Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications

Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies,...

Full description

Saved in:
Bibliographic Details
Published inJournal of controlled release Vol. 337; pp. 193 - 211
Main Authors Živojević, Kristina, Mladenović, Minja, Djisalov, Mila, Mundzic, Mirjana, Ruiz-Hernandez, Eduardo, Gadjanski, Ivana, Knežević, Nikola Ž.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.09.2021
Subjects
Online AccessGet full text
ISSN0168-3659
1873-4995
1873-4995
DOI10.1016/j.jconrel.2021.07.029

Cover

Abstract Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment. Advanced nanoarchitectures involving mesoporous silica nanoparticles (MSN) for simultaneous cancer targeting, therapy and imaging are overviewed. In addition, recent MSN-based strategies for cancer therapy through gene editing are reviewed, considering the significance of the topic, spotlighted by the 2020 Nobel prize in Chemistry “for the development of a method for genome editing” awarded to Emmanuelle Charpentier and Jennifer A. Doudna. [Display omitted]
AbstractList Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment. Advanced nanoarchitectures involving mesoporous silica nanoparticles (MSN) for simultaneous cancer targeting, therapy and imaging are overviewed. In addition, recent MSN-based strategies for cancer therapy through gene editing are reviewed, considering the significance of the topic, spotlighted by the 2020 Nobel prize in Chemistry “for the development of a method for genome editing” awarded to Emmanuelle Charpentier and Jennifer A. Doudna. [Display omitted]
Author Mladenović, Minja
Djisalov, Mila
Gadjanski, Ivana
Živojević, Kristina
Knežević, Nikola Ž.
Mundzic, Mirjana
Ruiz-Hernandez, Eduardo
Author_xml – sequence: 1
  givenname: Kristina
  surname: Živojević
  fullname: Živojević, Kristina
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
– sequence: 2
  givenname: Minja
  surname: Mladenović
  fullname: Mladenović, Minja
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
– sequence: 3
  givenname: Mila
  surname: Djisalov
  fullname: Djisalov, Mila
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
– sequence: 4
  givenname: Mirjana
  surname: Mundzic
  fullname: Mundzic, Mirjana
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
– sequence: 5
  givenname: Eduardo
  surname: Ruiz-Hernandez
  fullname: Ruiz-Hernandez, Eduardo
  organization: School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
– sequence: 6
  givenname: Ivana
  surname: Gadjanski
  fullname: Gadjanski, Ivana
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
– sequence: 7
  givenname: Nikola Ž.
  surname: Knežević
  fullname: Knežević, Nikola Ž.
  email: nknezevic@biosense.rs
  organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia
BookMark eNqFkU1rFTEUQINU8LX6E4Qs3cx48z3BhZTiR6HgRndCiMl9NY95yZikBf-9M76uunmrLHLOhXvuJbnIJSMhbxmMDJh-fxgPoeSK88iBsxHMCNy-IDs2GTFIa9UF2a3cNAit7Cty2doBAJSQZkd-XsdHnwNGesRWllLLQ6MtzSl4mn0uwdeasDaaMg0bWGn_jXX9aT2FRn2O9B4zUoypp3xP_bJsck8lt9fk5d7PDd88vVfkx-dP32--DnffvtzeXN8NQXLehygNA8ti9NZLbnWYdJTAFRhrJRPRAlPBThG8UOZXmHDaW2mUNIZrtVcorsi709yllj8P2Lo7phZwnn3GdR_HtdDSgNL6PKqUYkyAFCv64YSGWlqruHch9f-L9erT7Bi4Lb87uKf8bsvvwLg1_2qrZ_ZS09HXv2e9jycP12CPa3rXQsLtQqli6C6WdGbCP2DHpNs
CitedBy_id crossref_primary_10_1039_D2BM00010E
crossref_primary_10_1186_s12943_023_01807_w
crossref_primary_10_1002_bkcs_12931
crossref_primary_10_1080_14686996_2022_2052181
crossref_primary_10_1021_acs_iecr_4c03274
crossref_primary_10_1016_j_mencom_2024_10_038
crossref_primary_10_1002_bmm2_12025
crossref_primary_10_1016_j_addr_2023_115115
crossref_primary_10_1021_acsomega_4c08267
crossref_primary_10_1360_TB_2022_0216
crossref_primary_10_1016_j_ijbiomac_2023_127060
crossref_primary_10_1021_acsami_2c12102
crossref_primary_10_1038_s41467_024_49901_x
crossref_primary_10_3390_pharmaceutics15020351
crossref_primary_10_1016_j_ijpharm_2023_123606
crossref_primary_10_1002_mabi_202300238
crossref_primary_10_1016_j_ijpharm_2022_122099
crossref_primary_10_1038_s41427_023_00469_w
crossref_primary_10_1039_D3NH00388D
crossref_primary_10_3390_inorganics10120250
crossref_primary_10_1111_os_13806
crossref_primary_10_1002_mco2_253
crossref_primary_10_1016_j_ijbiomac_2023_129179
crossref_primary_10_3390_pharmaceutics15102483
crossref_primary_10_1016_j_heliyon_2023_e21227
crossref_primary_10_1016_j_cej_2023_144357
crossref_primary_10_22159_ijap_2024v16i5_51647
crossref_primary_10_1002_smsc_202400447
crossref_primary_10_1016_j_eurpolymj_2022_111759
crossref_primary_10_3390_ijms241914687
crossref_primary_10_1002_smll_202408898
crossref_primary_10_1039_D1CS00659B
crossref_primary_10_3390_cells11172682
crossref_primary_10_1007_s10971_024_06422_9
crossref_primary_10_1016_j_ajps_2025_101017
crossref_primary_10_1186_s13072_024_00554_6
crossref_primary_10_3389_fbioe_2021_733792
crossref_primary_10_1039_D1CS01022K
crossref_primary_10_1016_j_micromeso_2025_113603
crossref_primary_10_1016_j_jddst_2023_105307
crossref_primary_10_3390_molecules28083406
crossref_primary_10_1016_j_mtbio_2022_100245
crossref_primary_10_1021_acsomega_3c05069
crossref_primary_10_1016_j_matchemphys_2023_128111
crossref_primary_10_1002_adhm_202102145
crossref_primary_10_1002_wnan_1976
crossref_primary_10_1016_j_mattod_2023_04_011
crossref_primary_10_1016_j_jconrel_2021_12_016
crossref_primary_10_1016_j_biomaterials_2023_122000
crossref_primary_10_1016_j_molstruc_2022_132922
crossref_primary_10_1007_s00210_025_04038_6
crossref_primary_10_1186_s12951_022_01692_3
crossref_primary_10_3390_pharmaceutics14040770
crossref_primary_10_26599_NR_2025_94907030
crossref_primary_10_1007_s10238_023_01262_3
crossref_primary_10_1021_acsnano_2c10818
Cites_doi 10.1158/0008-5472.CAN-11-2994
10.1016/j.ijbiomac.2019.12.265
10.1021/jacs.7b05559
10.1166/jbn.2016.2318
10.1016/j.jconrel.2020.11.028
10.1038/nrd.2016.199
10.1021/jacs.9b07591
10.1038/nrc1629
10.7150/thno.44668
10.1016/j.biomaterials.2016.11.057
10.1016/j.drudis.2017.10.022
10.1002/advs.201600356
10.1039/C7BM00043J
10.1016/j.cell.2015.12.035
10.1039/C8TB02741B
10.1021/acsnano.5b00641
10.1021/nn1029229
10.1016/j.jconrel.2020.04.041
10.1002/adma.201704367
10.1039/C9TB01654F
10.1016/j.addr.2015.09.009
10.1091/mbc.e10-09-0790
10.1016/j.actbio.2017.11.007
10.1038/nmat3776
10.1016/j.jcis.2020.09.028
10.1111/jphp.13098
10.1002/smll.201902242
10.1016/j.jconrel.2019.07.004
10.1038/mt.2016.42
10.1039/c2nr33417h
10.1039/C5TB00797F
10.1039/C5NR03777H
10.1016/j.actbio.2016.11.007
10.1021/acsnano.5b04378
10.1124/pr.115.012070
10.1039/C5NR00072F
10.1021/acsami.8b19565
10.1016/j.biomaterials.2017.12.003
10.1166/jbn.2017.2369
10.1021/acsami.0c07106
10.1039/C5TB02726H
10.1021/acsabm.0c00497
10.1038/nrc2748
10.1002/smll.201602580
10.3390/ijms21082793
10.1016/j.jconrel.2015.10.005
10.1016/j.biomaterials.2019.119723
10.1002/adma.201204685
10.3390/cancers12010187
10.1002/cplu.201402369
10.1002/advs.201600122
10.1002/smll.200800926
10.7150/ntno.25565
10.1039/C7TB00348J
10.1016/j.jcis.2020.01.020
10.1039/C8TB00989A
10.1016/j.jddst.2020.101533
10.1016/j.addr.2018.09.004
10.1021/acs.nanolett.0c01387
10.18632/oncotarget.12047
10.3390/molecules22091401
10.3390/pharmaceutics12070649
10.1039/C4NR07493A
10.1016/j.biomaterials.2018.08.001
10.1021/acsami.7b13651
10.1016/j.actbio.2020.11.030
10.2147/OTT.S113815
10.1126/science.1258096
10.1155/2014/852748
10.3390/pharmaceutics12060526
10.3390/metabo8010019
10.1016/j.jconrel.2020.03.051
10.1016/j.biomaterials.2019.01.048
10.1016/j.mattod.2018.12.003
10.1016/j.nano.2015.10.018
10.1021/acsami.8b02398
10.1021/jacs.6b11846
10.1002/adhm.202000877
10.1002/adma.201400136
10.1016/j.jcis.2019.07.061
10.1021/acsnano.8b06164
10.1039/C9BM00853E
10.1002/adfm.201910304
10.1016/j.colsurfb.2020.110941
10.3390/ijms21072536
10.1016/j.biomaterials.2009.10.046
10.1016/j.drudis.2020.06.006
10.4103/0976-9668.71675
10.1016/j.jconrel.2018.07.034
10.1038/nrc3627
10.3390/nano7070189
10.1016/j.impact.2020.100253
10.1021/acsami.6b15185
10.21037/atm.2018.06.14
10.1186/1475-2867-13-89
10.1021/acschembio.7b00855
10.1517/17425247.2014.953051
10.1002/adhm.201900840
10.1080/10611860701539584
10.1039/c3ra23127e
10.1002/adfm.201603749
10.1039/C7NR04445C
10.1039/C8BM00386F
10.1039/C7NR05050J
10.1007/s11095-017-2338-5
10.1016/j.cej.2020.126100
10.3390/pharmaceutics13040460
10.1007/s12032-009-9359-9
10.1038/nrd2803
10.1016/j.ejmech.2018.08.034
10.1021/nn200365a
10.1172/JCI92284
10.1021/acsnano.9b06691
10.1016/j.apmt.2019.06.006
10.1002/chem.201002960
10.1002/adhm.201700831
10.1080/10408360500523878
10.1016/j.semcdb.2019.04.018
10.1021/acsami.9b14668
10.1016/j.biomaterials.2015.10.053
10.3390/cancers10030080
10.1002/smll.201000538
10.1039/D0CC03179H
10.2174/0929867325666180501101044
10.2147/IJN.S201688
10.1039/C6NR07062K
10.1021/acsami.0c19217
10.1021/acsami.6b11802
10.3390/pharmaceutics12060527
10.2147/IJN.S202210
10.1021/acs.chemmater.8b04321
10.1021/nn507241v
10.1038/natrevmats.2016.14
10.3389/fchem.2020.598722
10.1089/ars.2009.2510
10.2147/IJN.S158290
10.1039/c3ra43492c
10.1039/C7NJ02754K
10.1016/j.biopha.2020.111007
10.1002/btm2.10003
10.1016/j.colsurfb.2019.03.019
10.1002/btm2.10143
10.1073/pnas.1120790109
10.1111/cts.12567
10.1038/s41392-017-0004-3
10.1080/03639045.2017.1371734
10.1016/j.trsl.2019.07.006
10.1080/21691401.2018.1431651
10.3389/fbioe.2020.00184
10.1016/j.nano.2017.08.006
10.1016/j.ijpharm.2016.10.013
10.1002/adma.201104763
10.1016/j.jcis.2020.04.026
10.7150/thno.42008
10.1016/j.nano.2018.04.008
10.1016/j.jcis.2018.01.072
10.1039/C6TB00690F
10.1007/s40820-018-0216-2
10.1039/C9NR04858H
10.1016/j.nano.2015.07.004
10.1038/nbt.2842
10.1016/j.jconrel.2019.12.024
10.3390/ph13100294
10.1002/1878-0261.12155
10.1002/adma.201808024
10.1016/j.colsurfb.2017.01.010
10.1007/s42452-020-03397-4
10.1002/adfm.201902634
10.1039/D0NH00032A
10.1021/acsabm.9b01244
10.1016/S0891-5849(01)00480-4
10.1039/C5RA22937E
10.1016/j.trac.2019.115759
10.1021/acsami.5b11730
10.1021/acsami.5b05522
10.1021/acsami.9b15751
10.1016/j.biomaterials.2020.120635
10.1021/acs.accounts.9b00116
10.1021/acs.inorgchem.0c01436
10.1038/s41578-020-0230-0
10.1093/nsr/nwx062
10.1016/j.actbio.2020.07.027
10.1016/j.biomaterials.2017.05.034
10.1038/nmeth.3684
10.1016/j.msec.2019.110103
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jconrel.2021.07.029
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1873-4995
EndPage 211
ExternalDocumentID 10_1016_j_jconrel_2021_07_029
S0168365921003722
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATCM
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABYKQ
ABZDS
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMT
IHE
J1W
KOM
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OVD
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SSP
SSZ
T5K
TEORI
~G-
.GJ
29K
3O-
AAHBH
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
SPT
SSH
WUQ
7X8
EFKBS
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c422t-d471091dda9a4296c86d40250799413d9015c98d0a357bc8e8f9475477265f5e3
IEDL.DBID AIKHN
ISSN 0168-3659
1873-4995
IngestDate Sat Sep 27 21:04:21 EDT 2025
Fri Sep 05 10:46:01 EDT 2025
Tue Jul 01 04:10:04 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Fri Feb 23 02:41:08 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mesoporous silica nanoparticles (MSNs)
Nanotheranostics
Targeted cancer therapy
Cancer imaging
Gene editing
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-d471091dda9a4296c86d40250799413d9015c98d0a357bc8e8f9475477265f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0168365921003722
PQID 2555113043
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_2636470566
proquest_miscellaneous_2555113043
crossref_citationtrail_10_1016_j_jconrel_2021_07_029
crossref_primary_10_1016_j_jconrel_2021_07_029
elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_07_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-10
PublicationDateYYYYMMDD 2021-09-10
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-10
  day: 10
PublicationDecade 2020
PublicationTitle Journal of controlled release
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goel, Mercurio (bb0645) 2013; 13
Zhang, Xu (bb0740) 2018; 5
Lu, Liong, Li, Zink, Tamanoi (bb0580) 2010; 6
Xiao, He, Huang (bb1070) 2010; 27
Barui, Cauda (bb0220) 2020; 12
Chen, Luo, Qiu, Lei, Liu, Wang, Zhang (bb0320) 2017; 117
Fang, Lin, Li, Huang, Hou, Zhang, Liu, Huang, Luo, Fan, Cui, Xu, Li (bb0360) 2017; 13
Wang, Zhao, Huang, He, Xu, Yuan (bb0985) 2020; 401
Guzman-Rojas, Rangel, Salameh, Edwards, Dondossola, Kim, Saghatelian, Giordano, Kolonin, Staquicini, Koivunen, Sidman, Arap, Pasqualini (bb0615) 2012; 109
Shahriari, Zahiri, Abnous, Taghdisi, Ramezani, Alibolandi (bb0890) 2019; 308
Subhan, Torchilin (bb1055) 2019; 214
Lu, Luo, Chen, Yuan, Kuang, Wan, Yao, Chen, Jiang, Liu (bb0820) 2020; 146
Slowing, Wu, Vivero-Escoto, Lin (bb0550) 2009; 5
Teng, Wang, Su, Chen, Liu, Luo, Luo, Tang, Ju, Zhao, Lu (bb0560) 2014; 26
Gessner, Neundorf (bb0625) 2020; 21
Goel, Chen, Luan, Valdovinos, Shi, Graves, Ai, Barnhart, Theuer, Cai (bb0665) 2016; 3
Yingchoncharoen, Kalinowski, Richardson (bb0020) 2016; 68
Doudna, Charpentier (bb1100) 2014; 346
Mladenović, Morgan, Ilić, Saoud, Pergal, Kaluđerović, Knežević (bb0490) 2021; 13
Sigismund, Avanzato, Lanzetti (bb0640) 2018; 12
Shi, Chen, Goel, Graves, Luo, Theuer, Engle, Cai (bb0350) 2018; 10
Feng, Dong, Tao, Zhang, Liu (bb0805) 2018; 5
Wouters, Fan, Haworth (bb0880) 2009; 12
Tang, Hu, Zhang, Song, Nie, Wang, Niu, Huang, Lu, Chen (bb0700) 2015; 7
Xie, Cai, Sun, Liang, Shao, Huang, Cheng, Pang, Xing, Al Kheraif, Lin (bb0400) 2019; 31
Huang, Zhang, Guo, Zhang, Fan, Qin, Wang, Zhou, Ou-Yang, Sun, Leng, Pan, Kong, Zhang, Zhu (bb0960) 2019; 8
Ruiz-Hernández, Baeza, Vallet-Regí (bb0510) 2011; 5
Li, Qin, Lee, Liao, Wang, Davis, Qiao, Ling (bb0495) 2020; 322
Morita, Leslie, Kameyama, Volk, Tanaka (bb0695) 2018; 10
van Elk, Murphy, Eufrásio-da-Silva, O’Reilly, Vermonden, Hennink, Duffy, Ruiz-Hernández (bb0505) 2016; 515
Knežević, Gadjanski, Durand (bb0195) 2019; 7
Liu, Jiang, Chang, Liao, Lodico, Tang, Zheng, Qiu, Lin, Wang, Ji, Mei, Nel, Meng (bb0165) 2021; 17
Lei, Sun, Jiang, Gao, Yang, Zhao, Wang (bb0585) 2019; 105
Martínez-Carmona, Lozano, Baeza, Colilla, Vallet-Regí (bb0930) 2017; 9
Lai, Shah, Zhang, Yang, Lee (bb0275) 2015; 9
Greish (bb0485) 2007; 15
Knežević, Trewyn, Lin (bb0920) 2011; 17
Du, Wang (bb0735) 2019; 14
He, Li, Shen, Yu (bb0845) 2019; 7
He, Li, Shen, Yu (bb0300) 2019; 7
Wilhelm, Tavares, Dai, Ohta, Audet, Dvorak, Chan (bb0145) 2016; 1
Knežević, Durand (bb0480) 2015; 80
Attia, Anton, Wallyn, Omran, Vandamme (bb0545) 2019; 71
Hu, Zhang, Wen, Tan, Huang, Cheng, Zheng, Cheng (bb0610) 2016; 7
Khan, Filipczak, Torchilin (bb0620) 2021; 330
Raza, Hayat, Rasheed, Bilal, Iqbal (bb0060) 2018; 157
Yin, Zhang, Ma, Yang, Xu, Wu, He, Liu, Dong, Shao (bb0315) 2019; 11
Lv, Li, Qiu (bb0770) 2018; 35
Martínez-Carmona, Lozano, Colilla, Vallet-Regí (bb0835) 2018; 65
Llopis-Lorente, Lozano-Torres, Bernardos, Martínez-Máñez, Sancenón (bb0210) 2017; 5
Costa, Mendes, Torchilin (bb0500) 2019; 138
Iqbal, Iqbal (bb0710) 2014; 2014
Thepphankulngarm, Wonganan, Sapcharoenkun, Tuntulani, Leeladee (bb0765) 2017; 41
Yun, Lee, Park (bb0030) 2015; 219
Knežević, Stojanovic, Chaix, Bouffard, El Cheikh, Morère, Maynadier, Lemercier, Garcia, Gary-Bobo, Durand, Cunin (bb0790) 2016; 4
Chen, Ma, Tang, Wang, Wang, Zhuang, Zhu, Wang (bb0245) 2020; 5
Cheng, Chen, Zhang, Wu, Zink (bb1005) 2020; 56
Croissant, Butler, Zink, Brinker (bb0225) 2020; 5
Xu, Liu, Tian, Yan (bb0270) 2020; 30
Lv, Jiang, Yang, Wang, Feng, Liu, Tian (bb0430) 2019; 7
Tang, Li, Chen (bb0570) 2012; 24
Wan, Niu, Wu, Xu, Church, Ping (bb1130) 2019
Kaushik, Ramachandran, Srivastava (bb1105) 2019; 96
Liu, Jiang, Chan, Ji, Lu, Liao, Okene, Lin, Lin, Chang, Wang, Tang, Zheng, Qiu, Wainberg, Nel, Meng (bb0155) 2019; 13
Liu, Ejaz, Gong, Kurbanov, Canakci, Anson, Thayumanavan (bb1135) 2020; 20
Ding, Shao, Xiao, Sun, Cai, Jiang, Zhao, Ma, Lin (bb0390) 2019; 11
Croissant, Fatieiev, Almalik, Khashab (bb0235) 2018; 7
Mekaru, Lu, Tamanoi (bb0215) 2015; 95
Gao, Liu, Tang, Niu, Zhou, Zhang, Liu, Gu, Zhou, Zheng, Sun, Jia, Zhou (bb0855) 2016; 8
Ho, Wu, Jin, Lin, Chiang, Wu, Fan, Yang, Yeh (bb1000) 2020; 232
Dilnawaz (bb0475) 2019; 26
Attarwala (bb0650) 2010; 1
Chen, Xu, Chen, Li, Bu, Shu, Li, Zhang, Zhang, Pan, Cui, Hua, Wang, Zhang, Shi (bb0555) 2013; 25
Chen, Glackin, Horwitz, Zink (bb0190) 2019; 52
Li, Yan, Suo, Peng, Yang, Li, Zhang, Liu (bb0980) 2019; 200
Pereira-Silva, Jarak, Alvarez-Lorenzo, Concheiro, Santos, Veiga, Figueiras (bb1030) 2020; 323
Dalle Vedove, Costabile, Merkel (bb0780) 2018; 7
Dréau, Moore, Alvarez-Berrios, Tarannum, Mukherjee, Vivero-Escoto (bb0660) 2016; 12
Sun, Shi, Luo, Chen, Lv, Lv, Zhuang, Zhu, Liu, Chen, Chen (bb0395) 2019; 31
Knežević (bb0925) 2013; 3
Yang, Chen, Chen, Geng, Xie, Shen, Li, Li, Wu, Liu (bb0325) 2017; 5
Saint-Cricq, Deshayes, Zink, Kasko (bb0970) 2015; 7
Movahedi, Schoonooghe, Laoui, Houbracken, Waelput, Breckpot, Bouwens, Lahoutte, De Baetselier, Raes, Devoogdt, Van Ginderachter (bb0785) 2012; 72
Tao, Wang, Xu (bb1075) 2020; 8
Anselmo, Mitragotri (bb0050) 2019; 4
Baeza, Colilla, Vallet-Regí (bb0465) 2015; 12
Yang, Zhang, Wang, Wang, Zhou, Liang (bb0825) 2014; 11
Schafer, Buettner (bb0865) 2001; 30
He, Zhang, Shi, Zhu, Zhang, Bu, Guo, Chen (bb0565) 2010; 31
Mir, Edraki, Lee, Sontheimer (bb1095) 2018; 13
Liu, Liang, Li, Luo, Zhang, Guo, Cai (bb0410) 2018; 157
Desgrosellier, Cheresh (bb0605) 2010; 10
Sean (bb0575) 2017; 13
Estrela, Ortega, Obrador (bb0875) 2006; 43
Martínez-Carmona, Ho, Morand, García, Ortega, Erthal, Ruiz-Hernandez, Santana, Ruiz, Vallet-Regí, Gun’ko (bb0185) 2020; 59
Noureddine, Maestas-Olguin, Saada, LaBauve, Agola, Baty, Howard, Sabo, Espinoza, Doudna, Schoeniger, Butler, Negrete, Brinker, Serda (bb1045) 2020; 114
Chen, Luo, Lei, Cao, Fan, Qiu (bb0255) 2016; 76
Cheng, Chen, Zhang, Wu, Zink (bb0995) 2019; 141
Liu, Lin, Perrett, Lin, Liao, Chang, Jiang, Wu, Donahue, Wainberg, Nel, Meng (bb0150) 2017; 127
Lv, Jiang, Yang, Wang, Feng, Liu, Tian (bb0935) 2019; 7
Zhou, Rossi (bb0685) 2017; 16
Chaix, El Cheikh, Bouffard, Maynadier, Aggad, Stojanovic, Knezevic, Garcia, Maillard, Morère, Gary-Bobo, Raehm, Richeter, Durand, Cunin (bb0795) 2016; 4
Jugdaohsingh (bb0175) 2007; 11
Watermann, Brieger (bb0525) 2017; 7
Li, Zhang, Zhang, Wu, Feng (bb0760) 2018; 46
Zhao, Zhang, Zhao, Gao, Fan, Wu (bb0600) 2019; 179
Khosravian, Ardestani, Khoobi, Ostad, Dorkoosh, Javar, Amanlou (bb0755) 2016; 9
Fang, Zhu, Chen, Zhang, Hong, Wei, Zhao (bb0305) 2020; 3
Samykutty, Grizzle, Fouts, McNally, Chuong, Thomas, Chiba, Otali, Woloszynska, Said, Frederick, Jasinski, Liu, McNally (bb0365) 2018; 182
Undevia, Gomez-Abuin, Ratain (bb0005) 2005; 5
Zhou, Wang, Ying, Su, Zhang, Lu, Chen (bb0910) 2018; 4
Xu, Nam, Hong, Xu, Moon (bb0310) 2019; 13
Mura, Nicolas, Couvreur (bb0035) 2013; 12
Guisasola, Asín, Beola, de la Fuente, Baeza, Vallet-Regí (bb0965) 2018; 10
Huang, Liu, Gao, Cheng, Lu, Zheng, Xu, Xu, Zhang, Zeng (bb0720) 2018; 6
Anselmo, Mitragotri (bb0045) 2016; 1
Knežević, Ruiz-Hernández, Hennink, Vallet-Regí (bb0180) 2013; 3
Chen, Luo, Qiu, Lei, Liu, Wang, Zhang (bb0915) 2017; 117
Shao, Lu, Zhao, Zhang, Tan, Zheng, Pan, Xiao, Wang, Dong, Li, Chen (bb0540) 2017; 49
Chen, Hu, Wang, Li, Zhu, Chen, Shi, Ju, Cao, Zhang (bb0885) 2020; 10
Li, Yang, Hao, Yi, Zhang, Pan, Xing (bb0290) 2018; 2
Huang, Li, Liu, Hao, Liu, Chen, Tang (bb0530) 2011; 5
Chen, Sun, Hu, Han, Liu, Hu (bb0630) 2017; 152
Paredes, Diana, Garc, Chamizo, Marciello, Miguel, Prashar, Santiago, Filice (bb0895) 2020; 12
Vaghasiya, Ray, Sharma, Katare, Verma (bb0900) 2020; 3
Sajid, Moazzam, Kato, Yeseom Cho, Tiwari (bb1050) 2020; 13
García-Fernández, Aznar, Martínez-Máñez, Sancenón (bb0205) 2020; 16
Sun, You, Wang, Liu, Wang, Song, Cheng, Wang, Tan, Li (bb0335) 2018; 10
Ma, Mao, Wu, Cui, Zhang, Huang (bb1150) 2021; 13
Li, Xing, Zheng, Wei, Du, Shen, Shi (bb0330) 2017; 9
Aghamiri, Talaei, Ghavidel, Zandsalimi, Masoumi, Hafshejani, Jajarmi (bb1125) 2020; 56
Senapati, Mahanta, Kumar, Maiti (bb0055) 2018; 3
Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb0355) 2017; 4
Wang, Han, Hu, Teng, Zhou, Zhang, Chen (bb0905) 2019; 14
Bolukbasi, Gupta, Wolfe (bb1110) 2016; 13
Shao, Li, Huang, Wang, Lu, Jia, Pan, Cui, Ge, Deng, Wu (bb0955) 2020; 10
Lee, Kim, You, Kim, Um, Jeon, Kim, Joo, Yi, Park (bb0385) 2020; 9
Mboge, Mahon, McKenna, Frost (bb0675) 2018; 8
Allen, Liu, Jiang, Liao, Chang, Nel, Meng (bb0160) 2021; 269
Huang, Qian, Chen, Yu, Lin, Wang, Zhu, Shi (bb0445) 2017; 139
Alyassin, Sayed, Mehta, Ruparelia, Arshad, Rasekh, Shepherd, Kucuk, Wilson, Singh, Chang, Fatouros, Ahmad (bb0230) 2020; 25
Goel, Ferreira, Chen, Ellison, Siamof, Barnhart, Cai (bb0945) 2018; 30
Wang, Tian, Liao, Tang, Ni, Sun, Zhao, Zhang, Teng, Lu (bb0425) 2020; 565
Pascual, Cerqueira-Coutinho, García-Fernández, de Luis, Bernardes, Albernaz, Missailidis, Martínez-Máñez, Santos-Oliveira, Orzaez, Sancenón (bb0380) 2017; 13
Sander, Joung (bb1080) 2014; 32
Kim, Cho, Jeon, Kim, Song, Lee, Choi, Hyeon (bb0405) 2017; 139
Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb1025) 2017; 4
Huang, Shen, Si, Shan, Guo, Chen, Wu (bb0950) 2021; 583
Yasun (bb1120) 2020; 2
Erthal, Gobbo, Ruiz-Hernandez (bb0040) 2021; 121
Zhang, Hou, Ge, Deng, Liu, Li, Li, Cheng, Ma, Li, Lin (bb0260) 2015; 7
Mamaeva, Niemi, Beck, Özliseli, Desai, Landor, Gronroos, Kronqvist, Pettersen, McCormack, Rosenholm, Linden, Sahlgren (bb0800) 2016; 24
Palmerston Mendes, Pan, Torchilin (bb0015) 2017; 22
Rahman, Tollefsbol (bb1115) 2020
Xu, Koivisto, Liu, Zhou, Miihkinen, Jacquemet, Wang, Rosenholm, Shu, Zhang (bb1140) 2020; 2000072
Zhang, Chen, Li, Shen (bb1020) 2020; 319
Liu, Zhang, Luo, Ding, Li, Dai, Zhou, Zhao, Ye, Cai (bb0775) 2015; 7
Gerweck, Seetharaman (bb0810) 1996; 56
Lin, Li, Xu, Li, Zheng, Gu, Ke, Huang (bb0840) 2019; 7
Wan, Chen, Deng, Liao, Kuang, Liu, Duan, Xu, Jiang, Li (bb0285) 2020; 573
Matsumura, Maeda (bb0515) 1986; 46
Fu, Xiang (bb0680) 2020; 21
Zhang, Eshraghian, Al Jammal, Zhang, Zhu (bb1090) 2021; 133
Hanafi-Bojd, Moosavian Kalat, Taghdisi, Ansari, Abnous, Malaekeh-Nikouei (bb0705) 2018; 44
Trachootham, Alexandre, Huang (bb0870) 2
Lv (10.1016/j.jconrel.2021.07.029_bb0430) 2019; 7
Shahin (10.1016/j.jconrel.2021.07.029_bb0725) 2018; 14
Kaushik (10.1016/j.jconrel.2021.07.029_bb1105) 2019; 96
Kim (10.1016/j.jconrel.2021.07.029_bb0405) 2017; 139
Knežević (10.1016/j.jconrel.2021.07.029_bb0925) 2013; 3
Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0835) 2018; 65
He (10.1016/j.jconrel.2021.07.029_bb0565) 2010; 31
Paris (10.1016/j.jconrel.2021.07.029_bb0990) 2015; 9
Khan (10.1016/j.jconrel.2021.07.029_bb0620) 2021; 330
Goel (10.1016/j.jconrel.2021.07.029_bb0645) 2013; 13
Sean (10.1016/j.jconrel.2021.07.029_bb0575) 2017; 13
Tang (10.1016/j.jconrel.2021.07.029_bb0570) 2012; 24
Li (10.1016/j.jconrel.2021.07.029_bb0495) 2020; 322
Costa (10.1016/j.jconrel.2021.07.029_bb0500) 2019; 138
Li (10.1016/j.jconrel.2021.07.029_bb0760) 2018; 46
Raza (10.1016/j.jconrel.2021.07.029_bb0060) 2018; 157
Movahedi (10.1016/j.jconrel.2021.07.029_bb0785) 2012; 72
Hu (10.1016/j.jconrel.2021.07.029_bb0415) 2019; 11
Croissant (10.1016/j.jconrel.2021.07.029_bb0265) 2015; 3
Mboge (10.1016/j.jconrel.2021.07.029_bb0675) 2018; 8
Llopis-Lorente (10.1016/j.jconrel.2021.07.029_bb0210) 2017; 5
van Elk (10.1016/j.jconrel.2021.07.029_bb0505) 2016; 515
Jones (10.1016/j.jconrel.2021.07.029_bb0745) 2017; 138
Lv (10.1016/j.jconrel.2021.07.029_bb0770) 2018; 35
Mekaru (10.1016/j.jconrel.2021.07.029_bb0215) 2015; 95
Huang (10.1016/j.jconrel.2021.07.029_bb0340) 2019; 8
Thepphankulngarm (10.1016/j.jconrel.2021.07.029_bb0765) 2017; 41
Anselmo (10.1016/j.jconrel.2021.07.029_bb0045) 2016; 1
Yang (10.1016/j.jconrel.2021.07.029_bb0325) 2017; 5
Huang (10.1016/j.jconrel.2021.07.029_bb0950) 2021; 583
Yang (10.1016/j.jconrel.2021.07.029_bb0825) 2014; 11
Goel (10.1016/j.jconrel.2021.07.029_bb0440) 2018; 30
Liu (10.1016/j.jconrel.2021.07.029_bb0155) 2019; 13
Vandghanooni (10.1016/j.jconrel.2021.07.029_bb1040) 2020; 123
Dréau (10.1016/j.jconrel.2021.07.029_bb0660) 2016; 12
Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0185) 2020; 59
Noureddine (10.1016/j.jconrel.2021.07.029_bb1045) 2020; 114
Teng (10.1016/j.jconrel.2021.07.029_bb0560) 2014; 26
Chen (10.1016/j.jconrel.2021.07.029_bb0245) 2020; 5
Chen (10.1016/j.jconrel.2021.07.029_bb0255) 2016; 76
Sun (10.1016/j.jconrel.2021.07.029_bb0395) 2019; 31
Khosravian (10.1016/j.jconrel.2021.07.029_bb0755) 2016; 9
Perton (10.1016/j.jconrel.2021.07.029_bb0975) 2019; 16
Doudna (10.1016/j.jconrel.2021.07.029_bb1100) 2014; 346
Liu (10.1016/j.jconrel.2021.07.029_bb0150) 2017; 127
Yang (10.1016/j.jconrel.2021.07.029_bb0470) 2016; 12
Knežević (10.1016/j.jconrel.2021.07.029_bb0200) 2017; 9
Watermann (10.1016/j.jconrel.2021.07.029_bb0525) 2017; 7
Iqbal (10.1016/j.jconrel.2021.07.029_bb0710) 2014; 2014
Lu (10.1016/j.jconrel.2021.07.029_bb0580) 2010; 6
Ovacik (10.1016/j.jconrel.2021.07.029_bb0655) 2018; 11
Ruiz-Hernández (10.1016/j.jconrel.2021.07.029_bb0510) 2011; 5
Sajid (10.1016/j.jconrel.2021.07.029_bb1050) 2020; 13
Attarwala (10.1016/j.jconrel.2021.07.029_bb0650) 2010; 1
Lai (10.1016/j.jconrel.2021.07.029_bb0275) 2015; 9
Ho (10.1016/j.jconrel.2021.07.029_bb0375) 2020; 232
Kalluru (10.1016/j.jconrel.2021.07.029_bb0450) 2016; 26
Zhang (10.1016/j.jconrel.2021.07.029_bb0715) 2019; 14
Gerweck (10.1016/j.jconrel.2021.07.029_bb0810) 1996; 56
Liu (10.1016/j.jconrel.2021.07.029_bb0025) 2018; 286
Li (10.1016/j.jconrel.2021.07.029_bb0250) 2020; 10
He (10.1016/j.jconrel.2021.07.029_bb0845) 2019; 7
Yang (10.1016/j.jconrel.2021.07.029_bb0850) 2017; 5
Bolukbasi (10.1016/j.jconrel.2021.07.029_bb1110) 2016; 13
Shi (10.1016/j.jconrel.2021.07.029_bb0350) 2018; 10
Erthal (10.1016/j.jconrel.2021.07.029_bb0040) 2021; 121
Yun (10.1016/j.jconrel.2021.07.029_bb0030) 2015; 219
Dalle Vedove (10.1016/j.jconrel.2021.07.029_bb0780) 2018; 7
Knežević (10.1016/j.jconrel.2021.07.029_bb0180) 2013; 3
Allen (10.1016/j.jconrel.2021.07.029_bb0160) 2021; 269
Mamaeva (10.1016/j.jconrel.2021.07.029_bb0800) 2016; 24
Li (10.1016/j.jconrel.2021.07.029_bb0535) 2015; 11
Ho (10.1016/j.jconrel.2021.07.029_bb1000) 2020; 232
Morita (10.1016/j.jconrel.2021.07.029_bb0695) 2018; 10
Yasun (10.1016/j.jconrel.2021.07.029_bb1120) 2020; 2
Chen (10.1016/j.jconrel.2021.07.029_bb0630) 2017; 152
Li (10.1016/j.jconrel.2021.07.029_bb0330) 2017; 9
Huang (10.1016/j.jconrel.2021.07.029_bb0720) 2018; 6
Shao (10.1016/j.jconrel.2021.07.029_bb0540) 2017; 49
Yang (10.1016/j.jconrel.2021.07.029_bb0435) 2019; 11
Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0930) 2017; 9
Lin (10.1016/j.jconrel.2021.07.029_bb0670) 2017; 7
Goel (10.1016/j.jconrel.2021.07.029_bb0665) 2016; 3
Li (10.1016/j.jconrel.2021.07.029_bb0690) 2018; 13
Tian (10.1016/j.jconrel.2021.07.029_bb1025) 2017; 4
Xu (10.1016/j.jconrel.2021.07.029_bb0270) 2020; 30
García-Fernández (10.1016/j.jconrel.2021.07.029_bb0205) 2020; 16
Chen (10.1016/j.jconrel.2021.07.029_bb0455) 2016; 8
Croissant (10.1016/j.jconrel.2021.07.029_bb0235) 2018; 7
Yang (10.1016/j.jconrel.2021.07.029_bb0940) 2019; 11
Mo (10.1016/j.jconrel.2021.07.029_bb0595) 2016; 8
Anselmo (10.1016/j.jconrel.2021.07.029_bb0050) 2019; 4
Matsumura (10.1016/j.jconrel.2021.07.029_bb0515) 1986; 46
Xu (10.1016/j.jconrel.2021.07.029_bb0310) 2019; 13
Pereira-Silva (10.1016/j.jconrel.2021.07.029_bb1030) 2020; 323
Gao (10.1016/j.jconrel.2021.07.029_bb0855) 2016; 8
Lin (10.1016/j.jconrel.2021.07.029_bb0840) 2019; 7
Xie (10.1016/j.jconrel.2021.07.029_bb0400) 2019; 31
Li (10.1016/j.jconrel.2021.07.029_bb0980) 2019; 200
Mura (10.1016/j.jconrel.2021.07.029_bb0035) 2013; 12
Yuan (10.1016/j.jconrel.2021.07.029_bb0830) 2019; 555
Lei (10.1016/j.jconrel.2021.07.029_bb0585) 2019; 105
Liao (10.1016/j.jconrel.2021.07.029_bb0065) 2020; 20
Huang (10.1016/j.jconrel.2021.07.029_bb0445) 2017; 139
Zhang (10.1016/j.jconrel.2021.07.029_bb0260) 2015; 7
Wang (10.1016/j.jconrel.2021.07.029_bb0295) 2020; 401
Liu (10.1016/j.jconrel.2021.07.029_bb0410) 2018; 157
Wan (10.1016/j.jconrel.2021.07.029_bb0285) 2020; 573
Huang (10.1016/j.jconrel.2021.07.029_bb0420) 2021; 583
Wang (10.1016/j.jconrel.2021.07.029_bb0425) 2020; 565
Sander (10.1016/j.jconrel.2021.07.029_bb1080) 2014; 32
Paris (10.1016/j.jconrel.2021.07.029_bb1065) 2020; 12
Ricci (10.1016/j.jconrel.2021.07.029_bb0730) 2018; 516
Palmerston Mendes (10.1016/j.jconrel.2021.07.029_bb0015) 2017; 22
Chen (10.1016/j.jconrel.2021.07.029_bb0320) 2017; 117
Stockhofe (10.1016/j.jconrel.2021.07.029_bb0520) 2014; 7
Chen (10.1016/j.jconrel.2021.07.029_bb0555) 2013; 25
Lu (10.1016/j.jconrel.2021.07.029_bb0820) 2020; 146
Gessner (10.1016/j.jconrel.2021.07.029_bb0625) 2020; 21
Fang (10.1016/j.jconrel.2021.07.029_bb0305) 2020; 3
Zhang (10.1016/j.jconrel.2021.07.029_bb1020) 2020; 319
Aghamiri (10.1016/j.jconrel.2021.07.029_bb1125) 2020; 56
Manzano (10.1016/j.jconrel.2021.07.029_bb0240) 2020; 30
Chen (10.1016/j.jconrel.2021.07.029_bb0460) 2015; 9
Knežević (10.1016/j.jconrel.2021.07.029_bb0750) 2016; 6
Carvalho (10.1016/j.jconrel.2021.07.029_bb1060) 2020; 12
Liu (10.1016/j.jconrel.2021.07.029_bb0170) 2021; 8
Estrela (10.1016/j.jconrel.2021.07.029_bb0875) 2006; 43
Wan (10.1016/j.jconrel.2021.07.029_bb1130) 2019
Sullivan (10.1016/j.jconrel.2021.07.029_bb0010) 2018; 6
Liu (10.1016/j.jconrel.2021.07.029_bb0165) 2021; 17
Tao (10.1016/j.jconrel.2021.07.029_bb1075) 2020; 8
Zhang (10.1016/j.jconrel.2021.07.029_bb0740) 2018; 5
Hanafi-Bojd (10.1016/j.jconrel.2021.07.029_bb0705) 2018; 44
Tang (10.1016/j.jconrel.2021.07.029_bb0700) 2015; 7
Wang (10.1016/j.jconrel.2021.07.029_bb0905) 2019; 14
Zhou (10.1016/j.jconrel.2021.07.029_bb0910) 2018; 4
Shen (10.1016/j.jconrel.2021.07.029_bb0635) 2018; 8
Knežević (10.1016/j.jconrel.2021.07.029_bb0480) 2015; 80
Yingchoncharoen (10.1016/j.jconrel.2021.07.029_bb0020) 2016; 68
Sun (10.1016/j.jconrel.2021.07.029_bb0335) 2018; 10
Lu (10.1016/j.jconrel.2021.07.029_bb0280) 2020; 190
Shao (10.1016/j.jconrel.2021.07.029_bb0370) 2020; 10
Lee (10.1016/j.jconrel.2021.07.029_bb0385) 2020; 9
Feng (10.1016/j.jconrel.2021.07.029_bb0805) 2018; 5
Knezevic (10.1016/j.jconrel.2021.07.029_bb1010) 2013; 5
Pascual (10.1016/j.jconrel.2021.07.029_bb0380) 2017; 13
Rahman (10.1016/j.jconrel.2021.07.029_bb1115) 2020
Wang (10.1016/j.jconrel.2021.07.029_bb0985) 2020; 401
Undevia (10.1016/j.jconrel.2021.07.029_bb0005) 2005; 5
Deakin (10.1016/j.jconrel.2021.07.029_bb1145) 2011; 22
Lv (10.1016/j.jconrel.2021.07.029_bb0935) 2019; 7
Yin (10.1016/j.jconrel.2021.07.029_bb0315) 2019; 11
Desgrosellier (10.1016/j.jconrel.2021.07.029_bb0605) 2010; 10
Chaix (10.1016/j.jconrel.2021.07.029_bb0795) 2016; 4
Wilhelm (10.1016/j.jconrel.2021.07.029_bb0145) 2016; 1
Liu (10.1016/j.jconrel.2021.07.029_bb0775) 2015; 7
Cheng (10.1016/j.jconrel.2021.07.029_bb1005) 2020; 56
Poonia (10.1016/j.jconrel.2021.07.029_bb0590) 2018; 23
Xiao (10.1016/j.jconrel.2021.07.029_bb1070) 2010; 27
Shao (10.1016/j.jconrel.2021.07.029_bb0955) 2020; 10
Zhang (10.1016/j.jconrel.2021.07.029_bb1090) 2021; 133
Wouters (10.1016/j.jconrel.2021.07.029_bb0880) 2009; 12
Li (10.1016/j.jconrel.2021.07.029_bb0290) 2018; 2
Chen (10.1016/j.jconrel.2021.07.029_bb0885) 2020; 10
Huang (10.1016/j.jconrel.2021.07.029_bb0960) 2019; 8
Subhan (10.1016/j.jconrel.2021.07.029_bb1055) 2019; 214
Baeza (10.1016/j.jconrel.2021.07.029_bb0465) 2015; 12
Cheng (10.1016/j.jconrel.2021.07.029_bb0995) 2019; 141
Chen (10.1016/j.jconrel.2021.07.029_bb0190) 2019; 52
Slowing (10.1016/j.jconrel.2021.07.029_bb0550) 2009; 5
Greish (10.1016/j.jconrel.2021.07.029_bb0485) 2007; 15
Fu (10.1016/j.jconrel.2021.07.029_bb0680) 2020; 21
Mir (10.1016/j.jconrel.2021.07.029_bb1095) 2018; 13
Guzman-Rojas (10.1016/j.jconrel.2021.07.029_bb0615) 2012; 109
Knežević (10.1016/j.jconrel.2021.07.029_bb0790) 2016; 4
Schafer (10.1016/j.jconrel.2021.07.029_bb0865) 2001; 30
Samykutty (10.1016/j.jconrel.2021.07.029_bb0365) 2018; 182
Paredes (10.1016/j.jconrel.2021.07.029_bb0895) 2020; 12
Saint-Cricq (10.1016/j.jconrel.2021.07.029_bb0970) 2015; 7
Dilnawaz (10.1016/j.jconrel.2021.07.029_bb0475) 2019; 26
He (10.1016/j.jconrel.2021.07.029_bb0300) 2019; 7
Trachootham (10.1016/j.jconrel.2021.07.029_bb0870) 2009; 8
Du (10.1016/j.jconrel.2021.07.029_bb0735) 2019; 14
Kato (10.1016/j.jconrel.2021.07.029_bb0815) 2013; 13
Vaghasiya (10.1016/j.jconrel.2021.07.029_bb0900) 2020; 3
Gao (10.1016/j.jconrel.2021.07.029_bb1015) 2020; 8
Zhou
References_xml – volume: 565
  start-page: 483
  year: 2020
  end-page: 493
  ident: bb0425
  article-title: Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform
  publication-title: J. Colloid Interface Sci.
– volume: 13
  start-page: 871
  year: 2013
  end-page: 882
  ident: bb0645
  article-title: VEGF targets the tumour cell
  publication-title: Nat. Rev. Cancer
– volume: 10
  start-page: 9
  year: 2010
  end-page: 22
  ident: bb0605
  article-title: Integrins in cancer: Biological implications and therapeutic opportunities
  publication-title: Nat. Rev. Cancer
– volume: 3
  start-page: 1
  year: 2016
  end-page: 11
  ident: bb0665
  article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies
  publication-title: Adv. Sci.
– volume: 121
  start-page: 89
  year: 2021
  end-page: 102
  ident: bb0040
  article-title: Biocompatible copolymer formulations to treat glioblastoma multiforme
  publication-title: Acta Biomater.
– volume: 322
  start-page: 566
  year: 2020
  end-page: 592
  ident: bb0495
  article-title: Stimuli-responsive nano-assemblies for remotely controlled drug delivery
  publication-title: J. Control. Release
– volume: 10
  start-page: 7273
  year: 2020
  end-page: 7286
  ident: bb0955
  article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging
  publication-title: Theranostics.
– volume: 219
  start-page: 2
  year: 2015
  end-page: 7
  ident: bb0030
  article-title: Controlled drug delivery: historical perspective for the next generation
  publication-title: J. Control. Release
– volume: 5
  year: 2018
  ident: bb0740
  article-title: Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release
  publication-title: R. Soc. Open Sci.
– volume: 9
  start-page: 15967
  year: 2017
  end-page: 15973
  ident: bb0930
  article-title: A novel visible light responsive nanosystem for cancer treatment
  publication-title: Nanoscale
– volume: 3
  start-page: 1690
  year: 2020
  end-page: 1697
  ident: bb0305
  article-title: MRI enhancement and tumor targeted drug delivery using Zn2+-doped Fe3O4 core/mesoporous silica shell nanocomposites
  publication-title: ACS Appl. Bio Mater.
– volume: 583
  start-page: 166
  year: 2021
  end-page: 177
  ident: bb0420
  article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy
  publication-title: J. Colloid Interface Sci.
– volume: 7
  year: 2018
  ident: bb0780
  article-title: Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy
  publication-title: Adv. Healthc. Mater.
– volume: 13
  start-page: 357
  year: 2018
  end-page: 365
  ident: bb1095
  article-title: Type II-C CRISPR-Cas9 biology, mechanism, and application
  publication-title: ACS Chem. Biol.
– volume: 7
  start-page: 13168
  year: 2015
  end-page: 13172
  ident: bb0970
  article-title: Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles
  publication-title: Nanoscale.
– year: 2020
  ident: bb1115
  article-title: Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects
  publication-title: Methods
– volume: 6
  start-page: 285
  year: 2018
  ident: bb0010
  article-title: Precision oncology in liver cancer
  publication-title: Ann Transl Med.
– volume: 1
  start-page: 16014
  year: 2016
  ident: bb0145
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater.
– volume: 31
  start-page: 1808024
  year: 2019
  ident: bb0395
  article-title: Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2404
  year: 2018
  end-page: 2411
  ident: bb0910
  article-title: Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy
  publication-title: Int J Nanomedicine
– volume: 12
  start-page: 187
  year: 2020
  ident: bb0895
  article-title: Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer
  publication-title: Cancers (Basel)
– volume: 5
  start-page: 886
  year: 2020
  end-page: 909
  ident: bb0225
  article-title: Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications
  publication-title: Nat. Rev. Mater.
– volume: 516
  start-page: 484
  year: 2018
  end-page: 497
  ident: bb0730
  article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 41069
  year: 2019
  end-page: 41081
  ident: bb0315
  article-title: Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 143
  year: 2006
  end-page: 181
  ident: bb0875
  article-title: Glutathione in cancer biology and therapy
  publication-title: Crit. Rev. Clin. Lab. Sci.
– volume: 22
  start-page: 1401
  year: 2017
  ident: bb0015
  article-title: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy
  publication-title: Molecules.
– volume: 12
  start-page: 526
  year: 2020
  ident: bb1065
  article-title: Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: a review
  publication-title: Pharmaceutics.
– volume: 7
  start-page: 3614
  year: 2015
  end-page: 3626
  ident: bb0775
  article-title: Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo
  publication-title: Nanoscale.
– volume: 12
  start-page: 1
  year: 2020
  end-page: 33
  ident: bb0220
  article-title: Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy
  publication-title: Pharmaceutics.
– volume: 76
  start-page: 87
  year: 2016
  end-page: 101
  ident: bb0255
  article-title: Biomaterials rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy
  publication-title: Biomaterials.
– volume: 11
  start-page: 34
  year: 2014
  ident: bb0825
  article-title: pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment
  publication-title: Cancer Biol. Med.
– volume: 13
  start-page: 38
  year: 2019
  end-page: 53
  ident: bb0155
  article-title: Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer
  publication-title: ACS Nano
– volume: 5
  start-page: 5390
  year: 2011
  end-page: 5399
  ident: bb0530
  article-title: The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo
  publication-title: ACS Nano
– volume: 32
  start-page: 347
  year: 2014
  end-page: 355
  ident: bb1080
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
– volume: 30
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0945
  article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy
  publication-title: Adv. Mater.
– volume: 9
  start-page: 5234
  year: 2015
  end-page: 5245
  ident: bb0275
  article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles
  publication-title: ACS Nano
– volume: 26
  start-page: 3741
  year: 2014
  end-page: 3747
  ident: bb0560
  article-title: Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels
  publication-title: Adv. Mater.
– volume: 80
  start-page: 26
  year: 2015
  end-page: 36
  ident: bb0480
  article-title: Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles
  publication-title: Chempluschem.
– volume: 14
  start-page: 2533
  year: 2019
  end-page: 2542
  ident: bb0905
  article-title: Enzyme-Responsive Mesoporous Silica Nanoparticles for Tumor Cells and Mitochondria Multistage-Targeted Drug Delivery
  publication-title: Int J Nanomedicine
– volume: 10
  start-page: 3722
  year: 2020
  end-page: 3736
  ident: bb0250
  article-title: Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy
  publication-title: Theranostics.
– volume: 7
  year: 2017
  ident: bb0525
  article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer
  publication-title: Nanomaterials
– volume: 13
  year: 2021
  ident: bb0490
  article-title: pH-responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers
  publication-title: Pharmaceutics
– year: 2019
  ident: bb1130
  article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook
  publication-title: Mater. Today
– volume: 2000072
  year: 2020
  ident: bb1140
  article-title: Effective delivery of the crispr/cas9 system enabled by functionalized mesoporous silica nanoparticles for gfp-tagged paxillin knock-in
  publication-title: Adv. Ther.
– volume: 182
  start-page: 114
  year: 2018
  end-page: 126
  ident: bb0365
  article-title: Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle
  publication-title: Biomaterials.
– volume: 105
  start-page: 110103
  year: 2019
  ident: bb0585
  article-title: Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy
  publication-title: Mater. Sci. Eng. C
– volume: 16
  start-page: 181
  year: 2017
  end-page: 202
  ident: bb0685
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
– volume: 141
  start-page: 17670
  year: 2019
  end-page: 17684
  ident: bb0995
  article-title: A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 6456
  year: 2015
  end-page: 6461
  ident: bb0265
  article-title: Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging
  publication-title: J. Mater. Chem. B
– volume: 117
  start-page: 54
  year: 2017
  end-page: 65
  ident: bb0320
  article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy
  publication-title: Biomaterials.
– volume: 14
  start-page: 1381
  year: 2018
  end-page: 1394
  ident: bb0725
  article-title: Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 127
  start-page: 2007
  year: 2017
  end-page: 2018
  ident: bb0150
  article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer
  publication-title: J. Clin. Invest.
– volume: 11
  start-page: 14654
  year: 2019
  end-page: 14667
  ident: bb0390
  article-title: MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy
  publication-title: Nanoscale.
– volume: 555
  start-page: 82
  year: 2019
  end-page: 93
  ident: bb0830
  article-title: Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery
  publication-title: J. Colloid Interface Sci.
– volume: 11
  start-page: 6777
  year: 2019
  end-page: 6788
  ident: bb0940
  article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 583
  start-page: 166
  year: 2021
  end-page: 177
  ident: bb0950
  article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy
  publication-title: J. Colloid Interface Sci.
– volume: 59
  start-page: 10275
  year: 2020
  end-page: 10284
  ident: bb0185
  article-title: Amino-functionalized mesoporous silica nanoparticle-encapsulated octahedral organoruthenium complex as an efficient platform for combatting cancer
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 4618
  year: 2018
  end-page: 4629
  ident: bb0720
  article-title: A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy
  publication-title: J. Mater. Chem. B
– volume: 4
  year: 2019
  ident: bb0050
  article-title: Nanoparticles in the clinic: An update
  publication-title: Bioeng. Transl. Med.
– volume: 35
  start-page: 63
  year: 2018
  ident: bb0770
  article-title: Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy
  publication-title: Pharm Res.
– volume: 71
  start-page: 1185
  year: 2019
  end-page: 1198
  ident: bb0545
  article-title: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites
  publication-title: J. Pharm. Pharmacol.
– volume: 7
  start-page: 20696
  year: 2015
  end-page: 20706
  ident: bb0260
  article-title: DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 319
  year: 2015
  end-page: 337
  ident: bb0465
  article-title: Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery
  publication-title: Expert Opin. Drug Deliv.
– volume: 330
  start-page: 1220
  year: 2021
  end-page: 1228
  ident: bb0620
  article-title: Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer
  publication-title: J. Control. Release
– volume: 10
  start-page: 1
  year: 2020
  end-page: 12
  ident: bb0885
  article-title: Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy
  publication-title: Sci. Rep.
– volume: 15
  start-page: 457
  year: 2007
  end-page: 464
  ident: bb0485
  article-title: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines
  publication-title: J. Drug Target.
– volume: 1
  start-page: 53
  year: 2010
  end-page: 56
  ident: bb0650
  article-title: Role of antibodies in cancer targeting
  publication-title: J. Nat. Sci. Biol. Med.
– volume: 12
  start-page: 317
  year: 2016
  end-page: 332
  ident: bb0470
  article-title: Advances in silica based nanoparticles for targeted cancer therapy
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 7
  year: 2014
  ident: bb0520
  article-title: Radiolabeling of nanoparticles and polymers for PET imaging
  publication-title: Pharm.
– volume: 7
  start-page: 4558
  year: 2019
  end-page: 4567
  ident: bb0430
  article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy
  publication-title: Biomater. Sci.
– volume: 286
  start-page: 64
  year: 2018
  end-page: 73
  ident: bb0025
  article-title: Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy
  publication-title: J. Control. Release
– volume: 8
  start-page: 1
  year: 2021
  end-page: 17
  ident: bb0170
  article-title: Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1
  publication-title: Adv. Sci.
– volume: 109
  start-page: 1637
  year: 2012
  end-page: 1642
  ident: bb0615
  article-title: Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 24
  start-page: 1504
  year: 2012
  end-page: 1534
  ident: bb0570
  article-title: Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery
  publication-title: Adv. Mater.
– volume: 14
  start-page: 4029
  year: 2019
  end-page: 4044
  ident: bb0715
  article-title: A dual-functional her2 aptamer-conjugated, ph-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in her2-positive breast cancer cells
  publication-title: Int. J. Nanomedicine
– volume: 68
  start-page: 701
  year: 2016
  end-page: 787
  ident: bb0020
  article-title: Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come
  publication-title: Pharmacol. Rev.
– volume: 5
  start-page: 3069
  year: 2017
  end-page: 3083
  ident: bb0210
  article-title: Mesoporous silica materials for controlled delivery based on enzymes
  publication-title: J. Mater. Chem. B
– volume: 4
  start-page: 1337
  year: 2016
  end-page: 1342
  ident: bb0790
  article-title: Ruthenium(II) multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy
  publication-title: J. Mater. Chem. B
– volume: 8
  start-page: 6811
  year: 2016
  end-page: 6825
  ident: bb0595
  article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 53
  year: 2009
  end-page: 91
  ident: bb0880
  article-title: Disulfides as redox switches: from molecular mechanisms to functional significance
  publication-title: Antioxid. Redox Signal.
– volume: 319
  start-page: 46
  year: 2020
  end-page: 62
  ident: bb1020
  article-title: Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine
  publication-title: J. Control. Release
– volume: 11
  start-page: 540
  year: 2018
  end-page: 552
  ident: bb0655
  article-title: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development
  publication-title: Clin. Transl. Sci.
– volume: 13
  start-page: 89
  year: 2013
  ident: bb0815
  article-title: Acidic extracellular microenvironment and cancer
  publication-title: Cancer Cell Int.
– volume: 20
  start-page: 4014
  year: 2020
  end-page: 4021
  ident: bb1135
  article-title: Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing
  publication-title: Nano Lett.
– volume: 5
  start-page: 447
  year: 2005
  end-page: 458
  ident: bb0005
  article-title: Pharmacokinetic variability of anticancer agents
  publication-title: Nat. Rev. Cancer
– volume: 56
  start-page: 10297
  year: 2020
  end-page: 10300
  ident: bb1005
  article-title: Magnetic resonance imaging of high-intensity focused ultrasound-stimulated drug release from a self-reporting core@ shell nanoparticle platform
  publication-title: Chem. Commun.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 10
  ident: bb1025
  article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
– volume: 26
  start-page: 5745
  year: 2019
  end-page: 5763
  ident: bb0475
  article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging
  publication-title: Curr. Med. Chem.
– volume: 11
  start-page: 1915
  year: 2015
  end-page: 1924
  ident: bb0535
  article-title: Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape
  publication-title: Nanomedicine.
– volume: 56
  start-page: 1194
  year: 1996
  end-page: 1198
  ident: bb0810
  article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer
  publication-title: Cancer Res.
– volume: 12
  start-page: 3
  year: 2018
  end-page: 20
  ident: bb0640
  article-title: Emerging Functions of the EGFR in Cancer
  publication-title: Mol. Oncol.
– volume: 269
  start-page: 120635
  year: 2021
  ident: bb0160
  article-title: Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor
  publication-title: Biomaterials.
– volume: 190
  year: 2020
  ident: bb0280
  article-title: Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 515
  start-page: 132
  year: 2016
  end-page: 164
  ident: bb0505
  article-title: Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems
  publication-title: Int. J. Pharm.
– volume: 5
  start-page: 1001
  year: 2017
  end-page: 1013
  ident: bb0850
  article-title: Biomaterials science
  publication-title: Biomater. Sci.
– volume: 7
  start-page: 9
  year: 2019
  end-page: 23
  ident: bb0195
  article-title: Magnetic nanoarchitectures for cancer sensing, imaging and therapy
  publication-title: J. Mater. Chem. B
– volume: 123
  start-page: 115759
  year: 2020
  ident: bb1040
  article-title: Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer
  publication-title: TrAC Trends Anal. Chem.
– volume: 10
  year: 2018
  ident: bb0695
  article-title: Aptamer therapeutics in cancer: current and future
  publication-title: Cancers (Basel).
– volume: 5
  start-page: 1259
  year: 2011
  end-page: 1266
  ident: bb0510
  article-title: Smart drug delivery through DNA/magnetic nanoparticle gates
  publication-title: ACS Nano
– volume: 31
  start-page: 1085
  year: 2010
  end-page: 1092
  ident: bb0565
  article-title: The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses
  publication-title: Biomaterials.
– volume: 7
  start-page: 211
  year: 2019
  end-page: 219
  ident: bb0840
  article-title: A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy
  publication-title: Biomater. Sci.
– volume: 3
  start-page: 19388
  year: 2013
  end-page: 19392
  ident: bb0925
  article-title: Visible light responsive anticancer treatment with an amsacrine-loaded mesoporous silica-based nanodevice
  publication-title: RSC Adv.
– volume: 13
  start-page: 7890
  year: 2021
  end-page: 7896
  ident: bb1150
  article-title: CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery
  publication-title: ACS Appl. Mater. Interfaces
– volume: 117
  start-page: 54
  year: 2017
  end-page: 65
  ident: bb0915
  article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy
  publication-title: Biomaterials.
– volume: 17
  start-page: 3338
  year: 2011
  end-page: 3342
  ident: bb0920
  article-title: Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier
  publication-title: Chem. Eur. J.
– volume: 346
  start-page: 1258096
  year: 2014
  ident: bb1100
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science (80-. ).
– volume: 23
  start-page: 315
  year: 2018
  end-page: 332
  ident: bb0590
  article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer
  publication-title: Drug Discov. Today
– volume: 7
  start-page: 4558
  year: 2019
  end-page: 4567
  ident: bb0935
  article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy
  publication-title: Biomater. Sci.
– volume: 12
  start-page: 991
  year: 2013
  end-page: 1003
  ident: bb0035
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
– volume: 2
  start-page: 233
  year: 2018
  end-page: 242
  ident: bb0290
  article-title: Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging
  publication-title: Nanotheranostics
– volume: 8
  start-page: 1
  year: 2019
  end-page: 14
  ident: bb0340
  article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy
  publication-title: Adv. Healthc. Mater.
– volume: 8
  start-page: 19573
  year: 2016
  end-page: 19580
  ident: bb0345
  article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery
  publication-title: Nanoscale.
– volume: 7
  start-page: 6840
  year: 2019
  end-page: 6854
  ident: bb0300
  article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 3926
  year: 2015
  end-page: 3934
  ident: bb0460
  article-title: In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine
  publication-title: ACS Nano
– volume: 6
  start-page: 1794
  year: 2010
  end-page: 1805
  ident: bb0580
  article-title: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals
  publication-title: Small.
– volume: 7
  start-page: 6304
  year: 2015
  end-page: 6310
  ident: bb0700
  article-title: An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles
  publication-title: Nanoscale.
– volume: 8
  start-page: 184
  year: 2020
  ident: bb1075
  article-title: Emerging and innovative theranostic approaches for mesoporous silica nanoparticles in hepatocellular carcinoma: current status and advances
  publication-title: Front. Bioeng. Biotechnol.
– volume: 6
  start-page: 7061
  year: 2016
  end-page: 7065
  ident: bb0750
  article-title: Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy
  publication-title: RSC Adv.
– volume: 5
  start-page: 57
  year: 2009
  end-page: 62
  ident: bb0550
  article-title: Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells
  publication-title: Small.
– volume: 13
  start-page: 1241
  year: 2018
  end-page: 1256
  ident: bb0690
  article-title: Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy
  publication-title: Int. J. Nanomedicine
– volume: 9
  start-page: 7315
  year: 2016
  end-page: 7330
  ident: bb0755
  article-title: Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel
  publication-title: Oncol. Targets. Ther.
– volume: 95
  start-page: 40
  year: 2015
  end-page: 49
  ident: bb0215
  article-title: Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
– volume: 5
  start-page: 1544
  year: 2013
  end-page: 1551
  ident: bb1010
  article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug
  publication-title: Nanoscale.
– volume: 8
  start-page: 1086
  year: 2020
  ident: bb1015
  article-title: A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies
  publication-title: Front. Chem.
– volume: 573
  start-page: 263
  year: 2020
  end-page: 277
  ident: bb0285
  article-title: A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy
  publication-title: J. Colloid Interface Sci.
– volume: 179
  start-page: 352
  year: 2019
  end-page: 362
  ident: bb0600
  article-title: A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 72
  start-page: 4165
  year: 2012
  end-page: 4177
  ident: bb0785
  article-title: Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages
  publication-title: Cancer Res.
– volume: 13
  start-page: 41
  year: 2016
  end-page: 50
  ident: bb1110
  article-title: Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery
  publication-title: Nat. Methods
– volume: 3
  start-page: 7
  year: 2018
  ident: bb0055
  article-title: Controlled drug delivery vehicles for cancer treatment and their performance
  publication-title: Signal Transduct. Target. Ther.
– volume: 152
  start-page: 77
  year: 2017
  end-page: 84
  ident: bb0630
  article-title: Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery
  publication-title: Colloids Surf. B: Biointerfaces
– volume: 30
  start-page: 1191
  year: 2001
  end-page: 1212
  ident: bb0865
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radic. Biol. Med.
– volume: 4
  start-page: 1
  year: 2017
  end-page: 10
  ident: bb0355
  article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
– volume: 138
  start-page: 105
  year: 2019
  end-page: 116
  ident: bb0500
  article-title: The effect of low- and high-penetration light on localized cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
– volume: 11
  start-page: 99
  year: 2007
  end-page: 110
  ident: bb0175
  article-title: Silicon and bone health
  publication-title: J. Nutr. Health Aging
– volume: 5
  start-page: 986
  year: 2020
  end-page: 998
  ident: bb0245
  article-title: Reversibly-regulated drug release using poly (tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy
  publication-title: Nanoscale Horizons.
– volume: 8
  start-page: 33829
  year: 2016
  end-page: 33841
  ident: bb0455
  article-title: Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 12821
  year: 2017
  end-page: 12829
  ident: bb0200
  article-title: Silicon-based nanotheranostics
  publication-title: Nanoscale.
– volume: 52
  start-page: 1531
  year: 2019
  end-page: 1542
  ident: bb0190
  article-title: Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery
  publication-title: Acc. Chem. Res.
– volume: 164
  start-page: 29
  year: 2016
  end-page: 44
  ident: bb1085
  article-title: Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering
  publication-title: Cell
– volume: 138
  start-page: 35
  year: 2017
  end-page: 45
  ident: bb0745
  article-title: Revisiting the value of competition assays in folate receptor-mediated drug delivery
  publication-title: Biomaterials.
– volume: 12
  start-page: 2172
  year: 2016
  end-page: 2184
  ident: bb0660
  article-title: Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model
  publication-title: J. Biomed. Nanotechnol.
– volume: 214
  start-page: 62
  year: 2019
  end-page: 91
  ident: bb1055
  article-title: Efficient nanocarriers of siRNA therapeutics for cancer treatment
  publication-title: Transl. Res.
– volume: 157
  start-page: 705
  year: 2018
  end-page: 715
  ident: bb0060
  article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems
  publication-title: Eur. J. Med. Chem.
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 9
  ident: bb0710
  article-title: Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications
  publication-title: Mol. Biol. Int.
– volume: 27
  start-page: 1200
  year: 2010
  end-page: 1207
  ident: bb1070
  article-title: Novel amino-modified silica nanoparticles as efficient vector for hepatocellular carcinoma gene therapy
  publication-title: Med. Oncol.
– volume: 31
  start-page: 483
  year: 2019
  end-page: 490
  ident: bb0400
  article-title: O2-loaded pH-responsive multifunctional nanodrug carrier for overcoming hypoxia and highly efficient chemo-photodynamic cancer therapy
  publication-title: Chem. Mater.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 12
  ident: bb0670
  article-title: Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy
  publication-title: Sci. Rep.
– volume: 308
  start-page: 172
  year: 2019
  end-page: 189
  ident: bb0890
  article-title: Enzyme responsive drug delivery systems in cancer treatment
  publication-title: J. Control. Release
– volume: 13
  start-page: 544
  year: 2017
  end-page: 558
  ident: bb0575
  article-title: Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: in vitro and adult and fetal in vivo studies
  publication-title: J. Biomed. Nanotechnol.
– volume: 24
  start-page: 926
  year: 2016
  end-page: 936
  ident: bb0800
  article-title: Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors
  publication-title: Mol. Ther.
– volume: 9
  start-page: 11023
  year: 2015
  end-page: 11033
  ident: bb0990
  article-title: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers
  publication-title: ACS Nano
– volume: 41
  start-page: 13823
  year: 2017
  end-page: 13829
  ident: bb0765
  article-title: Combining Vitamin B12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system
  publication-title: New J. Chem.
– volume: 139
  start-page: 10992
  year: 2017
  end-page: 10995
  ident: bb0405
  article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1001
  year: 2017
  end-page: 1013
  ident: bb0325
  article-title: Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites
  publication-title: Biomater. Sci.
– volume: 16
  start-page: 1902242
  year: 2020
  ident: bb0205
  article-title: New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers
  publication-title: Small.
– volume: 9
  start-page: 5817
  year: 2017
  end-page: 5827
  ident: bb0330
  article-title: Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 531
  year: 2017
  end-page: 540
  ident: bb0540
  article-title: The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution
  publication-title: Acta Biomater.
– volume: 3
  start-page: 4987
  year: 2020
  end-page: 4999
  ident: bb0900
  article-title: Matrix Metalloproteinase-Responsive Mesoporous Silica Nanoparticles Cloaked with Cleavable Protein for “ Self-Actuating ” On-Demand Controlled Drug Delivery for Cancer Therapy
  publication-title: ACS Appl. Bio Mater.
– volume: 13
  start-page: 1
  year: 2017
  end-page: 9
  ident: bb0360
  article-title: Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy
  publication-title: Small.
– volume: 30
  start-page: 1902634
  year: 2020
  ident: bb0240
  article-title: Mesoporous silica nanoparticles for drug delivery
  publication-title: Adv. Funct. Mater.
– volume: 8
  start-page: 916
  year: 2018
  end-page: 931
  ident: bb0635
  article-title: Transferrin receptor 1 in cancer: a new sight for cancer therapy
  publication-title: Am. J. Cancer Res.
– volume: 2
  start-page: 1
  year: 2020
  end-page: 5
  ident: bb1120
  article-title: Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights
  publication-title: SN Appl. Sci.
– volume: 96
  start-page: 4
  year: 2019
  end-page: 12
  ident: bb1105
  article-title: CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment
  publication-title: Semin. Cell Dev. Biol.
– volume: 56
  start-page: 101533
  year: 2020
  ident: bb1125
  article-title: Nanoparticles-mediated CRISPR/Cas9 delivery: Recent advances in cancer treatment
  publication-title: J. Drug Deliv. Sci. Technol.
– volume: 139
  start-page: 1275
  year: 2017
  end-page: 1284
  ident: bb0445
  article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 3100
  year: 2013
  end-page: 3105
  ident: bb0555
  article-title: Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications
  publication-title: Adv. Mater.
– volume: 10
  start-page: 1963
  year: 2018
  end-page: 1975
  ident: bb0335
  article-title: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 6777
  year: 2019
  end-page: 6788
  ident: bb0435
  article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
– volume: 401
  start-page: 126100
  year: 2020
  ident: bb0295
  article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 7908
  year: 2016
  end-page: 7920
  ident: bb0450
  article-title: Unprecedented “All-in-One” Lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of NIR light triggered chemo-photodynamic therapy of tumors
  publication-title: Adv. Funct. Mater.
– volume: 7
  year: 2018
  ident: bb0235
  article-title: Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications
  publication-title: Adv. Healthc. Mater.
– volume: 3
  start-page: 9584
  year: 2013
  ident: bb0180
  article-title: Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications
  publication-title: RSC Adv.
– volume: 13
  year: 2020
  ident: bb1050
  article-title: Overcoming barriers for siRNA therapeutics: from bench to bedside
  publication-title: Pharmaceuticals (Basel)
– volume: 7
  start-page: 6840
  year: 2019
  end-page: 6854
  ident: bb0845
  article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement
  publication-title: J. Mater. Chem. B
– volume: 13
  start-page: 12148
  year: 2019
  end-page: 12161
  ident: bb0310
  article-title: Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy
  publication-title: ACS Nano
– volume: 25
  start-page: 1513
  year: 2020
  end-page: 1520
  ident: bb0230
  article-title: Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents
  publication-title: Drug Discov. Today
– volume: 401
  start-page: 126100
  year: 2020
  ident: bb0985
  article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy
  publication-title: Chem. Eng. J.
– volume: 46
  start-page: 6387
  year: 1986
  end-page: 6392
  ident: bb0515
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res.
– volume: 232
  year: 2020
  ident: bb0375
  article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy
  publication-title: Biomaterials
– volume: 8
  start-page: 579
  year: 2009
  end-page: 591
  ident: bb0870
  article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
  publication-title: Nat. Rev. Drug Discov.
– volume: 157
  start-page: 107
  year: 2018
  end-page: 124
  ident: bb0410
  article-title: Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy
  publication-title: Biomaterials.
– volume: 46
  start-page: 578
  year: 2018
  end-page: 587
  ident: bb0760
  article-title: Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA
  publication-title: Artif. Cells Nanomed. Biotechnol.
– volume: 146
  start-page: 363
  year: 2020
  end-page: 373
  ident: bb0820
  article-title: Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy
  publication-title: Int. J. Biol. Macromol.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 21
  ident: bb0625
  article-title: Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy
  publication-title: Int. J. Mol. Sci.
– volume: 22
  start-page: 327
  year: 2011
  end-page: 341
  ident: bb1145
  article-title: Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis
  publication-title: Mol. Biol. Cell
– volume: 20
  start-page: 100253
  year: 2020
  ident: bb0065
  article-title: Smart nanocarriers for cancer treatment: Clinical impact and safety
  publication-title: NanoImpact.
– volume: 21
  year: 2020
  ident: bb0680
  article-title: Aptamers, the nucleic acid antibodies, in cancer therapy
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 649
  year: 2020
  ident: bb1060
  article-title: Silica-based gene delivery systems: from design to therapeutic applications
  publication-title: Pharmaceutics.
– volume: 17
  start-page: 1
  year: 2021
  end-page: 13
  ident: bb0165
  article-title: Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy
  publication-title: Small.
– volume: 200
  start-page: 1
  year: 2019
  end-page: 14
  ident: bb0980
  article-title: Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy
  publication-title: Biomaterials.
– volume: 8
  year: 2018
  ident: bb0675
  article-title: Carbonic anhydrases: Role in pH control and cancer
  publication-title: Metabolites
– volume: 5
  start-page: 269
  year: 2018
  end-page: 286
  ident: bb0805
  article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics
  publication-title: Natl. Sci. Rev.
– volume: 65
  start-page: 393
  year: 2018
  end-page: 404
  ident: bb0835
  article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment
  publication-title: Acta Biomater.
– volume: 13
  start-page: 2495
  year: 2017
  end-page: 2505
  ident: bb0380
  article-title: MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications
  publication-title: Nanomed. Nanotechnol. Biol. Med.
– volume: 44
  start-page: 13
  year: 2018
  end-page: 18
  ident: bb0705
  article-title: MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells
  publication-title: Drug Dev. Ind. Pharm.
– volume: 133
  start-page: 111007
  year: 2021
  ident: bb1090
  article-title: CRISPR technology: The engine that drives cancer therapy
  publication-title: Biomed. Pharmacother.
– volume: 10
  year: 2018
  ident: bb0350
  article-title: In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem
  publication-title: Nano-Micro Lett.
– volume: 4
  year: 2016
  ident: bb0795
  article-title: Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer
  publication-title: J. Mater. Chem. B
– volume: 30
  start-page: 1910304
  year: 2020
  ident: bb0270
  article-title: Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment
  publication-title: Adv. Funct. Mater.
– volume: 11
  start-page: 39688
  year: 2019
  end-page: 39705
  ident: bb0415
  article-title: Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis
  publication-title: ACS Appl. Mater. Interfaces
– volume: 114
  start-page: 358
  year: 2020
  end-page: 368
  ident: bb1045
  article-title: Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery
  publication-title: Acta Biomater.
– volume: 8
  start-page: 1
  year: 2019
  end-page: 14
  ident: bb0960
  article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy
  publication-title: Adv. Healthc. Mater.
– volume: 8
  start-page: 19573
  year: 2016
  end-page: 19580
  ident: bb0855
  article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery
  publication-title: Nanoscale.
– volume: 232
  year: 2020
  ident: bb1000
  article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy
  publication-title: Biomaterials
– volume: 10
  start-page: 12518
  year: 2018
  end-page: 12525
  ident: bb0965
  article-title: Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1
  year: 2018
  end-page: 9
  ident: bb0440
  article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy
  publication-title: Adv. Mater.
– volume: 16
  start-page: 301
  year: 2019
  end-page: 314
  ident: bb0975
  article-title: Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia
  publication-title: Appl. Mater. Today
– volume: 7
  start-page: 73681
  year: 2016
  end-page: 73696
  ident: bb0610
  article-title: Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats
  publication-title: Oncotarget
– volume: 12
  start-page: 38873
  year: 2020
  end-page: 38886
  ident: bb1035
  article-title: Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro
  publication-title: ACS Appl. Mater. Interfaces
– volume: 14
  start-page: 5785
  year: 2019
  end-page: 5797
  ident: bb0735
  article-title: Hyaluronic Acid-Modified Mesoporous Silica-Coated Superparamagnetic Fe3O4 Nanoparticles for Targeted Drug Delivery
– volume: 1
  start-page: 10
  year: 2016
  end-page: 29
  ident: bb0045
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
– volume: 10
  start-page: 7273
  year: 2020
  end-page: 7286
  ident: bb0370
  article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging
  publication-title: Theranostics.
– volume: 323
  start-page: 442
  year: 2020
  end-page: 462
  ident: bb1030
  article-title: Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies
  publication-title: J. Control. Release
– volume: 9
  start-page: 2000877
  year: 2020
  ident: bb0385
  article-title: Cavitation-inducible mesoporous silica–titania nanoparticles for cancer sonotheranostics
  publication-title: Adv. Healthc. Mater.
– volume: 72
  start-page: 4165
  year: 2012
  ident: 10.1016/j.jconrel.2021.07.029_bb0785
  article-title: Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2994
– volume: 146
  start-page: 363
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0820
  article-title: Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.12.265
– volume: 139
  start-page: 10992
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0405
  article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05559
– volume: 12
  start-page: 2172
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0660
  article-title: Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2016.2318
– volume: 330
  start-page: 1220
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0620
  article-title: Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.11.028
– volume: 16
  start-page: 181
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0685
  article-title: Aptamers as targeted therapeutics: current potential and challenges
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.199
– volume: 141
  start-page: 17670
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0995
  article-title: A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b07591
– volume: 5
  start-page: 447
  year: 2005
  ident: 10.1016/j.jconrel.2021.07.029_bb0005
  article-title: Pharmacokinetic variability of anticancer agents
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1629
– volume: 10
  start-page: 7273
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0955
  article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging
  publication-title: Theranostics.
  doi: 10.7150/thno.44668
– volume: 117
  start-page: 54
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0320
  article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2016.11.057
– volume: 23
  start-page: 315
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0590
  article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2017.10.022
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0355
  article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600356
– volume: 5
  start-page: 1001
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0850
  article-title: Biomaterials science
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00043J
– volume: 164
  start-page: 29
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb1085
  article-title: Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering
  publication-title: Cell
  doi: 10.1016/j.cell.2015.12.035
– volume: 7
  start-page: 9
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0195
  article-title: Magnetic nanoarchitectures for cancer sensing, imaging and therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB02741B
– volume: 9
  start-page: 5234
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0275
  article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00641
– volume: 5
  start-page: 1259
  year: 2011
  ident: 10.1016/j.jconrel.2021.07.029_bb0510
  article-title: Smart drug delivery through DNA/magnetic nanoparticle gates
  publication-title: ACS Nano
  doi: 10.1021/nn1029229
– volume: 17
  start-page: 1
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0165
  article-title: Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy
  publication-title: Small.
– volume: 323
  start-page: 442
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1030
  article-title: Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.04.041
– volume: 30
  start-page: 1
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0440
  article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704367
– volume: 7
  start-page: 6840
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0845
  article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01654F
– volume: 95
  start-page: 40
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0215
  article-title: Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2015.09.009
– volume: 22
  start-page: 327
  year: 2011
  ident: 10.1016/j.jconrel.2021.07.029_bb1145
  article-title: Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e10-09-0790
– volume: 56
  start-page: 1194
  year: 1996
  ident: 10.1016/j.jconrel.2021.07.029_bb0810
  article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer
  publication-title: Cancer Res.
– volume: 65
  start-page: 393
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0835
  article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.007
– volume: 7
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0670
  article-title: Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy
  publication-title: Sci. Rep.
– volume: 12
  start-page: 991
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0035
  article-title: Stimuli-responsive nanocarriers for drug delivery
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3776
– volume: 583
  start-page: 166
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0420
  article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.09.028
– volume: 11
  start-page: 34
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb0825
  article-title: pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment
  publication-title: Cancer Biol. Med.
– volume: 71
  start-page: 1185
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0545
  article-title: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.13098
– volume: 16
  start-page: 1902242
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0205
  article-title: New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers
  publication-title: Small.
  doi: 10.1002/smll.201902242
– volume: 308
  start-page: 172
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0890
  article-title: Enzyme responsive drug delivery systems in cancer treatment
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.07.004
– volume: 24
  start-page: 926
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0800
  article-title: Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors
  publication-title: Mol. Ther.
  doi: 10.1038/mt.2016.42
– volume: 5
  start-page: 1544
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb1010
  article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug
  publication-title: Nanoscale.
  doi: 10.1039/c2nr33417h
– volume: 3
  start-page: 6456
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0265
  article-title: Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00797F
– volume: 7
  start-page: 13168
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0970
  article-title: Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles
  publication-title: Nanoscale.
  doi: 10.1039/C5NR03777H
– volume: 49
  start-page: 531
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0540
  article-title: The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2016.11.007
– volume: 9
  start-page: 11023
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0990
  article-title: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b04378
– volume: 68
  start-page: 701
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0020
  article-title: Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.115.012070
– volume: 7
  start-page: 3614
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0775
  article-title: Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo
  publication-title: Nanoscale.
  doi: 10.1039/C5NR00072F
– volume: 11
  start-page: 6777
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0940
  article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19565
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0885
  article-title: Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy
  publication-title: Sci. Rep.
– volume: 157
  start-page: 107
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0410
  article-title: Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2017.12.003
– volume: 13
  start-page: 544
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0575
  article-title: Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: in vitro and adult and fetal in vivo studies
  publication-title: J. Biomed. Nanotechnol.
  doi: 10.1166/jbn.2017.2369
– volume: 12
  start-page: 38873
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1035
  article-title: Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c07106
– volume: 4
  start-page: 1337
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0790
  article-title: Ruthenium(II) multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB02726H
– volume: 4
  start-page: 2404
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0910
  article-title: Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy
  publication-title: Int J Nanomedicine
– volume: 3
  start-page: 4987
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0900
  article-title: Matrix Metalloproteinase-Responsive Mesoporous Silica Nanoparticles Cloaked with Cleavable Protein for “ Self-Actuating ” On-Demand Controlled Drug Delivery for Cancer Therapy
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.0c00497
– volume: 10
  start-page: 9
  year: 2010
  ident: 10.1016/j.jconrel.2021.07.029_bb0605
  article-title: Integrins in cancer: Biological implications and therapeutic opportunities
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2748
– volume: 13
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0360
  article-title: Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy
  publication-title: Small.
  doi: 10.1002/smll.201602580
– volume: 21
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0680
  article-title: Aptamers, the nucleic acid antibodies, in cancer therapy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21082793
– volume: 219
  start-page: 2
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0030
  article-title: Controlled drug delivery: historical perspective for the next generation
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2015.10.005
– volume: 232
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0375
  article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119723
– volume: 25
  start-page: 3100
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0555
  article-title: Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201204685
– volume: 7
  start-page: 6840
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0300
  article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB01654F
– volume: 12
  start-page: 187
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0895
  article-title: Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers12010187
– volume: 80
  start-page: 26
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0480
  article-title: Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles
  publication-title: Chempluschem.
  doi: 10.1002/cplu.201402369
– volume: 3
  start-page: 1
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0665
  article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600122
– volume: 5
  start-page: 57
  year: 2009
  ident: 10.1016/j.jconrel.2021.07.029_bb0550
  article-title: Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells
  publication-title: Small.
  doi: 10.1002/smll.200800926
– volume: 2
  start-page: 233
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0290
  article-title: Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging
  publication-title: Nanotheranostics
  doi: 10.7150/ntno.25565
– volume: 5
  start-page: 3069
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0210
  article-title: Mesoporous silica materials for controlled delivery based on enzymes
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00348J
– volume: 565
  start-page: 483
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0425
  article-title: Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.01.020
– volume: 6
  start-page: 4618
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0720
  article-title: A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C8TB00989A
– volume: 56
  start-page: 101533
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1125
  article-title: Nanoparticles-mediated CRISPR/Cas9 delivery: Recent advances in cancer treatment
  publication-title: J. Drug Deliv. Sci. Technol.
  doi: 10.1016/j.jddst.2020.101533
– volume: 138
  start-page: 105
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0500
  article-title: The effect of low- and high-penetration light on localized cancer therapy
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2018.09.004
– volume: 20
  start-page: 4014
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1135
  article-title: Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c01387
– volume: 7
  start-page: 73681
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0610
  article-title: Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12047
– volume: 11
  start-page: 99
  year: 2007
  ident: 10.1016/j.jconrel.2021.07.029_bb0175
  article-title: Silicon and bone health
  publication-title: J. Nutr. Health Aging
– volume: 22
  start-page: 1401
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0015
  article-title: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy
  publication-title: Molecules.
  doi: 10.3390/molecules22091401
– volume: 12
  start-page: 649
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1060
  article-title: Silica-based gene delivery systems: from design to therapeutic applications
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics12070649
– volume: 7
  start-page: 6304
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0700
  article-title: An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles
  publication-title: Nanoscale.
  doi: 10.1039/C4NR07493A
– volume: 182
  start-page: 114
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0365
  article-title: Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2018.08.001
– volume: 10
  start-page: 1963
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0335
  article-title: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13651
– volume: 121
  start-page: 89
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0040
  article-title: Biocompatible copolymer formulations to treat glioblastoma multiforme
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.11.030
– volume: 9
  start-page: 7315
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0755
  article-title: Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel
  publication-title: Oncol. Targets. Ther.
  doi: 10.2147/OTT.S113815
– volume: 346
  start-page: 1258096
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb1100
  article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9
  publication-title: Science (80-. ).
  doi: 10.1126/science.1258096
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb0710
  article-title: Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications
  publication-title: Mol. Biol. Int.
  doi: 10.1155/2014/852748
– volume: 12
  start-page: 526
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1065
  article-title: Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: a review
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics12060526
– volume: 8
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0675
  article-title: Carbonic anhydrases: Role in pH control and cancer
  publication-title: Metabolites
  doi: 10.3390/metabo8010019
– volume: 11
  start-page: 6777
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0435
  article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19565
– volume: 322
  start-page: 566
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0495
  article-title: Stimuli-responsive nano-assemblies for remotely controlled drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.03.051
– volume: 200
  start-page: 1
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0980
  article-title: Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2019.01.048
– year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb1130
  article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2018.12.003
– volume: 12
  start-page: 317
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0470
  article-title: Advances in silica based nanoparticles for targeted cancer therapy
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2015.10.018
– volume: 10
  start-page: 12518
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0965
  article-title: Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b02398
– volume: 139
  start-page: 1275
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0445
  article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11846
– volume: 9
  start-page: 2000877
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0385
  article-title: Cavitation-inducible mesoporous silica–titania nanoparticles for cancer sonotheranostics
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202000877
– volume: 26
  start-page: 3741
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb0560
  article-title: Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400136
– volume: 555
  start-page: 82
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0830
  article-title: Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.07.061
– volume: 13
  start-page: 38
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0155
  article-title: Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06164
– volume: 7
  start-page: 4558
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0430
  article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00853E
– volume: 30
  start-page: 1910304
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0270
  article-title: Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201910304
– volume: 190
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0280
  article-title: Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2020.110941
– volume: 21
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0625
  article-title: Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21072536
– volume: 8
  start-page: 916
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0635
  article-title: Transferrin receptor 1 in cancer: a new sight for cancer therapy
  publication-title: Am. J. Cancer Res.
– volume: 232
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1000
  article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119723
– volume: 31
  start-page: 1085
  year: 2010
  ident: 10.1016/j.jconrel.2021.07.029_bb0565
  article-title: The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2009.10.046
– volume: 25
  start-page: 1513
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0230
  article-title: Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2020.06.006
– volume: 1
  start-page: 53
  year: 2010
  ident: 10.1016/j.jconrel.2021.07.029_bb0650
  article-title: Role of antibodies in cancer targeting
  publication-title: J. Nat. Sci. Biol. Med.
  doi: 10.4103/0976-9668.71675
– volume: 286
  start-page: 64
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0025
  article-title: Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2018.07.034
– volume: 13
  start-page: 871
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0645
  article-title: VEGF targets the tumour cell
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3627
– volume: 7
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0525
  article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer
  publication-title: Nanomaterials
  doi: 10.3390/nano7070189
– volume: 20
  start-page: 100253
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0065
  article-title: Smart nanocarriers for cancer treatment: Clinical impact and safety
  publication-title: NanoImpact.
  doi: 10.1016/j.impact.2020.100253
– volume: 9
  start-page: 5817
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0330
  article-title: Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15185
– volume: 7
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb0520
  article-title: Radiolabeling of nanoparticles and polymers for PET imaging
  publication-title: Pharm.
– volume: 6
  start-page: 285
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0010
  article-title: Precision oncology in liver cancer
  publication-title: Ann Transl Med.
  doi: 10.21037/atm.2018.06.14
– volume: 13
  start-page: 89
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0815
  article-title: Acidic extracellular microenvironment and cancer
  publication-title: Cancer Cell Int.
  doi: 10.1186/1475-2867-13-89
– volume: 117
  start-page: 54
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0915
  article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2016.11.057
– volume: 13
  start-page: 357
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb1095
  article-title: Type II-C CRISPR-Cas9 biology, mechanism, and application
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00855
– volume: 12
  start-page: 319
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0465
  article-title: Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery
  publication-title: Expert Opin. Drug Deliv.
  doi: 10.1517/17425247.2014.953051
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0340
  article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900840
– volume: 15
  start-page: 457
  year: 2007
  ident: 10.1016/j.jconrel.2021.07.029_bb0485
  article-title: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines
  publication-title: J. Drug Target.
  doi: 10.1080/10611860701539584
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb1025
  article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600356
– volume: 3
  start-page: 9584
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0180
  article-title: Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications
  publication-title: RSC Adv.
  doi: 10.1039/c3ra23127e
– volume: 26
  start-page: 7908
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0450
  article-title: Unprecedented “All-in-One” Lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of NIR light triggered chemo-photodynamic therapy of tumors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201603749
– volume: 9
  start-page: 12821
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0200
  article-title: Silicon-based nanotheranostics
  publication-title: Nanoscale.
  doi: 10.1039/C7NR04445C
– volume: 7
  start-page: 211
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0840
  article-title: A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C8BM00386F
– volume: 9
  start-page: 15967
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0930
  article-title: A novel visible light responsive nanosystem for cancer treatment
  publication-title: Nanoscale
  doi: 10.1039/C7NR05050J
– volume: 8
  start-page: 1
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0170
  article-title: Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1
  publication-title: Adv. Sci.
– volume: 35
  start-page: 63
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0770
  article-title: Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy
  publication-title: Pharm Res.
  doi: 10.1007/s11095-017-2338-5
– volume: 401
  start-page: 126100
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0985
  article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126100
– volume: 13
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0490
  article-title: pH-responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13040460
– volume: 27
  start-page: 1200
  year: 2010
  ident: 10.1016/j.jconrel.2021.07.029_bb1070
  article-title: Novel amino-modified silica nanoparticles as efficient vector for hepatocellular carcinoma gene therapy
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-009-9359-9
– volume: 8
  start-page: 579
  year: 2009
  ident: 10.1016/j.jconrel.2021.07.029_bb0870
  article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd2803
– volume: 157
  start-page: 705
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0060
  article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2018.08.034
– volume: 5
  start-page: 5390
  year: 2011
  ident: 10.1016/j.jconrel.2021.07.029_bb0530
  article-title: The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo
  publication-title: ACS Nano
  doi: 10.1021/nn200365a
– volume: 127
  start-page: 2007
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0150
  article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI92284
– volume: 5
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0740
  article-title: Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release
  publication-title: R. Soc. Open Sci.
– volume: 13
  start-page: 12148
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0310
  article-title: Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b06691
– volume: 16
  start-page: 301
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0975
  article-title: Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2019.06.006
– volume: 17
  start-page: 3338
  year: 2011
  ident: 10.1016/j.jconrel.2021.07.029_bb0920
  article-title: Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201002960
– volume: 7
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0235
  article-title: Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201700831
– volume: 43
  start-page: 143
  year: 2006
  ident: 10.1016/j.jconrel.2021.07.029_bb0875
  article-title: Glutathione in cancer biology and therapy
  publication-title: Crit. Rev. Clin. Lab. Sci.
  doi: 10.1080/10408360500523878
– volume: 2000072
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1140
  article-title: Effective delivery of the crispr/cas9 system enabled by functionalized mesoporous silica nanoparticles for gfp-tagged paxillin knock-in
  publication-title: Adv. Ther.
– volume: 96
  start-page: 4
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb1105
  article-title: CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2019.04.018
– volume: 11
  start-page: 41069
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0315
  article-title: Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b14668
– volume: 76
  start-page: 87
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0255
  article-title: Biomaterials rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2015.10.053
– volume: 10
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0695
  article-title: Aptamer therapeutics in cancer: current and future
  publication-title: Cancers (Basel).
  doi: 10.3390/cancers10030080
– volume: 401
  start-page: 126100
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0295
  article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.126100
– volume: 6
  start-page: 1794
  year: 2010
  ident: 10.1016/j.jconrel.2021.07.029_bb0580
  article-title: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals
  publication-title: Small.
  doi: 10.1002/smll.201000538
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0960
  article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201900840
– volume: 56
  start-page: 10297
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1005
  article-title: Magnetic resonance imaging of high-intensity focused ultrasound-stimulated drug release from a self-reporting core@ shell nanoparticle platform
  publication-title: Chem. Commun.
  doi: 10.1039/D0CC03179H
– volume: 26
  start-page: 5745
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0475
  article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging
  publication-title: Curr. Med. Chem.
  doi: 10.2174/0929867325666180501101044
– volume: 14
  start-page: 4029
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0715
  article-title: A dual-functional her2 aptamer-conjugated, ph-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in her2-positive breast cancer cells
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S201688
– volume: 8
  start-page: 19573
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0345
  article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery
  publication-title: Nanoscale.
  doi: 10.1039/C6NR07062K
– volume: 30
  start-page: 1
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0945
  article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704367
– volume: 13
  start-page: 7890
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb1150
  article-title: CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c19217
– volume: 8
  start-page: 33829
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0455
  article-title: Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11802
– volume: 7
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0780
  article-title: Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy
  publication-title: Adv. Healthc. Mater.
– volume: 12
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0220
  article-title: Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy
  publication-title: Pharmaceutics.
  doi: 10.3390/pharmaceutics12060527
– volume: 14
  start-page: 2533
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0905
  article-title: Enzyme-Responsive Mesoporous Silica Nanoparticles for Tumor Cells and Mitochondria Multistage-Targeted Drug Delivery
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S202210
– year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1115
  article-title: Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects
  publication-title: Methods
– volume: 31
  start-page: 483
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0400
  article-title: O2-loaded pH-responsive multifunctional nanodrug carrier for overcoming hypoxia and highly efficient chemo-photodynamic cancer therapy
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04321
– volume: 9
  start-page: 3926
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0460
  article-title: In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine
  publication-title: ACS Nano
  doi: 10.1021/nn507241v
– volume: 7
  start-page: 4558
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0935
  article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy
  publication-title: Biomater. Sci.
  doi: 10.1039/C9BM00853E
– volume: 1
  start-page: 16014
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0145
  article-title: Analysis of nanoparticle delivery to tumours
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.14
– volume: 5
  start-page: 1001
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0325
  article-title: Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites
  publication-title: Biomater. Sci.
  doi: 10.1039/C7BM00043J
– volume: 14
  start-page: 5785
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0735
  article-title: Hyaluronic Acid-Modified Mesoporous Silica-Coated Superparamagnetic Fe3O4 Nanoparticles for Targeted Drug Delivery
– volume: 8
  start-page: 1086
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1015
  article-title: A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.598722
– volume: 12
  start-page: 53
  year: 2009
  ident: 10.1016/j.jconrel.2021.07.029_bb0880
  article-title: Disulfides as redox switches: from molecular mechanisms to functional significance
  publication-title: Antioxid. Redox Signal.
  doi: 10.1089/ars.2009.2510
– volume: 13
  start-page: 1241
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0690
  article-title: Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S158290
– volume: 8
  start-page: 19573
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0855
  article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery
  publication-title: Nanoscale.
  doi: 10.1039/C6NR07062K
– volume: 3
  start-page: 19388
  year: 2013
  ident: 10.1016/j.jconrel.2021.07.029_bb0925
  article-title: Visible light responsive anticancer treatment with an amsacrine-loaded mesoporous silica-based nanodevice
  publication-title: RSC Adv.
  doi: 10.1039/c3ra43492c
– volume: 41
  start-page: 13823
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0765
  article-title: Combining Vitamin B12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system
  publication-title: New J. Chem.
  doi: 10.1039/C7NJ02754K
– volume: 133
  start-page: 111007
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb1090
  article-title: CRISPR technology: The engine that drives cancer therapy
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.111007
– volume: 1
  start-page: 10
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0045
  article-title: Nanoparticles in the clinic
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10003
– volume: 179
  start-page: 352
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0600
  article-title: A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2019.03.019
– volume: 4
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0050
  article-title: Nanoparticles in the clinic: An update
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10143
– volume: 109
  start-page: 1637
  year: 2012
  ident: 10.1016/j.jconrel.2021.07.029_bb0615
  article-title: Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1120790109
– volume: 11
  start-page: 540
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0655
  article-title: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development
  publication-title: Clin. Transl. Sci.
  doi: 10.1111/cts.12567
– volume: 3
  start-page: 7
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0055
  article-title: Controlled drug delivery vehicles for cancer treatment and their performance
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-017-0004-3
– volume: 44
  start-page: 13
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0705
  article-title: MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells
  publication-title: Drug Dev. Ind. Pharm.
  doi: 10.1080/03639045.2017.1371734
– volume: 214
  start-page: 62
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb1055
  article-title: Efficient nanocarriers of siRNA therapeutics for cancer treatment
  publication-title: Transl. Res.
  doi: 10.1016/j.trsl.2019.07.006
– volume: 46
  start-page: 578
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0760
  article-title: Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA
  publication-title: Artif. Cells Nanomed. Biotechnol.
  doi: 10.1080/21691401.2018.1431651
– volume: 46
  start-page: 6387
  year: 1986
  ident: 10.1016/j.jconrel.2021.07.029_bb0515
  article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs
  publication-title: Cancer Res.
– volume: 8
  start-page: 184
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1075
  article-title: Emerging and innovative theranostic approaches for mesoporous silica nanoparticles in hepatocellular carcinoma: current status and advances
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.00184
– volume: 13
  start-page: 2495
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0380
  article-title: MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.08.006
– volume: 515
  start-page: 132
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0505
  article-title: Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2016.10.013
– volume: 24
  start-page: 1504
  year: 2012
  ident: 10.1016/j.jconrel.2021.07.029_bb0570
  article-title: Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104763
– volume: 573
  start-page: 263
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0285
  article-title: A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.04.026
– volume: 10
  start-page: 3722
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0250
  article-title: Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy
  publication-title: Theranostics.
  doi: 10.7150/thno.42008
– volume: 14
  start-page: 1381
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0725
  article-title: Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2018.04.008
– volume: 516
  start-page: 484
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0730
  article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2018.01.072
– volume: 4
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0795
  article-title: Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB00690F
– volume: 10
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0350
  article-title: In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-018-0216-2
– volume: 11
  start-page: 14654
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0390
  article-title: MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy
  publication-title: Nanoscale.
  doi: 10.1039/C9NR04858H
– volume: 11
  start-page: 1915
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0535
  article-title: Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape
  publication-title: Nanomedicine.
  doi: 10.1016/j.nano.2015.07.004
– volume: 32
  start-page: 347
  year: 2014
  ident: 10.1016/j.jconrel.2021.07.029_bb1080
  article-title: CRISPR-Cas systems for editing, regulating and targeting genomes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2842
– volume: 319
  start-page: 46
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1020
  article-title: Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.12.024
– volume: 13
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1050
  article-title: Overcoming barriers for siRNA therapeutics: from bench to bedside
  publication-title: Pharmaceuticals (Basel)
  doi: 10.3390/ph13100294
– volume: 12
  start-page: 3
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0640
  article-title: Emerging Functions of the EGFR in Cancer
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12155
– volume: 31
  start-page: 1808024
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0395
  article-title: Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201808024
– volume: 152
  start-page: 77
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0630
  article-title: Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2017.01.010
– volume: 2
  start-page: 1
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1120
  article-title: Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-020-03397-4
– volume: 30
  start-page: 1902634
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0240
  article-title: Mesoporous silica nanoparticles for drug delivery
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201902634
– volume: 5
  start-page: 986
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0245
  article-title: Reversibly-regulated drug release using poly (tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy
  publication-title: Nanoscale Horizons.
  doi: 10.1039/D0NH00032A
– volume: 3
  start-page: 1690
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0305
  article-title: MRI enhancement and tumor targeted drug delivery using Zn2+-doped Fe3O4 core/mesoporous silica shell nanocomposites
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.9b01244
– volume: 30
  start-page: 1191
  year: 2001
  ident: 10.1016/j.jconrel.2021.07.029_bb0865
  article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/S0891-5849(01)00480-4
– volume: 6
  start-page: 7061
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0750
  article-title: Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22937E
– volume: 123
  start-page: 115759
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1040
  article-title: Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2019.115759
– volume: 8
  start-page: 6811
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb0595
  article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b11730
– volume: 7
  start-page: 20696
  year: 2015
  ident: 10.1016/j.jconrel.2021.07.029_bb0260
  article-title: DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05522
– volume: 11
  start-page: 39688
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0415
  article-title: Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b15751
– volume: 269
  start-page: 120635
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0160
  article-title: Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2020.120635
– volume: 52
  start-page: 1531
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0190
  article-title: Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00116
– volume: 59
  start-page: 10275
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0185
  article-title: Amino-functionalized mesoporous silica nanoparticle-encapsulated octahedral organoruthenium complex as an efficient platform for combatting cancer
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.0c01436
– volume: 5
  start-page: 886
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0225
  article-title: Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-0230-0
– volume: 5
  start-page: 269
  year: 2018
  ident: 10.1016/j.jconrel.2021.07.029_bb0805
  article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics
  publication-title: Natl. Sci. Rev.
  doi: 10.1093/nsr/nwx062
– volume: 114
  start-page: 358
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb1045
  article-title: Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.07.027
– volume: 10
  start-page: 7273
  year: 2020
  ident: 10.1016/j.jconrel.2021.07.029_bb0370
  article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging
  publication-title: Theranostics.
  doi: 10.7150/thno.44668
– volume: 583
  start-page: 166
  year: 2021
  ident: 10.1016/j.jconrel.2021.07.029_bb0950
  article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.09.028
– volume: 138
  start-page: 35
  year: 2017
  ident: 10.1016/j.jconrel.2021.07.029_bb0745
  article-title: Revisiting the value of competition assays in folate receptor-mediated drug delivery
  publication-title: Biomaterials.
  doi: 10.1016/j.biomaterials.2017.05.034
– volume: 13
  start-page: 41
  year: 2016
  ident: 10.1016/j.jconrel.2021.07.029_bb1110
  article-title: Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3684
– volume: 105
  start-page: 110103
  year: 2019
  ident: 10.1016/j.jconrel.2021.07.029_bb0585
  article-title: Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110103
SSID ssj0005347
Score 2.5816693
SecondaryResourceType review_article
Snippet Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 193
SubjectTerms Cancer imaging
cancer therapy
CRISPR-Cas systems
Gene editing
genes
Mesoporous silica nanoparticles (MSNs)
nanocarriers
Nanotheranostics
porous media
precision medicine
silica
Targeted cancer therapy
Title Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications
URI https://dx.doi.org/10.1016/j.jconrel.2021.07.029
https://www.proquest.com/docview/2555113043
https://www.proquest.com/docview/2636470566
Volume 337
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86X3wRP_GbCOKT3ZomTdPHMZSpOAYq-CCErM1gQ7OxzYe9-Ld716ZORRR8KbTkIOSSu9_17n4h5DTqy7hvuAm4zZJAGDxzzMBD9RBA2DA1-GvgtiPbD-L6MX5cIq2qFwbLKr3tL216Ya39l4ZfzcZ4MGjcAVhRHLOCDElUIrDDKxF4e1UjK82rm3ZnUenBRdk1LVWAAotGnsawPoSwc2IxCRGxgsazAJs_uqhvxrrwQJfrZM1DR9osZ7dBlqzbJGfdknt6fk7vF61U03N6RrsLVur5Fnlq-mw_fbHTEaBuCPnpdID_7KgzDlzaBC-vm9KBoxkOnNCiN8uNCiZnalxOYbNZCiuGpdL0c-p7mzxcXty32oG_WiHIRBTNglxgDSbLc5Ma8EgyUzIXCIeSNAW3liNKyFKVh4bHSS9TVvVTkcQCsDjoNrZ8h9TcyNldQk3PRExCHGmZQXp7pXjez7i0JrIM_OMeEdVq6szzjuP1F8-6KjAbaq8EjUrQYaJBCXuk_iE2Lok3_hJQlar0lx2kwTn8JXpSqVbD6cKUiXEW1KAh4AJEykPBfxkjkYMfgKTc__8UDsgqvmElCgsPSW02ebVHAHdmvWOyXH9jx35TvwMq7gA-
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPuiL-InfRhCfrGubNE0fx3Bsbg7BCT4IIWsz2NBsbPPB_967NnUqouBLH9ochFxy97ve3S-EnIdDEQ010x4zaexxjWcu0PCQAwQQxk80_hq47YnWA795jB4rpFH2wmBZpbP9hU3PrbV7U3OrWZuORrV7ACuSYVYwQBKVEOzwCsdLratkpd7utHrLSg_Gi65pIT0UWDby1MZXYwg7ZwaTEGGQ03jmYPNHF_XNWOceqLlB1h10pPVidpukYuwWubgruKffLml_2Uo1v6QX9G7JSv22TZ7qLttPX8x8AqgbQn46H-E_O2q1BZc2w8vr5nRkaYoDZzTvzbKTnMmZaptR2GyGwophqTT9nPreIQ_N636j5bmrFbyUh-HCyzjWYAZZphMNHkmkUmQc4VCcJODWMkQJaSIzX7MoHqTSyGHC44gDFgfdRobtkqqdWLNHqB7oMBAQR5pAI729lCwbpkwYHZoA_OM-4eVqqtTxjuP1F8-qLDAbK6cEhUpQfqxACfvk6kNsWhBv_CUgS1WpLztIgXP4S_SsVK2C04UpE20NqEFBwAWIlPmc_TJGIAc_AElx8P8pnJLVVv-2q7rtXueQrOEXrEoJ_CNSXcxezTFAn8XgxG3tdzPsAiQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+mesoporous+silica+nanocarriers+in+cancer+theranostics+and+gene+editing+applications&rft.jtitle=Journal+of+controlled+release&rft.au=%C5%BDivojevi%C4%87%2C+Kristina&rft.au=Mladenovi%C4%87%2C+Minja&rft.au=Djisalov%2C+Mila&rft.au=Mundzic%2C+Mirjana&rft.date=2021-09-10&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=337&rft.spage=193&rft.epage=211&rft_id=info:doi/10.1016%2Fj.jconrel.2021.07.029&rft.externalDocID=S0168365921003722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon