Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications
Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies,...
Saved in:
Published in | Journal of controlled release Vol. 337; pp. 193 - 211 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.09.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0168-3659 1873-4995 1873-4995 |
DOI | 10.1016/j.jconrel.2021.07.029 |
Cover
Abstract | Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.
Advanced nanoarchitectures involving mesoporous silica nanoparticles (MSN) for simultaneous cancer targeting, therapy and imaging are overviewed. In addition, recent MSN-based strategies for cancer therapy through gene editing are reviewed, considering the significance of the topic, spotlighted by the 2020 Nobel prize in Chemistry “for the development of a method for genome editing” awarded to Emmanuelle Charpentier and Jennifer A. Doudna. [Display omitted] |
---|---|
AbstractList | Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment. Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment. Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment. Advanced nanoarchitectures involving mesoporous silica nanoparticles (MSN) for simultaneous cancer targeting, therapy and imaging are overviewed. In addition, recent MSN-based strategies for cancer therapy through gene editing are reviewed, considering the significance of the topic, spotlighted by the 2020 Nobel prize in Chemistry “for the development of a method for genome editing” awarded to Emmanuelle Charpentier and Jennifer A. Doudna. [Display omitted] |
Author | Mladenović, Minja Djisalov, Mila Gadjanski, Ivana Živojević, Kristina Knežević, Nikola Ž. Mundzic, Mirjana Ruiz-Hernandez, Eduardo |
Author_xml | – sequence: 1 givenname: Kristina surname: Živojević fullname: Živojević, Kristina organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia – sequence: 2 givenname: Minja surname: Mladenović fullname: Mladenović, Minja organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia – sequence: 3 givenname: Mila surname: Djisalov fullname: Djisalov, Mila organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia – sequence: 4 givenname: Mirjana surname: Mundzic fullname: Mundzic, Mirjana organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia – sequence: 5 givenname: Eduardo surname: Ruiz-Hernandez fullname: Ruiz-Hernandez, Eduardo organization: School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland – sequence: 6 givenname: Ivana surname: Gadjanski fullname: Gadjanski, Ivana organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia – sequence: 7 givenname: Nikola Ž. surname: Knežević fullname: Knežević, Nikola Ž. email: nknezevic@biosense.rs organization: BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia |
BookMark | eNqFkU1rFTEUQINU8LX6E4Qs3cx48z3BhZTiR6HgRndCiMl9NY95yZikBf-9M76uunmrLHLOhXvuJbnIJSMhbxmMDJh-fxgPoeSK88iBsxHMCNy-IDs2GTFIa9UF2a3cNAit7Cty2doBAJSQZkd-XsdHnwNGesRWllLLQ6MtzSl4mn0uwdeasDaaMg0bWGn_jXX9aT2FRn2O9B4zUoypp3xP_bJsck8lt9fk5d7PDd88vVfkx-dP32--DnffvtzeXN8NQXLehygNA8ti9NZLbnWYdJTAFRhrJRPRAlPBThG8UOZXmHDaW2mUNIZrtVcorsi709yllj8P2Lo7phZwnn3GdR_HtdDSgNL6PKqUYkyAFCv64YSGWlqruHch9f-L9erT7Bi4Lb87uKf8bsvvwLg1_2qrZ_ZS09HXv2e9jycP12CPa3rXQsLtQqli6C6WdGbCP2DHpNs |
CitedBy_id | crossref_primary_10_1039_D2BM00010E crossref_primary_10_1186_s12943_023_01807_w crossref_primary_10_1002_bkcs_12931 crossref_primary_10_1080_14686996_2022_2052181 crossref_primary_10_1021_acs_iecr_4c03274 crossref_primary_10_1016_j_mencom_2024_10_038 crossref_primary_10_1002_bmm2_12025 crossref_primary_10_1016_j_addr_2023_115115 crossref_primary_10_1021_acsomega_4c08267 crossref_primary_10_1360_TB_2022_0216 crossref_primary_10_1016_j_ijbiomac_2023_127060 crossref_primary_10_1021_acsami_2c12102 crossref_primary_10_1038_s41467_024_49901_x crossref_primary_10_3390_pharmaceutics15020351 crossref_primary_10_1016_j_ijpharm_2023_123606 crossref_primary_10_1002_mabi_202300238 crossref_primary_10_1016_j_ijpharm_2022_122099 crossref_primary_10_1038_s41427_023_00469_w crossref_primary_10_1039_D3NH00388D crossref_primary_10_3390_inorganics10120250 crossref_primary_10_1111_os_13806 crossref_primary_10_1002_mco2_253 crossref_primary_10_1016_j_ijbiomac_2023_129179 crossref_primary_10_3390_pharmaceutics15102483 crossref_primary_10_1016_j_heliyon_2023_e21227 crossref_primary_10_1016_j_cej_2023_144357 crossref_primary_10_22159_ijap_2024v16i5_51647 crossref_primary_10_1002_smsc_202400447 crossref_primary_10_1016_j_eurpolymj_2022_111759 crossref_primary_10_3390_ijms241914687 crossref_primary_10_1002_smll_202408898 crossref_primary_10_1039_D1CS00659B crossref_primary_10_3390_cells11172682 crossref_primary_10_1007_s10971_024_06422_9 crossref_primary_10_1016_j_ajps_2025_101017 crossref_primary_10_1186_s13072_024_00554_6 crossref_primary_10_3389_fbioe_2021_733792 crossref_primary_10_1039_D1CS01022K crossref_primary_10_1016_j_micromeso_2025_113603 crossref_primary_10_1016_j_jddst_2023_105307 crossref_primary_10_3390_molecules28083406 crossref_primary_10_1016_j_mtbio_2022_100245 crossref_primary_10_1021_acsomega_3c05069 crossref_primary_10_1016_j_matchemphys_2023_128111 crossref_primary_10_1002_adhm_202102145 crossref_primary_10_1002_wnan_1976 crossref_primary_10_1016_j_mattod_2023_04_011 crossref_primary_10_1016_j_jconrel_2021_12_016 crossref_primary_10_1016_j_biomaterials_2023_122000 crossref_primary_10_1016_j_molstruc_2022_132922 crossref_primary_10_1007_s00210_025_04038_6 crossref_primary_10_1186_s12951_022_01692_3 crossref_primary_10_3390_pharmaceutics14040770 crossref_primary_10_26599_NR_2025_94907030 crossref_primary_10_1007_s10238_023_01262_3 crossref_primary_10_1021_acsnano_2c10818 |
Cites_doi | 10.1158/0008-5472.CAN-11-2994 10.1016/j.ijbiomac.2019.12.265 10.1021/jacs.7b05559 10.1166/jbn.2016.2318 10.1016/j.jconrel.2020.11.028 10.1038/nrd.2016.199 10.1021/jacs.9b07591 10.1038/nrc1629 10.7150/thno.44668 10.1016/j.biomaterials.2016.11.057 10.1016/j.drudis.2017.10.022 10.1002/advs.201600356 10.1039/C7BM00043J 10.1016/j.cell.2015.12.035 10.1039/C8TB02741B 10.1021/acsnano.5b00641 10.1021/nn1029229 10.1016/j.jconrel.2020.04.041 10.1002/adma.201704367 10.1039/C9TB01654F 10.1016/j.addr.2015.09.009 10.1091/mbc.e10-09-0790 10.1016/j.actbio.2017.11.007 10.1038/nmat3776 10.1016/j.jcis.2020.09.028 10.1111/jphp.13098 10.1002/smll.201902242 10.1016/j.jconrel.2019.07.004 10.1038/mt.2016.42 10.1039/c2nr33417h 10.1039/C5TB00797F 10.1039/C5NR03777H 10.1016/j.actbio.2016.11.007 10.1021/acsnano.5b04378 10.1124/pr.115.012070 10.1039/C5NR00072F 10.1021/acsami.8b19565 10.1016/j.biomaterials.2017.12.003 10.1166/jbn.2017.2369 10.1021/acsami.0c07106 10.1039/C5TB02726H 10.1021/acsabm.0c00497 10.1038/nrc2748 10.1002/smll.201602580 10.3390/ijms21082793 10.1016/j.jconrel.2015.10.005 10.1016/j.biomaterials.2019.119723 10.1002/adma.201204685 10.3390/cancers12010187 10.1002/cplu.201402369 10.1002/advs.201600122 10.1002/smll.200800926 10.7150/ntno.25565 10.1039/C7TB00348J 10.1016/j.jcis.2020.01.020 10.1039/C8TB00989A 10.1016/j.jddst.2020.101533 10.1016/j.addr.2018.09.004 10.1021/acs.nanolett.0c01387 10.18632/oncotarget.12047 10.3390/molecules22091401 10.3390/pharmaceutics12070649 10.1039/C4NR07493A 10.1016/j.biomaterials.2018.08.001 10.1021/acsami.7b13651 10.1016/j.actbio.2020.11.030 10.2147/OTT.S113815 10.1126/science.1258096 10.1155/2014/852748 10.3390/pharmaceutics12060526 10.3390/metabo8010019 10.1016/j.jconrel.2020.03.051 10.1016/j.biomaterials.2019.01.048 10.1016/j.mattod.2018.12.003 10.1016/j.nano.2015.10.018 10.1021/acsami.8b02398 10.1021/jacs.6b11846 10.1002/adhm.202000877 10.1002/adma.201400136 10.1016/j.jcis.2019.07.061 10.1021/acsnano.8b06164 10.1039/C9BM00853E 10.1002/adfm.201910304 10.1016/j.colsurfb.2020.110941 10.3390/ijms21072536 10.1016/j.biomaterials.2009.10.046 10.1016/j.drudis.2020.06.006 10.4103/0976-9668.71675 10.1016/j.jconrel.2018.07.034 10.1038/nrc3627 10.3390/nano7070189 10.1016/j.impact.2020.100253 10.1021/acsami.6b15185 10.21037/atm.2018.06.14 10.1186/1475-2867-13-89 10.1021/acschembio.7b00855 10.1517/17425247.2014.953051 10.1002/adhm.201900840 10.1080/10611860701539584 10.1039/c3ra23127e 10.1002/adfm.201603749 10.1039/C7NR04445C 10.1039/C8BM00386F 10.1039/C7NR05050J 10.1007/s11095-017-2338-5 10.1016/j.cej.2020.126100 10.3390/pharmaceutics13040460 10.1007/s12032-009-9359-9 10.1038/nrd2803 10.1016/j.ejmech.2018.08.034 10.1021/nn200365a 10.1172/JCI92284 10.1021/acsnano.9b06691 10.1016/j.apmt.2019.06.006 10.1002/chem.201002960 10.1002/adhm.201700831 10.1080/10408360500523878 10.1016/j.semcdb.2019.04.018 10.1021/acsami.9b14668 10.1016/j.biomaterials.2015.10.053 10.3390/cancers10030080 10.1002/smll.201000538 10.1039/D0CC03179H 10.2174/0929867325666180501101044 10.2147/IJN.S201688 10.1039/C6NR07062K 10.1021/acsami.0c19217 10.1021/acsami.6b11802 10.3390/pharmaceutics12060527 10.2147/IJN.S202210 10.1021/acs.chemmater.8b04321 10.1021/nn507241v 10.1038/natrevmats.2016.14 10.3389/fchem.2020.598722 10.1089/ars.2009.2510 10.2147/IJN.S158290 10.1039/c3ra43492c 10.1039/C7NJ02754K 10.1016/j.biopha.2020.111007 10.1002/btm2.10003 10.1016/j.colsurfb.2019.03.019 10.1002/btm2.10143 10.1073/pnas.1120790109 10.1111/cts.12567 10.1038/s41392-017-0004-3 10.1080/03639045.2017.1371734 10.1016/j.trsl.2019.07.006 10.1080/21691401.2018.1431651 10.3389/fbioe.2020.00184 10.1016/j.nano.2017.08.006 10.1016/j.ijpharm.2016.10.013 10.1002/adma.201104763 10.1016/j.jcis.2020.04.026 10.7150/thno.42008 10.1016/j.nano.2018.04.008 10.1016/j.jcis.2018.01.072 10.1039/C6TB00690F 10.1007/s40820-018-0216-2 10.1039/C9NR04858H 10.1016/j.nano.2015.07.004 10.1038/nbt.2842 10.1016/j.jconrel.2019.12.024 10.3390/ph13100294 10.1002/1878-0261.12155 10.1002/adma.201808024 10.1016/j.colsurfb.2017.01.010 10.1007/s42452-020-03397-4 10.1002/adfm.201902634 10.1039/D0NH00032A 10.1021/acsabm.9b01244 10.1016/S0891-5849(01)00480-4 10.1039/C5RA22937E 10.1016/j.trac.2019.115759 10.1021/acsami.5b11730 10.1021/acsami.5b05522 10.1021/acsami.9b15751 10.1016/j.biomaterials.2020.120635 10.1021/acs.accounts.9b00116 10.1021/acs.inorgchem.0c01436 10.1038/s41578-020-0230-0 10.1093/nsr/nwx062 10.1016/j.actbio.2020.07.027 10.1016/j.biomaterials.2017.05.034 10.1038/nmeth.3684 10.1016/j.msec.2019.110103 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.jconrel.2021.07.029 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1873-4995 |
EndPage | 211 |
ExternalDocumentID | 10_1016_j_jconrel_2021_07_029 S0168365921003722 |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATCM AAXUO ABFNM ABFRF ABJNI ABMAC ABOCM ABYKQ ABZDS ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMT IHE J1W KOM M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OVD OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSM SSP SSZ T5K TEORI ~G- .GJ 29K 3O- AAHBH AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW SPT SSH WUQ 7X8 EFKBS 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c422t-d471091dda9a4296c86d40250799413d9015c98d0a357bc8e8f9475477265f5e3 |
IEDL.DBID | AIKHN |
ISSN | 0168-3659 1873-4995 |
IngestDate | Sat Sep 27 21:04:21 EDT 2025 Fri Sep 05 10:46:01 EDT 2025 Tue Jul 01 04:10:04 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Fri Feb 23 02:41:08 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Mesoporous silica nanoparticles (MSNs) Nanotheranostics Targeted cancer therapy Cancer imaging Gene editing |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-d471091dda9a4296c86d40250799413d9015c98d0a357bc8e8f9475477265f5e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0168365921003722 |
PQID | 2555113043 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_2636470566 proquest_miscellaneous_2555113043 crossref_citationtrail_10_1016_j_jconrel_2021_07_029 crossref_primary_10_1016_j_jconrel_2021_07_029 elsevier_sciencedirect_doi_10_1016_j_jconrel_2021_07_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-10 |
PublicationDateYYYYMMDD | 2021-09-10 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | Journal of controlled release |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Goel, Mercurio (bb0645) 2013; 13 Zhang, Xu (bb0740) 2018; 5 Lu, Liong, Li, Zink, Tamanoi (bb0580) 2010; 6 Xiao, He, Huang (bb1070) 2010; 27 Barui, Cauda (bb0220) 2020; 12 Chen, Luo, Qiu, Lei, Liu, Wang, Zhang (bb0320) 2017; 117 Fang, Lin, Li, Huang, Hou, Zhang, Liu, Huang, Luo, Fan, Cui, Xu, Li (bb0360) 2017; 13 Wang, Zhao, Huang, He, Xu, Yuan (bb0985) 2020; 401 Guzman-Rojas, Rangel, Salameh, Edwards, Dondossola, Kim, Saghatelian, Giordano, Kolonin, Staquicini, Koivunen, Sidman, Arap, Pasqualini (bb0615) 2012; 109 Shahriari, Zahiri, Abnous, Taghdisi, Ramezani, Alibolandi (bb0890) 2019; 308 Subhan, Torchilin (bb1055) 2019; 214 Lu, Luo, Chen, Yuan, Kuang, Wan, Yao, Chen, Jiang, Liu (bb0820) 2020; 146 Slowing, Wu, Vivero-Escoto, Lin (bb0550) 2009; 5 Teng, Wang, Su, Chen, Liu, Luo, Luo, Tang, Ju, Zhao, Lu (bb0560) 2014; 26 Gessner, Neundorf (bb0625) 2020; 21 Goel, Chen, Luan, Valdovinos, Shi, Graves, Ai, Barnhart, Theuer, Cai (bb0665) 2016; 3 Yingchoncharoen, Kalinowski, Richardson (bb0020) 2016; 68 Doudna, Charpentier (bb1100) 2014; 346 Mladenović, Morgan, Ilić, Saoud, Pergal, Kaluđerović, Knežević (bb0490) 2021; 13 Sigismund, Avanzato, Lanzetti (bb0640) 2018; 12 Shi, Chen, Goel, Graves, Luo, Theuer, Engle, Cai (bb0350) 2018; 10 Feng, Dong, Tao, Zhang, Liu (bb0805) 2018; 5 Wouters, Fan, Haworth (bb0880) 2009; 12 Tang, Hu, Zhang, Song, Nie, Wang, Niu, Huang, Lu, Chen (bb0700) 2015; 7 Xie, Cai, Sun, Liang, Shao, Huang, Cheng, Pang, Xing, Al Kheraif, Lin (bb0400) 2019; 31 Huang, Zhang, Guo, Zhang, Fan, Qin, Wang, Zhou, Ou-Yang, Sun, Leng, Pan, Kong, Zhang, Zhu (bb0960) 2019; 8 Ruiz-Hernández, Baeza, Vallet-Regí (bb0510) 2011; 5 Li, Qin, Lee, Liao, Wang, Davis, Qiao, Ling (bb0495) 2020; 322 Morita, Leslie, Kameyama, Volk, Tanaka (bb0695) 2018; 10 van Elk, Murphy, Eufrásio-da-Silva, O’Reilly, Vermonden, Hennink, Duffy, Ruiz-Hernández (bb0505) 2016; 515 Knežević, Gadjanski, Durand (bb0195) 2019; 7 Liu, Jiang, Chang, Liao, Lodico, Tang, Zheng, Qiu, Lin, Wang, Ji, Mei, Nel, Meng (bb0165) 2021; 17 Lei, Sun, Jiang, Gao, Yang, Zhao, Wang (bb0585) 2019; 105 Martínez-Carmona, Lozano, Baeza, Colilla, Vallet-Regí (bb0930) 2017; 9 Lai, Shah, Zhang, Yang, Lee (bb0275) 2015; 9 Greish (bb0485) 2007; 15 Knežević, Trewyn, Lin (bb0920) 2011; 17 Du, Wang (bb0735) 2019; 14 He, Li, Shen, Yu (bb0845) 2019; 7 He, Li, Shen, Yu (bb0300) 2019; 7 Wilhelm, Tavares, Dai, Ohta, Audet, Dvorak, Chan (bb0145) 2016; 1 Knežević, Durand (bb0480) 2015; 80 Attia, Anton, Wallyn, Omran, Vandamme (bb0545) 2019; 71 Hu, Zhang, Wen, Tan, Huang, Cheng, Zheng, Cheng (bb0610) 2016; 7 Khan, Filipczak, Torchilin (bb0620) 2021; 330 Raza, Hayat, Rasheed, Bilal, Iqbal (bb0060) 2018; 157 Yin, Zhang, Ma, Yang, Xu, Wu, He, Liu, Dong, Shao (bb0315) 2019; 11 Lv, Li, Qiu (bb0770) 2018; 35 Martínez-Carmona, Lozano, Colilla, Vallet-Regí (bb0835) 2018; 65 Llopis-Lorente, Lozano-Torres, Bernardos, Martínez-Máñez, Sancenón (bb0210) 2017; 5 Costa, Mendes, Torchilin (bb0500) 2019; 138 Iqbal, Iqbal (bb0710) 2014; 2014 Thepphankulngarm, Wonganan, Sapcharoenkun, Tuntulani, Leeladee (bb0765) 2017; 41 Yun, Lee, Park (bb0030) 2015; 219 Knežević, Stojanovic, Chaix, Bouffard, El Cheikh, Morère, Maynadier, Lemercier, Garcia, Gary-Bobo, Durand, Cunin (bb0790) 2016; 4 Chen, Ma, Tang, Wang, Wang, Zhuang, Zhu, Wang (bb0245) 2020; 5 Cheng, Chen, Zhang, Wu, Zink (bb1005) 2020; 56 Croissant, Butler, Zink, Brinker (bb0225) 2020; 5 Xu, Liu, Tian, Yan (bb0270) 2020; 30 Lv, Jiang, Yang, Wang, Feng, Liu, Tian (bb0430) 2019; 7 Tang, Li, Chen (bb0570) 2012; 24 Wan, Niu, Wu, Xu, Church, Ping (bb1130) 2019 Kaushik, Ramachandran, Srivastava (bb1105) 2019; 96 Liu, Jiang, Chan, Ji, Lu, Liao, Okene, Lin, Lin, Chang, Wang, Tang, Zheng, Qiu, Wainberg, Nel, Meng (bb0155) 2019; 13 Liu, Ejaz, Gong, Kurbanov, Canakci, Anson, Thayumanavan (bb1135) 2020; 20 Ding, Shao, Xiao, Sun, Cai, Jiang, Zhao, Ma, Lin (bb0390) 2019; 11 Croissant, Fatieiev, Almalik, Khashab (bb0235) 2018; 7 Mekaru, Lu, Tamanoi (bb0215) 2015; 95 Gao, Liu, Tang, Niu, Zhou, Zhang, Liu, Gu, Zhou, Zheng, Sun, Jia, Zhou (bb0855) 2016; 8 Ho, Wu, Jin, Lin, Chiang, Wu, Fan, Yang, Yeh (bb1000) 2020; 232 Dilnawaz (bb0475) 2019; 26 Attarwala (bb0650) 2010; 1 Chen, Xu, Chen, Li, Bu, Shu, Li, Zhang, Zhang, Pan, Cui, Hua, Wang, Zhang, Shi (bb0555) 2013; 25 Chen, Glackin, Horwitz, Zink (bb0190) 2019; 52 Li, Yan, Suo, Peng, Yang, Li, Zhang, Liu (bb0980) 2019; 200 Pereira-Silva, Jarak, Alvarez-Lorenzo, Concheiro, Santos, Veiga, Figueiras (bb1030) 2020; 323 Dalle Vedove, Costabile, Merkel (bb0780) 2018; 7 Dréau, Moore, Alvarez-Berrios, Tarannum, Mukherjee, Vivero-Escoto (bb0660) 2016; 12 Sun, Shi, Luo, Chen, Lv, Lv, Zhuang, Zhu, Liu, Chen, Chen (bb0395) 2019; 31 Knežević (bb0925) 2013; 3 Yang, Chen, Chen, Geng, Xie, Shen, Li, Li, Wu, Liu (bb0325) 2017; 5 Saint-Cricq, Deshayes, Zink, Kasko (bb0970) 2015; 7 Movahedi, Schoonooghe, Laoui, Houbracken, Waelput, Breckpot, Bouwens, Lahoutte, De Baetselier, Raes, Devoogdt, Van Ginderachter (bb0785) 2012; 72 Tao, Wang, Xu (bb1075) 2020; 8 Anselmo, Mitragotri (bb0050) 2019; 4 Baeza, Colilla, Vallet-Regí (bb0465) 2015; 12 Yang, Zhang, Wang, Wang, Zhou, Liang (bb0825) 2014; 11 Schafer, Buettner (bb0865) 2001; 30 He, Zhang, Shi, Zhu, Zhang, Bu, Guo, Chen (bb0565) 2010; 31 Mir, Edraki, Lee, Sontheimer (bb1095) 2018; 13 Liu, Liang, Li, Luo, Zhang, Guo, Cai (bb0410) 2018; 157 Desgrosellier, Cheresh (bb0605) 2010; 10 Sean (bb0575) 2017; 13 Estrela, Ortega, Obrador (bb0875) 2006; 43 Martínez-Carmona, Ho, Morand, García, Ortega, Erthal, Ruiz-Hernandez, Santana, Ruiz, Vallet-Regí, Gun’ko (bb0185) 2020; 59 Noureddine, Maestas-Olguin, Saada, LaBauve, Agola, Baty, Howard, Sabo, Espinoza, Doudna, Schoeniger, Butler, Negrete, Brinker, Serda (bb1045) 2020; 114 Chen, Luo, Lei, Cao, Fan, Qiu (bb0255) 2016; 76 Cheng, Chen, Zhang, Wu, Zink (bb0995) 2019; 141 Liu, Lin, Perrett, Lin, Liao, Chang, Jiang, Wu, Donahue, Wainberg, Nel, Meng (bb0150) 2017; 127 Lv, Jiang, Yang, Wang, Feng, Liu, Tian (bb0935) 2019; 7 Zhou, Rossi (bb0685) 2017; 16 Chaix, El Cheikh, Bouffard, Maynadier, Aggad, Stojanovic, Knezevic, Garcia, Maillard, Morère, Gary-Bobo, Raehm, Richeter, Durand, Cunin (bb0795) 2016; 4 Jugdaohsingh (bb0175) 2007; 11 Watermann, Brieger (bb0525) 2017; 7 Li, Zhang, Zhang, Wu, Feng (bb0760) 2018; 46 Zhao, Zhang, Zhao, Gao, Fan, Wu (bb0600) 2019; 179 Khosravian, Ardestani, Khoobi, Ostad, Dorkoosh, Javar, Amanlou (bb0755) 2016; 9 Fang, Zhu, Chen, Zhang, Hong, Wei, Zhao (bb0305) 2020; 3 Samykutty, Grizzle, Fouts, McNally, Chuong, Thomas, Chiba, Otali, Woloszynska, Said, Frederick, Jasinski, Liu, McNally (bb0365) 2018; 182 Undevia, Gomez-Abuin, Ratain (bb0005) 2005; 5 Zhou, Wang, Ying, Su, Zhang, Lu, Chen (bb0910) 2018; 4 Xu, Nam, Hong, Xu, Moon (bb0310) 2019; 13 Mura, Nicolas, Couvreur (bb0035) 2013; 12 Guisasola, Asín, Beola, de la Fuente, Baeza, Vallet-Regí (bb0965) 2018; 10 Huang, Liu, Gao, Cheng, Lu, Zheng, Xu, Xu, Zhang, Zeng (bb0720) 2018; 6 Anselmo, Mitragotri (bb0045) 2016; 1 Knežević, Ruiz-Hernández, Hennink, Vallet-Regí (bb0180) 2013; 3 Chen, Luo, Qiu, Lei, Liu, Wang, Zhang (bb0915) 2017; 117 Shao, Lu, Zhao, Zhang, Tan, Zheng, Pan, Xiao, Wang, Dong, Li, Chen (bb0540) 2017; 49 Chen, Hu, Wang, Li, Zhu, Chen, Shi, Ju, Cao, Zhang (bb0885) 2020; 10 Li, Yang, Hao, Yi, Zhang, Pan, Xing (bb0290) 2018; 2 Huang, Li, Liu, Hao, Liu, Chen, Tang (bb0530) 2011; 5 Chen, Sun, Hu, Han, Liu, Hu (bb0630) 2017; 152 Paredes, Diana, Garc, Chamizo, Marciello, Miguel, Prashar, Santiago, Filice (bb0895) 2020; 12 Vaghasiya, Ray, Sharma, Katare, Verma (bb0900) 2020; 3 Sajid, Moazzam, Kato, Yeseom Cho, Tiwari (bb1050) 2020; 13 García-Fernández, Aznar, Martínez-Máñez, Sancenón (bb0205) 2020; 16 Sun, You, Wang, Liu, Wang, Song, Cheng, Wang, Tan, Li (bb0335) 2018; 10 Ma, Mao, Wu, Cui, Zhang, Huang (bb1150) 2021; 13 Li, Xing, Zheng, Wei, Du, Shen, Shi (bb0330) 2017; 9 Aghamiri, Talaei, Ghavidel, Zandsalimi, Masoumi, Hafshejani, Jajarmi (bb1125) 2020; 56 Senapati, Mahanta, Kumar, Maiti (bb0055) 2018; 3 Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb0355) 2017; 4 Wang, Han, Hu, Teng, Zhou, Zhang, Chen (bb0905) 2019; 14 Bolukbasi, Gupta, Wolfe (bb1110) 2016; 13 Shao, Li, Huang, Wang, Lu, Jia, Pan, Cui, Ge, Deng, Wu (bb0955) 2020; 10 Lee, Kim, You, Kim, Um, Jeon, Kim, Joo, Yi, Park (bb0385) 2020; 9 Mboge, Mahon, McKenna, Frost (bb0675) 2018; 8 Allen, Liu, Jiang, Liao, Chang, Nel, Meng (bb0160) 2021; 269 Huang, Qian, Chen, Yu, Lin, Wang, Zhu, Shi (bb0445) 2017; 139 Alyassin, Sayed, Mehta, Ruparelia, Arshad, Rasekh, Shepherd, Kucuk, Wilson, Singh, Chang, Fatouros, Ahmad (bb0230) 2020; 25 Goel, Ferreira, Chen, Ellison, Siamof, Barnhart, Cai (bb0945) 2018; 30 Wang, Tian, Liao, Tang, Ni, Sun, Zhao, Zhang, Teng, Lu (bb0425) 2020; 565 Pascual, Cerqueira-Coutinho, García-Fernández, de Luis, Bernardes, Albernaz, Missailidis, Martínez-Máñez, Santos-Oliveira, Orzaez, Sancenón (bb0380) 2017; 13 Sander, Joung (bb1080) 2014; 32 Kim, Cho, Jeon, Kim, Song, Lee, Choi, Hyeon (bb0405) 2017; 139 Tian, Su, Tian, Wang, Su, Liu, Zhang, Tang, Ni, Liu, Dang, Wang, Zhang, Teng, Lu (bb1025) 2017; 4 Huang, Shen, Si, Shan, Guo, Chen, Wu (bb0950) 2021; 583 Yasun (bb1120) 2020; 2 Erthal, Gobbo, Ruiz-Hernandez (bb0040) 2021; 121 Zhang, Hou, Ge, Deng, Liu, Li, Li, Cheng, Ma, Li, Lin (bb0260) 2015; 7 Mamaeva, Niemi, Beck, Özliseli, Desai, Landor, Gronroos, Kronqvist, Pettersen, McCormack, Rosenholm, Linden, Sahlgren (bb0800) 2016; 24 Palmerston Mendes, Pan, Torchilin (bb0015) 2017; 22 Rahman, Tollefsbol (bb1115) 2020 Xu, Koivisto, Liu, Zhou, Miihkinen, Jacquemet, Wang, Rosenholm, Shu, Zhang (bb1140) 2020; 2000072 Zhang, Chen, Li, Shen (bb1020) 2020; 319 Liu, Zhang, Luo, Ding, Li, Dai, Zhou, Zhao, Ye, Cai (bb0775) 2015; 7 Gerweck, Seetharaman (bb0810) 1996; 56 Lin, Li, Xu, Li, Zheng, Gu, Ke, Huang (bb0840) 2019; 7 Wan, Chen, Deng, Liao, Kuang, Liu, Duan, Xu, Jiang, Li (bb0285) 2020; 573 Matsumura, Maeda (bb0515) 1986; 46 Fu, Xiang (bb0680) 2020; 21 Zhang, Eshraghian, Al Jammal, Zhang, Zhu (bb1090) 2021; 133 Hanafi-Bojd, Moosavian Kalat, Taghdisi, Ansari, Abnous, Malaekeh-Nikouei (bb0705) 2018; 44 Trachootham, Alexandre, Huang (bb0870) 2 Lv (10.1016/j.jconrel.2021.07.029_bb0430) 2019; 7 Shahin (10.1016/j.jconrel.2021.07.029_bb0725) 2018; 14 Kaushik (10.1016/j.jconrel.2021.07.029_bb1105) 2019; 96 Kim (10.1016/j.jconrel.2021.07.029_bb0405) 2017; 139 Knežević (10.1016/j.jconrel.2021.07.029_bb0925) 2013; 3 Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0835) 2018; 65 He (10.1016/j.jconrel.2021.07.029_bb0565) 2010; 31 Paris (10.1016/j.jconrel.2021.07.029_bb0990) 2015; 9 Khan (10.1016/j.jconrel.2021.07.029_bb0620) 2021; 330 Goel (10.1016/j.jconrel.2021.07.029_bb0645) 2013; 13 Sean (10.1016/j.jconrel.2021.07.029_bb0575) 2017; 13 Tang (10.1016/j.jconrel.2021.07.029_bb0570) 2012; 24 Li (10.1016/j.jconrel.2021.07.029_bb0495) 2020; 322 Costa (10.1016/j.jconrel.2021.07.029_bb0500) 2019; 138 Li (10.1016/j.jconrel.2021.07.029_bb0760) 2018; 46 Raza (10.1016/j.jconrel.2021.07.029_bb0060) 2018; 157 Movahedi (10.1016/j.jconrel.2021.07.029_bb0785) 2012; 72 Hu (10.1016/j.jconrel.2021.07.029_bb0415) 2019; 11 Croissant (10.1016/j.jconrel.2021.07.029_bb0265) 2015; 3 Mboge (10.1016/j.jconrel.2021.07.029_bb0675) 2018; 8 Llopis-Lorente (10.1016/j.jconrel.2021.07.029_bb0210) 2017; 5 van Elk (10.1016/j.jconrel.2021.07.029_bb0505) 2016; 515 Jones (10.1016/j.jconrel.2021.07.029_bb0745) 2017; 138 Lv (10.1016/j.jconrel.2021.07.029_bb0770) 2018; 35 Mekaru (10.1016/j.jconrel.2021.07.029_bb0215) 2015; 95 Huang (10.1016/j.jconrel.2021.07.029_bb0340) 2019; 8 Thepphankulngarm (10.1016/j.jconrel.2021.07.029_bb0765) 2017; 41 Anselmo (10.1016/j.jconrel.2021.07.029_bb0045) 2016; 1 Yang (10.1016/j.jconrel.2021.07.029_bb0325) 2017; 5 Huang (10.1016/j.jconrel.2021.07.029_bb0950) 2021; 583 Yang (10.1016/j.jconrel.2021.07.029_bb0825) 2014; 11 Goel (10.1016/j.jconrel.2021.07.029_bb0440) 2018; 30 Liu (10.1016/j.jconrel.2021.07.029_bb0155) 2019; 13 Vandghanooni (10.1016/j.jconrel.2021.07.029_bb1040) 2020; 123 Dréau (10.1016/j.jconrel.2021.07.029_bb0660) 2016; 12 Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0185) 2020; 59 Noureddine (10.1016/j.jconrel.2021.07.029_bb1045) 2020; 114 Teng (10.1016/j.jconrel.2021.07.029_bb0560) 2014; 26 Chen (10.1016/j.jconrel.2021.07.029_bb0245) 2020; 5 Chen (10.1016/j.jconrel.2021.07.029_bb0255) 2016; 76 Sun (10.1016/j.jconrel.2021.07.029_bb0395) 2019; 31 Khosravian (10.1016/j.jconrel.2021.07.029_bb0755) 2016; 9 Perton (10.1016/j.jconrel.2021.07.029_bb0975) 2019; 16 Doudna (10.1016/j.jconrel.2021.07.029_bb1100) 2014; 346 Liu (10.1016/j.jconrel.2021.07.029_bb0150) 2017; 127 Yang (10.1016/j.jconrel.2021.07.029_bb0470) 2016; 12 Knežević (10.1016/j.jconrel.2021.07.029_bb0200) 2017; 9 Watermann (10.1016/j.jconrel.2021.07.029_bb0525) 2017; 7 Iqbal (10.1016/j.jconrel.2021.07.029_bb0710) 2014; 2014 Lu (10.1016/j.jconrel.2021.07.029_bb0580) 2010; 6 Ovacik (10.1016/j.jconrel.2021.07.029_bb0655) 2018; 11 Ruiz-Hernández (10.1016/j.jconrel.2021.07.029_bb0510) 2011; 5 Sajid (10.1016/j.jconrel.2021.07.029_bb1050) 2020; 13 Attarwala (10.1016/j.jconrel.2021.07.029_bb0650) 2010; 1 Lai (10.1016/j.jconrel.2021.07.029_bb0275) 2015; 9 Ho (10.1016/j.jconrel.2021.07.029_bb0375) 2020; 232 Kalluru (10.1016/j.jconrel.2021.07.029_bb0450) 2016; 26 Zhang (10.1016/j.jconrel.2021.07.029_bb0715) 2019; 14 Gerweck (10.1016/j.jconrel.2021.07.029_bb0810) 1996; 56 Liu (10.1016/j.jconrel.2021.07.029_bb0025) 2018; 286 Li (10.1016/j.jconrel.2021.07.029_bb0250) 2020; 10 He (10.1016/j.jconrel.2021.07.029_bb0845) 2019; 7 Yang (10.1016/j.jconrel.2021.07.029_bb0850) 2017; 5 Bolukbasi (10.1016/j.jconrel.2021.07.029_bb1110) 2016; 13 Shi (10.1016/j.jconrel.2021.07.029_bb0350) 2018; 10 Erthal (10.1016/j.jconrel.2021.07.029_bb0040) 2021; 121 Yun (10.1016/j.jconrel.2021.07.029_bb0030) 2015; 219 Dalle Vedove (10.1016/j.jconrel.2021.07.029_bb0780) 2018; 7 Knežević (10.1016/j.jconrel.2021.07.029_bb0180) 2013; 3 Allen (10.1016/j.jconrel.2021.07.029_bb0160) 2021; 269 Mamaeva (10.1016/j.jconrel.2021.07.029_bb0800) 2016; 24 Li (10.1016/j.jconrel.2021.07.029_bb0535) 2015; 11 Ho (10.1016/j.jconrel.2021.07.029_bb1000) 2020; 232 Morita (10.1016/j.jconrel.2021.07.029_bb0695) 2018; 10 Yasun (10.1016/j.jconrel.2021.07.029_bb1120) 2020; 2 Chen (10.1016/j.jconrel.2021.07.029_bb0630) 2017; 152 Li (10.1016/j.jconrel.2021.07.029_bb0330) 2017; 9 Huang (10.1016/j.jconrel.2021.07.029_bb0720) 2018; 6 Shao (10.1016/j.jconrel.2021.07.029_bb0540) 2017; 49 Yang (10.1016/j.jconrel.2021.07.029_bb0435) 2019; 11 Martínez-Carmona (10.1016/j.jconrel.2021.07.029_bb0930) 2017; 9 Lin (10.1016/j.jconrel.2021.07.029_bb0670) 2017; 7 Goel (10.1016/j.jconrel.2021.07.029_bb0665) 2016; 3 Li (10.1016/j.jconrel.2021.07.029_bb0690) 2018; 13 Tian (10.1016/j.jconrel.2021.07.029_bb1025) 2017; 4 Xu (10.1016/j.jconrel.2021.07.029_bb0270) 2020; 30 García-Fernández (10.1016/j.jconrel.2021.07.029_bb0205) 2020; 16 Chen (10.1016/j.jconrel.2021.07.029_bb0455) 2016; 8 Croissant (10.1016/j.jconrel.2021.07.029_bb0235) 2018; 7 Yang (10.1016/j.jconrel.2021.07.029_bb0940) 2019; 11 Mo (10.1016/j.jconrel.2021.07.029_bb0595) 2016; 8 Anselmo (10.1016/j.jconrel.2021.07.029_bb0050) 2019; 4 Matsumura (10.1016/j.jconrel.2021.07.029_bb0515) 1986; 46 Xu (10.1016/j.jconrel.2021.07.029_bb0310) 2019; 13 Pereira-Silva (10.1016/j.jconrel.2021.07.029_bb1030) 2020; 323 Gao (10.1016/j.jconrel.2021.07.029_bb0855) 2016; 8 Lin (10.1016/j.jconrel.2021.07.029_bb0840) 2019; 7 Xie (10.1016/j.jconrel.2021.07.029_bb0400) 2019; 31 Li (10.1016/j.jconrel.2021.07.029_bb0980) 2019; 200 Mura (10.1016/j.jconrel.2021.07.029_bb0035) 2013; 12 Yuan (10.1016/j.jconrel.2021.07.029_bb0830) 2019; 555 Lei (10.1016/j.jconrel.2021.07.029_bb0585) 2019; 105 Liao (10.1016/j.jconrel.2021.07.029_bb0065) 2020; 20 Huang (10.1016/j.jconrel.2021.07.029_bb0445) 2017; 139 Zhang (10.1016/j.jconrel.2021.07.029_bb0260) 2015; 7 Wang (10.1016/j.jconrel.2021.07.029_bb0295) 2020; 401 Liu (10.1016/j.jconrel.2021.07.029_bb0410) 2018; 157 Wan (10.1016/j.jconrel.2021.07.029_bb0285) 2020; 573 Huang (10.1016/j.jconrel.2021.07.029_bb0420) 2021; 583 Wang (10.1016/j.jconrel.2021.07.029_bb0425) 2020; 565 Sander (10.1016/j.jconrel.2021.07.029_bb1080) 2014; 32 Paris (10.1016/j.jconrel.2021.07.029_bb1065) 2020; 12 Ricci (10.1016/j.jconrel.2021.07.029_bb0730) 2018; 516 Palmerston Mendes (10.1016/j.jconrel.2021.07.029_bb0015) 2017; 22 Chen (10.1016/j.jconrel.2021.07.029_bb0320) 2017; 117 Stockhofe (10.1016/j.jconrel.2021.07.029_bb0520) 2014; 7 Chen (10.1016/j.jconrel.2021.07.029_bb0555) 2013; 25 Lu (10.1016/j.jconrel.2021.07.029_bb0820) 2020; 146 Gessner (10.1016/j.jconrel.2021.07.029_bb0625) 2020; 21 Fang (10.1016/j.jconrel.2021.07.029_bb0305) 2020; 3 Zhang (10.1016/j.jconrel.2021.07.029_bb1020) 2020; 319 Aghamiri (10.1016/j.jconrel.2021.07.029_bb1125) 2020; 56 Manzano (10.1016/j.jconrel.2021.07.029_bb0240) 2020; 30 Chen (10.1016/j.jconrel.2021.07.029_bb0460) 2015; 9 Knežević (10.1016/j.jconrel.2021.07.029_bb0750) 2016; 6 Carvalho (10.1016/j.jconrel.2021.07.029_bb1060) 2020; 12 Liu (10.1016/j.jconrel.2021.07.029_bb0170) 2021; 8 Estrela (10.1016/j.jconrel.2021.07.029_bb0875) 2006; 43 Wan (10.1016/j.jconrel.2021.07.029_bb1130) 2019 Sullivan (10.1016/j.jconrel.2021.07.029_bb0010) 2018; 6 Liu (10.1016/j.jconrel.2021.07.029_bb0165) 2021; 17 Tao (10.1016/j.jconrel.2021.07.029_bb1075) 2020; 8 Zhang (10.1016/j.jconrel.2021.07.029_bb0740) 2018; 5 Hanafi-Bojd (10.1016/j.jconrel.2021.07.029_bb0705) 2018; 44 Tang (10.1016/j.jconrel.2021.07.029_bb0700) 2015; 7 Wang (10.1016/j.jconrel.2021.07.029_bb0905) 2019; 14 Zhou (10.1016/j.jconrel.2021.07.029_bb0910) 2018; 4 Shen (10.1016/j.jconrel.2021.07.029_bb0635) 2018; 8 Knežević (10.1016/j.jconrel.2021.07.029_bb0480) 2015; 80 Yingchoncharoen (10.1016/j.jconrel.2021.07.029_bb0020) 2016; 68 Sun (10.1016/j.jconrel.2021.07.029_bb0335) 2018; 10 Lu (10.1016/j.jconrel.2021.07.029_bb0280) 2020; 190 Shao (10.1016/j.jconrel.2021.07.029_bb0370) 2020; 10 Lee (10.1016/j.jconrel.2021.07.029_bb0385) 2020; 9 Feng (10.1016/j.jconrel.2021.07.029_bb0805) 2018; 5 Knezevic (10.1016/j.jconrel.2021.07.029_bb1010) 2013; 5 Pascual (10.1016/j.jconrel.2021.07.029_bb0380) 2017; 13 Rahman (10.1016/j.jconrel.2021.07.029_bb1115) 2020 Wang (10.1016/j.jconrel.2021.07.029_bb0985) 2020; 401 Undevia (10.1016/j.jconrel.2021.07.029_bb0005) 2005; 5 Deakin (10.1016/j.jconrel.2021.07.029_bb1145) 2011; 22 Lv (10.1016/j.jconrel.2021.07.029_bb0935) 2019; 7 Yin (10.1016/j.jconrel.2021.07.029_bb0315) 2019; 11 Desgrosellier (10.1016/j.jconrel.2021.07.029_bb0605) 2010; 10 Chaix (10.1016/j.jconrel.2021.07.029_bb0795) 2016; 4 Wilhelm (10.1016/j.jconrel.2021.07.029_bb0145) 2016; 1 Liu (10.1016/j.jconrel.2021.07.029_bb0775) 2015; 7 Cheng (10.1016/j.jconrel.2021.07.029_bb1005) 2020; 56 Poonia (10.1016/j.jconrel.2021.07.029_bb0590) 2018; 23 Xiao (10.1016/j.jconrel.2021.07.029_bb1070) 2010; 27 Shao (10.1016/j.jconrel.2021.07.029_bb0955) 2020; 10 Zhang (10.1016/j.jconrel.2021.07.029_bb1090) 2021; 133 Wouters (10.1016/j.jconrel.2021.07.029_bb0880) 2009; 12 Li (10.1016/j.jconrel.2021.07.029_bb0290) 2018; 2 Chen (10.1016/j.jconrel.2021.07.029_bb0885) 2020; 10 Huang (10.1016/j.jconrel.2021.07.029_bb0960) 2019; 8 Subhan (10.1016/j.jconrel.2021.07.029_bb1055) 2019; 214 Baeza (10.1016/j.jconrel.2021.07.029_bb0465) 2015; 12 Cheng (10.1016/j.jconrel.2021.07.029_bb0995) 2019; 141 Chen (10.1016/j.jconrel.2021.07.029_bb0190) 2019; 52 Slowing (10.1016/j.jconrel.2021.07.029_bb0550) 2009; 5 Greish (10.1016/j.jconrel.2021.07.029_bb0485) 2007; 15 Fu (10.1016/j.jconrel.2021.07.029_bb0680) 2020; 21 Mir (10.1016/j.jconrel.2021.07.029_bb1095) 2018; 13 Guzman-Rojas (10.1016/j.jconrel.2021.07.029_bb0615) 2012; 109 Knežević (10.1016/j.jconrel.2021.07.029_bb0790) 2016; 4 Schafer (10.1016/j.jconrel.2021.07.029_bb0865) 2001; 30 Samykutty (10.1016/j.jconrel.2021.07.029_bb0365) 2018; 182 Paredes (10.1016/j.jconrel.2021.07.029_bb0895) 2020; 12 Saint-Cricq (10.1016/j.jconrel.2021.07.029_bb0970) 2015; 7 Dilnawaz (10.1016/j.jconrel.2021.07.029_bb0475) 2019; 26 He (10.1016/j.jconrel.2021.07.029_bb0300) 2019; 7 Trachootham (10.1016/j.jconrel.2021.07.029_bb0870) 2009; 8 Du (10.1016/j.jconrel.2021.07.029_bb0735) 2019; 14 Kato (10.1016/j.jconrel.2021.07.029_bb0815) 2013; 13 Vaghasiya (10.1016/j.jconrel.2021.07.029_bb0900) 2020; 3 Gao (10.1016/j.jconrel.2021.07.029_bb1015) 2020; 8 Zhou |
References_xml | – volume: 565 start-page: 483 year: 2020 end-page: 493 ident: bb0425 article-title: Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform publication-title: J. Colloid Interface Sci. – volume: 13 start-page: 871 year: 2013 end-page: 882 ident: bb0645 article-title: VEGF targets the tumour cell publication-title: Nat. Rev. Cancer – volume: 10 start-page: 9 year: 2010 end-page: 22 ident: bb0605 article-title: Integrins in cancer: Biological implications and therapeutic opportunities publication-title: Nat. Rev. Cancer – volume: 3 start-page: 1 year: 2016 end-page: 11 ident: bb0665 article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies publication-title: Adv. Sci. – volume: 121 start-page: 89 year: 2021 end-page: 102 ident: bb0040 article-title: Biocompatible copolymer formulations to treat glioblastoma multiforme publication-title: Acta Biomater. – volume: 322 start-page: 566 year: 2020 end-page: 592 ident: bb0495 article-title: Stimuli-responsive nano-assemblies for remotely controlled drug delivery publication-title: J. Control. Release – volume: 10 start-page: 7273 year: 2020 end-page: 7286 ident: bb0955 article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging publication-title: Theranostics. – volume: 219 start-page: 2 year: 2015 end-page: 7 ident: bb0030 article-title: Controlled drug delivery: historical perspective for the next generation publication-title: J. Control. Release – volume: 5 year: 2018 ident: bb0740 article-title: Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release publication-title: R. Soc. Open Sci. – volume: 9 start-page: 15967 year: 2017 end-page: 15973 ident: bb0930 article-title: A novel visible light responsive nanosystem for cancer treatment publication-title: Nanoscale – volume: 3 start-page: 1690 year: 2020 end-page: 1697 ident: bb0305 article-title: MRI enhancement and tumor targeted drug delivery using Zn2+-doped Fe3O4 core/mesoporous silica shell nanocomposites publication-title: ACS Appl. Bio Mater. – volume: 583 start-page: 166 year: 2021 end-page: 177 ident: bb0420 article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy publication-title: J. Colloid Interface Sci. – volume: 7 year: 2018 ident: bb0780 article-title: Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy publication-title: Adv. Healthc. Mater. – volume: 13 start-page: 357 year: 2018 end-page: 365 ident: bb1095 article-title: Type II-C CRISPR-Cas9 biology, mechanism, and application publication-title: ACS Chem. Biol. – volume: 7 start-page: 13168 year: 2015 end-page: 13172 ident: bb0970 article-title: Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles publication-title: Nanoscale. – year: 2020 ident: bb1115 article-title: Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects publication-title: Methods – volume: 6 start-page: 285 year: 2018 ident: bb0010 article-title: Precision oncology in liver cancer publication-title: Ann Transl Med. – volume: 1 start-page: 16014 year: 2016 ident: bb0145 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. – volume: 31 start-page: 1808024 year: 2019 ident: bb0395 article-title: Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy publication-title: Adv. Mater. – volume: 4 start-page: 2404 year: 2018 end-page: 2411 ident: bb0910 article-title: Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy publication-title: Int J Nanomedicine – volume: 12 start-page: 187 year: 2020 ident: bb0895 article-title: Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer publication-title: Cancers (Basel) – volume: 5 start-page: 886 year: 2020 end-page: 909 ident: bb0225 article-title: Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications publication-title: Nat. Rev. Mater. – volume: 516 start-page: 484 year: 2018 end-page: 497 ident: bb0730 article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 41069 year: 2019 end-page: 41081 ident: bb0315 article-title: Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 143 year: 2006 end-page: 181 ident: bb0875 article-title: Glutathione in cancer biology and therapy publication-title: Crit. Rev. Clin. Lab. Sci. – volume: 22 start-page: 1401 year: 2017 ident: bb0015 article-title: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy publication-title: Molecules. – volume: 12 start-page: 526 year: 2020 ident: bb1065 article-title: Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: a review publication-title: Pharmaceutics. – volume: 7 start-page: 3614 year: 2015 end-page: 3626 ident: bb0775 article-title: Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo publication-title: Nanoscale. – volume: 12 start-page: 1 year: 2020 end-page: 33 ident: bb0220 article-title: Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy publication-title: Pharmaceutics. – volume: 76 start-page: 87 year: 2016 end-page: 101 ident: bb0255 article-title: Biomaterials rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy publication-title: Biomaterials. – volume: 11 start-page: 34 year: 2014 ident: bb0825 article-title: pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment publication-title: Cancer Biol. Med. – volume: 13 start-page: 38 year: 2019 end-page: 53 ident: bb0155 article-title: Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer publication-title: ACS Nano – volume: 5 start-page: 5390 year: 2011 end-page: 5399 ident: bb0530 article-title: The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo publication-title: ACS Nano – volume: 32 start-page: 347 year: 2014 end-page: 355 ident: bb1080 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. – volume: 30 start-page: 1 year: 2018 end-page: 9 ident: bb0945 article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy publication-title: Adv. Mater. – volume: 9 start-page: 5234 year: 2015 end-page: 5245 ident: bb0275 article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles publication-title: ACS Nano – volume: 26 start-page: 3741 year: 2014 end-page: 3747 ident: bb0560 article-title: Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels publication-title: Adv. Mater. – volume: 80 start-page: 26 year: 2015 end-page: 36 ident: bb0480 article-title: Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles publication-title: Chempluschem. – volume: 14 start-page: 2533 year: 2019 end-page: 2542 ident: bb0905 article-title: Enzyme-Responsive Mesoporous Silica Nanoparticles for Tumor Cells and Mitochondria Multistage-Targeted Drug Delivery publication-title: Int J Nanomedicine – volume: 10 start-page: 3722 year: 2020 end-page: 3736 ident: bb0250 article-title: Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy publication-title: Theranostics. – volume: 7 year: 2017 ident: bb0525 article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer publication-title: Nanomaterials – volume: 13 year: 2021 ident: bb0490 article-title: pH-responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers publication-title: Pharmaceutics – year: 2019 ident: bb1130 article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook publication-title: Mater. Today – volume: 2000072 year: 2020 ident: bb1140 article-title: Effective delivery of the crispr/cas9 system enabled by functionalized mesoporous silica nanoparticles for gfp-tagged paxillin knock-in publication-title: Adv. Ther. – volume: 182 start-page: 114 year: 2018 end-page: 126 ident: bb0365 article-title: Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle publication-title: Biomaterials. – volume: 105 start-page: 110103 year: 2019 ident: bb0585 article-title: Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy publication-title: Mater. Sci. Eng. C – volume: 16 start-page: 181 year: 2017 end-page: 202 ident: bb0685 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. – volume: 141 start-page: 17670 year: 2019 end-page: 17684 ident: bb0995 article-title: A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 6456 year: 2015 end-page: 6461 ident: bb0265 article-title: Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging publication-title: J. Mater. Chem. B – volume: 117 start-page: 54 year: 2017 end-page: 65 ident: bb0320 article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy publication-title: Biomaterials. – volume: 14 start-page: 1381 year: 2018 end-page: 1394 ident: bb0725 article-title: Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 127 start-page: 2007 year: 2017 end-page: 2018 ident: bb0150 article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer publication-title: J. Clin. Invest. – volume: 11 start-page: 14654 year: 2019 end-page: 14667 ident: bb0390 article-title: MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy publication-title: Nanoscale. – volume: 555 start-page: 82 year: 2019 end-page: 93 ident: bb0830 article-title: Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery publication-title: J. Colloid Interface Sci. – volume: 11 start-page: 6777 year: 2019 end-page: 6788 ident: bb0940 article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 583 start-page: 166 year: 2021 end-page: 177 ident: bb0950 article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy publication-title: J. Colloid Interface Sci. – volume: 59 start-page: 10275 year: 2020 end-page: 10284 ident: bb0185 article-title: Amino-functionalized mesoporous silica nanoparticle-encapsulated octahedral organoruthenium complex as an efficient platform for combatting cancer publication-title: Inorg. Chem. – volume: 6 start-page: 4618 year: 2018 end-page: 4629 ident: bb0720 article-title: A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy publication-title: J. Mater. Chem. B – volume: 4 year: 2019 ident: bb0050 article-title: Nanoparticles in the clinic: An update publication-title: Bioeng. Transl. Med. – volume: 35 start-page: 63 year: 2018 ident: bb0770 article-title: Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy publication-title: Pharm Res. – volume: 71 start-page: 1185 year: 2019 end-page: 1198 ident: bb0545 article-title: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites publication-title: J. Pharm. Pharmacol. – volume: 7 start-page: 20696 year: 2015 end-page: 20706 ident: bb0260 article-title: DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 319 year: 2015 end-page: 337 ident: bb0465 article-title: Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery publication-title: Expert Opin. Drug Deliv. – volume: 330 start-page: 1220 year: 2021 end-page: 1228 ident: bb0620 article-title: Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer publication-title: J. Control. Release – volume: 10 start-page: 1 year: 2020 end-page: 12 ident: bb0885 article-title: Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy publication-title: Sci. Rep. – volume: 15 start-page: 457 year: 2007 end-page: 464 ident: bb0485 article-title: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines publication-title: J. Drug Target. – volume: 1 start-page: 53 year: 2010 end-page: 56 ident: bb0650 article-title: Role of antibodies in cancer targeting publication-title: J. Nat. Sci. Biol. Med. – volume: 12 start-page: 317 year: 2016 end-page: 332 ident: bb0470 article-title: Advances in silica based nanoparticles for targeted cancer therapy publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 7 year: 2014 ident: bb0520 article-title: Radiolabeling of nanoparticles and polymers for PET imaging publication-title: Pharm. – volume: 7 start-page: 4558 year: 2019 end-page: 4567 ident: bb0430 article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy publication-title: Biomater. Sci. – volume: 286 start-page: 64 year: 2018 end-page: 73 ident: bb0025 article-title: Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy publication-title: J. Control. Release – volume: 8 start-page: 1 year: 2021 end-page: 17 ident: bb0170 article-title: Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1 publication-title: Adv. Sci. – volume: 109 start-page: 1637 year: 2012 end-page: 1642 ident: bb0615 article-title: Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 24 start-page: 1504 year: 2012 end-page: 1534 ident: bb0570 article-title: Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery publication-title: Adv. Mater. – volume: 14 start-page: 4029 year: 2019 end-page: 4044 ident: bb0715 article-title: A dual-functional her2 aptamer-conjugated, ph-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in her2-positive breast cancer cells publication-title: Int. J. Nanomedicine – volume: 68 start-page: 701 year: 2016 end-page: 787 ident: bb0020 article-title: Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come publication-title: Pharmacol. Rev. – volume: 5 start-page: 3069 year: 2017 end-page: 3083 ident: bb0210 article-title: Mesoporous silica materials for controlled delivery based on enzymes publication-title: J. Mater. Chem. B – volume: 4 start-page: 1337 year: 2016 end-page: 1342 ident: bb0790 article-title: Ruthenium(II) multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy publication-title: J. Mater. Chem. B – volume: 8 start-page: 6811 year: 2016 end-page: 6825 ident: bb0595 article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 53 year: 2009 end-page: 91 ident: bb0880 article-title: Disulfides as redox switches: from molecular mechanisms to functional significance publication-title: Antioxid. Redox Signal. – volume: 319 start-page: 46 year: 2020 end-page: 62 ident: bb1020 article-title: Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine publication-title: J. Control. Release – volume: 11 start-page: 540 year: 2018 end-page: 552 ident: bb0655 article-title: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development publication-title: Clin. Transl. Sci. – volume: 13 start-page: 89 year: 2013 ident: bb0815 article-title: Acidic extracellular microenvironment and cancer publication-title: Cancer Cell Int. – volume: 20 start-page: 4014 year: 2020 end-page: 4021 ident: bb1135 article-title: Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing publication-title: Nano Lett. – volume: 5 start-page: 447 year: 2005 end-page: 458 ident: bb0005 article-title: Pharmacokinetic variability of anticancer agents publication-title: Nat. Rev. Cancer – volume: 56 start-page: 10297 year: 2020 end-page: 10300 ident: bb1005 article-title: Magnetic resonance imaging of high-intensity focused ultrasound-stimulated drug release from a self-reporting core@ shell nanoparticle platform publication-title: Chem. Commun. – volume: 4 start-page: 1 year: 2017 end-page: 10 ident: bb1025 article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. – volume: 26 start-page: 5745 year: 2019 end-page: 5763 ident: bb0475 article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging publication-title: Curr. Med. Chem. – volume: 11 start-page: 1915 year: 2015 end-page: 1924 ident: bb0535 article-title: Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape publication-title: Nanomedicine. – volume: 56 start-page: 1194 year: 1996 end-page: 1198 ident: bb0810 article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer publication-title: Cancer Res. – volume: 12 start-page: 3 year: 2018 end-page: 20 ident: bb0640 article-title: Emerging Functions of the EGFR in Cancer publication-title: Mol. Oncol. – volume: 269 start-page: 120635 year: 2021 ident: bb0160 article-title: Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor publication-title: Biomaterials. – volume: 190 year: 2020 ident: bb0280 article-title: Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor publication-title: Colloids Surf. B: Biointerfaces – volume: 515 start-page: 132 year: 2016 end-page: 164 ident: bb0505 article-title: Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems publication-title: Int. J. Pharm. – volume: 5 start-page: 1001 year: 2017 end-page: 1013 ident: bb0850 article-title: Biomaterials science publication-title: Biomater. Sci. – volume: 7 start-page: 9 year: 2019 end-page: 23 ident: bb0195 article-title: Magnetic nanoarchitectures for cancer sensing, imaging and therapy publication-title: J. Mater. Chem. B – volume: 123 start-page: 115759 year: 2020 ident: bb1040 article-title: Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer publication-title: TrAC Trends Anal. Chem. – volume: 10 year: 2018 ident: bb0695 article-title: Aptamer therapeutics in cancer: current and future publication-title: Cancers (Basel). – volume: 5 start-page: 1259 year: 2011 end-page: 1266 ident: bb0510 article-title: Smart drug delivery through DNA/magnetic nanoparticle gates publication-title: ACS Nano – volume: 31 start-page: 1085 year: 2010 end-page: 1092 ident: bb0565 article-title: The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses publication-title: Biomaterials. – volume: 7 start-page: 211 year: 2019 end-page: 219 ident: bb0840 article-title: A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy publication-title: Biomater. Sci. – volume: 3 start-page: 19388 year: 2013 end-page: 19392 ident: bb0925 article-title: Visible light responsive anticancer treatment with an amsacrine-loaded mesoporous silica-based nanodevice publication-title: RSC Adv. – volume: 13 start-page: 7890 year: 2021 end-page: 7896 ident: bb1150 article-title: CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery publication-title: ACS Appl. Mater. Interfaces – volume: 117 start-page: 54 year: 2017 end-page: 65 ident: bb0915 article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy publication-title: Biomaterials. – volume: 17 start-page: 3338 year: 2011 end-page: 3342 ident: bb0920 article-title: Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier publication-title: Chem. Eur. J. – volume: 346 start-page: 1258096 year: 2014 ident: bb1100 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science (80-. ). – volume: 23 start-page: 315 year: 2018 end-page: 332 ident: bb0590 article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer publication-title: Drug Discov. Today – volume: 7 start-page: 4558 year: 2019 end-page: 4567 ident: bb0935 article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy publication-title: Biomater. Sci. – volume: 12 start-page: 991 year: 2013 end-page: 1003 ident: bb0035 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. – volume: 2 start-page: 233 year: 2018 end-page: 242 ident: bb0290 article-title: Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging publication-title: Nanotheranostics – volume: 8 start-page: 1 year: 2019 end-page: 14 ident: bb0340 article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy publication-title: Adv. Healthc. Mater. – volume: 8 start-page: 19573 year: 2016 end-page: 19580 ident: bb0345 article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery publication-title: Nanoscale. – volume: 7 start-page: 6840 year: 2019 end-page: 6854 ident: bb0300 article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement publication-title: J. Mater. Chem. B – volume: 9 start-page: 3926 year: 2015 end-page: 3934 ident: bb0460 article-title: In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine publication-title: ACS Nano – volume: 6 start-page: 1794 year: 2010 end-page: 1805 ident: bb0580 article-title: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals publication-title: Small. – volume: 7 start-page: 6304 year: 2015 end-page: 6310 ident: bb0700 article-title: An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles publication-title: Nanoscale. – volume: 8 start-page: 184 year: 2020 ident: bb1075 article-title: Emerging and innovative theranostic approaches for mesoporous silica nanoparticles in hepatocellular carcinoma: current status and advances publication-title: Front. Bioeng. Biotechnol. – volume: 6 start-page: 7061 year: 2016 end-page: 7065 ident: bb0750 article-title: Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy publication-title: RSC Adv. – volume: 5 start-page: 57 year: 2009 end-page: 62 ident: bb0550 article-title: Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells publication-title: Small. – volume: 13 start-page: 1241 year: 2018 end-page: 1256 ident: bb0690 article-title: Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy publication-title: Int. J. Nanomedicine – volume: 9 start-page: 7315 year: 2016 end-page: 7330 ident: bb0755 article-title: Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel publication-title: Oncol. Targets. Ther. – volume: 95 start-page: 40 year: 2015 end-page: 49 ident: bb0215 article-title: Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy publication-title: Adv. Drug Deliv. Rev. – volume: 5 start-page: 1544 year: 2013 end-page: 1551 ident: bb1010 article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug publication-title: Nanoscale. – volume: 8 start-page: 1086 year: 2020 ident: bb1015 article-title: A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies publication-title: Front. Chem. – volume: 573 start-page: 263 year: 2020 end-page: 277 ident: bb0285 article-title: A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy publication-title: J. Colloid Interface Sci. – volume: 179 start-page: 352 year: 2019 end-page: 362 ident: bb0600 article-title: A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly publication-title: Colloids Surf. B: Biointerfaces – volume: 72 start-page: 4165 year: 2012 end-page: 4177 ident: bb0785 article-title: Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages publication-title: Cancer Res. – volume: 13 start-page: 41 year: 2016 end-page: 50 ident: bb1110 article-title: Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery publication-title: Nat. Methods – volume: 3 start-page: 7 year: 2018 ident: bb0055 article-title: Controlled drug delivery vehicles for cancer treatment and their performance publication-title: Signal Transduct. Target. Ther. – volume: 152 start-page: 77 year: 2017 end-page: 84 ident: bb0630 article-title: Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery publication-title: Colloids Surf. B: Biointerfaces – volume: 30 start-page: 1191 year: 2001 end-page: 1212 ident: bb0865 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. – volume: 4 start-page: 1 year: 2017 end-page: 10 ident: bb0355 article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. – volume: 138 start-page: 105 year: 2019 end-page: 116 ident: bb0500 article-title: The effect of low- and high-penetration light on localized cancer therapy publication-title: Adv. Drug Deliv. Rev. – volume: 11 start-page: 99 year: 2007 end-page: 110 ident: bb0175 article-title: Silicon and bone health publication-title: J. Nutr. Health Aging – volume: 5 start-page: 986 year: 2020 end-page: 998 ident: bb0245 article-title: Reversibly-regulated drug release using poly (tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy publication-title: Nanoscale Horizons. – volume: 8 start-page: 33829 year: 2016 end-page: 33841 ident: bb0455 article-title: Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 12821 year: 2017 end-page: 12829 ident: bb0200 article-title: Silicon-based nanotheranostics publication-title: Nanoscale. – volume: 52 start-page: 1531 year: 2019 end-page: 1542 ident: bb0190 article-title: Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery publication-title: Acc. Chem. Res. – volume: 164 start-page: 29 year: 2016 end-page: 44 ident: bb1085 article-title: Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering publication-title: Cell – volume: 138 start-page: 35 year: 2017 end-page: 45 ident: bb0745 article-title: Revisiting the value of competition assays in folate receptor-mediated drug delivery publication-title: Biomaterials. – volume: 12 start-page: 2172 year: 2016 end-page: 2184 ident: bb0660 article-title: Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model publication-title: J. Biomed. Nanotechnol. – volume: 214 start-page: 62 year: 2019 end-page: 91 ident: bb1055 article-title: Efficient nanocarriers of siRNA therapeutics for cancer treatment publication-title: Transl. Res. – volume: 157 start-page: 705 year: 2018 end-page: 715 ident: bb0060 article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems publication-title: Eur. J. Med. Chem. – volume: 2014 start-page: 1 year: 2014 end-page: 9 ident: bb0710 article-title: Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications publication-title: Mol. Biol. Int. – volume: 27 start-page: 1200 year: 2010 end-page: 1207 ident: bb1070 article-title: Novel amino-modified silica nanoparticles as efficient vector for hepatocellular carcinoma gene therapy publication-title: Med. Oncol. – volume: 31 start-page: 483 year: 2019 end-page: 490 ident: bb0400 article-title: O2-loaded pH-responsive multifunctional nanodrug carrier for overcoming hypoxia and highly efficient chemo-photodynamic cancer therapy publication-title: Chem. Mater. – volume: 7 start-page: 1 year: 2017 end-page: 12 ident: bb0670 article-title: Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy publication-title: Sci. Rep. – volume: 308 start-page: 172 year: 2019 end-page: 189 ident: bb0890 article-title: Enzyme responsive drug delivery systems in cancer treatment publication-title: J. Control. Release – volume: 13 start-page: 544 year: 2017 end-page: 558 ident: bb0575 article-title: Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: in vitro and adult and fetal in vivo studies publication-title: J. Biomed. Nanotechnol. – volume: 24 start-page: 926 year: 2016 end-page: 936 ident: bb0800 article-title: Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors publication-title: Mol. Ther. – volume: 9 start-page: 11023 year: 2015 end-page: 11033 ident: bb0990 article-title: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers publication-title: ACS Nano – volume: 41 start-page: 13823 year: 2017 end-page: 13829 ident: bb0765 article-title: Combining Vitamin B12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system publication-title: New J. Chem. – volume: 139 start-page: 10992 year: 2017 end-page: 10995 ident: bb0405 article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 1001 year: 2017 end-page: 1013 ident: bb0325 article-title: Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites publication-title: Biomater. Sci. – volume: 16 start-page: 1902242 year: 2020 ident: bb0205 article-title: New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers publication-title: Small. – volume: 9 start-page: 5817 year: 2017 end-page: 5827 ident: bb0330 article-title: Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 531 year: 2017 end-page: 540 ident: bb0540 article-title: The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution publication-title: Acta Biomater. – volume: 3 start-page: 4987 year: 2020 end-page: 4999 ident: bb0900 article-title: Matrix Metalloproteinase-Responsive Mesoporous Silica Nanoparticles Cloaked with Cleavable Protein for “ Self-Actuating ” On-Demand Controlled Drug Delivery for Cancer Therapy publication-title: ACS Appl. Bio Mater. – volume: 13 start-page: 1 year: 2017 end-page: 9 ident: bb0360 article-title: Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy publication-title: Small. – volume: 30 start-page: 1902634 year: 2020 ident: bb0240 article-title: Mesoporous silica nanoparticles for drug delivery publication-title: Adv. Funct. Mater. – volume: 8 start-page: 916 year: 2018 end-page: 931 ident: bb0635 article-title: Transferrin receptor 1 in cancer: a new sight for cancer therapy publication-title: Am. J. Cancer Res. – volume: 2 start-page: 1 year: 2020 end-page: 5 ident: bb1120 article-title: Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights publication-title: SN Appl. Sci. – volume: 96 start-page: 4 year: 2019 end-page: 12 ident: bb1105 article-title: CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment publication-title: Semin. Cell Dev. Biol. – volume: 56 start-page: 101533 year: 2020 ident: bb1125 article-title: Nanoparticles-mediated CRISPR/Cas9 delivery: Recent advances in cancer treatment publication-title: J. Drug Deliv. Sci. Technol. – volume: 139 start-page: 1275 year: 2017 end-page: 1284 ident: bb0445 article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy publication-title: J. Am. Chem. Soc. – volume: 25 start-page: 3100 year: 2013 end-page: 3105 ident: bb0555 article-title: Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications publication-title: Adv. Mater. – volume: 10 start-page: 1963 year: 2018 end-page: 1975 ident: bb0335 article-title: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 6777 year: 2019 end-page: 6788 ident: bb0435 article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy publication-title: ACS Appl. Mater. Interfaces – volume: 401 start-page: 126100 year: 2020 ident: bb0295 article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy publication-title: Chem. Eng. J. – volume: 26 start-page: 7908 year: 2016 end-page: 7920 ident: bb0450 article-title: Unprecedented “All-in-One” Lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of NIR light triggered chemo-photodynamic therapy of tumors publication-title: Adv. Funct. Mater. – volume: 7 year: 2018 ident: bb0235 article-title: Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications publication-title: Adv. Healthc. Mater. – volume: 3 start-page: 9584 year: 2013 ident: bb0180 article-title: Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications publication-title: RSC Adv. – volume: 13 year: 2020 ident: bb1050 article-title: Overcoming barriers for siRNA therapeutics: from bench to bedside publication-title: Pharmaceuticals (Basel) – volume: 7 start-page: 6840 year: 2019 end-page: 6854 ident: bb0845 article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement publication-title: J. Mater. Chem. B – volume: 13 start-page: 12148 year: 2019 end-page: 12161 ident: bb0310 article-title: Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy publication-title: ACS Nano – volume: 25 start-page: 1513 year: 2020 end-page: 1520 ident: bb0230 article-title: Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents publication-title: Drug Discov. Today – volume: 401 start-page: 126100 year: 2020 ident: bb0985 article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy publication-title: Chem. Eng. J. – volume: 46 start-page: 6387 year: 1986 end-page: 6392 ident: bb0515 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 232 year: 2020 ident: bb0375 article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy publication-title: Biomaterials – volume: 8 start-page: 579 year: 2009 end-page: 591 ident: bb0870 article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. – volume: 157 start-page: 107 year: 2018 end-page: 124 ident: bb0410 article-title: Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy publication-title: Biomaterials. – volume: 46 start-page: 578 year: 2018 end-page: 587 ident: bb0760 article-title: Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA publication-title: Artif. Cells Nanomed. Biotechnol. – volume: 146 start-page: 363 year: 2020 end-page: 373 ident: bb0820 article-title: Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy publication-title: Int. J. Biol. Macromol. – volume: 21 start-page: 1 year: 2020 end-page: 21 ident: bb0625 article-title: Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy publication-title: Int. J. Mol. Sci. – volume: 22 start-page: 327 year: 2011 end-page: 341 ident: bb1145 article-title: Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis publication-title: Mol. Biol. Cell – volume: 20 start-page: 100253 year: 2020 ident: bb0065 article-title: Smart nanocarriers for cancer treatment: Clinical impact and safety publication-title: NanoImpact. – volume: 21 year: 2020 ident: bb0680 article-title: Aptamers, the nucleic acid antibodies, in cancer therapy publication-title: Int. J. Mol. Sci. – volume: 12 start-page: 649 year: 2020 ident: bb1060 article-title: Silica-based gene delivery systems: from design to therapeutic applications publication-title: Pharmaceutics. – volume: 17 start-page: 1 year: 2021 end-page: 13 ident: bb0165 article-title: Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy publication-title: Small. – volume: 200 start-page: 1 year: 2019 end-page: 14 ident: bb0980 article-title: Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy publication-title: Biomaterials. – volume: 8 year: 2018 ident: bb0675 article-title: Carbonic anhydrases: Role in pH control and cancer publication-title: Metabolites – volume: 5 start-page: 269 year: 2018 end-page: 286 ident: bb0805 article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics publication-title: Natl. Sci. Rev. – volume: 65 start-page: 393 year: 2018 end-page: 404 ident: bb0835 article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment publication-title: Acta Biomater. – volume: 13 start-page: 2495 year: 2017 end-page: 2505 ident: bb0380 article-title: MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications publication-title: Nanomed. Nanotechnol. Biol. Med. – volume: 44 start-page: 13 year: 2018 end-page: 18 ident: bb0705 article-title: MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells publication-title: Drug Dev. Ind. Pharm. – volume: 133 start-page: 111007 year: 2021 ident: bb1090 article-title: CRISPR technology: The engine that drives cancer therapy publication-title: Biomed. Pharmacother. – volume: 10 year: 2018 ident: bb0350 article-title: In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem publication-title: Nano-Micro Lett. – volume: 4 year: 2016 ident: bb0795 article-title: Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer publication-title: J. Mater. Chem. B – volume: 30 start-page: 1910304 year: 2020 ident: bb0270 article-title: Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment publication-title: Adv. Funct. Mater. – volume: 11 start-page: 39688 year: 2019 end-page: 39705 ident: bb0415 article-title: Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis publication-title: ACS Appl. Mater. Interfaces – volume: 114 start-page: 358 year: 2020 end-page: 368 ident: bb1045 article-title: Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery publication-title: Acta Biomater. – volume: 8 start-page: 1 year: 2019 end-page: 14 ident: bb0960 article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy publication-title: Adv. Healthc. Mater. – volume: 8 start-page: 19573 year: 2016 end-page: 19580 ident: bb0855 article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery publication-title: Nanoscale. – volume: 232 year: 2020 ident: bb1000 article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy publication-title: Biomaterials – volume: 10 start-page: 12518 year: 2018 end-page: 12525 ident: bb0965 article-title: Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1 year: 2018 end-page: 9 ident: bb0440 article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy publication-title: Adv. Mater. – volume: 16 start-page: 301 year: 2019 end-page: 314 ident: bb0975 article-title: Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia publication-title: Appl. Mater. Today – volume: 7 start-page: 73681 year: 2016 end-page: 73696 ident: bb0610 article-title: Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats publication-title: Oncotarget – volume: 12 start-page: 38873 year: 2020 end-page: 38886 ident: bb1035 article-title: Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro publication-title: ACS Appl. Mater. Interfaces – volume: 14 start-page: 5785 year: 2019 end-page: 5797 ident: bb0735 article-title: Hyaluronic Acid-Modified Mesoporous Silica-Coated Superparamagnetic Fe3O4 Nanoparticles for Targeted Drug Delivery – volume: 1 start-page: 10 year: 2016 end-page: 29 ident: bb0045 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. – volume: 10 start-page: 7273 year: 2020 end-page: 7286 ident: bb0370 article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging publication-title: Theranostics. – volume: 323 start-page: 442 year: 2020 end-page: 462 ident: bb1030 article-title: Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies publication-title: J. Control. Release – volume: 9 start-page: 2000877 year: 2020 ident: bb0385 article-title: Cavitation-inducible mesoporous silica–titania nanoparticles for cancer sonotheranostics publication-title: Adv. Healthc. Mater. – volume: 72 start-page: 4165 year: 2012 ident: 10.1016/j.jconrel.2021.07.029_bb0785 article-title: Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2994 – volume: 146 start-page: 363 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0820 article-title: Host-guest fabrication of dual-responsive hyaluronic acid/mesoporous silica nanoparticle based drug delivery system for targeted cancer therapy publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.12.265 – volume: 139 start-page: 10992 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0405 article-title: Continuous O2-evolving MnFe2O4 nanoparticle-anchored mesoporous silica nanoparticles for efficient photodynamic therapy in hypoxic cancer publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05559 – volume: 12 start-page: 2172 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0660 article-title: Mucin-1-antibody-conjugated mesoporous silica nanoparticles for selective breast cancer detection in a mucin-1 transgenic murine mouse model publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2016.2318 – volume: 330 start-page: 1220 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0620 article-title: Cell penetrating peptides: A versatile vector for co-delivery of drug and genes in cancer publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.11.028 – volume: 16 start-page: 181 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0685 article-title: Aptamers as targeted therapeutics: current potential and challenges publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.199 – volume: 141 start-page: 17670 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0995 article-title: A responsive mesoporous silica nanoparticle platform for magnetic resonance imaging-guided high-intensity focused ultrasound-stimulated cargo delivery with controllable location, time, and dose publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b07591 – volume: 5 start-page: 447 year: 2005 ident: 10.1016/j.jconrel.2021.07.029_bb0005 article-title: Pharmacokinetic variability of anticancer agents publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1629 – volume: 10 start-page: 7273 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0955 article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging publication-title: Theranostics. doi: 10.7150/thno.44668 – volume: 117 start-page: 54 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0320 article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2016.11.057 – volume: 23 start-page: 315 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0590 article-title: Mesoporous silica nanoparticles: a smart nanosystem for management of breast cancer publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2017.10.022 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0355 article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. doi: 10.1002/advs.201600356 – volume: 5 start-page: 1001 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0850 article-title: Biomaterials science publication-title: Biomater. Sci. doi: 10.1039/C7BM00043J – volume: 164 start-page: 29 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb1085 article-title: Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering publication-title: Cell doi: 10.1016/j.cell.2015.12.035 – volume: 7 start-page: 9 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0195 article-title: Magnetic nanoarchitectures for cancer sensing, imaging and therapy publication-title: J. Mater. Chem. B doi: 10.1039/C8TB02741B – volume: 9 start-page: 5234 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0275 article-title: Real-time monitoring of ATP-responsive drug release using mesoporous-silica-coated multicolor upconversion nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b00641 – volume: 5 start-page: 1259 year: 2011 ident: 10.1016/j.jconrel.2021.07.029_bb0510 article-title: Smart drug delivery through DNA/magnetic nanoparticle gates publication-title: ACS Nano doi: 10.1021/nn1029229 – volume: 17 start-page: 1 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0165 article-title: Development of facile and versatile platinum drug delivering silicasome nanocarriers for efficient pancreatic cancer chemo-immunotherapy publication-title: Small. – volume: 323 start-page: 442 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1030 article-title: Micelleplexes as nucleic acid delivery systems for cancer-targeted therapies publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.04.041 – volume: 30 start-page: 1 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0440 article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201704367 – volume: 7 start-page: 6840 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0845 article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01654F – volume: 95 start-page: 40 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0215 article-title: Development of mesoporous silica-based nanoparticles with controlled release capability for cancer therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2015.09.009 – volume: 22 start-page: 327 year: 2011 ident: 10.1016/j.jconrel.2021.07.029_bb1145 article-title: Distinct roles for paxillin and Hic-5 in regulating breast cancer cell morphology, invasion, and metastasis publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e10-09-0790 – volume: 56 start-page: 1194 year: 1996 ident: 10.1016/j.jconrel.2021.07.029_bb0810 article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer publication-title: Cancer Res. – volume: 65 start-page: 393 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0835 article-title: Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.007 – volume: 7 start-page: 1 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0670 article-title: Pulmonary delivery of triptolide-loaded liposomes decorated with anti-carbonic anhydrase IX antibody for lung cancer therapy publication-title: Sci. Rep. – volume: 12 start-page: 991 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0035 article-title: Stimuli-responsive nanocarriers for drug delivery publication-title: Nat. Mater. doi: 10.1038/nmat3776 – volume: 583 start-page: 166 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0420 article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.09.028 – volume: 11 start-page: 34 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb0825 article-title: pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment publication-title: Cancer Biol. Med. – volume: 71 start-page: 1185 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0545 article-title: An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.13098 – volume: 16 start-page: 1902242 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0205 article-title: New advances in in vivo applications of gated mesoporous silica as drug delivery nanocarriers publication-title: Small. doi: 10.1002/smll.201902242 – volume: 308 start-page: 172 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0890 article-title: Enzyme responsive drug delivery systems in cancer treatment publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.07.004 – volume: 24 start-page: 926 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0800 article-title: Inhibiting notch activity in breast cancer stem cells by glucose functionalized nanoparticles carrying γ-secretase inhibitors publication-title: Mol. Ther. doi: 10.1038/mt.2016.42 – volume: 5 start-page: 1544 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb1010 article-title: A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug publication-title: Nanoscale. doi: 10.1039/c2nr33417h – volume: 3 start-page: 6456 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0265 article-title: Disulfide-gated mesoporous silica nanoparticles designed for two-photon-triggered drug release and imaging publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00797F – volume: 7 start-page: 13168 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0970 article-title: Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core–shell mesoporous silica nanoparticles publication-title: Nanoscale. doi: 10.1039/C5NR03777H – volume: 49 start-page: 531 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0540 article-title: The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution publication-title: Acta Biomater. doi: 10.1016/j.actbio.2016.11.007 – volume: 9 start-page: 11023 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0990 article-title: Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers publication-title: ACS Nano doi: 10.1021/acsnano.5b04378 – volume: 68 start-page: 701 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0020 article-title: Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come publication-title: Pharmacol. Rev. doi: 10.1124/pr.115.012070 – volume: 7 start-page: 3614 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0775 article-title: Enzyme responsive mesoporous silica nanoparticles for targeted tumor therapy in vitro and in vivo publication-title: Nanoscale. doi: 10.1039/C5NR00072F – volume: 11 start-page: 6777 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0940 article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19565 – volume: 10 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0885 article-title: Targeted and redox-responsive drug delivery systems based on carbonic anhydrase IX-decorated mesoporous silica nanoparticles for cancer therapy publication-title: Sci. Rep. – volume: 157 start-page: 107 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0410 article-title: Tumor acidity activating multifunctional nanoplatform for NIR-mediated multiple enhanced photodynamic and photothermal tumor therapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2017.12.003 – volume: 13 start-page: 544 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0575 article-title: Biocompatibility of multi-imaging engineered mesoporous silica nanoparticles: in vitro and adult and fetal in vivo studies publication-title: J. Biomed. Nanotechnol. doi: 10.1166/jbn.2017.2369 – volume: 12 start-page: 38873 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1035 article-title: Combination of nucleic acid and mesoporous silica nanoparticles: optimization and therapeutic performance in vitro publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c07106 – volume: 4 start-page: 1337 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0790 article-title: Ruthenium(II) multifunctionalized porous silicon nanoparticles for two-photon near-infrared light responsive imaging and photodynamic cancer therapy publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02726H – volume: 4 start-page: 2404 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0910 article-title: Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy publication-title: Int J Nanomedicine – volume: 3 start-page: 4987 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0900 article-title: Matrix Metalloproteinase-Responsive Mesoporous Silica Nanoparticles Cloaked with Cleavable Protein for “ Self-Actuating ” On-Demand Controlled Drug Delivery for Cancer Therapy publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.0c00497 – volume: 10 start-page: 9 year: 2010 ident: 10.1016/j.jconrel.2021.07.029_bb0605 article-title: Integrins in cancer: Biological implications and therapeutic opportunities publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2748 – volume: 13 start-page: 1 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0360 article-title: Dual-stimuli responsive nanotheranostics for multimodal imaging guided trimodal synergistic therapy publication-title: Small. doi: 10.1002/smll.201602580 – volume: 21 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0680 article-title: Aptamers, the nucleic acid antibodies, in cancer therapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21082793 – volume: 219 start-page: 2 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0030 article-title: Controlled drug delivery: historical perspective for the next generation publication-title: J. Control. Release doi: 10.1016/j.jconrel.2015.10.005 – volume: 232 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0375 article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119723 – volume: 25 start-page: 3100 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0555 article-title: Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications publication-title: Adv. Mater. doi: 10.1002/adma.201204685 – volume: 7 start-page: 6840 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0300 article-title: PH-Responsive polyelectrolyte coated gadolinium oxide-doped mesoporous silica nanoparticles (Gd2O3@MSNs) for synergistic drug delivery and magnetic resonance imaging enhancement publication-title: J. Mater. Chem. B doi: 10.1039/C9TB01654F – volume: 12 start-page: 187 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0895 article-title: Multifunctional Silica-Based Nanoparticles with Controlled Release of Organotin Metallodrug for Targeted Theranosis of Breast Cancer publication-title: Cancers (Basel) doi: 10.3390/cancers12010187 – volume: 80 start-page: 26 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0480 article-title: Targeted treatment of cancer with nanotherapeutics based on mesoporous silica nanoparticles publication-title: Chempluschem. doi: 10.1002/cplu.201402369 – volume: 3 start-page: 1 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0665 article-title: Engineering intrinsically zirconium-89 radiolabeled self-destructing mesoporous silica nanostructures for in vivo biodistribution and tumor targeting studies publication-title: Adv. Sci. doi: 10.1002/advs.201600122 – volume: 5 start-page: 57 year: 2009 ident: 10.1016/j.jconrel.2021.07.029_bb0550 article-title: Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells publication-title: Small. doi: 10.1002/smll.200800926 – volume: 2 start-page: 233 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0290 article-title: Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging publication-title: Nanotheranostics doi: 10.7150/ntno.25565 – volume: 5 start-page: 3069 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0210 article-title: Mesoporous silica materials for controlled delivery based on enzymes publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00348J – volume: 565 start-page: 483 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0425 article-title: Enhancing selective photosensitizer accumulation and oxygen supply for high-efficacy photodynamic therapy toward glioma by 5-aminolevulinic acid loaded nanoplatform publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.01.020 – volume: 6 start-page: 4618 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0720 article-title: A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy publication-title: J. Mater. Chem. B doi: 10.1039/C8TB00989A – volume: 56 start-page: 101533 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1125 article-title: Nanoparticles-mediated CRISPR/Cas9 delivery: Recent advances in cancer treatment publication-title: J. Drug Deliv. Sci. Technol. doi: 10.1016/j.jddst.2020.101533 – volume: 138 start-page: 105 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0500 article-title: The effect of low- and high-penetration light on localized cancer therapy publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2018.09.004 – volume: 20 start-page: 4014 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1135 article-title: Engineered interactions with mesoporous silica facilitate intracellular delivery of proteins and gene editing publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c01387 – volume: 7 start-page: 73681 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0610 article-title: Asn-Gly-Arg-modified polydopamine-coated nanoparticles for dual-targeting therapy of brain glioma in rats publication-title: Oncotarget doi: 10.18632/oncotarget.12047 – volume: 11 start-page: 99 year: 2007 ident: 10.1016/j.jconrel.2021.07.029_bb0175 article-title: Silicon and bone health publication-title: J. Nutr. Health Aging – volume: 22 start-page: 1401 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0015 article-title: Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy publication-title: Molecules. doi: 10.3390/molecules22091401 – volume: 12 start-page: 649 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1060 article-title: Silica-based gene delivery systems: from design to therapeutic applications publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics12070649 – volume: 7 start-page: 6304 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0700 article-title: An aptamer-targeting photoresponsive drug delivery system using “off-on” graphene oxide wrapped mesoporous silica nanoparticles publication-title: Nanoscale. doi: 10.1039/C4NR07493A – volume: 182 start-page: 114 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0365 article-title: Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2018.08.001 – volume: 10 start-page: 1963 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0335 article-title: Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13651 – volume: 121 start-page: 89 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0040 article-title: Biocompatible copolymer formulations to treat glioblastoma multiforme publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.11.030 – volume: 9 start-page: 7315 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0755 article-title: Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel publication-title: Oncol. Targets. Ther. doi: 10.2147/OTT.S113815 – volume: 346 start-page: 1258096 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb1100 article-title: Genome editing. The new frontier of genome engineering with CRISPR-Cas9 publication-title: Science (80-. ). doi: 10.1126/science.1258096 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb0710 article-title: Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications publication-title: Mol. Biol. Int. doi: 10.1155/2014/852748 – volume: 12 start-page: 526 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1065 article-title: Mesoporous silica nanoparticles for co-delivery of drugs and nucleic acids in oncology: a review publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics12060526 – volume: 8 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0675 article-title: Carbonic anhydrases: Role in pH control and cancer publication-title: Metabolites doi: 10.3390/metabo8010019 – volume: 11 start-page: 6777 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0435 article-title: Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic cancer therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19565 – volume: 322 start-page: 566 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0495 article-title: Stimuli-responsive nano-assemblies for remotely controlled drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.03.051 – volume: 200 start-page: 1 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0980 article-title: Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2019.01.048 – year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb1130 article-title: Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook publication-title: Mater. Today doi: 10.1016/j.mattod.2018.12.003 – volume: 12 start-page: 317 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0470 article-title: Advances in silica based nanoparticles for targeted cancer therapy publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2015.10.018 – volume: 10 start-page: 12518 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0965 article-title: Beyond traditional hyperthermia: in vivo cancer treatment with magnetic-responsive mesoporous silica nanocarriers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b02398 – volume: 139 start-page: 1275 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0445 article-title: Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11846 – volume: 9 start-page: 2000877 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0385 article-title: Cavitation-inducible mesoporous silica–titania nanoparticles for cancer sonotheranostics publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202000877 – volume: 26 start-page: 3741 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb0560 article-title: Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels publication-title: Adv. Mater. doi: 10.1002/adma.201400136 – volume: 555 start-page: 82 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0830 article-title: Multistage pH-responsive mesoporous silica nanohybrids with charge reversal and intracellular release for efficient anticancer drug delivery publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.07.061 – volume: 13 start-page: 38 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0155 article-title: Improved efficacy and reduced toxicity using a custom-designed irinotecan-delivering silicasome for orthotopic colon cancer publication-title: ACS Nano doi: 10.1021/acsnano.8b06164 – volume: 7 start-page: 4558 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0430 article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy publication-title: Biomater. Sci. doi: 10.1039/C9BM00853E – volume: 30 start-page: 1910304 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0270 article-title: Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910304 – volume: 190 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0280 article-title: Multi-stimuli responsive mesoporous silica-coated carbon nanoparticles for chemo-photothermal therapy of tumor publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2020.110941 – volume: 21 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0625 article-title: Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21072536 – volume: 8 start-page: 916 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0635 article-title: Transferrin receptor 1 in cancer: a new sight for cancer therapy publication-title: Am. J. Cancer Res. – volume: 232 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1000 article-title: Superhydrophobic drug-loaded mesoporous silica nanoparticles capped with β-cyclodextrin for ultrasound image-guided combined antivascular and chemo-sonodynamic therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119723 – volume: 31 start-page: 1085 year: 2010 ident: 10.1016/j.jconrel.2021.07.029_bb0565 article-title: The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2009.10.046 – volume: 25 start-page: 1513 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0230 article-title: Application of mesoporous silica nanoparticles as drug delivery carriers for chemotherapeutic agents publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2020.06.006 – volume: 1 start-page: 53 year: 2010 ident: 10.1016/j.jconrel.2021.07.029_bb0650 article-title: Role of antibodies in cancer targeting publication-title: J. Nat. Sci. Biol. Med. doi: 10.4103/0976-9668.71675 – volume: 286 start-page: 64 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0025 article-title: Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy publication-title: J. Control. Release doi: 10.1016/j.jconrel.2018.07.034 – volume: 13 start-page: 871 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0645 article-title: VEGF targets the tumour cell publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3627 – volume: 7 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0525 article-title: Mesoporous silica nanoparticles as drug delivery vehicles in cancer publication-title: Nanomaterials doi: 10.3390/nano7070189 – volume: 20 start-page: 100253 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0065 article-title: Smart nanocarriers for cancer treatment: Clinical impact and safety publication-title: NanoImpact. doi: 10.1016/j.impact.2020.100253 – volume: 9 start-page: 5817 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0330 article-title: Formation of gold nanostar-coated hollow mesoporous silica for tumor multimodality imaging and photothermal therapy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15185 – volume: 7 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb0520 article-title: Radiolabeling of nanoparticles and polymers for PET imaging publication-title: Pharm. – volume: 6 start-page: 285 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0010 article-title: Precision oncology in liver cancer publication-title: Ann Transl Med. doi: 10.21037/atm.2018.06.14 – volume: 13 start-page: 89 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0815 article-title: Acidic extracellular microenvironment and cancer publication-title: Cancer Cell Int. doi: 10.1186/1475-2867-13-89 – volume: 117 start-page: 54 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0915 article-title: Mesoporous silica-based versatile theranostic nanoplatform constructed by layer-by-layer assembly for excellent photodynamic/chemo therapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2016.11.057 – volume: 13 start-page: 357 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb1095 article-title: Type II-C CRISPR-Cas9 biology, mechanism, and application publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00855 – volume: 12 start-page: 319 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0465 article-title: Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery publication-title: Expert Opin. Drug Deliv. doi: 10.1517/17425247.2014.953051 – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0340 article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900840 – volume: 15 start-page: 457 year: 2007 ident: 10.1016/j.jconrel.2021.07.029_bb0485 article-title: Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines publication-title: J. Drug Target. doi: 10.1080/10611860701539584 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb1025 article-title: Periodic mesoporous organosilica coated prussian blue for MR/PA dual-modal imaging-guided photothermal-chemotherapy of triple negative breast cancer publication-title: Adv. Sci. doi: 10.1002/advs.201600356 – volume: 3 start-page: 9584 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0180 article-title: Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications publication-title: RSC Adv. doi: 10.1039/c3ra23127e – volume: 26 start-page: 7908 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0450 article-title: Unprecedented “All-in-One” Lanthanide-doped mesoporous silica frameworks for fluorescence/MR imaging and combination of NIR light triggered chemo-photodynamic therapy of tumors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201603749 – volume: 9 start-page: 12821 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0200 article-title: Silicon-based nanotheranostics publication-title: Nanoscale. doi: 10.1039/C7NR04445C – volume: 7 start-page: 211 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0840 article-title: A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy publication-title: Biomater. Sci. doi: 10.1039/C8BM00386F – volume: 9 start-page: 15967 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0930 article-title: A novel visible light responsive nanosystem for cancer treatment publication-title: Nanoscale doi: 10.1039/C7NR05050J – volume: 8 start-page: 1 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0170 article-title: Combination chemo-immunotherapy for pancreatic cancer using the immunogenic effects of an irinotecan silicasome nanocarrier plus anti-PD-1 publication-title: Adv. Sci. – volume: 35 start-page: 63 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0770 article-title: Enhanced Tumor Diagnostic and Therapeutic Effect of Mesoporous Silica Nanoparticle-Mediated Pre-targeted Strategy publication-title: Pharm Res. doi: 10.1007/s11095-017-2338-5 – volume: 401 start-page: 126100 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0985 article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126100 – volume: 13 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0490 article-title: pH-responsive release of ruthenium metallotherapeutics from mesoporous silica-based nanocarriers publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13040460 – volume: 27 start-page: 1200 year: 2010 ident: 10.1016/j.jconrel.2021.07.029_bb1070 article-title: Novel amino-modified silica nanoparticles as efficient vector for hepatocellular carcinoma gene therapy publication-title: Med. Oncol. doi: 10.1007/s12032-009-9359-9 – volume: 8 start-page: 579 year: 2009 ident: 10.1016/j.jconrel.2021.07.029_bb0870 article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2803 – volume: 157 start-page: 705 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0060 article-title: Redox-responsive nano-carriers as tumor-targeted drug delivery systems publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2018.08.034 – volume: 5 start-page: 5390 year: 2011 ident: 10.1016/j.jconrel.2021.07.029_bb0530 article-title: The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo publication-title: ACS Nano doi: 10.1021/nn200365a – volume: 127 start-page: 2007 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0150 article-title: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer publication-title: J. Clin. Invest. doi: 10.1172/JCI92284 – volume: 5 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0740 article-title: Mesoporous silica nanoparticle-based intelligent drug delivery system for bienzyme-responsive tumour targeting and controlled release publication-title: R. Soc. Open Sci. – volume: 13 start-page: 12148 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0310 article-title: Positron emission tomography-guided photodynamic therapy with biodegradable mesoporous silica nanoparticles for personalized cancer immunotherapy publication-title: ACS Nano doi: 10.1021/acsnano.9b06691 – volume: 16 start-page: 301 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0975 article-title: Fluorescent and magnetic stellate mesoporous silica for bimodal imaging and magnetic hyperthermia publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2019.06.006 – volume: 17 start-page: 3338 year: 2011 ident: 10.1016/j.jconrel.2021.07.029_bb0920 article-title: Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier publication-title: Chem. Eur. J. doi: 10.1002/chem.201002960 – volume: 7 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0235 article-title: Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201700831 – volume: 43 start-page: 143 year: 2006 ident: 10.1016/j.jconrel.2021.07.029_bb0875 article-title: Glutathione in cancer biology and therapy publication-title: Crit. Rev. Clin. Lab. Sci. doi: 10.1080/10408360500523878 – volume: 2000072 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1140 article-title: Effective delivery of the crispr/cas9 system enabled by functionalized mesoporous silica nanoparticles for gfp-tagged paxillin knock-in publication-title: Adv. Ther. – volume: 96 start-page: 4 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb1105 article-title: CRISPR-Cas9: A multifaceted therapeutic strategy for cancer treatment publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2019.04.018 – volume: 11 start-page: 41069 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0315 article-title: Nanoassembly and Multiscale Computation of Multifunctional Optical-Magnetic Nanoprobes for Tumor-Targeted Theranostics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b14668 – volume: 76 start-page: 87 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0255 article-title: Biomaterials rational design of multifunctional magnetic mesoporous silica nanoparticle for tumor-targeted magnetic resonance imaging and precise therapy publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2015.10.053 – volume: 10 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0695 article-title: Aptamer therapeutics in cancer: current and future publication-title: Cancers (Basel). doi: 10.3390/cancers10030080 – volume: 401 start-page: 126100 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0295 article-title: Coordination of injectable self-healing hydrogel with Mn-Zn ferrite@mesoporous silica nanospheres for tumor MR imaging and efficient synergistic magnetothermal-chemo-chemodynamic therapy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126100 – volume: 6 start-page: 1794 year: 2010 ident: 10.1016/j.jconrel.2021.07.029_bb0580 article-title: Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals publication-title: Small. doi: 10.1002/smll.201000538 – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0960 article-title: A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201900840 – volume: 56 start-page: 10297 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1005 article-title: Magnetic resonance imaging of high-intensity focused ultrasound-stimulated drug release from a self-reporting core@ shell nanoparticle platform publication-title: Chem. Commun. doi: 10.1039/D0CC03179H – volume: 26 start-page: 5745 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0475 article-title: Multifunctional mesoporous silica nanoparticles for cancer therapy and imaging publication-title: Curr. Med. Chem. doi: 10.2174/0929867325666180501101044 – volume: 14 start-page: 4029 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0715 article-title: A dual-functional her2 aptamer-conjugated, ph-activated mesoporous silica nanocarrier-based drug delivery system provides in vitro synergistic cytotoxicity in her2-positive breast cancer cells publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S201688 – volume: 8 start-page: 19573 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0345 article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery publication-title: Nanoscale. doi: 10.1039/C6NR07062K – volume: 30 start-page: 1 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0945 article-title: Activatable hybrid nanotheranostics for tetramodal imaging and synergistic photothermal/photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201704367 – volume: 13 start-page: 7890 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb1150 article-title: CRISPR-dCas9-guided and telomerase-responsive nanosystem for precise anti-cancer drug delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c19217 – volume: 8 start-page: 33829 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0455 article-title: Multifunctional redox-responsive mesoporous silica nanoparticles for efficient targeting drug delivery and magnetic resonance imaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11802 – volume: 7 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0780 article-title: Mannose and mannose-6-phosphate receptor-targeted drug delivery systems and their application in cancer therapy publication-title: Adv. Healthc. Mater. – volume: 12 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0220 article-title: Multimodal decorations of mesoporous silica nanoparticles for improved cancer therapy publication-title: Pharmaceutics. doi: 10.3390/pharmaceutics12060527 – volume: 14 start-page: 2533 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0905 article-title: Enzyme-Responsive Mesoporous Silica Nanoparticles for Tumor Cells and Mitochondria Multistage-Targeted Drug Delivery publication-title: Int J Nanomedicine doi: 10.2147/IJN.S202210 – year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1115 article-title: Targeting cancer epigenetics with CRISPR-dCAS9: Principles and prospects publication-title: Methods – volume: 31 start-page: 483 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0400 article-title: O2-loaded pH-responsive multifunctional nanodrug carrier for overcoming hypoxia and highly efficient chemo-photodynamic cancer therapy publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b04321 – volume: 9 start-page: 3926 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0460 article-title: In vivo tumor vasculature targeting of CuS@MSN based theranostic nanomedicine publication-title: ACS Nano doi: 10.1021/nn507241v – volume: 7 start-page: 4558 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0935 article-title: Degradable magnetic-response photoacoustic/up-conversion luminescence imaging-guided photodynamic/photothermal antitumor therapy publication-title: Biomater. Sci. doi: 10.1039/C9BM00853E – volume: 1 start-page: 16014 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0145 article-title: Analysis of nanoparticle delivery to tumours publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.14 – volume: 5 start-page: 1001 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0325 article-title: Chemo-photodynamic combined gene therapy and dual-modal cancer imaging achieved by pH-responsive alginate/chitosan multilayer-modified magnetic mesoporous silica nanocomposites publication-title: Biomater. Sci. doi: 10.1039/C7BM00043J – volume: 14 start-page: 5785 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0735 article-title: Hyaluronic Acid-Modified Mesoporous Silica-Coated Superparamagnetic Fe3O4 Nanoparticles for Targeted Drug Delivery – volume: 8 start-page: 1086 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1015 article-title: A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies publication-title: Front. Chem. doi: 10.3389/fchem.2020.598722 – volume: 12 start-page: 53 year: 2009 ident: 10.1016/j.jconrel.2021.07.029_bb0880 article-title: Disulfides as redox switches: from molecular mechanisms to functional significance publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2009.2510 – volume: 13 start-page: 1241 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0690 article-title: Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S158290 – volume: 8 start-page: 19573 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0855 article-title: 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery publication-title: Nanoscale. doi: 10.1039/C6NR07062K – volume: 3 start-page: 19388 year: 2013 ident: 10.1016/j.jconrel.2021.07.029_bb0925 article-title: Visible light responsive anticancer treatment with an amsacrine-loaded mesoporous silica-based nanodevice publication-title: RSC Adv. doi: 10.1039/c3ra43492c – volume: 41 start-page: 13823 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0765 article-title: Combining Vitamin B12 and cisplatin-loaded porous silica nanoparticles via coordination: A facile approach to prepare a targeted drug delivery system publication-title: New J. Chem. doi: 10.1039/C7NJ02754K – volume: 133 start-page: 111007 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb1090 article-title: CRISPR technology: The engine that drives cancer therapy publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.111007 – volume: 1 start-page: 10 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0045 article-title: Nanoparticles in the clinic publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10003 – volume: 179 start-page: 352 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0600 article-title: A facile strategy to fabricate a pH-responsive mesoporous silica nanoparticle end-capped with amphiphilic peptides by self-assembly publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2019.03.019 – volume: 4 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0050 article-title: Nanoparticles in the clinic: An update publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10143 – volume: 109 start-page: 1637 year: 2012 ident: 10.1016/j.jconrel.2021.07.029_bb0615 article-title: Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1120790109 – volume: 11 start-page: 540 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0655 article-title: Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development publication-title: Clin. Transl. Sci. doi: 10.1111/cts.12567 – volume: 3 start-page: 7 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0055 article-title: Controlled drug delivery vehicles for cancer treatment and their performance publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-017-0004-3 – volume: 44 start-page: 13 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0705 article-title: MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells publication-title: Drug Dev. Ind. Pharm. doi: 10.1080/03639045.2017.1371734 – volume: 214 start-page: 62 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb1055 article-title: Efficient nanocarriers of siRNA therapeutics for cancer treatment publication-title: Transl. Res. doi: 10.1016/j.trsl.2019.07.006 – volume: 46 start-page: 578 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0760 article-title: Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA publication-title: Artif. Cells Nanomed. Biotechnol. doi: 10.1080/21691401.2018.1431651 – volume: 46 start-page: 6387 year: 1986 ident: 10.1016/j.jconrel.2021.07.029_bb0515 article-title: A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs publication-title: Cancer Res. – volume: 8 start-page: 184 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1075 article-title: Emerging and innovative theranostic approaches for mesoporous silica nanoparticles in hepatocellular carcinoma: current status and advances publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00184 – volume: 13 start-page: 2495 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0380 article-title: MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.08.006 – volume: 515 start-page: 132 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0505 article-title: Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2016.10.013 – volume: 24 start-page: 1504 year: 2012 ident: 10.1016/j.jconrel.2021.07.029_bb0570 article-title: Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery publication-title: Adv. Mater. doi: 10.1002/adma.201104763 – volume: 573 start-page: 263 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0285 article-title: A novel intratumoral pH/redox-dual-responsive nanoplatform for cancer MR imaging and therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.04.026 – volume: 10 start-page: 3722 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0250 article-title: Stepwise targeting and responsive lipid-coated nanoparticles for enhanced tumor cell sensitivity and hepatocellular carcinoma therapy publication-title: Theranostics. doi: 10.7150/thno.42008 – volume: 14 start-page: 1381 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0725 article-title: Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2018.04.008 – volume: 516 start-page: 484 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0730 article-title: Hyaluronated mesoporous silica nanoparticles for active targeting: influence of conjugation method and hyaluronic acid molecular weight on the nanovector properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.01.072 – volume: 4 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0795 article-title: Mesoporous silicon nanoparticles for targeted two-photon theranostics of prostate cancer publication-title: J. Mater. Chem. B doi: 10.1039/C6TB00690F – volume: 10 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0350 article-title: In vivo tumor-targeted dual-modality PET/optical imaging with a yolk/shell-structured silica nanosystem publication-title: Nano-Micro Lett. doi: 10.1007/s40820-018-0216-2 – volume: 11 start-page: 14654 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0390 article-title: MnFe2O4-decorated large-pore mesoporous silica-coated upconversion nanoparticles for near-infrared light-induced and O2 self-sufficient photodynamic therapy publication-title: Nanoscale. doi: 10.1039/C9NR04858H – volume: 11 start-page: 1915 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0535 article-title: Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape publication-title: Nanomedicine. doi: 10.1016/j.nano.2015.07.004 – volume: 32 start-page: 347 year: 2014 ident: 10.1016/j.jconrel.2021.07.029_bb1080 article-title: CRISPR-Cas systems for editing, regulating and targeting genomes publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2842 – volume: 319 start-page: 46 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1020 article-title: Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.12.024 – volume: 13 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1050 article-title: Overcoming barriers for siRNA therapeutics: from bench to bedside publication-title: Pharmaceuticals (Basel) doi: 10.3390/ph13100294 – volume: 12 start-page: 3 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0640 article-title: Emerging Functions of the EGFR in Cancer publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12155 – volume: 31 start-page: 1808024 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0395 article-title: Monodisperse and uniform mesoporous silicate nanosensitizers achieve low-dose X-ray-induced deep-penetrating photodynamic therapy publication-title: Adv. Mater. doi: 10.1002/adma.201808024 – volume: 152 start-page: 77 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0630 article-title: Transferrin gated mesoporous silica nanoparticles for redox-responsive and targeted drug delivery publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2017.01.010 – volume: 2 start-page: 1 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1120 article-title: Theranostic cancer applications utilized by nanoparticles offering multimodal systems and future insights publication-title: SN Appl. Sci. doi: 10.1007/s42452-020-03397-4 – volume: 30 start-page: 1902634 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0240 article-title: Mesoporous silica nanoparticles for drug delivery publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201902634 – volume: 5 start-page: 986 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0245 article-title: Reversibly-regulated drug release using poly (tannic acid) fabricated nanocarriers for reduced secondary side effects in tumor therapy publication-title: Nanoscale Horizons. doi: 10.1039/D0NH00032A – volume: 3 start-page: 1690 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0305 article-title: MRI enhancement and tumor targeted drug delivery using Zn2+-doped Fe3O4 core/mesoporous silica shell nanocomposites publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.9b01244 – volume: 30 start-page: 1191 year: 2001 ident: 10.1016/j.jconrel.2021.07.029_bb0865 article-title: Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple publication-title: Free Radic. Biol. Med. doi: 10.1016/S0891-5849(01)00480-4 – volume: 6 start-page: 7061 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0750 article-title: Hydroxylated fullerene-capped, vinblastine-loaded folic acid-functionalized mesoporous silica nanoparticles for targeted anticancer therapy publication-title: RSC Adv. doi: 10.1039/C5RA22937E – volume: 123 start-page: 115759 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1040 article-title: Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2019.115759 – volume: 8 start-page: 6811 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb0595 article-title: Tailoring particle size of mesoporous silica nanosystem to antagonize glioblastoma and overcome blood-brain barrier publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b11730 – volume: 7 start-page: 20696 year: 2015 ident: 10.1016/j.jconrel.2021.07.029_bb0260 article-title: DNA-hybrid-gated photothermal mesoporous silica nanoparticles for NIR-responsive and aptamer-targeted drug delivery publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05522 – volume: 11 start-page: 39688 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0415 article-title: Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b15751 – volume: 269 start-page: 120635 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0160 article-title: Immune checkpoint inhibition in syngeneic mouse cancer models by a silicasome nanocarrier delivering a GSK3 inhibitor publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2020.120635 – volume: 52 start-page: 1531 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0190 article-title: Nanomachines and other caps on mesoporous silica nanoparticles for drug delivery publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.9b00116 – volume: 59 start-page: 10275 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0185 article-title: Amino-functionalized mesoporous silica nanoparticle-encapsulated octahedral organoruthenium complex as an efficient platform for combatting cancer publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c01436 – volume: 5 start-page: 886 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0225 article-title: Synthetic amorphous silica nanoparticles: toxicity, biomedical and environmental implications publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0230-0 – volume: 5 start-page: 269 year: 2018 ident: 10.1016/j.jconrel.2021.07.029_bb0805 article-title: The acidic tumor microenvironment: a target for smart cancer nano-theranostics publication-title: Natl. Sci. Rev. doi: 10.1093/nsr/nwx062 – volume: 114 start-page: 358 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb1045 article-title: Engineering of monosized lipid-coated mesoporous silica nanoparticles for CRISPR delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.07.027 – volume: 10 start-page: 7273 year: 2020 ident: 10.1016/j.jconrel.2021.07.029_bb0370 article-title: Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal therapy and in vivo photoacoustic imaging publication-title: Theranostics. doi: 10.7150/thno.44668 – volume: 583 start-page: 166 year: 2021 ident: 10.1016/j.jconrel.2021.07.029_bb0950 article-title: Dendritic organosilica nanospheres with large mesopores as multi-guests vehicle for photoacoustic/ultrasound imaging-guided photodynamic therapy publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.09.028 – volume: 138 start-page: 35 year: 2017 ident: 10.1016/j.jconrel.2021.07.029_bb0745 article-title: Revisiting the value of competition assays in folate receptor-mediated drug delivery publication-title: Biomaterials. doi: 10.1016/j.biomaterials.2017.05.034 – volume: 13 start-page: 41 year: 2016 ident: 10.1016/j.jconrel.2021.07.029_bb1110 article-title: Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery publication-title: Nat. Methods doi: 10.1038/nmeth.3684 – volume: 105 start-page: 110103 year: 2019 ident: 10.1016/j.jconrel.2021.07.029_bb0585 article-title: Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110103 |
SSID | ssj0005347 |
Score | 2.5816693 |
SecondaryResourceType | review_article |
Snippet | Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 193 |
SubjectTerms | Cancer imaging cancer therapy CRISPR-Cas systems Gene editing genes Mesoporous silica nanoparticles (MSNs) nanocarriers Nanotheranostics porous media precision medicine silica Targeted cancer therapy |
Title | Advanced mesoporous silica nanocarriers in cancer theranostics and gene editing applications |
URI | https://dx.doi.org/10.1016/j.jconrel.2021.07.029 https://www.proquest.com/docview/2555113043 https://www.proquest.com/docview/2636470566 |
Volume | 337 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86X3wRP_GbCOKT3ZomTdPHMZSpOAYq-CCErM1gQ7OxzYe9-Ld716ZORRR8KbTkIOSSu9_17n4h5DTqy7hvuAm4zZJAGDxzzMBD9RBA2DA1-GvgtiPbD-L6MX5cIq2qFwbLKr3tL216Ya39l4ZfzcZ4MGjcAVhRHLOCDElUIrDDKxF4e1UjK82rm3ZnUenBRdk1LVWAAotGnsawPoSwc2IxCRGxgsazAJs_uqhvxrrwQJfrZM1DR9osZ7dBlqzbJGfdknt6fk7vF61U03N6RrsLVur5Fnlq-mw_fbHTEaBuCPnpdID_7KgzDlzaBC-vm9KBoxkOnNCiN8uNCiZnalxOYbNZCiuGpdL0c-p7mzxcXty32oG_WiHIRBTNglxgDSbLc5Ma8EgyUzIXCIeSNAW3liNKyFKVh4bHSS9TVvVTkcQCsDjoNrZ8h9TcyNldQk3PRExCHGmZQXp7pXjez7i0JrIM_OMeEdVq6szzjuP1F8-6KjAbaq8EjUrQYaJBCXuk_iE2Lok3_hJQlar0lx2kwTn8JXpSqVbD6cKUiXEW1KAh4AJEykPBfxkjkYMfgKTc__8UDsgqvmElCgsPSW02ebVHAHdmvWOyXH9jx35TvwMq7gA- |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA9jPuiL-InfRhCfrGubNE0fx3Bsbg7BCT4IIWsz2NBsbPPB_967NnUqouBLH9ochFxy97ve3S-EnIdDEQ010x4zaexxjWcu0PCQAwQQxk80_hq47YnWA795jB4rpFH2wmBZpbP9hU3PrbV7U3OrWZuORrV7ACuSYVYwQBKVEOzwCsdLratkpd7utHrLSg_Gi65pIT0UWDby1MZXYwg7ZwaTEGGQ03jmYPNHF_XNWOceqLlB1h10pPVidpukYuwWubgruKffLml_2Uo1v6QX9G7JSv22TZ7qLttPX8x8AqgbQn46H-E_O2q1BZc2w8vr5nRkaYoDZzTvzbKTnMmZaptR2GyGwophqTT9nPreIQ_N636j5bmrFbyUh-HCyzjWYAZZphMNHkmkUmQc4VCcJODWMkQJaSIzX7MoHqTSyGHC44gDFgfdRobtkqqdWLNHqB7oMBAQR5pAI729lCwbpkwYHZoA_OM-4eVqqtTxjuP1F8-qLDAbK6cEhUpQfqxACfvk6kNsWhBv_CUgS1WpLztIgXP4S_SsVK2C04UpE20NqEFBwAWIlPmc_TJGIAc_AElx8P8pnJLVVv-2q7rtXueQrOEXrEoJ_CNSXcxezTFAn8XgxG3tdzPsAiQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+mesoporous+silica+nanocarriers+in+cancer+theranostics+and+gene+editing+applications&rft.jtitle=Journal+of+controlled+release&rft.au=%C5%BDivojevi%C4%87%2C+Kristina&rft.au=Mladenovi%C4%87%2C+Minja&rft.au=Djisalov%2C+Mila&rft.au=Mundzic%2C+Mirjana&rft.date=2021-09-10&rft.pub=Elsevier+B.V&rft.issn=0168-3659&rft.eissn=1873-4995&rft.volume=337&rft.spage=193&rft.epage=211&rft_id=info:doi/10.1016%2Fj.jconrel.2021.07.029&rft.externalDocID=S0168365921003722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-3659&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-3659&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-3659&client=summon |