Detection of Salmonella Typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms

Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commer...

Full description

Saved in:
Bibliographic Details
Published inJournal of food science and technology Vol. 58; no. 10; pp. 3861 - 3870
Main Authors Bonah, Ernest, Huang, Xingyi, Hongying, Yang, Aheto, Joshua Harrington, Yi, Ren, Yu, Shanshan, Tu, Hongyang
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.10.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0022-1155
0975-8402
0975-8402
DOI10.1007/s13197-020-04847-y

Cover

Abstract Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR ( R P 2  = 0.989; RMSE P  = 0.137; RPD = 14.93) > PSO-SVMR ( R P 2  = 0.986; RMSE P  = 0.145; RPD = 14.11) > GS-SVMR ( R P 2  = 0.966; RMSE P  = 0.148; RPD = 13.82) > SVMR ( R P 2  = 0.949; RMSE P  = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.
AbstractList Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (  = 0.989; RMSE  = 0.137; RPD = 14.93) > PSO-SVMR (  = 0.986; RMSE  = 0.145; RPD = 14.11) > GS-SVMR (  = 0.966; RMSE  = 0.148; RPD = 13.82) > SVMR (  = 0.949; RMSE  = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. in a food matrix.
Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P 2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P 2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P 2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P 2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P 2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P 2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P 2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P 2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR's proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.
Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (RP2 = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (RP2 = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (RP2 = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (RP2 = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.
Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR ( R P 2  = 0.989; RMSE P  = 0.137; RPD = 14.93) > PSO-SVMR ( R P 2  = 0.986; RMSE P  = 0.145; RPD = 14.11) > GS-SVMR ( R P 2  = 0.966; RMSE P  = 0.148; RPD = 13.82) > SVMR ( R P 2  = 0.949; RMSE P  = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.
Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products contaminated with pathogens. For the identification, discrimination and quantification of Salmonella Typhimurium contamination in pork samples, a commercial electronic nose with ten (10) metal oxide semiconductor sensor array is applied. Principal component analysis was successfully applied for discrimination of inoculated samples and inoculated samples at different contaminant levels. Support vector machine regression (SVMR) together with a metaheuristic framework using genetic algorithm (GA), particle swarm optimization (PSO), and grid searching (GS) optimization algorithms were applied for S. Typhimurium quantification. Although SVMR results were satisfactory, SVMR hyperparameter tuning (c and g) by PSO, GA and GS showed superior performance of the models. The order of the prediction accuracy based on the prediction set was GA-SVMR (R P² = 0.989; RMSEP = 0.137; RPD = 14.93) > PSO-SVMR (R P² = 0.986; RMSEP = 0.145; RPD = 14.11) > GS-SVMR (R P² = 0.966; RMSEP = 0.148; RPD = 13.82) > SVMR (R P² = 0.949; RMSEP = 0.162; RPD = 12.63). GA-SVMR’s proposed approach was fairly more effective and retained an excellent prediction accuracy. A clear relationship was identified between odor analysis results, and reference traditional microbial test, indicating that the electronic nose is useful for accurate microbial volatile organic compound evaluation in the quantification of S. Typhimurium in a food matrix.
Author Huang, Xingyi
Yi, Ren
Bonah, Ernest
Hongying, Yang
Tu, Hongyang
Yu, Shanshan
Aheto, Joshua Harrington
Author_xml – sequence: 1
  givenname: Ernest
  surname: Bonah
  fullname: Bonah, Ernest
  organization: School of Food and Biological Engineering, Jiangsu University, Laboratory Services Department, Food and Drugs Authority
– sequence: 2
  givenname: Xingyi
  orcidid: 0000-0002-7904-4561
  surname: Huang
  fullname: Huang, Xingyi
  email: h_xingyi@163.com
  organization: School of Food and Biological Engineering, Jiangsu University
– sequence: 3
  givenname: Yang
  surname: Hongying
  fullname: Hongying, Yang
  organization: School of Food and Biological Engineering, Jiangsu University
– sequence: 4
  givenname: Joshua Harrington
  surname: Aheto
  fullname: Aheto, Joshua Harrington
  organization: School of Food and Biological Engineering, Jiangsu University
– sequence: 5
  givenname: Ren
  surname: Yi
  fullname: Yi, Ren
  organization: School of Food and Biological Engineering, Jiangsu University, School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture
– sequence: 6
  givenname: Shanshan
  surname: Yu
  fullname: Yu, Shanshan
  organization: School of Food and Biological Engineering, Jiangsu University
– sequence: 7
  givenname: Hongyang
  surname: Tu
  fullname: Tu, Hongyang
  organization: School of Food and Biological Engineering, Jiangsu University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34471310$$D View this record in MEDLINE/PubMed
BookMark eNqNks1u1DAUhSNUREvpC7BAltiwCdhOYjsbJNTyJ1ViQVlbTuZm4uKfYDtTDa_IS-HMDBS6KGSTSPnOucf3-HFx5LyDonhK8EuCMX8VSUVaXmKKS1yLmpfbB8UJbnlTihrTo_yNKS0JaZrj4izGa5yfinJB8aPiuKprnvX4pPhxAQn6pL1DfkCflbF5jDEKXW2nUds56Nmi3rukrHZqxxnYgIlIOzQEiCOafPiKorKTgYjmqN0agcmewTvdI-cjoGiz5xS0SztdUm4FFt3oNKI4T9kgoU1W-ICs6kftAAVYZ_O4zMswspDUCDlNTNnTT0lb_X0fR5m1D9nJxifFw0GZCGeH92nx5d3bq_MP5eWn9x_P31yWfU3ptqyEYqxtOlEPbU_zxhgHJjpcE4FZ07Uw4IrTVnDOGsFWqus44ZwICgwYa6rqtKj2vrOb1PZGGSPz2awKW0mwXNqR-3Zkbkfu2pHbrHq9V01zZ2HVg0tB3Sq90vLvP06Pcu03UlQNbwnJBi8OBsF_myEmaXXsl7Ic-DlKyirGc2zB_o02TDQtryuc0ed30Gs_B5f3t1CYZFIss5_9Gf536l8XKQNiD_TBxxhgkL1Ou4LyWbS5fzH0jvS_tnnoIC7Xag3hNvY9qp8aVARP
CitedBy_id crossref_primary_10_3390_s22072800
crossref_primary_10_1016_j_fbp_2022_10_005
crossref_primary_10_1016_j_energy_2024_131510
crossref_primary_10_1016_j_jfca_2023_105665
crossref_primary_10_3390_s23020672
crossref_primary_10_1016_j_ccr_2025_216588
crossref_primary_10_1016_j_compag_2025_110109
crossref_primary_10_1016_j_foodchem_2023_135950
crossref_primary_10_1155_2024_6612162
crossref_primary_10_3390_foods13172656
crossref_primary_10_1016_j_cej_2024_155894
crossref_primary_10_1155_2024_6711621
crossref_primary_10_1007_s00217_023_04381_z
crossref_primary_10_1016_j_tifs_2024_104787
crossref_primary_10_1002_aic_18115
crossref_primary_10_1016_j_jafr_2023_100917
crossref_primary_10_1016_j_tifs_2023_104297
crossref_primary_10_3390_s24134126
crossref_primary_10_1038_s41538_025_00394_y
crossref_primary_10_3390_pathogens12010104
Cites_doi 10.1007/s00216-019-02345-5
10.1016/j.cherd.2019.06.034
10.1007/BF00994018
10.1016/j.snb.2014.10.051
10.1007/s13197-019-04143-4
10.1007/s12161-018-01407-1
10.1016/j.advengsoft.2011.09.026
10.1016/j.neucom.2013.01.027
10.1016/j.foodchem.2019.126050
10.1016/j.proeng.2014.11.686
10.1371/journal.pmed.1001923
10.1016/j.snb.2008.02.046
10.1016/j.foodpol.2015.12.007
10.1111/jfs.12708
10.1007/s12182-014-0010-9
10.1007/s10489-016-0843-6
10.1007/s12205-015-0210-x
10.1145/1961189.1961199
10.1016/j.trac.2015.08.010
10.1007/978-3-319-91086-4_9
10.1016/j.biosystemseng.2016.09.005
10.1093/femsre/fuu013
10.1016/j.compag.2018.06.047
10.1016/j.renene.2003.11.009
10.1016/j.foodres.2018.07.067
10.1016/j.catena.2017.05.008
10.1016/j.lwt.2019.108914
10.1016/j.epsr.2019.106031
10.1016/j.microc.2020.104660
10.1016/S0305-0483(01)00026-3
10.1016/j.talanta.2005.03.025
10.4315/0362-028X-69.8.1844
10.1111/jfpe.13236
10.1017/s0263574700232827
10.1109/iccsce.2017.8284413
ContentType Journal Article
Copyright Association of Food Scientists & Technologists (India) 2020
Association of Food Scientists & Technologists (India) 2020.
Copyright_xml – notice: Association of Food Scientists & Technologists (India) 2020
– notice: Association of Food Scientists & Technologists (India) 2020.
DBID AAYXX
CITATION
NPM
04Q
04S
04W
3V.
7QL
7QO
7QR
7RQ
7ST
7T7
7TM
7WY
7WZ
7X2
7XB
87Z
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
BENPR
BEZIV
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FRNLG
F~G
HCIFZ
K60
K6~
L.-
L6V
M0C
M0K
M7S
P64
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
SOI
7X8
7S9
L.6
5PM
ADTOC
UNPAY
DOI 10.1007/s13197-020-04847-y
DatabaseName CrossRef
PubMed
India Database
India Database: Business
India Database: Science & Technology
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Chemoreception Abstracts
Career & Technical Education Database
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Agricultural Science Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (ProQuest)
ProQuest Central
Business Premium Collection (Proquest)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Global
Agriculture Science Database
Engineering Database
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Agricultural Science Database
ProQuest Business Collection (Alumni Edition)
Nucleic Acids Abstracts
SciTech Premium Collection
ABI/INFORM Complete
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
Engineering Collection
ProQuest Indian Journals
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest Business Collection
Biotechnology and BioEngineering Abstracts
ProQuest Career and Technical Education
Indian Journals: Business
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest SciTech Collection
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Indian Journals: Science & Technology
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Agricultural Science Database


AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Diet & Clinical Nutrition
EISSN 0975-8402
EndPage 3870
ExternalDocumentID oai:pubmedcentral.nih.gov:8357911
PMC8357911
34471310
10_1007_s13197_020_04847_y
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFD04001002
– fundername: ;
  grantid: 2017YFD04001002
GroupedDBID -58
-5G
-BR
-EM
-~C
04Q
04S
04W
06D
0R~
0VY
203
2JN
2KG
2KM
2VQ
30V
3V.
4.4
406
408
40D
53G
67Z
7RQ
7WY
7X2
8FE
8FG
8FH
8FL
95.
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AOIJS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
BAWUL
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BPHCQ
CAG
CCPQU
COF
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GX1
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HYE
HZ~
I0C
IKXTQ
ITM
IWAJR
J-C
J0Z
JBSCW
JZLTJ
K60
K6~
KOV
L6V
L7B
LLZTM
M0C
M0K
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OK1
P2P
P9N
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PTHSS
Q2X
R9I
RLLFE
ROL
RPM
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W48
WK8
Z45
Z7U
Z7V
Z7W
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7QL
7QO
7QR
7ST
7T7
7TM
7XB
8FD
8FK
C1K
FR3
L.-
P64
PKEHL
PQEST
PQUKI
Q9U
SOI
7X8
7S9
L.6
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c422y-38a6695b84f9c297567e68b0418065b9ef037298776586dabb7177182e6e66533
IEDL.DBID BENPR
ISSN 0022-1155
0975-8402
IngestDate Sun Oct 26 04:05:56 EDT 2025
Tue Sep 30 17:19:00 EDT 2025
Thu Oct 02 12:01:22 EDT 2025
Thu Sep 04 20:33:55 EDT 2025
Fri Jul 25 12:11:20 EDT 2025
Wed Feb 19 02:08:54 EST 2025
Wed Oct 01 01:55:22 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Fri Feb 21 02:47:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Foodborne pathogens
Chemometric algorithms
Electronic nose
Longissimus pork muscle
Metaheuristic algorithms
Salmonella
Language English
License Association of Food Scientists & Technologists (India) 2020.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422y-38a6695b84f9c297567e68b0418065b9ef037298776586dabb7177182e6e66533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7904-4561
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8357911
PMID 34471310
PQID 2560156881
PQPubID 326253
PageCount 10
ParticipantIDs unpaywall_primary_10_1007_s13197_020_04847_y
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8357911
proquest_miscellaneous_2636798786
proquest_miscellaneous_2568597430
proquest_journals_2560156881
pubmed_primary_34471310
crossref_citationtrail_10_1007_s13197_020_04847_y
crossref_primary_10_1007_s13197_020_04847_y
springer_journals_10_1007_s13197_020_04847_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211000
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 20211000
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: India
PublicationTitle Journal of food science and technology
PublicationTitleAbbrev J Food Sci Technol
PublicationTitleAlternate J Food Sci Technol
PublicationYear 2021
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References Chang, Chih-Jen (CR8) 2011; 2
Havelaar, Kirk, Torgerson, Gibb, Hald, Lake, Praet, Bellinger, de Silva, Gargouri, Speybroeck, Cawthorne, Mathers, Stein, Angulo, Devleesschauwer (CR15) 2015; 12
Xu, Zhao, Wang, Shi (CR33) 2017; 157
Gobbi, Falasconi, Zambotti, Sberveglieri, Pulvirenti, Sberveglieri (CR14) 2015; 207
Bao, Hu, Xiong (CR5) 2013; 117
Timsorn, Thoopboochagorn, Lertwattanasakul, Wongchoosuk (CR31) 2016; 151
Chang, Huang, Tian, Wang, Aheto, Ernest, Yi (CR9) 2020; 312
Shokri, Sadeghi, Marvast, Narasimhan (CR27) 2015; 12
Huang, Yu, Xu, Aheto, Bonah, Ma, Wu, Zhang (CR18) 2019; 39
Elbisy (CR11) 2015; 19
Audrain, Farag, Ryu, Ghigo (CR3) 2015; 39
Aheto, Huang, Tian, Ren, Ernest, Alenyorege, Dai, Hongyang, Xiaorui, Wang (CR1) 2020; 412
Patil, Mandal, Hegde (CR23) 2012; 45
Nadi, Salehi, Tamai, Foroushani, Sillanpaa, Dallal (CR21) 2020; 155
Pozo, Schroeder (CR25) 2016; 59
Siripatrawan (CR28) 2008; 133
Zambotti, Sberveglieri, Gobbi, Falasconi, Nunez, Pulvirenti (CR35) 2014; 87
CR2
Mohandes, Halawani, Rehman, Hussain (CR19) 2004; 29
Galvão, Araujo, José, Pontes, Silva, Saldanha (CR12) 2005; 67
CR4
Cortes, Vapnik (CR10) 1995; 20
Giungato, Renna, Rana, Licen, Barbieri (CR13) 2019; 115
Osaili, Hasan, Dhanasekaran, Obaid, Al-Nabulsi, Rao, Fatima, Ayyash, Savvaidis, Holley (CR22) 2020; 120
Wang, Li, Yang, Ruan, Sun (CR32) 2016; 78
Siripatrawan, Linz, Harte (CR29) 2006; 69
Xu, Zhou, Tian, Lu, Luo, Lan (CR34) 2018; 152
Bonah, Huang, Aheto, Osae (CR6) 2019
Herceg, Ujević Andrijić, Bolf (CR16) 2019; 149
Hu, Yin, Ma, Liu (CR17) 2019; 12
Phan, Nguyen, Bui (CR24) 2017; 46
Tay, Cao (CR30) 2001; 29
Bonah, Huang, Yi, Aheto, Osae, Golly (CR7) 2019
Saddique, Bhatti, Haroon, Sattar, Amin, Sajjad, ul Haq, Awan, Rasheed (CR26) 2020; 178
Moscato, Cotta, Gendreau, Potvin (CR20) 2019
MS Elbisy (4847_CR11) 2015; 19
L Hu (4847_CR17) 2019; 12
S Xu (4847_CR34) 2018; 152
MS Saddique (4847_CR26) 2020; 178
P Giungato (4847_CR13) 2019; 115
Y Bao (4847_CR5) 2013; 117
U Siripatrawan (4847_CR28) 2008; 133
AV Phan (4847_CR24) 2017; 46
E Bonah (4847_CR7) 2019
RKH Galvão (4847_CR12) 2005; 67
E Gobbi (4847_CR14) 2015; 207
ZR Nadi (4847_CR21) 2020; 155
SG Patil (4847_CR23) 2012; 45
S Herceg (4847_CR16) 2019; 149
VF Pozo (4847_CR25) 2016; 59
K Timsorn (4847_CR31) 2016; 151
4847_CR2
4847_CR4
C Cortes (4847_CR10) 1995; 20
S Shokri (4847_CR27) 2015; 12
P Moscato (4847_CR20) 2019
C Chang (4847_CR8) 2011; 2
E Bonah (4847_CR6) 2019
Y Wang (4847_CR32) 2016; 78
TM Osaili (4847_CR22) 2020; 120
S Xu (4847_CR33) 2017; 157
G Zambotti (4847_CR35) 2014; 87
AH Havelaar (4847_CR15) 2015; 12
JH Aheto (4847_CR1) 2020; 412
B Audrain (4847_CR3) 2015; 39
FEH Tay (4847_CR30) 2001; 29
X Chang (4847_CR9) 2020; 312
X Huang (4847_CR18) 2019; 39
MA Mohandes (4847_CR19) 2004; 29
U Siripatrawan (4847_CR29) 2006; 69
References_xml – volume: 412
  start-page: 1169
  year: 2020
  end-page: 1179
  ident: CR1
  article-title: Multi-sensor integration approach based on hyperspectral imaging and electronic nose for quantitation of fat and peroxide value of pork meat
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-019-02345-5
– volume: 149
  start-page: 95
  year: 2019
  end-page: 103
  ident: CR16
  article-title: Development of soft sensors for isomerization process based on support vector machine regression and dynamic polynomial models
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.06.034
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: CR10
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 207
  start-page: 1104
  year: 2015
  end-page: 1113
  ident: CR14
  article-title: Rapid diagnosis of Enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2014.10.051
– year: 2019
  ident: CR6
  article-title: Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: a review
  publication-title: J Food Sci Technol
  doi: 10.1007/s13197-019-04143-4
– volume: 12
  start-page: 633
  year: 2019
  end-page: 643
  ident: CR17
  article-title: Vis-NIR spectroscopy combined with wavelengths selection by PSO optimization algorithm for simultaneous determination of four quality parameters and classification of Soy Sauce
  publication-title: Food Anal Methods
  doi: 10.1007/s12161-018-01407-1
– ident: CR4
– volume: 45
  start-page: 203
  year: 2012
  end-page: 212
  ident: CR23
  article-title: Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2011.09.026
– ident: CR2
– volume: 117
  start-page: 98
  year: 2013
  end-page: 106
  ident: CR5
  article-title: A PSO and pattern search based memetic algorithm for SVMs parameters optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.027
– volume: 312
  start-page: 126050
  year: 2020
  ident: CR9
  article-title: Dynamic characteristics of dough during the fermentation process of Chinese steamed bread
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2019.126050
– volume: 87
  start-page: 1302
  year: 2014
  end-page: 1305
  ident: CR35
  article-title: Fast identification of microbiological contamination in vegetable soup by electronic nose
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2014.11.686
– volume: 12
  start-page: e1001923
  year: 2015
  ident: CR15
  article-title: World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001923
– volume: 133
  start-page: 414
  year: 2008
  end-page: 419
  ident: CR28
  article-title: Rapid differentiation between and using metal oxide sensors integrated with pattern recognition
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2008.02.046
– volume: 59
  start-page: 66
  year: 2016
  end-page: 77
  ident: CR25
  article-title: Evaluating the costs of meat and poultry recalls to food firms using stock returns
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2015.12.007
– volume: 39
  start-page: e12708
  year: 2019
  ident: CR18
  article-title: Rapid and non-destructive detection of freshness quality of postharvest spinaches based on machine vision and electronic nose
  publication-title: J Food Saf
  doi: 10.1111/jfs.12708
– volume: 12
  start-page: 177
  year: 2015
  end-page: 188
  ident: CR27
  article-title: Improvement of the prediction performance of a soft sensor model based on support vector regression for production of ultra-low sulfur diesel
  publication-title: Pet Sci
  doi: 10.1007/s12182-014-0010-9
– volume: 46
  start-page: 455
  year: 2017
  end-page: 469
  ident: CR24
  article-title: Feature weighting and SVM parameters optimization based on genetic algorithms for classification problems
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0843-6
– volume: 19
  start-page: 2307
  year: 2015
  end-page: 2316
  ident: CR11
  article-title: Support Vector Machine and regression analysis to predict the field hydraulic conductivity of sandy soil
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0210-x
– volume: 2
  start-page: 27:21
  year: 2011
  end-page: 27:27
  ident: CR8
  article-title: LIBSVM : a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 78
  start-page: 1
  year: 2016
  end-page: 16
  ident: CR32
  article-title: Microbial volatile organic compounds and their application in microorganism identification in foodstuff
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2015.08.010
– start-page: 275
  year: 2019
  end-page: 309
  ident: CR20
  article-title: An accelerated introduction to memetic algorithms
  publication-title: Handbook of Metaheuristics
  doi: 10.1007/978-3-319-91086-4_9
– volume: 151
  start-page: 116
  year: 2016
  end-page: 125
  ident: CR31
  article-title: Evaluation of bacterial population on chicken meats using a briefcase electronic nose
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2016.09.005
– volume: 39
  start-page: 222
  year: 2015
  end-page: 233
  ident: CR3
  article-title: Role of bacterial volatile compounds in bacterial biology
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuu013
– volume: 152
  start-page: 19
  year: 2018
  end-page: 25
  ident: CR34
  article-title: Study of the similarity and recognition between volatiles of brown rice plant hoppers and rice stem based on the electronic nose
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.06.047
– volume: 29
  start-page: 939
  year: 2004
  end-page: 947
  ident: CR19
  article-title: Support vector machines for wind speed prediction
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 115
  start-page: 65
  year: 2019
  end-page: 72
  ident: CR13
  article-title: Characterization of dried and freeze-dried sea fennel ( L.) samples with headspace gas-chromatography/mass spectrometry and evaluation of an electronic nose discrimination potential
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2018.07.067
– volume: 157
  start-page: 12
  year: 2017
  end-page: 23
  ident: CR33
  article-title: Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.05.008
– volume: 120
  start-page: 108914
  year: 2020
  ident: CR22
  article-title: Thermal inactivation of Escherichia coli O157:H7 strains and spp. in camel meat burgers
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.108914
– volume: 178
  start-page: 106031
  year: 2020
  ident: CR26
  article-title: Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques-Status and technological review
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.106031
– volume: 155
  start-page: 104660
  year: 2020
  ident: CR21
  article-title: Evaluation of antibiotic resistance and prevalence of common enterica serovars isolated from foodborne outbreaks
  publication-title: Microchem J
  doi: 10.1016/j.microc.2020.104660
– volume: 29
  start-page: 309
  year: 2001
  end-page: 317
  ident: CR30
  article-title: Application of support vector machines in financial time series forecasting
  publication-title: Omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 67
  start-page: 736
  year: 2005
  end-page: 740
  ident: CR12
  article-title: A method for calibration and validation subset partitioning
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.03.025
– volume: 69
  start-page: 1844
  year: 2006
  end-page: 1850
  ident: CR29
  article-title: Detection of escherichia coli in packaged alfalfa sprouts with an electronic nose and an artificial neural network
  publication-title: J Food Prot
  doi: 10.4315/0362-028X-69.8.1844
– year: 2019
  ident: CR7
  article-title: Electronic nose classification and differentiation of bacterial foodborne pathogens based on support vector machine optimized with particle swarm optimization algorithm
  publication-title: J Food Process Eng
  doi: 10.1111/jfpe.13236
– volume: 149
  start-page: 95
  year: 2019
  ident: 4847_CR16
  publication-title: Chem Eng Res Des
  doi: 10.1016/j.cherd.2019.06.034
– volume: 120
  start-page: 108914
  year: 2020
  ident: 4847_CR22
  publication-title: LWT
  doi: 10.1016/j.lwt.2019.108914
– volume: 12
  start-page: e1001923
  year: 2015
  ident: 4847_CR15
  publication-title: PLOS Med
  doi: 10.1371/journal.pmed.1001923
– volume: 12
  start-page: 177
  year: 2015
  ident: 4847_CR27
  publication-title: Pet Sci
  doi: 10.1007/s12182-014-0010-9
– volume: 152
  start-page: 19
  year: 2018
  ident: 4847_CR34
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2018.06.047
– volume: 29
  start-page: 939
  year: 2004
  ident: 4847_CR19
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2003.11.009
– volume: 20
  start-page: 273
  year: 1995
  ident: 4847_CR10
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 2
  start-page: 27:21
  year: 2011
  ident: 4847_CR8
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 87
  start-page: 1302
  year: 2014
  ident: 4847_CR35
  publication-title: Procedia Eng
  doi: 10.1016/j.proeng.2014.11.686
– volume: 19
  start-page: 2307
  year: 2015
  ident: 4847_CR11
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-015-0210-x
– volume: 133
  start-page: 414
  year: 2008
  ident: 4847_CR28
  publication-title: Sensors Actuators B Chem
  doi: 10.1016/j.snb.2008.02.046
– volume: 29
  start-page: 309
  year: 2001
  ident: 4847_CR30
  publication-title: Omega
  doi: 10.1016/S0305-0483(01)00026-3
– volume: 115
  start-page: 65
  year: 2019
  ident: 4847_CR13
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2018.07.067
– volume: 12
  start-page: 633
  year: 2019
  ident: 4847_CR17
  publication-title: Food Anal Methods
  doi: 10.1007/s12161-018-01407-1
– volume: 178
  start-page: 106031
  year: 2020
  ident: 4847_CR26
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2019.106031
– volume: 155
  start-page: 104660
  year: 2020
  ident: 4847_CR21
  publication-title: Microchem J
  doi: 10.1016/j.microc.2020.104660
– volume: 39
  start-page: 222
  year: 2015
  ident: 4847_CR3
  publication-title: FEMS Microbiol Rev
  doi: 10.1093/femsre/fuu013
– ident: 4847_CR2
  doi: 10.1017/s0263574700232827
– volume: 117
  start-page: 98
  year: 2013
  ident: 4847_CR5
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.027
– year: 2019
  ident: 4847_CR6
  publication-title: J Food Sci Technol
  doi: 10.1007/s13197-019-04143-4
– start-page: 275
  volume-title: Handbook of Metaheuristics
  year: 2019
  ident: 4847_CR20
  doi: 10.1007/978-3-319-91086-4_9
– volume: 59
  start-page: 66
  year: 2016
  ident: 4847_CR25
  publication-title: Food Policy
  doi: 10.1016/j.foodpol.2015.12.007
– ident: 4847_CR4
  doi: 10.1109/iccsce.2017.8284413
– volume: 46
  start-page: 455
  year: 2017
  ident: 4847_CR24
  publication-title: Appl Intell
  doi: 10.1007/s10489-016-0843-6
– volume: 412
  start-page: 1169
  year: 2020
  ident: 4847_CR1
  publication-title: Anal Bioanal Chem
  doi: 10.1007/s00216-019-02345-5
– volume: 157
  start-page: 12
  year: 2017
  ident: 4847_CR33
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.05.008
– year: 2019
  ident: 4847_CR7
  publication-title: J Food Process Eng
  doi: 10.1111/jfpe.13236
– volume: 207
  start-page: 1104
  year: 2015
  ident: 4847_CR14
  publication-title: Sens Actuators B Chem
  doi: 10.1016/j.snb.2014.10.051
– volume: 69
  start-page: 1844
  year: 2006
  ident: 4847_CR29
  publication-title: J Food Prot
  doi: 10.4315/0362-028X-69.8.1844
– volume: 78
  start-page: 1
  year: 2016
  ident: 4847_CR32
  publication-title: TrAC Trends Anal Chem
  doi: 10.1016/j.trac.2015.08.010
– volume: 151
  start-page: 116
  year: 2016
  ident: 4847_CR31
  publication-title: Biosys Eng
  doi: 10.1016/j.biosystemseng.2016.09.005
– volume: 39
  start-page: e12708
  year: 2019
  ident: 4847_CR18
  publication-title: J Food Saf
  doi: 10.1111/jfs.12708
– volume: 45
  start-page: 203
  year: 2012
  ident: 4847_CR23
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2011.09.026
– volume: 312
  start-page: 126050
  year: 2020
  ident: 4847_CR9
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2019.126050
– volume: 67
  start-page: 736
  year: 2005
  ident: 4847_CR12
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.03.025
SSID ssj0000327820
Score 2.4001563
Snippet Rapid detection and quantification of bacterial foodborne pathogens are crucial in reducing the incidence of diseases associated with meat products...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3861
SubjectTerms Algorithms
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Contaminants
Contamination
Discrimination
electronic nose
Electronic noses
Food contamination
Food matrix
Food Science
Foodborne pathogens
Genetic algorithms
Heuristic methods
Meat
Meat products
Metal oxide semiconductors
Microorganisms
Nutrition
odors
Olfactory discrimination
Olfactory discrimination learning
Optimization algorithms
Organic compounds
Original
Original Article
Particle swarm optimization
Pathogens
Pork
prediction
Predictions
principal component analysis
Principal components analysis
rapid methods
Salmonella
Salmonella Typhimurium
Search algorithms
semiconductors
Sensor arrays
Support vector machines
VOCs
Volatile organic compounds
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHAoHBOUVKGiQEBcaafNykmPVUlUceoGVeoucZLKJyGO1SUD7G_lTzDiPZVW0gnMmlh1_8cx4Pn8W4oPleq6Kk9BUlgpNlxBjkhuyTCtIlY2eQx5Kq33eyOul--XWux0PhbUT230qSeqVenfYjdDim5zuEOpc39zeFw88lvMiFC_t83lnZeHYLAI3yYRTyOONp2X-3sy-R7oTZt5lS84l00fiuK_XavtTleUfXunqiXg8hpNwPsz_U3EP6xNxfDHd4nYijMsCO_gIo_5nCTeT_P4z8esSO83EqqHJ4KsqCZJMhgJKTvOi6jdFXwFz2RXzZbRdyRyjFooaMsrTc6Do_Tu0iiWGW2AO_Qp2F-tA3bQIbUVt8lA6_R5vXWAFvP8Lbb_m8B9-6NIBVJrYibDB1cDOrYGMocJO5dgPktLQ0BpXjYdHQZWrhkaTV-1zsbz6_O3i2hwvdzATQsTWdAIlZejFgZuFCR_vlT7KIF64Fpd64xCzBVcUA9-nGEmmKo4p8SRHaqNEKSlIfSGOavoqrwTYCztUSUqZT4ium6owTJM05itF0MHM9wxhTRMcJaPyOV_AUUY7zWYGRUSgiDQooq0hPs3vrAfdj4PWpxNuonENaCOd7HoyCCxDvJ8f0_RzSUbV2PTaJuCUzlkcsJEOl8r8QBri5QDFuUus10i9obf9PZDOBqwevv-kLnKtIk6ht0-ezhBnE5x3XT800rMZ8v_wYV7_X-tvxEObOUOaLHkqjrpNj28p6Ovid_of_w26VlLS
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4P3IsqBBQlzYdJsmceLjimW14lAhoNJyipzEaaPNo2oSUPmL_ClmnEcpK1Xs2ePEtr7YM5lvPjP21nJcR4aRMKUlhekgYkw8hizT8mM5Va6NJ5RW-5zxy7nz6cq9OmBWXwujSftRmI6LLB8X6VJzK1d5dNrzxE7RZfAEVfMechfd7xE7nM8-n33vVcHRw9G0ReHhWzV752hbLod480wKmBC3jmdudg-jGx7mTaLkkC29x-40xUpufsos--tAunjAvvRTaXko1-OmDsfRr39UHm8114fsfueewlnb9IgdqOIxM85TVcM76DREM5j1Ev5P2O9zVWs2VwFlAl9lhrAmQhVggLtM82adNjkQH14S50bbZcRTqiAtIMFYfwkYAVxDJUmmuALi4S9gezkPFGWloMrxmbQmte5Hvz9UDvQPGapmRSEE_NDpB8g1OVTBWi1ahm8BaAy5quVSNa0sNZS4T-ZdASrIbFHibJZ59ZTNLz5--3BpdhdEmBGiamPavuRcuKHvJCKiEmHuKe6HE8eidHEoVDKhrKTveehn8ViGIQaveBhPFVeco6P7jI0KXJUXDKaTqZBRjNGTUI4TSyHiKA7pWhJlq8RzDWb1SAmiTj2dLvHIgq3uM6ErQHQFGl3BxmDvhz6rVjtkr_VxD8Cg20eqQAfMLvd9y2BvhmbcASitIwtVNtrGp7DQnuyx4Tal2zyfG-x5i-lhSKT5iKPB3t4O2gcDUiDfbUGwaiXyDp8GO-m_i-3Q9830ZPh2_mNhjm5n_pLdnRLvSBMuj9moXjfqFTqOdfi62yr-AFgbblg
  priority: 102
  providerName: Unpaywall
Title Detection of Salmonella Typhimurium contamination levels in fresh pork samples using electronic nose smellprints in tandem with support vector machine regression and metaheuristic optimization algorithms
URI https://link.springer.com/article/10.1007/s13197-020-04847-y
https://www.ncbi.nlm.nih.gov/pubmed/34471310
https://www.proquest.com/docview/2560156881
https://www.proquest.com/docview/2568597430
https://www.proquest.com/docview/2636798786
https://pubmed.ncbi.nlm.nih.gov/PMC8357911
https://www.ncbi.nlm.nih.gov/pmc/articles/8357911
UnpaywallVersion submittedVersion
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: GX1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 0975-8402
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: 8FG
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: AGYKE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 0975-8402
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000327820
  issn: 0022-1155
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZ22wNwQDyXwFINEuLCRjQvJzkgVNi2K5CqFVCpe4qcxH2IJC1NAupv5E8x4zxKtVLFpYdkXDnOF3vG8_kbxl4btmOLMPJ1YQhftxExOi5Dhm54sTClY-EKpdQ-J_xqan-eObMTNmnOwhCtspkT1UQdryPaI3-nQgeHe57xYfNTp6pRlF1tSmiIurRC_F5JjJ2yrknKWB3W_TicXH9td136lkkCcY2EOLpDTn2SpjpPh4B0dYqoENi2q-8OV6tbLuhtJmWbTr3H7pTZRux-iyT5Z8UaPWD3a1cTBhU2HrITmT1i2uVKFvAGaj3QBCaNHP9j9udSFoqZlcF6Dt9Egs9M5CjAYHW5SsvtqkyBuO2C-DPKLiHOUQ6rDOYYty8BvfkfkAuSHM6BOPUL2BfagWydS8hT_E_qfqHa0VaGTIH2gyEvNxQOwC-VSoBUET0lbOWiYutmgMaQykIsZVlJTMMa57y0PkwKIlngOyuWaf6ETUfD75-u9LrYgx4hQna65QnOfSf07Lkf0XFf7kruhX3boNRv6Mt5nzKMnuuiz8RjEYYYiOLCakouOUen9SnrZDgqzxiYfdMXUYyRkC9tOxa-H0dxSCVGpCXnrqMxo3mpQVQroVNBjiTYazgTEAIEQqCAEOw09rZts6l0QI5anzdYCeo5IQ_2CNbYq_Y2fs2UohGZXJfKxqMQz-ofseEWpc5cj2vsrIJf2yXSb8TeYGv3AJitAamJH97JVkulKo6uuIsrn8YuGgjvu37sSS9amP_HwDw_PjAv2F2TOEOKLHnOOsW2lC_R6SvCHjv1RuMe6w7GN1-Gvfq7xqvjmYG_U3OA16aT68HNXxb6Xgo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5V7aFwQLwxFBgk4EItYnu9tg8VAtIqpSVC0Eq9mbW9eQjbCbFNlT_HH-BPMbN-hKhSxKVnz0ab3dmZnZ1vvmHspcVdLqM4MKUlA5OjxpjohizT8hNpK9dBD6XZPodicM4_XbgXW-x3WwtDsMrWJmpDncxieiN_q0MHV_i-9W7-06SuUZRdbVtoyKa1QnKgKcaawo4TtbzEEK44OO7jfr-y7aPDs48Ds-kyYMY4taXp-FKIwI18PgpiqjMVnhJ-1OMW5RyjQI16lNryPQ-dtUhkFGEEhBbdVkIJ4dKDKLqAHe7wAIO_nQ-Hwy9fu1eenmMTIV1LWY7XL7ep3Knr9_AAeCZFcHiQuGcu173jlSvvVeRml769yXarfC6XlzJN__GQR7fZreZqC-9rXbzDtlR-lxn9qSrhNTT8oykMW_r_e-xPX5UaCZbDbATfZIprTGAswOB4Ms2qxbTKgLD0kvA6Wi4ljFMB0xxGC1VMAKOHH1BIojgugDD8Y1g19oF8VigoMvxNmn6px9HTicqA3p-hqOYUfsAvnbqATANLFSzUuEYH54DCkKlSTlRVU1rDDG1s1hSvgkzHqCPlJCvus_Nr2fYHbDvHVXnEwO7ZgYwTjLwCxXkigyCJk4hamihHjTzXYFa7qWHcMK9TA5A0XHFGkyKEqAihVoRwabA33Zh5zTuyUXqv1ZWwsUFFuDoxBnvRfUbrQSkhmatZpWV8Cimd3gYZ4VCqzvOFwR7W6tdNifgicTY42ltTzE6A2MvXv-TTiWYxx6u_h57WYPutCq-mvumf7ndq_h8L83jzwjxnu4Ozz6fh6fHw5Am7YRNeSQM199h2uajUU7xwltGz5lQD-37dhuQv0A-R2g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWqInF5QNxJKTBIwAuNmquTPCCEWJaWohUSVOpbcBJns2qSXTYJ1f4av8BPMeNcllWlFS99jr3y2sczHs_xGcZemo7riCgOdGGKQHcQMTq6IVM3_URY0rXRQym1zwk_OnU-n7lnO-x3_xaGaJW9TVSGOpnHdEd-qEIHl_u-eZh2tIivo_G7xU-dKkhRprUvp9FC5ESuLjB8q94ej3CtX1nW-OP3D0d6V2FAj3FYK932BeeBG_lOGsT0xpR7kvuR4ZiUb4wCmRqU1vI9Dx01T0QUYfSD1tySXHLu0mUomv9rHqm40yv18afhfsewLZKi68XK8eDldm922pd7CH1Pp9gNt5Dj6atNv3jpsHuZszkkbm-xG025EKsLkef_-MbxHXa7O9TC-xaFd9mOLO8xbTSTNbyGTnk0h0kv_H-f_RnJWnHASpin8E3kOKNEwwIMi7NZ0SxnTQHEohfE1FHtcmI3VTArIV3KKgOMG86hEiRuXAGx96ewLukD5bySUBX4mzT8WvWjSxNZAN08Q9UsKPCAXyppAYWilEpYymnLCy4BG0Mha5HJphWzhjla16J7tgoinyIi6qyoHrDTK1n0h2y3xFl5zMAyrEDECcZcgXScRARBEicRFTORtkw9V2Nmv6hh3GmuU-mPPFyrRRMQQgRCqIAQrjT2ZuizaBVHtrbe77ESdtanCtd7RWMvhs9oNygZJEo5b1Qbn4JJ29jShtuUpPN8rrFHLfyGIZFSJI4Ge3sbwBwakG755pdylin9cjz0e-hjNXbQQ3g99G3_9GCA-X9MzN72iXnOrqP5CL8cT06esJsWEZUUQ3Of7dbLRj7Fk2YdPVNbGtiPq7YhfwHRSI90
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZW3QNw4P3IsqBBQlzYdJsmceLjimW14lAhoNJyipzEaaPNo2oSUPmL_ClmnEcpK1Xs2ePEtr7YM5lvPjP21nJcR4aRMKUlhekgYkw8hizT8mM5Va6NJ5RW-5zxy7nz6cq9OmBWXwujSftRmI6LLB8X6VJzK1d5dNrzxE7RZfAEVfMechfd7xE7nM8-n33vVcHRw9G0ReHhWzV752hbLod480wKmBC3jmdudg-jGx7mTaLkkC29x-40xUpufsos--tAunjAvvRTaXko1-OmDsfRr39UHm8114fsfueewlnb9IgdqOIxM85TVcM76DREM5j1Ev5P2O9zVWs2VwFlAl9lhrAmQhVggLtM82adNjkQH14S50bbZcRTqiAtIMFYfwkYAVxDJUmmuALi4S9gezkPFGWloMrxmbQmte5Hvz9UDvQPGapmRSEE_NDpB8g1OVTBWi1ahm8BaAy5quVSNa0sNZS4T-ZdASrIbFHibJZ59ZTNLz5--3BpdhdEmBGiamPavuRcuKHvJCKiEmHuKe6HE8eidHEoVDKhrKTveehn8ViGIQaveBhPFVeco6P7jI0KXJUXDKaTqZBRjNGTUI4TSyHiKA7pWhJlq8RzDWb1SAmiTj2dLvHIgq3uM6ErQHQFGl3BxmDvhz6rVjtkr_VxD8Cg20eqQAfMLvd9y2BvhmbcASitIwtVNtrGp7DQnuyx4Tal2zyfG-x5i-lhSKT5iKPB3t4O2gcDUiDfbUGwaiXyDp8GO-m_i-3Q9830ZPh2_mNhjm5n_pLdnRLvSBMuj9moXjfqFTqOdfi62yr-AFgbblg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+Salmonella+Typhimurium+contamination+levels+in+fresh+pork+samples+using+electronic+nose+smellprints+in+tandem+with+support+vector+machine+regression+and+metaheuristic+optimization+algorithms&rft.jtitle=Journal+of+food+science+and+technology&rft.au=Bonah%2C+Ernest&rft.au=Huang%2C+Xingyi&rft.au=Hongying%2C+Yang&rft.au=Aheto%2C+Joshua+Harrington&rft.date=2021-10-01&rft.issn=0022-1155&rft.volume=58&rft.issue=10&rft.spage=3861&rft_id=info:doi/10.1007%2Fs13197-020-04847-y&rft_id=info%3Apmid%2F34471310&rft.externalDocID=34471310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1155&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1155&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1155&client=summon