Silent Speech Recognition as an Alternative Communication Device for Persons With Laryngectomy

Each year thousands of individuals require surgical removal of the larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on audio, speech, and language processing Vol. 25; no. 12; pp. 2386 - 2398
Main Authors Meltzner, Geoffrey S., Heaton, James T., Deng, Yunbin, De Luca, Gianluca, Roy, Serge H., Kline, Joshua C.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2017
Subjects
Online AccessGet full text
ISSN2329-9290
2329-9304
DOI10.1109/TASLP.2017.2740000

Cover

Abstract Each year thousands of individuals require surgical removal of the larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can be recorded from the neck and face, and used for automatic speech recognition to provide speech-to-text or synthesized speech as an alternative means of communication. This is true even when speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate communication platform after laryngectomy. In this study, eight individuals at least 6 months after total laryngectomy were recorded using eight sEMG sensors on their face (4) and neck (4) while reading phrases constructed from a 2500-word vocabulary. A unique set of phrases were used for training phoneme-based recognition models for each of the 39 commonly used phonemes in English, and the remaining phrases were used for testing word recognition of the models based on phoneme identification from running speech. Word error rates were on average 10.3% for the full eight-sensor set (averaging 9.5% for the top four participants), and 13.6% when reducing the sensor set to four locations per individual (n = 7). This study provides a compelling proof-of-concept for sEMG-based alaryngeal speech recognition, with the strong potential to further improve recognition performance.
AbstractList Each year thousands of individuals require surgical removal of their larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can be recorded from the neck and face, and used for automatic speech recognition to provide speech-to-text or synthesized speech as an alternative means of communication. This is true even when speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate communication platform after laryngectomy. In this study, 8 individuals at least 6 months after total laryngectomy were recorded using 8 sEMG sensors on their face (4) and neck (4) while reading phrases constructed from a 2,500-word vocabulary. A unique set of phrases were used for training phoneme-based recognition models for each of the 39 commonly used phonemes in English, and the remaining phrases were used for testing word recognition of the models based on phoneme identification from running speech. Word error rates were on average 10.3% for the full 8-sensor set (averaging 9.5% for the top 4 participants), and 13.6% when reducing the sensor set to 4 locations per individual (n=7). This study provides a compelling proof-of-concept for sEMG-based alaryngeal speech recognition, with the strong potential to further improve recognition performance.
Each year thousands of individuals require surgical removal of their larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can be recorded from the neck and face, and used for automatic speech recognition to provide speech-to-text or synthesized speech as an alternative means of communication. This is true even when speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate communication platform after laryngectomy. In this study, 8 individuals at least 6 months after total laryngectomy were recorded using 8 sEMG sensors on their face (4) and neck (4) while reading phrases constructed from a 2,500-word vocabulary. A unique set of phrases were used for training phoneme-based recognition models for each of the 39 commonly used phonemes in English, and the remaining phrases were used for testing word recognition of the models based on phoneme identification from running speech. Word error rates were on average 10.3% for the full 8-sensor set (averaging 9.5% for the top 4 participants), and 13.6% when reducing the sensor set to 4 locations per individual (n=7). This study provides a compelling proof-of-concept for sEMG-based alaryngeal speech recognition, with the strong potential to further improve recognition performance.Each year thousands of individuals require surgical removal of their larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can be recorded from the neck and face, and used for automatic speech recognition to provide speech-to-text or synthesized speech as an alternative means of communication. This is true even when speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate communication platform after laryngectomy. In this study, 8 individuals at least 6 months after total laryngectomy were recorded using 8 sEMG sensors on their face (4) and neck (4) while reading phrases constructed from a 2,500-word vocabulary. A unique set of phrases were used for training phoneme-based recognition models for each of the 39 commonly used phonemes in English, and the remaining phrases were used for testing word recognition of the models based on phoneme identification from running speech. Word error rates were on average 10.3% for the full 8-sensor set (averaging 9.5% for the top 4 participants), and 13.6% when reducing the sensor set to 4 locations per individual (n=7). This study provides a compelling proof-of-concept for sEMG-based alaryngeal speech recognition, with the strong potential to further improve recognition performance.
Each year thousands of individuals require surgical removal of the larynx (voice box) due to trauma or disease, and thereby require an alternative voice source or assistive device to verbally communicate. Although natural voice is lost after laryngectomy, most muscles controlling speech articulation remain intact. Surface electromyographic (sEMG) activity of speech musculature can be recorded from the neck and face, and used for automatic speech recognition to provide speech-to-text or synthesized speech as an alternative means of communication. This is true even when speech is mouthed or spoken in a silent (subvocal) manner, making it an appropriate communication platform after laryngectomy. In this study, eight individuals at least 6 months after total laryngectomy were recorded using eight sEMG sensors on their face (4) and neck (4) while reading phrases constructed from a 2500-word vocabulary. A unique set of phrases were used for training phoneme-based recognition models for each of the 39 commonly used phonemes in English, and the remaining phrases were used for testing word recognition of the models based on phoneme identification from running speech. Word error rates were on average 10.3% for the full eight-sensor set (averaging 9.5% for the top four participants), and 13.6% when reducing the sensor set to four locations per individual (n = 7). This study provides a compelling proof-of-concept for sEMG-based alaryngeal speech recognition, with the strong potential to further improve recognition performance.
Author Heaton, James T.
Kline, Joshua C.
Deng, Yunbin
De Luca, Gianluca
Roy, Serge H.
Meltzner, Geoffrey S.
Author_xml – sequence: 1
  givenname: Geoffrey S.
  surname: Meltzner
  fullname: Meltzner, Geoffrey S.
  email: geoff@vocalid.co
  organization: VocaliD, Inc., Belmont, MA, USA
– sequence: 2
  givenname: James T.
  surname: Heaton
  fullname: Heaton, James T.
  email: james.heaton@mgh.harvard.edu
  organization: Massachusetts General Hospital Voice Center, Department of Surgery, Harvard Medical School, Boston, MA, USA
– sequence: 3
  givenname: Yunbin
  surname: Deng
  fullname: Deng, Yunbin
  email: yunbin.deng@baesystems.com
  organization: BAE Systems, Burlington, MA, USA
– sequence: 4
  givenname: Gianluca
  surname: De Luca
  fullname: De Luca, Gianluca
  email: gdeluca@delsys.com
  organization: and Altec, Inc., Delsys, Inc., Natick, MA, USA
– sequence: 5
  givenname: Serge H.
  surname: Roy
  fullname: Roy, Serge H.
  email: sroy@delsys.com
  organization: and Altec, Inc., Delsys, Inc., Natick, MA, USA
– sequence: 6
  givenname: Joshua C.
  surname: Kline
  fullname: Kline, Joshua C.
  email: jkline@delsys.com
  organization: and Altec, Inc., Delsys, Inc., Natick, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29552581$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvEzEQtlARfdA_ABLykUuCx2vH6wtSFCggRWpFWvWG5TizidGundqbSP33uEkaAYf6Mpbme8x8c05OQgxIyDtgQwCmP92OZ9ObIWeghlwJVt4rcsYrrge6YuLk-c81OyWXOf8uAGBKayXekFOupeSyhjPya-ZbDD2drRHdiv5EF5fB9z4GajO1gY7bHlOwvd8incSu2wTv7K7_BbfeIW1iojeYcgyZ3vt-Rac2PYYluj52j2_J68a2GS8P9YLcXX29nXwfTK-__ZiMpwMnOO8HTldOiIXCuZuDAN4IcHYBTQOjGmsuNFgLjJe9BZMCuaiUkBU2asSUk1pVF-TzXne9mXe4cGWlZFuzTr4r05hovfm3E_zKLOPWyFqCUKMi8PEgkOLDBnNvOp8dtq0NGDfZlKClAFliK9APf3sdTZ5DLQC-B7gUc07YHCHAzNPxzO54T5rKHI5XSPV_JOf7XdBlXt--TH2_p3pEPHrVAKKSqvoD0Jin0Q
CODEN ITASD8
CitedBy_id crossref_primary_10_1002_aelm_202300075
crossref_primary_10_3390_s25030781
crossref_primary_10_1021_acsami_4c21754
crossref_primary_10_1109_ACCESS_2020_3024809
crossref_primary_10_1109_TMRB_2021_3122966
crossref_primary_10_3233_TAD_180199
crossref_primary_10_1007_s10055_021_00616_0
crossref_primary_10_1007_s42979_024_03457_1
crossref_primary_10_1088_1741_2552_ad7321
crossref_primary_10_3389_fnbot_2022_971446
crossref_primary_10_1088_1741_2552_aac965
crossref_primary_10_1109_TNSRE_2023_3342068
crossref_primary_10_1038_s41598_022_07842_9
crossref_primary_10_1088_1741_2552_abca14
crossref_primary_10_21778_2218_5453_2019_4_47_52
crossref_primary_10_1007_s12070_021_02765_9
crossref_primary_10_1109_ACCESS_2019_2963881
crossref_primary_10_1109_TIM_2023_3277930
crossref_primary_10_1016_j_procs_2020_04_013
crossref_primary_10_20473_baki_v7i2_27934
crossref_primary_10_1002_tee_23646
crossref_primary_10_1016_j_medntd_2025_100359
crossref_primary_10_3390_e21100963
crossref_primary_10_1002_smll_202205058
crossref_primary_10_1109_ACCESS_2023_3344177
crossref_primary_10_1109_ACCESS_2020_3000505
crossref_primary_10_1038_s42256_023_00616_6
crossref_primary_10_1109_TASLP_2018_2865609
crossref_primary_10_1016_j_procs_2024_03_252
crossref_primary_10_1145_3381008
crossref_primary_10_3389_fpubh_2022_1030656
crossref_primary_10_1016_j_cej_2024_154731
crossref_primary_10_3390_vibration5040041
crossref_primary_10_1016_j_compbiomed_2024_109090
crossref_primary_10_3390_s21041399
crossref_primary_10_3390_app13137746
crossref_primary_10_3390_s24082629
crossref_primary_10_1016_j_optlastec_2023_109417
crossref_primary_10_1016_j_bspc_2022_104298
crossref_primary_10_1016_j_jvoice_2024_10_024
crossref_primary_10_1109_TCDS_2023_3316701
crossref_primary_10_1016_j_jvoice_2024_07_016
crossref_primary_10_1109_ACCESS_2019_2909573
crossref_primary_10_1044_2021_JSLHR_20_00257
crossref_primary_10_3390_electronics11223795
crossref_primary_10_1109_THMS_2022_3226197
crossref_primary_10_1108_IJPCC_07_2021_0158
crossref_primary_10_1007_s11801_022_2058_x
crossref_primary_10_1088_1755_1315_969_1_012015
crossref_primary_10_1145_3534613
crossref_primary_10_1109_JSEN_2020_3037061
crossref_primary_10_1016_j_csl_2024_101754
crossref_primary_10_1002_hed_26057
crossref_primary_10_1109_ACCESS_2020_3026579
crossref_primary_10_3390_brainsci12070818
crossref_primary_10_1002_advs_202309826
crossref_primary_10_1016_j_engappai_2023_105909
crossref_primary_10_1109_TASLP_2017_2752365
crossref_primary_10_1109_JIOT_2022_3204336
Cites_doi 10.1109/ASRU.2005.1566521
10.1109/89.260356
10.1016/j.specom.2009.12.002
10.1109/IEMBS.2011.6091201
10.1109/IEMBS.2004.1404221
10.1109/TNSRE.2005.856074
10.1109/ICASSP.2009.4959623
10.1016/j.csl.2010.06.003
10.3390/s16111812
10.1109/TASLP.2017.2752365
10.3109/07434618.2014.924026
10.1109/TBME.2008.915658
10.1007/BF02345373
10.1016/j.csl.2016.02.002
10.1016/j.specom.2009.11.004
10.1016/S0167-6393(98)00061-2
10.1109/ICASSP.1998.675351
10.1121/1.381848
10.1109/EMBC.2014.6944550
10.1080/07434619712331277858
10.1016/0169-2607(91)90071-Z
10.21437/Interspeech.2016-340
10.1109/IJCNN.2003.1224072
10.1080/07434619212331276333
10.1044/1092-4388(2005/053)
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1109/TASLP.2017.2740000
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Biology
EISSN 2329-9304
EndPage 2398
ExternalDocumentID PMC5851476
29552581
10_1109_TASLP_2017_2740000
8114357
Genre orig-research
Journal Article
GrantInformation_xml – fundername: De Luca foundation
– fundername: National Institutes of Health
  grantid: R44DC014870
  funderid: 10.13039/100000002
– fundername: National Institute on Deafness and Other Communication Disorders
  funderid: 10.13039/100000055
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c422t-c93c44d7ebcb1412f41cad1ff168e82491aa1021094054e2437453ef7607c5973
IEDL.DBID RIE
ISSN 2329-9290
IngestDate Thu Aug 21 18:18:00 EDT 2025
Sat Sep 27 20:31:24 EDT 2025
Mon Jul 21 06:04:39 EDT 2025
Tue Jul 01 01:27:57 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Wed Aug 27 02:29:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Automatic Speech Recognition
Assistive technology
electromyography
Alaryngeal Speech
Augmentative and Alternative Communication
Subvocal Speech Recognition
EMG
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Personal use is permitted, but republication/redistribution requires IEEE permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-c93c44d7ebcb1412f41cad1ff168e82491aa1021094054e2437453ef7607c5973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/5851476
PMID 29552581
PQID 2015415552
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5851476
pubmed_primary_29552581
ieee_primary_8114357
crossref_citationtrail_10_1109_TASLP_2017_2740000
proquest_miscellaneous_2015415552
crossref_primary_10_1109_TASLP_2017_2740000
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-01
PublicationDateYYYYMMDD 2017-12-01
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationTitleAlternate IEEE/ACM Trans Audio Speech Lang Process
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
(ref49) 2015
ref14
wand (ref53) 0
chen (ref1) 1997; 4
ref10
green (ref3) 0
ref17
ref19
costello (ref33) 2014
garofolo (ref29) 1993; 10
ref18
deng (ref26) 0
(ref55) 2008
ref50
doyle (ref7) 2005
povey (ref39) 0
(ref41) 0
ref48
ref47
štemberk (ref42) 2004
ref44
ref43
mundhe (ref51) 2014
(ref38) 0
deng (ref25) 0
hillman (ref8) 2005
kramp (ref9) 2009; 8
ref4
ref6
ref5
patel (ref56) 2015
wand (ref54) 0
meltzner (ref11) 2005
(ref40) 0
ref35
ref34
ref37
ref36
wand (ref22) 0
(ref30) 2009
ref2
meltzner (ref27) 0
(ref31) 2017
meltzner (ref52) 0
ref24
ref23
ref20
wand (ref46) 0
ref21
betts (ref15) 2005
ref28
(ref32) 0
jou (ref16) 0
deschler (ref45) 2005
References_xml – start-page: 89
  year: 0
  ident: ref53
  article-title: Array-based electromyographic silent speech interface
  publication-title: Proc 6th Int Conf Bio-Inspired Syst Signal Process
– start-page: 1189
  year: 0
  ident: ref54
  article-title: Towards real-life application of EMG-based speech recognition by using unsupervised adaptation
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– year: 2008
  ident: ref55
  article-title: Subvocal speech exploitation-Final report
  publication-title: Def Adv Res Projects Admin
– year: 2014
  ident: ref33
  article-title: Message banking, voice banking and legacy messages: Boston children's hospital
– year: 2005
  ident: ref15
  article-title: Small vocabulary recognition using surface electromyography in an acoustically harsh environment
– ident: ref17
  doi: 10.1109/ASRU.2005.1566521
– ident: ref44
  doi: 10.1109/89.260356
– start-page: 295
  year: 0
  ident: ref22
  article-title: Session-independent EMG-based speech recognition
  publication-title: Proc Int Conf Bio-Inspired Syst Signal Process
– year: 0
  ident: ref52
  article-title: Augmenting sEMG-based speech recognition by non-invasively tracking lingual biomechanics
  publication-title: in Proc 7th World Congress of Biomechanics
– year: 2014
  ident: ref51
  article-title: Measuring tongue position and movement using transoral impedance
– year: 0
  ident: ref38
  article-title: KALDI
– ident: ref21
  doi: 10.1016/j.specom.2009.12.002
– start-page: 2415
  year: 2015
  ident: ref49
  article-title: Speaker-independent silent speech recognition with across-speaker articulatory normalization and speaker adaptive training
  publication-title: Proc INTERSPEECH
– year: 0
  ident: ref32
– start-page: 606
  year: 0
  ident: ref16
  article-title: Articulatory feature classification using surface electromyography
  publication-title: Proc 2006 IEEE Int Conf Acoust Speech Signal Process
– start-page: 55
  year: 2004
  ident: ref42
  article-title: Speech recognition based on FSM and HTK toolkits
  publication-title: Proc Tech Dig
– ident: ref34
  doi: 10.1109/IEMBS.2011.6091201
– start-page: 237
  year: 2005
  ident: ref45
  article-title: Surgical reconstruction following total laryngetcomy with extended or total pharygectomy
  publication-title: Contemporary Considerations in the Treatment and Rehabilitation of Head and Neck Cancer
– ident: ref20
  doi: 10.1109/IEMBS.2004.1404221
– ident: ref6
  doi: 10.1109/TNSRE.2005.856074
– year: 2015
  ident: ref56
  article-title: Distributed collection and processing of voice bank data
– ident: ref28
  doi: 10.1109/ICASSP.2009.4959623
– ident: ref37
  doi: 10.1016/j.csl.2010.06.003
– ident: ref48
  doi: 10.3390/s16111812
– ident: ref13
  doi: 10.1109/TASLP.2017.2752365
– start-page: 2667
  year: 0
  ident: ref27
  article-title: Speech recognition for vocalized and subvocal modes of production using surface EMG signals from the neck and face
  publication-title: Proc 10th Annu Conf Int Speech Commun Assoc
– ident: ref12
  doi: 10.3109/07434618.2014.924026
– year: 2009
  ident: ref30
  article-title: Special ops hand signals
– start-page: 75
  year: 2005
  ident: ref8
  article-title: Laryngectomy speech rehabilitation
  publication-title: Contemporary Considerations in the Treatment and Rehabilitation of Head and Neck Cancer
– start-page: 1593
  year: 0
  ident: ref46
  article-title: The EMG-UKA corpus for electromyographic speech processing
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– year: 0
  ident: ref40
– ident: ref18
  doi: 10.1109/TBME.2008.915658
– year: 0
  ident: ref39
  article-title: The kaldi speech recognition toolkit
  publication-title: Proc Workshop Automat Speech Recognition Understanding 2011
– ident: ref14
  doi: 10.1007/BF02345373
– volume: 10
  year: 1993
  ident: ref29
  article-title: TIMIT acoustic-phonetic continuous speech corpus
  publication-title: Linguistic Data Consortium
– start-page: 644
  year: 0
  ident: ref26
  article-title: Disordered speech recognition using acoustic and sEMG signals
  publication-title: Proc 10th Annu Conf Int Speech Commun Assoc
– ident: ref50
  doi: 10.1016/j.csl.2016.02.002
– year: 2017
  ident: ref31
  article-title: Most common 1000 English phrases
– ident: ref47
  doi: 10.1016/j.specom.2009.11.004
– start-page: 1189
  year: 0
  ident: ref3
  article-title: Automatic speech recognition with sparse trainingdata for dysarthric speakers
  publication-title: Proc Eur Conf Speech Commun Technol
– ident: ref35
  doi: 10.1016/S0167-6393(98)00061-2
– ident: ref36
  doi: 10.1109/ICASSP.1998.675351
– ident: ref43
  doi: 10.1121/1.381848
– year: 0
  ident: ref41
– ident: ref23
  doi: 10.1109/EMBC.2014.6944550
– volume: 8
  year: 2009
  ident: ref9
  article-title: Tracheostomy cannulas and voice prosthesis
  publication-title: Head & Neck Surgery
– volume: 4
  start-page: 1436
  year: 1997
  ident: ref1
  article-title: Optimization of dysarthric speech recognition
  publication-title: Conf Proc Annu Int Conf IEEE Eng Med Biol Soc
– start-page: 545
  year: 2005
  ident: ref11
  article-title: Electrolarynx speech: The state of the art and future directions for development
  publication-title: Contemporary Considerations in the Treatment and Rehabilitation of Head and Neck Cancer
– ident: ref4
  doi: 10.1080/07434619712331277858
– ident: ref2
  doi: 10.1016/0169-2607(91)90071-Z
– ident: ref24
  doi: 10.21437/Interspeech.2016-340
– start-page: 1164
  year: 0
  ident: ref25
  article-title: Towards a practical silent speech recognition system
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– start-page: 113
  year: 2005
  ident: ref7
  article-title: The perceptual nature of alaryngeal voice and speech
  publication-title: Contemporary Considerations in the Treatment and Rehabilitation of Head and Neck Cancer
– ident: ref19
  doi: 10.1109/IJCNN.2003.1224072
– ident: ref5
  doi: 10.1080/07434619212331276333
– ident: ref10
  doi: 10.1044/1092-4388(2005/053)
SSID ssj0001079974
Score 2.4041848
Snippet Each year thousands of individuals require surgical removal of the larynx (voice box) due to trauma or disease, and thereby require an alternative voice source...
Each year thousands of individuals require surgical removal of their larynx (voice box) due to trauma or disease, and thereby require an alternative voice...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2386
SubjectTerms Alaryngeal speech
assistive technology
augmentative and alternative communication
Automatic speech recognition
Biology
Electromyography
EMG
Larynx
Speech recognition
Speech synthesis
subvocal speech recognition
Title Silent Speech Recognition as an Alternative Communication Device for Persons With Laryngectomy
URI https://ieeexplore.ieee.org/document/8114357
https://www.ncbi.nlm.nih.gov/pubmed/29552581
https://www.proquest.com/docview/2015415552
https://pubmed.ncbi.nlm.nih.gov/PMC5851476
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001079974
  issn: 2329-9290
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Za9wwEB6SQKF96JH0cHqgQt9abyxbsuzHpW0IJSmhm9A81UjyOLs08Yast7D99dXIR7MhlL4ZLAmJGWnubwDeYYmo41iHCVY6FChlqBOZhjKrHH_lUaIM-SGPvqYHp-LLmTzbgA9DLQwi-uQzHNGnj-WXc7skV9lexkm6q03YVCpva7X--lMilecedNnpCHnopH7U18hE-d7JeHJ4TIlcauTMMHqkCQU4lzKWGV8TSb7Hyl3q5u2syRtiaP8RHPUHaLNPfo6WjRnZ37ewHf_3hI_hYaePsnHLQE9gA-ttuNd2qFxtw4MbeIU78GMyIyHFJleIdsq-9clH85rpBdM1G190_sVfyNZKT9gnpCeJORWZHXslf8G-z5opO9TXq_qcQgeXq6dwuv_55ONB2DVoCK2I4ya0eWKFKBUaa7jgcSW41SWvKp5mmDnDjmtNrcMJo08KJOxDIR1TqDRS1lkyyTPYquc1vgCWGJ05VcaUidUirqzWbhXCujfC0JoB8J5Ghe3Qy6mJxkXhrZgoLzyJCyJx0ZE4gPfDnKsWu-Ofo3eIHsPIjhQBvO1ZoXA3j8Ipusb5ckGTJaljMg7gecsaw-SetQJQa0wzDCBU7_U_9Wzq0b0pTitUunv3dl7Cfdp0m1DzCraa6yW-dmpRY974-_AHI-kIKw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-NIcT2wMfGWPg0Em-QLk7sOHmsgKlAO020E3sicpzLWm2k05oilb8eX75YpwnxFil2FOvOvt_57n4H8BYzRO372g0w165AKV0dyNCVUW71K_YCldI95OgoHJyIL6fydAPed7UwiFgln2GPHqtYfjY3S7oqO4g4WXd1B-5K61Woulrr742Kp-K4ol22KCF2rd332ioZLz6Y9MfDY0rlUj3riNExTTzAsZS-jPiaUaq6rNwGOG_mTV4zRIcPYdQuoc4_Oe8ty7Rnft9gd_zfNT6CBw0iZf1ahR7DBhY7cK_uUbnage1rjIW78GM8IzPFxpeIZsq-telH84LpBdMF6180N4y_kK0Vn7CPSIcSsyCZHVcwf8G-z8opG-qrVXFGwYOfqydwcvhp8mHgNi0aXCN8v3RNHBghMoWpSbngfi640RnPcx5GGFnXjmtNzcOJpU8KJPZDIa1aqNBTxvoywR5sFvMC94EFqY4smEmzwGjh50Zr-xViu09FSt90gLcySkzDX05tNC6Syo_x4qQScUIiThoRO_Cum3NZs3f8c_QuyaMb2YjCgTetKiR271FARRc4Xy5osiRAJn0Hntaq0U1uVcsBtaY03QDi9V5_U8ymFb83RWqFCp_d_juv4f5gMhomw89HX5_DFi2gTq95AZvl1RJfWpBUpq-qvfEHI8cLfA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silent+Speech+Recognition+as+an+Alternative+Communication+Device+for+Persons+with+Laryngectomy&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Meltzner%2C+Geoffrey+S.&rft.au=Heaton%2C+James+T.&rft.au=Deng%2C+Yunbin&rft.au=De+Luca%2C+Gianluca&rft.date=2017-12-01&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=25&rft.issue=12&rft.spage=2386&rft.epage=2398&rft_id=info:doi/10.1109%2FTASLP.2017.2740000&rft_id=info%3Apmid%2F29552581&rft.externalDocID=PMC5851476
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon