Convergence of discrete Aubry-Mather model in the continuous limit
We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear opera...
Saved in:
| Published in | Nonlinearity Vol. 31; no. 5; pp. 2126 - 2155 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
06.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-7715 1361-6544 1361-6544 |
| DOI | 10.1088/1361-6544/aaacbb |
Cover
| Abstract | We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax-Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29-55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions. |
|---|---|
| AbstractList | We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is supposed to be Tonelli, time-independent and periodic in space. By Legendre transform it is equivalent to find a fixed point of some nonlinear operator, called Lax-Oleinik operator, which may be discounted or not. By discretizing in time, we are led to solve an additive eigenvalue problem involving a discrete Lax-Oleinik operator. We show how to approximate the effective Hamiltonian and some weak KAM solutions by letting the time step in the discrete model tend to zero. We also obtain a selected discrete weak KAM solution as in Davini et al (2016 Invent. Math. 206 29-55), and show that it converges to a particular solution of the cell equation. In order to unify the two settings, continuous and discrete, we develop a more general formalism of the short-range interactions. |
| Author | Su, Xifeng Thieullen, Philippe |
| Author_xml | – sequence: 1 givenname: Xifeng surname: Su fullname: Su, Xifeng email: xfsu@bnu.edu.cn organization: Beijing Normal University School of Mathematical Sciences, No. 19, XinJieKouWai St., HaiDian District, Beijing 100875, People's Republic of China – sequence: 2 givenname: Philippe surname: Thieullen fullname: Thieullen, Philippe email: philippe.thieullen@u-bordeaux.fr organization: Université de Bordeaux Institut de Mathématiques de Bordeaux, 351, cours de la Libération-F 33405 Talence, France |
| BackLink | https://hal.science/hal-01869517$$DView record in HAL |
| BookMark | eNqNUMFKw0AUXKSCbfXuca-CsfuSzTY51qJWqHjR8_Ky2dgt6W7ZJJX-vRsiCoLi6fGGmfdmZkJG1llNyCWwG2BZNoNEQCRSzmeIqIrihIy_oBEZszyFaD6H9IxMmmbLGEAWJ2Nyu3T2oP2btkpTV9HSNMrrVtNFV_hj9ITtRnu6c6WuqbE0bFQ52xrbua6htdmZ9pycVlg3-uJzTsnr_d3LchWtnx8el4t1pHgct5FSgmtRMlaxmCtEAQkykWd5mVdK5BXnuix4ANIUgtlYqDkXlQhQkmECcTIlMNzt7B6P71jXcu_NDv1RApN9CbJPLPvEcighaK4GzQa_2Q6NXC3WsscYZCJ8mx8gcMXAVd41jdeVVKbF1oS4Hk391xP2Q_gPX9eDxLi93LrO29Dc7_QPD4mQEw |
| CODEN | NONLE5 |
| CitedBy_id | crossref_primary_10_1007_s40072_021_00192_z crossref_primary_10_5802_mrr_4 crossref_primary_10_1137_22M1508212 |
| Cites_doi | 10.4171/CMH/247 10.2969/aspm/04720397 10.1007/978-3-642-36433-4_3 10.1007/978-3-642-70335-5 10.1016/j.apnum.2006.03.006 10.1016/0167-2789(83)90233-6 10.1007/s000390050074 10.1088/0951-7715/4/4/010 10.1112/jlms/s2-13.3.486 10.3934/dcds.2005.13.103 10.1017/S0143385700003588 10.1007/978-0-8176-4755-1 10.1088/0951-7715/24/2/008 10.1016/s0764-4442(97)87883-4 10.1016/j.aim.2016.10.032 10.1088/0951-7715/9/2/002 10.1007/978-3-642-12598-0_19 10.5802/aif.1377 10.1007/s00222-016-0648-6 10.1017/S0143385700009421 10.1007/BF02571383 10.1017/s0308210515000517 10.1090/S0273-0979-1992-00266-5 10.1103/PhysRevB.34.6219 10.1007/s00209-016-1685-y 10.1007/978-3-642-36433-4_2 10.1090/mcom/2976 10.1137/S0363012902417620 10.1007/s00245-007-9006-9 |
| ContentType | Journal Article |
| Copyright | 2018 IOP Publishing Ltd & London Mathematical Society Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2018 IOP Publishing Ltd & London Mathematical Society – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1088/1361-6544/aaacbb |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Physics |
| DocumentTitleAlternate | Convergence of discrete Aubry-Mather model in the continuous limit |
| EISSN | 1361-6544 |
| EndPage | 2155 |
| ExternalDocumentID | oai:HAL:hal-01869517v1 10_1088_1361_6544_aaacbb nonaaacbb |
| GrantInformation_xml | – fundername: The Fundamental Research Funds for the Central Universities grantid: FRFCU – fundername: Agence Nationale de la Recherche grantid: ANR WKBHJ ANR-12-BS01-0020 funderid: https://doi.org/10.13039/501100001665 |
| GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AALHV AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 W28 XPP YQT ZMT AAYXX ADEQX AEINN CITATION 02O 1WK 1XC 29N 5ZI 6TJ 9BW AAGCF ACARI ACWPO AERVB AETEA AETNG AFFNX AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ Q02 RKQ S3P T37 VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c422t-cc64e6d00f024caa613a06989d9fc69f44edb469855195126c746f6b4638a3123 |
| IEDL.DBID | IOP |
| ISSN | 0951-7715 1361-6544 |
| IngestDate | Sun Oct 26 04:13:00 EDT 2025 Tue Oct 14 20:10:11 EDT 2025 Wed Oct 01 03:24:46 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 Wed Aug 21 03:32:04 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | discounted Lax-Oleinik operator discrete weak KAM theory Frenkel-Kontorova models additive eigenvalue problem shortrange interactions AubryMather theory ergodic cell equation |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-cc64e6d00f024caa613a06989d9fc69f44edb469855195126c746f6b4638a3123 |
| Notes | NON-102320.R1 London Mathematical Society |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-01869517 |
| PageCount | 30 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01869517v1 crossref_primary_10_1088_1361_6544_aaacbb iop_journals_10_1088_1361_6544_aaacbb crossref_citationtrail_10_1088_1361_6544_aaacbb unpaywall_primary_10_1088_1361_6544_aaacbb |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-06 |
| PublicationDateYYYYMMDD | 2018-04-06 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-06 day: 06 |
| PublicationDecade | 2010 |
| PublicationTitle | Nonlinearity |
| PublicationTitleAbbrev | Non |
| PublicationTitleAlternate | Nonlinearity |
| PublicationYear | 2018 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 22 Frenkel Y I (19) 1938; 8 24 Barles G (4) 1994 26 27 28 29 Bernard P (6) 2007 Fathi A (18) 2008 Fathi A (17) 1997; 325 Nussbaum R D (33) 1991; 4 10 32 Garibaldi E (23) 2011; 24 12 34 13 35 Contreras G (11) 1999 14 15 16 1 2 3 5 Lions P L (25) 1987 7 8 9 Mañé R (30) 1996; 9 20 21 Moser J (31) 1986; 6 |
| References_xml | – ident: 35 doi: 10.4171/CMH/247 – start-page: 397 year: 2007 ident: 6 publication-title: Asymptotic Analysis, Singularities—Elliptic, Parabolic PDEs, Related Problems doi: 10.2969/aspm/04720397 – year: 1994 ident: 4 publication-title: Solutions de Viscosité des équations de Hamilton–Jacobi – ident: 24 doi: 10.1007/978-3-642-36433-4_3 – ident: 29 doi: 10.1007/978-3-642-70335-5 – ident: 34 doi: 10.1016/j.apnum.2006.03.006 – ident: 2 doi: 10.1016/0167-2789(83)90233-6 – ident: 13 doi: 10.1007/s000390050074 – volume: 4 start-page: 1223 issn: 0951-7715 year: 1991 ident: 33 publication-title: Nonlinearity doi: 10.1088/0951-7715/4/4/010 – ident: 3 doi: 10.1112/jlms/s2-13.3.486 – ident: 22 doi: 10.3934/dcds.2005.13.103 – volume: 6 start-page: 401 year: 1986 ident: 31 publication-title: Ergd. Theor. Dynam. Sys. doi: 10.1017/S0143385700003588 – ident: 7 doi: 10.1007/978-0-8176-4755-1 – volume: 24 start-page: 563 issn: 0951-7715 year: 2011 ident: 23 publication-title: Nonlinearity doi: 10.1088/0951-7715/24/2/008 – ident: 16 doi: 10.1016/s0764-4442(97)87883-4 – ident: 32 doi: 10.1016/j.aim.2016.10.032 – volume: 9 start-page: 273 issn: 0951-7715 year: 1996 ident: 30 publication-title: Nonlinearity doi: 10.1088/0951-7715/9/2/002 – ident: 20 doi: 10.1007/978-3-642-12598-0_19 – volume: 325 start-page: 649 year: 1997 ident: 17 publication-title: C. R. Séances l’Acad. Sci. – ident: 28 doi: 10.5802/aif.1377 – ident: 15 doi: 10.1007/s00222-016-0648-6 – ident: 26 doi: 10.1017/S0143385700009421 – year: 1987 ident: 25 – ident: 27 doi: 10.1007/BF02571383 – ident: 1 doi: 10.1017/s0308210515000517 – ident: 12 doi: 10.1090/S0273-0979-1992-00266-5 – volume: 8 start-page: 89 year: 1938 ident: 19 publication-title: Zh. Eksp. Teor. Fiz. – ident: 10 doi: 10.1103/PhysRevB.34.6219 – year: 1999 ident: 11 publication-title: 22° Colóquio Brasileiro de Matemática – ident: 14 doi: 10.1007/s00209-016-1685-y – year: 2008 ident: 18 publication-title: Weak KAM Theorem in Lagrangian Dynamics – ident: 5 doi: 10.1007/978-3-642-36433-4_2 – ident: 8 doi: 10.1090/mcom/2976 – ident: 21 doi: 10.1137/S0363012902417620 – ident: 9 doi: 10.1007/s00245-007-9006-9 |
| SSID | ssj0011823 |
| Score | 2.2581286 |
| Snippet | We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry-Mather-Fathi theory. The Hamiltonian is... We develop two approximation schemes for solving the cell equation and the discounted cell equation using Aubry–Mather–Fathi theory. The Hamiltonian is... |
| SourceID | unpaywall hal crossref iop |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 2126 |
| SubjectTerms | additive eigenvalue problem Analysis of PDEs Aubry-Mather theory discounted Lax-Oleinik operator discrete weak KAM theory Dynamical Systems ergodic cell equation Frenkel-Kontorova models Mathematics short-range interactions |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL24iege_JiK84sg-qDQrV3TtH0c6hii4oMDfSppkrLh6Ma6Kvrkf_Af-ku86bqiPkx8a0LShtyk94Scey7AMWIQ6Tu-NEI8ABlUctxztqUML_Qjy5KIcE0d73xzyzpdevXgPCwAmcXC9BBx5v9-_YwnXY8hCHBLsMgcRNtlWOze3rUeZxniXTdLUmDZzDKYQ2l-E4l7p1HUNTjnIgx_eJ5ST_MeS_3hqALLaTziry98MPjmWtprU4pjkikSakbJUz2dhHXx9kuvcd6o12E1x5WkNV0IG7Cg4ipUvqkNYummkGhNqrCUcT9FsgkX55p5ngVhKjKMiA7UHSOWJq00HL9-vn9k_cYkS5pD-jHBEtEU936cDtOEDHSM1BZ025f35x0jT65gCNpsTgwhGFVMmmaEXlpwjm6dmzqbpPQjwfyIUiVDnV7S0fozVpMJl7KIYZXtcRv93TaU42GsdoB4Unm-a8vIxMOcSylX1HUoQ2hgRhI71qAxm_hA5MrjOgHGIMhuwD0v0KYKtKmCqalqcFr0GE1VN-a0PcIpL5ppuexO6zrQdTMzPFs1OEFTB_n-TOa87KxYDH9-efc_jfdgBbGWl5F-2D6UJ-NUHSCemYSH-ZL-AgNB7eQ priority: 102 providerName: Unpaywall |
| Title | Convergence of discrete Aubry-Mather model in the continuous limit |
| URI | https://iopscience.iop.org/article/10.1088/1361-6544/aaacbb https://hal.science/hal-01869517 |
| UnpaywallVersion | submittedVersion |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1361-6544 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011823 issn: 0951-7715 databaseCode: IOP dateStart: 19880101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED61oAl4gI0fosAqa9oehpQ2bhzHEU8dAlXTynhYpSIhRY7tCESVVm0Dgr-ec5JG3TQB4i22znZytnOf5bvvAL4iBtGhH2onxgOQw7TEPedR44g4TCjViHBdG-_cv-C9Afs59Ic1OKliYcaT8tffwseCKLhQYekQJ9rU49ThPmNtKaWK4zqsegKBsY3e-31ZXSEgcK7yyAcB9cs7yv_18JdNqt9Yj8g6jr4Ba1k6kY8PcjRaMjrnW3C9eN3C1-Sulc3jlnr6h8nxnd_zETZLMEq6hegnqJl0GzaWKAqx1K94XWfb8CF3GFWzHfhxat3V88hNQ8YJsdG9UwTgpJvF00cnbzUleZ4dcpsSLBHrFX-bZuNsRkY2rGoXBudnf057TpmPwVGs05k7SnFmuHbdBA27khKRgHRtAkodJoqHCWNGxzYjpW8pa2iHq4DxhGOVJ6SHJnIPVtJxavaBCG1EGHg6cfH8FzAmDQt8xhFNuInGhg1oL2YkUiVZuc2ZMYryS3MhIqu1yGotKrTWgO9Vi0lB1PGC7Bec5ErMMmz3ur8iW-faFF0-De5pA77hjEXllp690NlxtUpeHfngjZ0ewjoiM5G7CPEjWJlPM_MZ0c88buarvAmrg4vL7tUzfOP8yg |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD5aQWzwwH2isIGF2MOQ0saN4ySPHaMq1_EwJN6C44uGVqVV24Dg13PshAimiU3iLbZsxzm248_yOd8HsIcYRCVhorwMD0AeUwLXXEC1F2eJoVQhwvVtvPPZOe9fsuOr8KrSOXWxMMNR9etv4WNJFFyasHKIi9s04NTjIWNtIYTMsvZImQbMOp4SG8H346K-RkDwXGvJRxENq3vKv7XyYl9q_LJekQ3swQJ8KPKRuL8Tg8Gzjae3BNdPXS79TX63imnWkg9_sDm-4ZuWYbECpaRbFl-BdzpfhYVnVIWYOqv5XSerMOccR-VkDb4dWLd1F8GpydAQG-U7RiBOukU2vvdcrTFxejvkJieYItY7_iYvhsWEDGx41Tpc9g5_HvS9SpfBk6zTmXpScqa58n2DG7wUAhGB8K0QpUqM5IlhTKvMKlOGlrqGdriMGDccs4JYBLhVfoSZfJjrDSCx0nESBcr4eA6MGBOaRSHjiCp8o7BiE9pPo5LKirTcamcMUnd5HseptVxqLZeWlmvC17rGqCTseKXsLg50Xcwybfe7p6nN861UV0ijW9qELzhqabW0J680tl_PlH--efM_G92B9xffe-np0fnJFswjWIud1xD_BDPTcaE_IyCaZttu0j8Cs1UAig |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL24iege_JiK84sg-qDQrV3TtH0c6hii4oMDfSppkrLh6Ma6Kvrkf_Af-ku86bqiPkx8a0LShtyk94Scey7AMWIQ6Tu-NEI8ABlUctxztqUML_Qjy5KIcE0d73xzyzpdevXgPCwAmcXC9BBx5v9-_YwnXY8hCHBLsMgcRNtlWOze3rUeZxniXTdLUmDZzDKYQ2l-E4l7p1HUNTjnIgx_eJ5ST_MeS_3hqALLaTziry98MPjmWtprU4pjkikSakbJUz2dhHXx9kuvcd6o12E1x5WkNV0IG7Cg4ipUvqkNYummkGhNqrCUcT9FsgkX55p5ngVhKjKMiA7UHSOWJq00HL9-vn9k_cYkS5pD-jHBEtEU936cDtOEDHSM1BZ025f35x0jT65gCNpsTgwhGFVMmmaEXlpwjm6dmzqbpPQjwfyIUiVDnV7S0fozVpMJl7KIYZXtcRv93TaU42GsdoB4Unm-a8vIxMOcSylX1HUoQ2hgRhI71qAxm_hA5MrjOgHGIMhuwD0v0KYKtKmCqalqcFr0GE1VN-a0PcIpL5ppuexO6zrQdTMzPFs1OEFTB_n-TOa87KxYDH9-efc_jfdgBbGWl5F-2D6UJ-NUHSCemYSH-ZL-AgNB7eQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convergence+of+discrete+Aubry%E2%80%93Mather+model+in+the+continuous+limit&rft.jtitle=Nonlinearity&rft.au=Su%2C+Xifeng&rft.au=Thieullen%2C+Philippe&rft.date=2018-04-06&rft.issn=0951-7715&rft.eissn=1361-6544&rft.volume=31&rft.issue=5&rft.spage=2126&rft.epage=2155&rft_id=info:doi/10.1088%2F1361-6544%2Faaacbb&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6544_aaacbb |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-7715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-7715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-7715&client=summon |