF64Fpd64xCzBVcUA9-nGEmmKo4p8SRHaqNEKSlIfSGOavoqrwTYCztUSUqZT4ium6owTJM05itF0MHM9wxhTRMcJaPyOV_AUUY7zWYGRUSgiDQooq0hPs3vrAfdj4PWpxNuonENaCOd7HoyCCxDvJ8f0_RzSUbV2PTaJuCUzlkcsJEOl8r8QBri5QDFuUus10i9obf9PZDOBqwevv-kLnKtIk6ht0-ezhBnE5x3XT800rMZ8v_wYV7_X-tvxEObOUOaLHkqjrpNj28p6Ovid_of_w26VlLS priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4P3IsqBBQlzYdJsmceLjimW14lAhoNJyipzEaaPNo2oSUPmL_ClmnEcpK1Xs2ePEtr7YM5lvPjP21nJcR4aRMKUlhekgYkw8hizT8mM5Va6NJ5RW-5zxy7nz6cq9OmBWXwujSftRmI6LLB8X6VJzK1d5dNrzxE7RZfAEVfMechfd7xE7nM8-n33vVcHRw9G0ReHhWzV752hbLod480wKmBC3jmdudg-jGx7mTaLkkC29x-40xUpufsos--tAunjAvvRTaXko1-OmDsfRr39UHm8114fsfueewlnb9IgdqOIxM85TVcM76DREM5j1Ev5P2O9zVWs2VwFlAl9lhrAmQhVggLtM82adNjkQH14S50bbZcRTqiAtIMFYfwkYAVxDJUmmuALi4S9gezkPFGWloMrxmbQmte5Hvz9UDvQPGapmRSEE_NDpB8g1OVTBWi1ahm8BaAy5quVSNa0sNZS4T-ZdASrIbFHibJZ59ZTNLz5--3BpdhdEmBGiamPavuRcuKHvJCKiEmHuKe6HE8eidHEoVDKhrKTveehn8ViGIQaveBhPFVeco6P7jI0KXJUXDKaTqZBRjNGTUI4TSyHiKA7pWhJlq8RzDWb1SAmiTj2dLvHIgq3uM6ErQHQFGl3BxmDvhz6rVjtkr_VxD8Cg20eqQAfMLvd9y2BvhmbcASitIwtVNtrGp7DQnuyx4Tal2zyfG-x5i-lhSKT5iKPB3t4O2gcDUiDfbUGwaiXyDp8GO-m_i-3Q9830ZPh2_mNhjm5n_pLdnRLvSBMuj9moXjfqFTqOdfi62yr-AFgbblg priority: 102 providerName: Unpaywall  | 
    
| Title | Detection of Salmonella Typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms | 
    
| URI | https://link.springer.com/article/10.1007/s13197-020-04847-y https://www.ncbi.nlm.nih.gov/pubmed/34471310 https://www.proquest.com/docview/2560156881 https://www.proquest.com/docview/2568597430 https://www.proquest.com/docview/2636798786 https://pubmed.ncbi.nlm.nih.gov/PMC8357911 https://www.ncbi.nlm.nih.gov/pmc/articles/8357911  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 58 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 0975-8402 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 0975-8402 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: GX1 dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 0975-8402 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 0975-8402 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 0975-8402 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: 8FG dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 0975-8402 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: AGYKE dateStart: 20100101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 0975-8402 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000327820 issn: 0022-1155 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZ22wNwQDyXwFINEuLCRjQvJzkgVNi2K5CqFVCpe4qcxH2IJC1NAupv5E8x4zxKtVLFpYdkXDnOF3vG8_kbxl4btmOLMPJ1YQhftxExOi5Dhm54sTClY-EKpdQ-J_xqan-eObMTNmnOwhCtspkT1UQdryPaI3-nQgeHe57xYfNTp6pRlF1tSmiIurRC_F5JjJ2yrknKWB3W_TicXH9td136lkkCcY2EOLpDTn2SpjpPh4B0dYqoENi2q-8OV6tbLuhtJmWbTr3H7pTZRux-iyT5Z8UaPWD3a1cTBhU2HrITmT1i2uVKFvAGaj3QBCaNHP9j9udSFoqZlcF6Dt9Egs9M5CjAYHW5SsvtqkyBuO2C-DPKLiHOUQ6rDOYYty8BvfkfkAuSHM6BOPUL2BfagWydS8hT_E_qfqHa0VaGTIH2gyEvNxQOwC-VSoBUET0lbOWiYutmgMaQykIsZVlJTMMa57y0PkwKIlngOyuWaf6ETUfD75-u9LrYgx4hQna65QnOfSf07Lkf0XFf7kruhX3boNRv6Mt5nzKMnuuiz8RjEYYYiOLCakouOUen9SnrZDgqzxiYfdMXUYyRkC9tOxa-H0dxSCVGpCXnrqMxo3mpQVQroVNBjiTYazgTEAIEQqCAEOw09rZts6l0QI5anzdYCeo5IQ_2CNbYq_Y2fs2UohGZXJfKxqMQz-ofseEWpc5cj2vsrIJf2yXSb8TeYGv3AJitAamJH97JVkulKo6uuIsrn8YuGgjvu37sSS9amP_HwDw_PjAv2F2TOEOKLHnOOsW2lC_R6SvCHjv1RuMe6w7GN1-Gvfq7xqvjmYG_U3OA16aT68HNXxb6Xgo | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQLwxFBgk4EItYnu9tg8VAtIqpSVC0Eq9mbW9eQjbCbFNlT_HH-BPMbN-hKhSxKVnz0ab3dmZnZ1vvmHspcVdLqM4MKUlA5OjxpjohizT8hNpK9dBD6XZPodicM4_XbgXW-x3WwtDsMrWJmpDncxieiN_q0MHV_i-9W7-06SuUZRdbVtoyKa1QnKgKcaawo4TtbzEEK44OO7jfr-y7aPDs48Ds-kyYMY4taXp-FKIwI18PgpiqjMVnhJ-1OMW5RyjQI16lNryPQ-dtUhkFGEEhBbdVkIJ4dKDKLqAHe7wAIO_nQ-Hwy9fu1eenmMTIV1LWY7XL7ep3Knr9_AAeCZFcHiQuGcu173jlSvvVeRml769yXarfC6XlzJN__GQR7fZreZqC-9rXbzDtlR-lxn9qSrhNTT8oykMW_r_e-xPX5UaCZbDbATfZIprTGAswOB4Ms2qxbTKgLD0kvA6Wi4ljFMB0xxGC1VMAKOHH1BIojgugDD8Y1g19oF8VigoMvxNmn6px9HTicqA3p-hqOYUfsAvnbqATANLFSzUuEYH54DCkKlSTlRVU1rDDG1s1hSvgkzHqCPlJCvus_Nr2fYHbDvHVXnEwO7ZgYwTjLwCxXkigyCJk4hamihHjTzXYFa7qWHcMK9TA5A0XHFGkyKEqAihVoRwabA33Zh5zTuyUXqv1ZWwsUFFuDoxBnvRfUbrQSkhmatZpWV8Cimd3gYZ4VCqzvOFwR7W6tdNifgicTY42ltTzE6A2MvXv-TTiWYxx6u_h57WYPutCq-mvumf7ndq_h8L83jzwjxnu4Ozz6fh6fHw5Am7YRNeSQM199h2uajUU7xwltGz5lQD-37dhuQv0A-R2g | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqInF5QNxJKTBIwAuNmquTPCCEWJaWohUSVOpbcBJns2qSXTYJ1f4av8BPMeNcllWlFS99jr3y2sczHs_xGcZemo7riCgOdGGKQHcQMTq6IVM3_URY0rXRQym1zwk_OnU-n7lnO-x3_xaGaJW9TVSGOpnHdEd-qEIHl_u-eZh2tIivo_G7xU-dKkhRprUvp9FC5ESuLjB8q94ej3CtX1nW-OP3D0d6V2FAj3FYK932BeeBG_lOGsT0xpR7kvuR4ZiUb4wCmRqU1vI9Dx01T0QUYfSD1tySXHLu0mUomv9rHqm40yv18afhfsewLZKi68XK8eDldm922pd7CH1Pp9gNt5Dj6atNv3jpsHuZszkkbm-xG025EKsLkef_-MbxHXa7O9TC-xaFd9mOLO8xbTSTNbyGTnk0h0kv_H-f_RnJWnHASpin8E3kOKNEwwIMi7NZ0SxnTQHEohfE1FHtcmI3VTArIV3KKgOMG86hEiRuXAGx96ewLukD5bySUBX4mzT8WvWjSxNZAN08Q9UsKPCAXyppAYWilEpYymnLCy4BG0Mha5HJphWzhjla16J7tgoinyIi6qyoHrDTK1n0h2y3xFl5zMAyrEDECcZcgXScRARBEicRFTORtkw9V2Nmv6hh3GmuU-mPPFyrRRMQQgRCqIAQrjT2ZuizaBVHtrbe77ESdtanCtd7RWMvhs9oNygZJEo5b1Qbn4JJ29jShtuUpPN8rrFHLfyGIZFSJI4Ge3sbwBwakG755pdylin9cjz0e-hjNXbQQ3g99G3_9GCA-X9MzN72iXnOrqP5CL8cT06esJsWEZUUQ3Of7dbLRj7Fk2YdPVNbGtiPq7YhfwHRSI90 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4P3IsqBBQlzYdJsmceLjimW14lAhoNJyipzEaaPNo2oSUPmL_ClmnEcpK1Xs2ePEtr7YM5lvPjP21nJcR4aRMKUlhekgYkw8hizT8mM5Va6NJ5RW-5zxy7nz6cq9OmBWXwujSftRmI6LLB8X6VJzK1d5dNrzxE7RZfAEVfMechfd7xE7nM8-n33vVcHRw9G0ReHhWzV752hbLod480wKmBC3jmdudg-jGx7mTaLkkC29x-40xUpufsos--tAunjAvvRTaXko1-OmDsfRr39UHm8114fsfueewlnb9IgdqOIxM85TVcM76DREM5j1Ev5P2O9zVWs2VwFlAl9lhrAmQhVggLtM82adNjkQH14S50bbZcRTqiAtIMFYfwkYAVxDJUmmuALi4S9gezkPFGWloMrxmbQmte5Hvz9UDvQPGapmRSEE_NDpB8g1OVTBWi1ahm8BaAy5quVSNa0sNZS4T-ZdASrIbFHibJZ59ZTNLz5--3BpdhdEmBGiamPavuRcuKHvJCKiEmHuKe6HE8eidHEoVDKhrKTveehn8ViGIQaveBhPFVeco6P7jI0KXJUXDKaTqZBRjNGTUI4TSyHiKA7pWhJlq8RzDWb1SAmiTj2dLvHIgq3uM6ErQHQFGl3BxmDvhz6rVjtkr_VxD8Cg20eqQAfMLvd9y2BvhmbcASitIwtVNtrGp7DQnuyx4Tal2zyfG-x5i-lhSKT5iKPB3t4O2gcDUiDfbUGwaiXyDp8GO-m_i-3Q9830ZPh2_mNhjm5n_pLdnRLvSBMuj9moXjfqFTqOdfi62yr-AFgbblg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Salmonella+Typhimurium+contamination+levels+in+fresh+pork+samples+using+electronic+nose+smellprints+in+tandem+with+support+vector+machine+regression+and+metaheuristic+optimization+algorithms&rft.jtitle=Journal+of+food+science+and+technology&rft.au=Bonah%2C+Ernest&rft.au=Huang%2C+Xingyi&rft.au=Hongying%2C+Yang&rft.au=Aheto%2C+Joshua+Harrington&rft.date=2021-10-01&rft.issn=0022-1155&rft.volume=58&rft.issue=10&rft.spage=3861&rft_id=info:doi/10.1007%2Fs13197-020-04847-y&rft_id=info%3Apmid%2F34471310&rft.externalDocID=34471310 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1155&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1155&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1155&client=summon |