Convergence of discrete Aubry-Mather model in the continuous limit

We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear opera...

Full description

Saved in:
Bibliographic Details
Published inNonlinearity Vol. 31; no. 5; pp. 2126 - 2155
Main Authors Su, Xifeng, Thieullen, Philippe
Format Journal Article
LanguageEnglish
Published IOP Publishing 06.04.2018
Subjects
Online AccessGet full text
ISSN0951-7715
1361-6544
1361-6544
DOI10.1088/1361-6544/aaacbb

Cover

Abstract We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax-Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29-55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.
AbstractList We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax-Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29-55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions.
Author Su, Xifeng
Thieullen, Philippe
Author_xml – sequence: 1
  givenname: Xifeng
  surname: Su
  fullname: Su, Xifeng
  email: xfsu@bnu.edu.cn
  organization: Beijing Normal University School of Mathematical Sciences, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, People's Republic of China
– sequence: 2
  givenname: Philippe
  surname: Thieullen
  fullname: Thieullen, Philippe
  email: philippe.thieullen@u-bordeaux.fr
  organization: Université de Bordeaux Institut de Mathématiques de Bordeaux, 351, cours de la Libération-F 33405 Talence, France
BackLink https://hal.science/hal-01869517$$DView record in HAL
BookMark eNqNUMFKw0AUXKSCbfXuca-CsfuSzTY51qJWqHjR8_Ky2dgt6W7ZJJX-vRsiCoLi6fGGmfdmZkJG1llNyCWwG2BZNoNEQCRSzmeIqIrihIy_oBEZszyFaD6H9IxMmmbLGEAWJ2Nyu3T2oP2btkpTV9HSNMrrVtNFV_hj9ITtRnu6c6WuqbE0bFQ52xrbua6htdmZ9pycVlg3-uJzTsnr_d3LchWtnx8el4t1pHgct5FSgmtRMlaxmCtEAQkykWd5mVdK5BXnuix4ANIUgtlYqDkXlQhQkmECcTIlMNzt7B6P71jXcu_NDv1RApN9CbJPLPvEcighaK4GzQa_2Q6NXC3WsscYZCJ8mx8gcMXAVd41jdeVVKbF1oS4Hk391xP2Q_gPX9eDxLi93LrO29Dc7_QPD4mQEw
CODEN NONLE5
CitedBy_id crossref_primary_10_1007_s40072_021_00192_z
crossref_primary_10_5802_mrr_4
crossref_primary_10_1137_22M1508212
Cites_doi 10.4171/CMH/247
10.2969/aspm/04720397
10.1007/978-3-642-36433-4_3
10.1007/978-3-642-70335-5
10.1016/j.apnum.2006.03.006
10.1016/0167-2789(83)90233-6
10.1007/s000390050074
10.1088/0951-7715/4/4/010
10.1112/jlms/s2-13.3.486
10.3934/dcds.2005.13.103
10.1017/S0143385700003588
10.1007/978-0-8176-4755-1
10.1088/0951-7715/24/2/008
10.1016/s0764-4442(97)87883-4
10.1016/j.aim.2016.10.032
10.1088/0951-7715/9/2/002
10.1007/978-3-642-12598-0_19
10.5802/aif.1377
10.1007/s00222-016-0648-6
10.1017/S0143385700009421
10.1007/BF02571383
10.1017/s0308210515000517
10.1090/S0273-0979-1992-00266-5
10.1103/PhysRevB.34.6219
10.1007/s00209-016-1685-y
10.1007/978-3-642-36433-4_2
10.1090/mcom/2976
10.1137/S0363012902417620
10.1007/s00245-007-9006-9
ContentType Journal Article
Copyright 2018 IOP Publishing Ltd & London Mathematical Society
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2018 IOP Publishing Ltd & London Mathematical Society
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1088/1361-6544/aaacbb
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Physics
DocumentTitleAlternate Convergence of discrete Aubry-Mather model in the continuous limit
EISSN 1361-6544
EndPage 2155
ExternalDocumentID oai:HAL:hal-01869517v1
10_1088_1361_6544_aaacbb
nonaaacbb
GrantInformation_xml – fundername: The Fundamental Research Funds for the Central Universities
  grantid: FRFCU
– fundername: Agence Nationale de la Recherche
  grantid: ANR WKBHJ ANR-12-BS01-0020
  funderid: https://doi.org/10.13039/501100001665
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AALHV
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
W28
XPP
YQT
ZMT
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
1XC
29N
5ZI
6TJ
9BW
AAGCF
ACARI
ACWPO
AERVB
AETEA
AETNG
AFFNX
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
Q02
RKQ
S3P
T37
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c422t-cc64e6d00f024caa613a06989d9fc69f44edb469855195126c746f6b4638a3123
IEDL.DBID IOP
ISSN 0951-7715
1361-6544
IngestDate Sun Oct 26 04:13:00 EDT 2025
Tue Oct 14 20:10:11 EDT 2025
Wed Oct 01 03:24:46 EDT 2025
Thu Apr 24 22:56:51 EDT 2025
Wed Aug 21 03:32:04 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords discounted Lax-Oleinik operator
discrete weak KAM theory
Frenkel-Kontorova models
additive eigenvalue problem
shortrange interactions
AubryMather theory
ergodic cell equation
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-cc64e6d00f024caa613a06989d9fc69f44edb469855195126c746f6b4638a3123
Notes NON-102320.R1
London Mathematical Society
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-01869517
PageCount 30
ParticipantIDs hal_primary_oai_HAL_hal_01869517v1
crossref_primary_10_1088_1361_6544_aaacbb
iop_journals_10_1088_1361_6544_aaacbb
crossref_citationtrail_10_1088_1361_6544_aaacbb
unpaywall_primary_10_1088_1361_6544_aaacbb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-06
PublicationDateYYYYMMDD 2018-04-06
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-06
  day: 06
PublicationDecade 2010
PublicationTitle Nonlinearity
PublicationTitleAbbrev Non
PublicationTitleAlternate Nonlinearity
PublicationYear 2018
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 22
Frenkel Y I (19) 1938; 8
24
Barles G (4) 1994
26
27
28
29
Bernard P (6) 2007
Fathi A (18) 2008
Fathi A (17) 1997; 325
Nussbaum R D (33) 1991; 4
10
32
Garibaldi E (23) 2011; 24
12
34
13
35
Contreras G (11) 1999
14
15
16
1
2
3
5
Lions P L (25) 1987
7
8
9
Mañé R (30) 1996; 9
20
21
Moser J (31) 1986; 6
References_xml – ident: 35
  doi: 10.4171/CMH/247
– start-page: 397
  year: 2007
  ident: 6
  publication-title: Asymptotic Analysis, Singularities—Elliptic, Parabolic PDEs, Related Problems
  doi: 10.2969/aspm/04720397
– year: 1994
  ident: 4
  publication-title: Solutions de Viscosité des équations de Hamilton–Jacobi
– ident: 24
  doi: 10.1007/978-3-642-36433-4_3
– ident: 29
  doi: 10.1007/978-3-642-70335-5
– ident: 34
  doi: 10.1016/j.apnum.2006.03.006
– ident: 2
  doi: 10.1016/0167-2789(83)90233-6
– ident: 13
  doi: 10.1007/s000390050074
– volume: 4
  start-page: 1223
  issn: 0951-7715
  year: 1991
  ident: 33
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/4/4/010
– ident: 3
  doi: 10.1112/jlms/s2-13.3.486
– ident: 22
  doi: 10.3934/dcds.2005.13.103
– volume: 6
  start-page: 401
  year: 1986
  ident: 31
  publication-title: Ergd. Theor. Dynam. Sys.
  doi: 10.1017/S0143385700003588
– ident: 7
  doi: 10.1007/978-0-8176-4755-1
– volume: 24
  start-page: 563
  issn: 0951-7715
  year: 2011
  ident: 23
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/24/2/008
– ident: 16
  doi: 10.1016/s0764-4442(97)87883-4
– ident: 32
  doi: 10.1016/j.aim.2016.10.032
– volume: 9
  start-page: 273
  issn: 0951-7715
  year: 1996
  ident: 30
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/9/2/002
– ident: 20
  doi: 10.1007/978-3-642-12598-0_19
– volume: 325
  start-page: 649
  year: 1997
  ident: 17
  publication-title: C. R. Séances l’Acad. Sci.
– ident: 28
  doi: 10.5802/aif.1377
– ident: 15
  doi: 10.1007/s00222-016-0648-6
– ident: 26
  doi: 10.1017/S0143385700009421
– year: 1987
  ident: 25
– ident: 27
  doi: 10.1007/BF02571383
– ident: 1
  doi: 10.1017/s0308210515000517
– ident: 12
  doi: 10.1090/S0273-0979-1992-00266-5
– volume: 8
  start-page: 89
  year: 1938
  ident: 19
  publication-title: Zh. Eksp. Teor. Fiz.
– ident: 10
  doi: 10.1103/PhysRevB.34.6219
– year: 1999
  ident: 11
  publication-title: 22° Colóquio Brasileiro de Matemática
– ident: 14
  doi: 10.1007/s00209-016-1685-y
– year: 2008
  ident: 18
  publication-title: Weak KAM Theorem in Lagrangian Dynamics
– ident: 5
  doi: 10.1007/978-3-642-36433-4_2
– ident: 8
  doi: 10.1090/mcom/2976
– ident: 21
  doi: 10.1137/S0363012902417620
– ident: 9
  doi: 10.1007/s00245-007-9006-9
SSID ssj0011823
Score 2.2581286
Snippet We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is...
We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is...
SourceID unpaywall
hal
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2126
SubjectTerms additive eigenvalue problem
Analysis of PDEs
Aubry-Mather theory
discounted Lax-Oleinik operator
discrete weak KAM theory
Dynamical Systems
ergodic cell equation
Frenkel-Kontorova models
Mathematics
short-range interactions
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL24iege_JiK84sg-qDQrV3TtH0c6hii4oMDfSppkrLh6Ma6Kvrkf_Af-ku86bqiPkx8a0LShtyk94Scey7AMWIQ6Tu-NEI8ABlUctxztqUML_Qjy5KIcE0d73xzyzpdevXgPCwAmcXC9BBx5v9-_YwnXY8hCHBLsMgcRNtlWOze3rUeZxniXTdLUmDZzDKYQ2l-E4l7p1HUNTjnIgx_eJ5ST_MeS_3hqALLaTziry98MPjmWtprU4pjkikSakbJUz2dhHXx9kuvcd6o12E1x5WkNV0IG7Cg4ipUvqkNYummkGhNqrCUcT9FsgkX55p5ngVhKjKMiA7UHSOWJq00HL9-vn9k_cYkS5pD-jHBEtEU936cDtOEDHSM1BZ025f35x0jT65gCNpsTgwhGFVMmmaEXlpwjm6dmzqbpPQjwfyIUiVDnV7S0fozVpMJl7KIYZXtcRv93TaU42GsdoB4Unm-a8vIxMOcSylX1HUoQ2hgRhI71qAxm_hA5MrjOgHGIMhuwD0v0KYKtKmCqalqcFr0GE1VN-a0PcIpL5ppuexO6zrQdTMzPFs1OEFTB_n-TOa87KxYDH9-efc_jfdgBbGWl5F-2D6UJ-NUHSCemYSH-ZL-AgNB7eQ
  priority: 102
  providerName: Unpaywall
Title Convergence of discrete Aubry-Mather model in the continuous limit
URI https://iopscience.iop.org/article/10.1088/1361-6544/aaacbb
https://hal.science/hal-01869517
UnpaywallVersion submittedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1361-6544
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011823
  issn: 0951-7715
  databaseCode: IOP
  dateStart: 19880101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED61oAl4gI0fosAqa9oehpQ2bhzHEU8dAlXTynhYpSIhRY7tCESVVm0Dgr-ec5JG3TQB4i22znZytnOf5bvvAL4iBtGhH2onxgOQw7TEPedR44g4TCjViHBdG-_cv-C9Afs59Ic1OKliYcaT8tffwseCKLhQYekQJ9rU49ThPmNtKaWK4zqsegKBsY3e-31ZXSEgcK7yyAcB9cs7yv_18JdNqt9Yj8g6jr4Ba1k6kY8PcjRaMjrnW3C9eN3C1-Sulc3jlnr6h8nxnd_zETZLMEq6hegnqJl0GzaWKAqx1K94XWfb8CF3GFWzHfhxat3V88hNQ8YJsdG9UwTgpJvF00cnbzUleZ4dcpsSLBHrFX-bZuNsRkY2rGoXBudnf057TpmPwVGs05k7SnFmuHbdBA27khKRgHRtAkodJoqHCWNGxzYjpW8pa2iHq4DxhGOVJ6SHJnIPVtJxavaBCG1EGHg6cfH8FzAmDQt8xhFNuInGhg1oL2YkUiVZuc2ZMYryS3MhIqu1yGotKrTWgO9Vi0lB1PGC7Bec5ErMMmz3ur8iW-faFF0-De5pA77hjEXllp690NlxtUpeHfngjZ0ewjoiM5G7CPEjWJlPM_MZ0c88buarvAmrg4vL7tUzfOP8yg
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5aQWzwwH2isIGF2MOQ0saN4ySPHaMq1_EwJN6C44uGVqVV24Dg13PshAimiU3iLbZsxzm248_yOd8HsIcYRCVhorwMD0AeUwLXXEC1F2eJoVQhwvVtvPPZOe9fsuOr8KrSOXWxMMNR9etv4WNJFFyasHKIi9s04NTjIWNtIYTMsvZImQbMOp4SG8H346K-RkDwXGvJRxENq3vKv7XyYl9q_LJekQ3swQJ8KPKRuL8Tg8Gzjae3BNdPXS79TX63imnWkg9_sDm-4ZuWYbECpaRbFl-BdzpfhYVnVIWYOqv5XSerMOccR-VkDb4dWLd1F8GpydAQG-U7RiBOukU2vvdcrTFxejvkJieYItY7_iYvhsWEDGx41Tpc9g5_HvS9SpfBk6zTmXpScqa58n2DG7wUAhGB8K0QpUqM5IlhTKvMKlOGlrqGdriMGDccs4JYBLhVfoSZfJjrDSCx0nESBcr4eA6MGBOaRSHjiCp8o7BiE9pPo5LKirTcamcMUnd5HseptVxqLZeWlmvC17rGqCTseKXsLg50Xcwybfe7p6nN861UV0ijW9qELzhqabW0J680tl_PlH--efM_G92B9xffe-np0fnJFswjWIud1xD_BDPTcaE_IyCaZttu0j8Cs1UAig
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL24iege_JiK84sg-qDQrV3TtH0c6hii4oMDfSppkrLh6Ma6Kvrkf_Af-ku86bqiPkx8a0LShtyk94Scey7AMWIQ6Tu-NEI8ABlUctxztqUML_Qjy5KIcE0d73xzyzpdevXgPCwAmcXC9BBx5v9-_YwnXY8hCHBLsMgcRNtlWOze3rUeZxniXTdLUmDZzDKYQ2l-E4l7p1HUNTjnIgx_eJ5ST_MeS_3hqALLaTziry98MPjmWtprU4pjkikSakbJUz2dhHXx9kuvcd6o12E1x5WkNV0IG7Cg4ipUvqkNYummkGhNqrCUcT9FsgkX55p5ngVhKjKMiA7UHSOWJq00HL9-vn9k_cYkS5pD-jHBEtEU936cDtOEDHSM1BZ025f35x0jT65gCNpsTgwhGFVMmmaEXlpwjm6dmzqbpPQjwfyIUiVDnV7S0fozVpMJl7KIYZXtcRv93TaU42GsdoB4Unm-a8vIxMOcSylX1HUoQ2hgRhI71qAxm_hA5MrjOgHGIMhuwD0v0KYKtKmCqalqcFr0GE1VN-a0PcIpL5ppuexO6zrQdTMzPFs1OEFTB_n-TOa87KxYDH9-efc_jfdgBbGWl5F-2D6UJ-NUHSCemYSH-ZL-AgNB7eQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+discrete+Aubry%E2%80%93Mather+model+in+the+continuous+limit&rft.jtitle=Nonlinearity&rft.au=Su%2C+Xifeng&rft.au=Thieullen%2C+Philippe&rft.date=2018-04-06&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=5&rft.spage=2126&rft.epage=2155&rft_id=info:doi/10.1088%2F1361-6544%2Faaacbb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aaacbb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon