DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method

The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating fr...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 209; no. 2; pp. 599 - 616
Main Authors Yu, Huidan, Girimaji, Sharath S., Luo, Li-Shi
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.11.2005
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2005.03.022

Cover

Abstract The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate ε and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant C S in LBE-LES should be smaller than the typical value used in traditional Navier–Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations.
AbstractList The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate e and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant Cs in LBE-LES should be smaller than the typical value used in traditional Navier-Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations.
The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate ε and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant C S in LBE-LES should be smaller than the typical value used in traditional Navier–Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations.
The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate e and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant C sub(S) in LBE-LES should be smaller than the typical value used in traditional Navier-Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations.
Author Luo, Li-Shi
Yu, Huidan
Girimaji, Sharath S.
Author_xml – sequence: 1
  givenname: Huidan
  surname: Yu
  fullname: Yu, Huidan
  email: h0y5840@aero.tamu.edu
  organization: Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA
– sequence: 2
  givenname: Sharath S.
  surname: Girimaji
  fullname: Girimaji, Sharath S.
  email: girimaji@aero.tamu.edu
  organization: Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA
– sequence: 3
  givenname: Li-Shi
  surname: Luo
  fullname: Luo, Li-Shi
  email: lluo@odu.edu
  organization: Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0077, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16964956$$DView record in Pascal Francis
BookMark eNqNkU1v1DAQhi1UJLaFH8DNFxCXhLETf4kTlBaQVnAonC2v44CXxF5sB1R-fR22EhKHFaeZw_OMNO97js5CDA6hpwRaAoS_3Ld7e2gpAGuha4HSB2hDQEFDBeFnaANASaOUIo_Qec57AJCslxv0_e3HG2zCgLdXNziOeHDW3PrwFfscS4oHb3FZ0m6ZXLAO__Ll2x96XeJS8JjM7HCKxRQfA17yqk6mFF_pN3Eqv2cTAp5dxYfH6OFopuye3M8L9OX66vPl-2b76d2Hy9fbxvaUlsaMO7BKWCOt44LZvtuNatxRZjsJTo4KhJVkEK7-4BjjfATSC-Ci57ITPe0u0PPj3UOKPxaXi559tm6aTHBxyZpKrlinuv8AGaWqZxV8cRIkICkRveDrzWf3qMnWTDWgYH3Wh-Rnk2414Yr3ivHKkSNnU8w5ufEvAnqtVO91rVSvlWrodK20OuIfx_pj8iUZP500Xx1NV3P_6V3S2fq10sEnZ4seoj9h3wGi67ze
CitedBy_id crossref_primary_10_1115_1_4023323
crossref_primary_10_1016_j_ces_2016_06_053
crossref_primary_10_1016_j_compfluid_2013_01_013
crossref_primary_10_1016_j_compfluid_2019_104291
crossref_primary_10_1063_1_5138711
crossref_primary_10_1002_ceat_202300384
crossref_primary_10_1002_apj_2527
crossref_primary_10_1016_j_camwa_2015_01_010
crossref_primary_10_1155_2010_724578
crossref_primary_10_1016_j_jcp_2008_03_026
crossref_primary_10_1007_s10546_017_0233_6
crossref_primary_10_1016_j_cpc_2014_04_018
crossref_primary_10_1088_1742_6596_1064_1_012058
crossref_primary_10_1016_j_ijthermalsci_2007_11_007
crossref_primary_10_1016_j_camwa_2015_08_024
crossref_primary_10_1016_j_ces_2022_118183
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124480
crossref_primary_10_1016_j_camwa_2010_03_022
crossref_primary_10_1103_PhysRevE_89_063304
crossref_primary_10_1017_jfm_2014_604
crossref_primary_10_1038_s41598_023_48631_2
crossref_primary_10_1080_10407790_2023_2226822
crossref_primary_10_1080_10407782_2013_807690
crossref_primary_10_1016_j_icheatmasstransfer_2017_05_015
crossref_primary_10_1155_2014_742432
crossref_primary_10_1103_PhysRevE_73_066304
crossref_primary_10_1016_j_compfluid_2024_106269
crossref_primary_10_1016_j_camwa_2012_06_025
crossref_primary_10_1016_j_jcp_2012_12_032
crossref_primary_10_1016_j_oceaneng_2024_117264
crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_044
crossref_primary_10_1002_nag_2481
crossref_primary_10_1142_S0129183119500748
crossref_primary_10_1103_PhysRevE_81_036706
crossref_primary_10_1016_j_ces_2021_117146
crossref_primary_10_1016_j_jcp_2015_06_018
crossref_primary_10_1063_5_0214033
crossref_primary_10_1016_j_ces_2023_119407
crossref_primary_10_1002_nme_2114
crossref_primary_10_2112_JCOASTRES_D_21_00090_1
crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_135
crossref_primary_10_1016_j_softx_2018_02_004
crossref_primary_10_7498_aps_68_20190624
crossref_primary_10_3390_w15091717
crossref_primary_10_1016_j_physa_2009_02_041
crossref_primary_10_3390_fluids7120376
crossref_primary_10_1016_j_jcp_2007_12_001
crossref_primary_10_1108_HFF_06_2018_0264
crossref_primary_10_1016_j_pecs_2015_10_001
crossref_primary_10_1108_02644401211227617
crossref_primary_10_1007_s40571_017_0180_5
crossref_primary_10_1016_j_compfluid_2011_02_019
crossref_primary_10_1103_PhysRevE_89_033306
crossref_primary_10_1016_j_cherd_2023_05_008
crossref_primary_10_1002_bit_28869
crossref_primary_10_1016_j_compfluid_2005_04_009
crossref_primary_10_1103_PhysRevE_96_013314
crossref_primary_10_1142_S0129183121500157
crossref_primary_10_1142_S0129183106009631
crossref_primary_10_20485_jsaeijae_10_1_125
crossref_primary_10_1016_j_compfluid_2017_07_005
crossref_primary_10_1002_aic_17667
crossref_primary_10_1016_j_ces_2022_117725
crossref_primary_10_1142_S0129183124502164
crossref_primary_10_1016_j_energy_2018_07_049
crossref_primary_10_1080_10618562_2013_779679
crossref_primary_10_1103_PhysRevE_92_063305
crossref_primary_10_1016_j_compfluid_2014_02_006
crossref_primary_10_1063_1_2140021
crossref_primary_10_1016_j_bej_2024_109337
crossref_primary_10_1080_14685248_2014_954709
crossref_primary_10_1103_PhysRevE_89_043001
crossref_primary_10_2208_jscejhe_74_5_I_655
crossref_primary_10_1007_s11045_013_0264_1
crossref_primary_10_1142_S0129183122501455
crossref_primary_10_1088_1873_7005_ab3baf
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_116
crossref_primary_10_1016_j_powtec_2012_10_035
crossref_primary_10_1108_HFF_09_2018_0490
crossref_primary_10_1121_1_3458846
crossref_primary_10_1002_fld_5173
crossref_primary_10_1016_j_camwa_2020_04_033
crossref_primary_10_1002_nme_2689
crossref_primary_10_1016_j_ijheatmasstransfer_2016_08_008
crossref_primary_10_1080_10420150_2013_831856
crossref_primary_10_1016_j_jocs_2016_03_013
crossref_primary_10_1016_j_ijpharm_2023_123752
crossref_primary_10_1016_j_compstruc_2016_02_014
crossref_primary_10_1016_j_ijheatmasstransfer_2006_11_002
crossref_primary_10_1063_5_0131159
crossref_primary_10_1142_S0129183117500450
crossref_primary_10_1016_j_physleta_2006_07_074
crossref_primary_10_1007_s10483_017_2290_7
crossref_primary_10_1016_j_jcp_2024_113269
crossref_primary_10_1080_14685240600907310
crossref_primary_10_1103_PhysRevE_93_062612
crossref_primary_10_1016_j_camwa_2018_01_019
crossref_primary_10_1080_14685248_2015_1043132
crossref_primary_10_1080_00221686_2015_1110625
crossref_primary_10_1080_00986445_2022_2084392
crossref_primary_10_1016_j_jcp_2008_02_002
crossref_primary_10_1016_j_physleta_2017_12_016
crossref_primary_10_1016_j_jcp_2020_109713
crossref_primary_10_1140_epjst_e2009_01025_7
crossref_primary_10_1029_2021JF006504
crossref_primary_10_1016_j_camwa_2023_05_031
crossref_primary_10_1016_j_oceaneng_2018_09_033
crossref_primary_10_1002_bit_28264
crossref_primary_10_1016_j_jcp_2012_10_005
crossref_primary_10_1016_j_camwa_2021_12_014
crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_072
crossref_primary_10_1016_S1001_6058_09_60045_7
crossref_primary_10_1063_5_0107078
crossref_primary_10_1002_aic_16091
crossref_primary_10_1063_5_0200035
crossref_primary_10_1016_j_jnnfm_2011_02_011
crossref_primary_10_1016_j_compstruc_2006_11_016
crossref_primary_10_1002_fld_1819
crossref_primary_10_1007_s11433_012_4856_9
crossref_primary_10_3795_KSME_B_2011_35_2_169
crossref_primary_10_1016_j_nucengdes_2007_01_016
crossref_primary_10_1016_j_camwa_2019_02_006
crossref_primary_10_1007_s00162_014_0338_1
crossref_primary_10_1016_j_amc_2018_11_056
crossref_primary_10_1016_j_jrmge_2024_03_006
crossref_primary_10_1016_j_powtec_2021_06_031
crossref_primary_10_1103_PhysRevE_93_023308
crossref_primary_10_1016_j_ijthermalsci_2019_02_015
crossref_primary_10_1080_14685240600990274
crossref_primary_10_1016_j_euromechflu_2018_03_008
crossref_primary_10_1063_5_0229126
crossref_primary_10_1007_s40571_017_0166_3
crossref_primary_10_1016_j_compfluid_2021_104969
crossref_primary_10_1038_s41598_022_05269_w
crossref_primary_10_1103_PhysRevE_94_043304
crossref_primary_10_1016_j_compfluid_2014_05_015
crossref_primary_10_1103_PhysRevE_84_046318
crossref_primary_10_1016_j_cej_2022_137549
crossref_primary_10_1016_j_camwa_2019_10_002
crossref_primary_10_1002_fld_3660
crossref_primary_10_1016_j_compfluid_2021_105249
crossref_primary_10_1016_j_advwatres_2008_08_008
crossref_primary_10_1016_j_compfluid_2011_07_007
crossref_primary_10_1016_j_compfluid_2018_01_023
crossref_primary_10_1108_EC_08_2022_0556
crossref_primary_10_1063_1_4996040
crossref_primary_10_1088_0031_8949_91_8_084006
crossref_primary_10_1016_j_ceja_2023_100448
crossref_primary_10_1016_j_apt_2013_03_010
crossref_primary_10_1299_jfst_2014jfst0064
crossref_primary_10_1007_s11663_014_0250_5
crossref_primary_10_1016_j_ces_2021_117411
crossref_primary_10_1016_j_compfluid_2009_10_002
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124989
crossref_primary_10_1016_j_cpc_2017_03_009
crossref_primary_10_1080_14685240701528551
crossref_primary_10_1016_j_camwa_2016_04_032
crossref_primary_10_1088_1757_899X_50_1_012037
crossref_primary_10_1063_5_0199179
crossref_primary_10_1063_5_0256574
crossref_primary_10_1016_j_camwa_2020_01_007
crossref_primary_10_1016_j_ces_2013_06_019
crossref_primary_10_1016_j_ces_2023_119509
crossref_primary_10_1002_zamm_201900301
crossref_primary_10_1016_S1001_6279_10_60044_3
crossref_primary_10_1063_1_2842381
crossref_primary_10_1016_j_compfluid_2018_03_064
crossref_primary_10_1002_bit_28598
crossref_primary_10_1016_j_cma_2021_114040
crossref_primary_10_1016_S1004_9541_13_60523_6
crossref_primary_10_1016_j_compfluid_2018_03_079
crossref_primary_10_1016_j_physa_2010_11_037
crossref_primary_10_1016_j_jbiotec_2024_04_013
crossref_primary_10_1063_1_2842379
crossref_primary_10_1007_s10483_017_2194_9
crossref_primary_10_4208_cicp_090815_170316a
crossref_primary_10_1016_j_ces_2025_121256
crossref_primary_10_1080_10618560601001122
crossref_primary_10_1103_PhysRevE_79_026703
crossref_primary_10_1016_j_compfluid_2005_08_008
crossref_primary_10_1016_j_jfluidstructs_2021_103323
crossref_primary_10_1016_j_compgeo_2021_104234
crossref_primary_10_1016_j_jcp_2021_110186
crossref_primary_10_1016_j_applthermaleng_2022_118705
crossref_primary_10_1103_PhysRevE_99_023302
crossref_primary_10_2208_jscejam_72_I_335
crossref_primary_10_2208_jscejam_73_I_429
crossref_primary_10_3390_app14093939
crossref_primary_10_1016_j_ijmultiphaseflow_2016_03_008
crossref_primary_10_1080_10407782_2017_1309211
crossref_primary_10_1063_5_0088648
crossref_primary_10_1016_j_camwa_2009_02_022
crossref_primary_10_1016_j_camwa_2009_08_051
crossref_primary_10_1016_j_ces_2021_116538
crossref_primary_10_1016_j_compfluid_2018_03_042
crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_001
crossref_primary_10_1111_1755_6724_12740
crossref_primary_10_1016_j_applthermaleng_2017_10_059
crossref_primary_10_5194_wes_5_623_2020
crossref_primary_10_4028_www_scientific_net_AMM_554_665
crossref_primary_10_1063_1_5129818
crossref_primary_10_3390_pr9060950
crossref_primary_10_1016_j_advengsoft_2017_10_005
Cites_doi 10.1002/aic.690460706
10.1103/PhysRevE.48.4823
10.1017/S0022112002003191
10.1007/BF01341754
10.1017/S0022112085001550
10.1016/S0021-9991(02)00048-7
10.1063/1.868366
10.1007/BF01061452
10.1063/1.869806
10.1142/9789812777591_0032
10.1103/PhysRevLett.28.76
10.1103/PhysRevE.68.036706
10.1103/PhysRevE.62.4982
10.1029/2003WR002120
10.1017/S0022112090002919
10.1063/1.1589015
10.1063/1.868319
10.1088/1468-5248/1/1/010
10.1142/S0217979203017059
10.1103/PhysRevE.67.021203
10.1103/PhysRevE.71.016708
10.1002/1617-7061(200203)1:1<294::AID-PAMM294>3.0.CO;2-W
10.1103/PhysRev.94.511
10.1209/0295-5075/17/6/001
10.1006/jcph.2002.7151
10.1023/B:JOSS.0000015179.12689.e4
10.1103/PhysRevLett.71.2583
10.1103/PhysRevE.53.R5565
10.1209/epl/i1998-00296-0
10.1016/0370-1573(92)90090-M
10.1063/1.858800
10.1103/PhysRevA.45.R5339
10.1143/JPSJ.71.81
10.1002/fld.646
10.1063/1.1355682
10.1016/j.ces.2004.01.065
10.1098/rsta.2001.0955
10.1103/PhysRevLett.61.2332
10.1002/cpa.3160070104
10.1016/S0376-0421(03)00003-4
10.1146/annurev.fluid.30.1.329
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1007/BF01082526
10.1017/S0022112067000552
10.1002/aic.690450202
10.1023/A:1014502402884
10.1023/A:1010414013942
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2005 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2005 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
H8D
DOI 10.1016/j.jcp.2005.03.022
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aerospace Database
DatabaseTitleList Technology Research Database
Technology Research Database

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 616
ExternalDocumentID 16964956
10_1016_j_jcp_2005_03_022
S0021999105001907
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7U5
8FD
ACLOT
JQ2
L7M
L~C
L~D
~HD
H8D
ID FETCH-LOGICAL-c422t-afb0c97ca8ce675c43bf9fb25c380e8f907c81d7e008e5566f014706746837423
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Sat Sep 27 22:25:38 EDT 2025
Sun Sep 28 02:26:07 EDT 2025
Sat Sep 27 18:09:55 EDT 2025
Mon Jul 21 09:13:52 EDT 2025
Thu Apr 24 23:06:21 EDT 2025
Tue Jul 01 04:33:24 EDT 2025
Fri Feb 23 02:32:38 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Lattice Boltzmann equation
Decaying homogeneous isotropic turbulence in 3D
Smagorinsky model
Direct numerical simulation
Large-eddy simulation
Inertial referential
Boltzmann equation
Turbulent flow
Energy spectra
Digital simulation
Flow pattern
Rossby number
Calculation methods
Rotating frame
Energy dissipation
Calculation
Isotropic turbulence
Kinetic energy
Wave number
Homogeneous turbulence
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-afb0c97ca8ce675c43bf9fb25c380e8f907c81d7e008e5566f014706746837423
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1082174763
PQPubID 23500
PageCount 18
ParticipantIDs proquest_miscellaneous_28695393
proquest_miscellaneous_28522945
proquest_miscellaneous_1082174763
pascalfrancis_primary_16964956
crossref_primary_10_1016_j_jcp_2005_03_022
crossref_citationtrail_10_1016_j_jcp_2005_03_022
elsevier_sciencedirect_doi_10_1016_j_jcp_2005_03_022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-11-01
PublicationDateYYYYMMDD 2005-11-01
PublicationDate_xml – month: 11
  year: 2005
  text: 2005-11-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of computational physics
PublicationYear 2005
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Orszag, Patterson (bib16) 1972; 28
Somers (bib38) 1993; 51
Chen, Doolen (bib5) 1998; 30
Ossia, Lesieur (bib20) 2000; 1
Pan, Hilpert, Miller (bib10) 2004; 40
Chen, Wang, Shan, Doolen (bib21) 1992; 68
Smagorinsky (bib46) 1963; 91
Chen, Chen, Matthaeus (bib2) 1992; 45
Bhatnagar, Gross, Krook (bib33) 1954; 94
Yu, Girimaji, Luo (bib49) 2005; 91
Lallemand, d’Hmières, Luo, Rubinstein (bib12) 2003; 67
L.-S. Luo, The lattice-gas and lattice Boltzmann methods: past, present and future, in: J.-H. Wu, Z.-J. Zhu, Proceedings of the International Conference on Applied CFD, October 17–20, 2000, Beijing, pp. 52–83 (Available from
Hartmann, Derksen, Montavon, Pearson, Hamill, Van den Akker (bib45) 2004; 59
Smith, Donnelly, Goldenfeld, Vinen (bib32) 1993; 71
Ladd, Verberg (bib13) 2001; 104
Giraud, d’Humières, Lallemand (bib11) 1998; 42
Benzi, Succi, Vergassola (bib4) 1992; 222
Rotta (bib26) 1972
Mohamed, LaRue (bib25) 1990; 219
Horiuti (bib57) 1993; 5
)
Benzi, Struglia, Tripiccione (bib22) 1996; 53
Lallemand, Luo (bib53) 2003; 68
Qi, Luo, Aravamuthan, Strieder (bib14) 2002; 107
Luo (bib37) 2000; 62
Lu, Liao, Qian, McLauhlin, Derksen, Kontomaris (bib43) 2002; 181
Luo, Wang, Qi (bib23) 2002; vol. 21
Yamazaki, Kaneda, Rubinstein (bib51) 2002; 71
R. Mei, L.-S. Luo, and D. d’Humières, Initial conditions for the lattice Boltzmann equation, preprint, 2001
Hou, Sterling, Chen, Doolen (bib39) 1996; vol. 6
T. Miyauchi, T. Ishizu, Direct numerical simulation of homogeneous isotropic turbulence – decay of passive scalar fluctuation, in Preprint vol. JSME No. 914-2, 1991, pp. 166–168. (Available from
Krafczyk, Tölke, Luo (bib44) 2003; 17
Mansour, Wray (bib17) 1994; 6
Derksen, Van den Akker (bib41) 2000; 46
Bardina, Ferziger, Rogallo (bib52) 1985; 154
Clark, Zemarch (bib50) 1998; 10
Pope (bib24) 2000
Basara (bib55) 2004; 44
Qian, d’Humières, Lallemand (bib3) 1992; 17
B. Basara, S. Jakirlic, V. Przulj, Vortex-shedding flows computed using a new, hybrid turbulence model, in: The 8th International Symposium on Flow Modeling and Turbulence Measurements (FMTM2001), December 4–6, 2001, Tokyo, Japan
McNamara, Zanetti (bib1) 1988; 61
Saffman (bib30) 1967; 27
Derksen, Van den Akker (bib40) 1999; 45
Huang, Leonard (bib18) 1994; 6
Ginzburg, Steiner (bib8) 2003; 185
L.G. Loitsyansky, Some basic laws for isotopic turbulent flows, Moscow Centr. Aero. Hydrodyn. Inst. Rep. No. 440, 1939 [NACA Tech. Memo. 1079 (1939)]
Clark (bib9) 2003; 15
Birkhoff (bib29) 1954; 7
R. Rubinstein, Private communication, 2005
Qi, Luo (bib15) 2003; 477
Samtaney, Pullin, Kosović (bib19) 2001; 13
Oberlack (bib31) 2002; 1
He, Luo (bib34) 1997; 88
M. Krafczyk, Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung, Habilitation Thesis, Tech. Univ. Munich, 2001
d’Humières, Ginzburg, Krafczyk, Lallemand, Luo (bib36) 2002; 360
Kolmogorov (bib28) 1941; 31
Yu, Mei, Luo, Shyy (bib7) 2003; 39
Skordos (bib35) 1993; 48
Yakhot, Orszag (bib56) 1986; 1
He (10.1016/j.jcp.2005.03.022_bib34) 1997; 88
10.1016/j.jcp.2005.03.022_bib58
Horiuti (10.1016/j.jcp.2005.03.022_bib57) 1993; 5
Bhatnagar (10.1016/j.jcp.2005.03.022_bib33) 1954; 94
10.1016/j.jcp.2005.03.022_bib54
Ladd (10.1016/j.jcp.2005.03.022_bib13) 2001; 104
Luo (10.1016/j.jcp.2005.03.022_bib23) 2002; vol. 21
Ginzburg (10.1016/j.jcp.2005.03.022_bib8) 2003; 185
Giraud (10.1016/j.jcp.2005.03.022_bib11) 1998; 42
Pope (10.1016/j.jcp.2005.03.022_bib24) 2000
Qian (10.1016/j.jcp.2005.03.022_bib3) 1992; 17
Orszag (10.1016/j.jcp.2005.03.022_bib16) 1972; 28
Birkhoff (10.1016/j.jcp.2005.03.022_bib29) 1954; 7
Mohamed (10.1016/j.jcp.2005.03.022_bib25) 1990; 219
Saffman (10.1016/j.jcp.2005.03.022_bib30) 1967; 27
Benzi (10.1016/j.jcp.2005.03.022_bib22) 1996; 53
Kolmogorov (10.1016/j.jcp.2005.03.022_bib28) 1941; 31
Hou (10.1016/j.jcp.2005.03.022_bib39) 1996; vol. 6
Samtaney (10.1016/j.jcp.2005.03.022_bib19) 2001; 13
10.1016/j.jcp.2005.03.022_bib47
10.1016/j.jcp.2005.03.022_bib48
Hartmann (10.1016/j.jcp.2005.03.022_bib45) 2004; 59
Somers (10.1016/j.jcp.2005.03.022_bib38) 1993; 51
Huang (10.1016/j.jcp.2005.03.022_bib18) 1994; 6
10.1016/j.jcp.2005.03.022_bib42
Bardina (10.1016/j.jcp.2005.03.022_bib52) 1985; 154
Qi (10.1016/j.jcp.2005.03.022_bib14) 2002; 107
Oberlack (10.1016/j.jcp.2005.03.022_bib31) 2002; 1
Smagorinsky (10.1016/j.jcp.2005.03.022_bib46) 1963; 91
Yu (10.1016/j.jcp.2005.03.022_bib49) 2005; 91
d’Humières (10.1016/j.jcp.2005.03.022_bib36) 2002; 360
Benzi (10.1016/j.jcp.2005.03.022_bib4) 1992; 222
Rotta (10.1016/j.jcp.2005.03.022_bib26) 1972
Lu (10.1016/j.jcp.2005.03.022_bib43) 2002; 181
Skordos (10.1016/j.jcp.2005.03.022_bib35) 1993; 48
Derksen (10.1016/j.jcp.2005.03.022_bib40) 1999; 45
Chen (10.1016/j.jcp.2005.03.022_bib21) 1992; 68
Chen (10.1016/j.jcp.2005.03.022_bib2) 1992; 45
Mansour (10.1016/j.jcp.2005.03.022_bib17) 1994; 6
Lallemand (10.1016/j.jcp.2005.03.022_bib53) 2003; 68
Qi (10.1016/j.jcp.2005.03.022_bib15) 2003; 477
Krafczyk (10.1016/j.jcp.2005.03.022_bib44) 2003; 17
Pan (10.1016/j.jcp.2005.03.022_bib10) 2004; 40
Smith (10.1016/j.jcp.2005.03.022_bib32) 1993; 71
Ossia (10.1016/j.jcp.2005.03.022_bib20) 2000; 1
Basara (10.1016/j.jcp.2005.03.022_bib55) 2004; 44
Derksen (10.1016/j.jcp.2005.03.022_bib41) 2000; 46
Yamazaki (10.1016/j.jcp.2005.03.022_bib51) 2002; 71
10.1016/j.jcp.2005.03.022_bib27
10.1016/j.jcp.2005.03.022_bib6
Yu (10.1016/j.jcp.2005.03.022_bib7) 2003; 39
Luo (10.1016/j.jcp.2005.03.022_bib37) 2000; 62
Chen (10.1016/j.jcp.2005.03.022_bib5) 1998; 30
Clark (10.1016/j.jcp.2005.03.022_bib50) 1998; 10
Yakhot (10.1016/j.jcp.2005.03.022_bib56) 1986; 1
McNamara (10.1016/j.jcp.2005.03.022_bib1) 1988; 61
Clark (10.1016/j.jcp.2005.03.022_bib9) 2003; 15
Lallemand (10.1016/j.jcp.2005.03.022_bib12) 2003; 67
References_xml – volume: 222
  start-page: 145
  year: 1992
  end-page: 197
  ident: bib4
  article-title: The lattice Boltzmann equation: theory and applications
  publication-title: Phys. Rep.
– volume: 15
  start-page: 2413
  year: 2003
  end-page: 2423
  ident: bib9
  article-title: A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer
  publication-title: Phys. Fluids
– volume: 42
  start-page: 625
  year: 1998
  end-page: 630
  ident: bib11
  article-title: A lattice Boltzmann model for Jeffreys viscoelastic fluid
  publication-title: Europhys. Lett.
– volume: 62
  start-page: 4982
  year: 2000
  end-page: 4996
  ident: bib37
  article-title: Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
  publication-title: Phys. Rev. E
– volume: 45
  start-page: R5339
  year: 1992
  end-page: R5342
  ident: bib2
  article-title: Recovery of the Navier–Stokes equation using a lattice Boltzmann method
  publication-title: Phys. Rev. A
– volume: 107
  start-page: 101
  year: 2002
  end-page: 120
  ident: bib14
  article-title: Lateral migration and orientation of elliptical particles in Poiseuille flows
  publication-title: J. Stat. Phys.
– volume: 94
  start-page: 511
  year: 1954
  end-page: 525
  ident: bib33
  article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
– volume: 48
  start-page: 4823
  year: 1993
  end-page: 4842
  ident: bib35
  article-title: Initial and boundary conditions for the lattice Boltzmann method
  publication-title: Phys. Rev. E
– volume: 30
  start-page: 329
  year: 1998
  end-page: 364
  ident: bib5
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 40
  start-page: W01501
  year: 2004
  ident: bib10
  article-title: Lattice Boltzmann simulation of two-phase flow in porous media
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 76
  year: 1972
  end-page: 79
  ident: bib16
  article-title: Numerical simulation of three-dimensional homogeneous isotopic turbulence
  publication-title: Phys. Rev. Lett.
– volume: 46
  start-page: 1317
  year: 2000
  end-page: 1331
  ident: bib41
  article-title: Simulation of vortex core precession in a reverse-flow cyclone
  publication-title: AIChE J.
– volume: 6
  start-page: 808
  year: 1994
  end-page: 814
  ident: bib17
  article-title: Decay of isotropic turbulence at low Reynolds number
  publication-title: Phys. Fluids
– volume: 88
  start-page: 927
  year: 1997
  end-page: 944
  ident: bib34
  article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation
  publication-title: J. Stat. Phys.
– volume: 45
  start-page: 209
  year: 1999
  end-page: 221
  ident: bib40
  article-title: Large eddy simulations on the flow driven by a Rushton turbine
  publication-title: AIChE J.
– reference: T. Miyauchi, T. Ishizu, Direct numerical simulation of homogeneous isotropic turbulence – decay of passive scalar fluctuation, in Preprint vol. JSME No. 914-2, 1991, pp. 166–168. (Available from:
– volume: 104
  start-page: 1191
  year: 2001
  end-page: 1251
  ident: bib13
  article-title: Lattice-Boltzmann simulations of particle-fluid suspensions
  publication-title: J. Stat. Phys.
– volume: 59
  start-page: 2419
  year: 2004
  end-page: 2432
  ident: bib45
  article-title: Assessment of large eddy and RANS stirred tank simulations by means of LDA
  publication-title: Chem. Eng. Sci.
– reference: M. Krafczyk, Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung, Habilitation Thesis, Tech. Univ. Munich, 2001
– reference: B. Basara, S. Jakirlic, V. Przulj, Vortex-shedding flows computed using a new, hybrid turbulence model, in: The 8th International Symposium on Flow Modeling and Turbulence Measurements (FMTM2001), December 4–6, 2001, Tokyo, Japan
– volume: 71
  start-page: 81
  year: 2002
  end-page: 92
  ident: bib51
  article-title: Dynamics of inviscid truncated model of rotating turbulence
  publication-title: J. Phys. Soc. Japan
– volume: 477
  start-page: 201
  year: 2003
  end-page: 213
  ident: bib15
  article-title: Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow
  publication-title: J. Fluid Mech.
– volume: 39
  start-page: 329
  year: 2003
  end-page: 367
  ident: bib7
  article-title: Viscous flow computations with the method of lattice Boltzmann equation
  publication-title: Prog. Aerospace Sci.
– year: 1972
  ident: bib26
  article-title: Turbulente Strömungen
– volume: 6
  start-page: 3765
  year: 1994
  end-page: 3775
  ident: bib18
  article-title: Power-law decay of homogeneous turbulence at low Reynolds numbers
  publication-title: Phys. Fluids
– volume: 13
  start-page: 1415
  year: 2001
  end-page: 1430
  ident: bib19
  article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics
  publication-title: Phys. Fluids
– volume: vol. 6
  start-page: 151
  year: 1996
  end-page: 166
  ident: bib39
  article-title: A lattice Boltzmann subgrid model for high Reynolds number flows
  publication-title: Pattern formation and lattice gas automata
– volume: 91
  start-page: 99
  year: 1963
  end-page: 164
  ident: bib46
  article-title: General circulation experiments with the primitive equations: I. The basic equations
  publication-title: Mon. Weather Rev.
– volume: 154
  start-page: 321
  year: 1985
  end-page: 336
  ident: bib52
  article-title: Effect of rotation on isotropic turbulence: Computation and modelling
  publication-title: J. Fluid Mech.
– volume: 181
  start-page: 675
  year: 2002
  end-page: 704
  ident: bib43
  article-title: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid
  publication-title: J. Computat. Phys.
– reference: L.G. Loitsyansky, Some basic laws for isotopic turbulent flows, Moscow Centr. Aero. Hydrodyn. Inst. Rep. No. 440, 1939 [NACA Tech. Memo. 1079 (1939)]
– reference: R. Mei, L.-S. Luo, and D. d’Humières, Initial conditions for the lattice Boltzmann equation, preprint, 2001
– volume: 185
  start-page: 61
  year: 2003
  end-page: 99
  ident: bib8
  article-title: Lattice Boltzmann model for free-surface flow and its application to filling process in casting
  publication-title: J. Computat. Phys.
– reference: R. Rubinstein, Private communication, 2005
– volume: 71
  start-page: 2583
  year: 1993
  end-page: 2586
  ident: bib32
  article-title: Decay of vorticity in homogeneous turbulence
  publication-title: Phys. Rev. Lett.
– volume: vol. 21
  start-page: 123
  year: 2002
  end-page: 130
  ident: bib23
  article-title: Applications of the lattice Boltzmann method to complex and turbulent flows
  publication-title: High performance scientific and engineering computing
– reference: L.-S. Luo, The lattice-gas and lattice Boltzmann methods: past, present and future, in: J.-H. Wu, Z.-J. Zhu, Proceedings of the International Conference on Applied CFD, October 17–20, 2000, Beijing, pp. 52–83 (Available from:
– volume: 31
  start-page: 538
  year: 1941
  end-page: 540
  ident: bib28
  article-title: On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid
  publication-title: Dokl. Akad. Nauk SSSR A
– volume: 7
  start-page: 19
  year: 1954
  end-page: 44
  ident: bib29
  article-title: Fourier synthesis of homogeneous turbulence
  publication-title: Comm. Pure. Appl. Math.
– volume: 17
  start-page: 33
  year: 2003
  end-page: 39
  ident: bib44
  article-title: Large-eddy simulations with a multiple-relaxation-time LBE model
  publication-title: Int. J. Mod. Phys. B
– volume: 61
  start-page: 2332
  year: 1988
  end-page: 2335
  ident: bib1
  article-title: Use of the Boltzmann equation to simulate lattice-gas automata
  publication-title: Phys. Rev. Lett.
– volume: 51
  start-page: 127
  year: 1993
  end-page: 133
  ident: bib38
  article-title: Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation
  publication-title: Appl. Sci. Res.
– volume: 1
  start-page: 3
  year: 1986
  end-page: 51
  ident: bib56
  article-title: Renormalization group theory of turbulence. I. Basic theory
  publication-title: J. Sci. Comput.
– year: 2000
  ident: bib24
  article-title: Turbulent flows
– volume: 27
  start-page: 581
  year: 1967
  end-page: 593
  ident: bib30
  article-title: The large-scale structure of homogeneous turbulence
  publication-title: J. Fluid Mech.
– volume: 1
  start-page: 294
  year: 2002
  end-page: 297
  ident: bib31
  article-title: On the decay exponent of isotropic turbulence
  publication-title: Proc. Appl. Math. Mech.
– volume: 68
  start-page: 379
  year: 1992
  end-page: 400
  ident: bib21
  article-title: Lattice Boltzmann computational fluid dynamics in three dimensions
  publication-title: J. Stat. Phys.
– reference: )
– volume: 219
  start-page: 195
  year: 1990
  end-page: 214
  ident: bib25
  article-title: The decay power law in grid-generated turbulence
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 2846
  year: 1998
  end-page: 2858
  ident: bib50
  article-title: Symmetries and the approach to statistical equilibrium in isotropic turbulence
  publication-title: Phys. Fluids
– volume: 360
  start-page: 437
  year: 2002
  end-page: 451
  ident: bib36
  article-title: Multiple-relaxation-time lattice Boltzmann models in three-dimensions
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 53
  start-page: R5565
  year: 1996
  end-page: R5568
  ident: bib22
  article-title: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence
  publication-title: Phys. Rev. E
– volume: 5
  start-page: 146
  year: 1993
  end-page: 157
  ident: bib57
  article-title: A propert velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation
  publication-title: Phys. Fluids A
– volume: 1
  start-page: 010
  year: 2000
  ident: bib20
  article-title: Energy backscatter in large-eddy simulations of three-dimensional incompressible isotropic turbulence
  publication-title: J. Turbulence
– volume: 44
  start-page: 377
  year: 2004
  end-page: 407
  ident: bib55
  article-title: Employment of the second-moment turbulence closure on arbitrary unstructured grids
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 91
  start-page: 016708
  year: 2005
  ident: bib49
  article-title: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence
  publication-title: Phys. Rev. E
– volume: 17
  start-page: 479
  year: 1992
  end-page: 484
  ident: bib3
  article-title: Lattice BGK models for Navier–Stokes equations
  publication-title: Europhys. Lett.
– volume: 67
  start-page: 021203
  year: 2003
  ident: bib12
  article-title: Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids
  publication-title: Phys. Rev. E
– volume: 68
  start-page: 036706
  year: 2003
  ident: bib53
  article-title: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions
  publication-title: Phys. Rev. E
– volume: 46
  start-page: 1317
  year: 2000
  ident: 10.1016/j.jcp.2005.03.022_bib41
  article-title: Simulation of vortex core precession in a reverse-flow cyclone
  publication-title: AIChE J.
  doi: 10.1002/aic.690460706
– volume: 48
  start-page: 4823
  year: 1993
  ident: 10.1016/j.jcp.2005.03.022_bib35
  article-title: Initial and boundary conditions for the lattice Boltzmann method
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.48.4823
– volume: 477
  start-page: 201
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib15
  article-title: Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112002003191
– year: 1972
  ident: 10.1016/j.jcp.2005.03.022_bib26
– volume: 31
  start-page: 538
  year: 1941
  ident: 10.1016/j.jcp.2005.03.022_bib28
  article-title: On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid
  publication-title: Dokl. Akad. Nauk SSSR A
– volume: 68
  start-page: 379
  year: 1992
  ident: 10.1016/j.jcp.2005.03.022_bib21
  article-title: Lattice Boltzmann computational fluid dynamics in three dimensions
  publication-title: J. Stat. Phys.
  doi: 10.1007/BF01341754
– ident: 10.1016/j.jcp.2005.03.022_bib27
– volume: 154
  start-page: 321
  year: 1985
  ident: 10.1016/j.jcp.2005.03.022_bib52
  article-title: Effect of rotation on isotropic turbulence: Computation and modelling
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112085001550
– volume: 185
  start-page: 61
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib8
  article-title: Lattice Boltzmann model for free-surface flow and its application to filling process in casting
  publication-title: J. Computat. Phys.
  doi: 10.1016/S0021-9991(02)00048-7
– volume: 6
  start-page: 3765
  year: 1994
  ident: 10.1016/j.jcp.2005.03.022_bib18
  article-title: Power-law decay of homogeneous turbulence at low Reynolds numbers
  publication-title: Phys. Fluids
  doi: 10.1063/1.868366
– volume: 1
  start-page: 3
  year: 1986
  ident: 10.1016/j.jcp.2005.03.022_bib56
  article-title: Renormalization group theory of turbulence. I. Basic theory
  publication-title: J. Sci. Comput.
  doi: 10.1007/BF01061452
– volume: 10
  start-page: 2846
  year: 1998
  ident: 10.1016/j.jcp.2005.03.022_bib50
  article-title: Symmetries and the approach to statistical equilibrium in isotropic turbulence
  publication-title: Phys. Fluids
  doi: 10.1063/1.869806
– ident: 10.1016/j.jcp.2005.03.022_bib54
  doi: 10.1142/9789812777591_0032
– volume: 28
  start-page: 76
  year: 1972
  ident: 10.1016/j.jcp.2005.03.022_bib16
  article-title: Numerical simulation of three-dimensional homogeneous isotopic turbulence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.28.76
– volume: 68
  start-page: 036706
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib53
  article-title: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.68.036706
– volume: 62
  start-page: 4982
  year: 2000
  ident: 10.1016/j.jcp.2005.03.022_bib37
  article-title: Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.4982
– volume: 40
  start-page: W01501
  year: 2004
  ident: 10.1016/j.jcp.2005.03.022_bib10
  article-title: Lattice Boltzmann simulation of two-phase flow in porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002120
– volume: vol. 21
  start-page: 123
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib23
  article-title: Applications of the lattice Boltzmann method to complex and turbulent flows
– volume: 219
  start-page: 195
  year: 1990
  ident: 10.1016/j.jcp.2005.03.022_bib25
  article-title: The decay power law in grid-generated turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112090002919
– volume: 15
  start-page: 2413
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib9
  article-title: A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.1589015
– volume: 6
  start-page: 808
  year: 1994
  ident: 10.1016/j.jcp.2005.03.022_bib17
  article-title: Decay of isotropic turbulence at low Reynolds number
  publication-title: Phys. Fluids
  doi: 10.1063/1.868319
– ident: 10.1016/j.jcp.2005.03.022_bib47
– volume: 1
  start-page: 010
  year: 2000
  ident: 10.1016/j.jcp.2005.03.022_bib20
  article-title: Energy backscatter in large-eddy simulations of three-dimensional incompressible isotropic turbulence
  publication-title: J. Turbulence
  doi: 10.1088/1468-5248/1/1/010
– volume: 17
  start-page: 33
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib44
  article-title: Large-eddy simulations with a multiple-relaxation-time LBE model
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979203017059
– volume: 67
  start-page: 021203
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib12
  article-title: Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.021203
– volume: 91
  start-page: 016708
  year: 2005
  ident: 10.1016/j.jcp.2005.03.022_bib49
  article-title: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.016708
– volume: 1
  start-page: 294
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib31
  article-title: On the decay exponent of isotropic turbulence
  publication-title: Proc. Appl. Math. Mech.
  doi: 10.1002/1617-7061(200203)1:1<294::AID-PAMM294>3.0.CO;2-W
– volume: 94
  start-page: 511
  year: 1954
  ident: 10.1016/j.jcp.2005.03.022_bib33
  article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.94.511
– volume: vol. 6
  start-page: 151
  year: 1996
  ident: 10.1016/j.jcp.2005.03.022_bib39
  article-title: A lattice Boltzmann subgrid model for high Reynolds number flows
– ident: 10.1016/j.jcp.2005.03.022_bib58
– volume: 17
  start-page: 479
  year: 1992
  ident: 10.1016/j.jcp.2005.03.022_bib3
  article-title: Lattice BGK models for Navier–Stokes equations
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/17/6/001
– volume: 181
  start-page: 675
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib43
  article-title: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid
  publication-title: J. Computat. Phys.
  doi: 10.1006/jcph.2002.7151
– volume: 88
  start-page: 927
  year: 1997
  ident: 10.1016/j.jcp.2005.03.022_bib34
  article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation
  publication-title: J. Stat. Phys.
  doi: 10.1023/B:JOSS.0000015179.12689.e4
– volume: 71
  start-page: 2583
  year: 1993
  ident: 10.1016/j.jcp.2005.03.022_bib32
  article-title: Decay of vorticity in homogeneous turbulence
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.2583
– ident: 10.1016/j.jcp.2005.03.022_bib48
– volume: 53
  start-page: R5565
  year: 1996
  ident: 10.1016/j.jcp.2005.03.022_bib22
  article-title: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.53.R5565
– volume: 42
  start-page: 625
  year: 1998
  ident: 10.1016/j.jcp.2005.03.022_bib11
  article-title: A lattice Boltzmann model for Jeffreys viscoelastic fluid
  publication-title: Europhys. Lett.
  doi: 10.1209/epl/i1998-00296-0
– volume: 222
  start-page: 145
  year: 1992
  ident: 10.1016/j.jcp.2005.03.022_bib4
  article-title: The lattice Boltzmann equation: theory and applications
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(92)90090-M
– volume: 5
  start-page: 146
  year: 1993
  ident: 10.1016/j.jcp.2005.03.022_bib57
  article-title: A propert velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation
  publication-title: Phys. Fluids A
  doi: 10.1063/1.858800
– volume: 45
  start-page: R5339
  year: 1992
  ident: 10.1016/j.jcp.2005.03.022_bib2
  article-title: Recovery of the Navier–Stokes equation using a lattice Boltzmann method
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.R5339
– volume: 71
  start-page: 81
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib51
  article-title: Dynamics of inviscid truncated model of rotating turbulence
  publication-title: J. Phys. Soc. Japan
  doi: 10.1143/JPSJ.71.81
– volume: 44
  start-page: 377
  year: 2004
  ident: 10.1016/j.jcp.2005.03.022_bib55
  article-title: Employment of the second-moment turbulence closure on arbitrary unstructured grids
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.646
– volume: 13
  start-page: 1415
  year: 2001
  ident: 10.1016/j.jcp.2005.03.022_bib19
  article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics
  publication-title: Phys. Fluids
  doi: 10.1063/1.1355682
– volume: 59
  start-page: 2419
  year: 2004
  ident: 10.1016/j.jcp.2005.03.022_bib45
  article-title: Assessment of large eddy and RANS stirred tank simulations by means of LDA
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.01.065
– volume: 360
  start-page: 437
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib36
  article-title: Multiple-relaxation-time lattice Boltzmann models in three-dimensions
  publication-title: Philos. Trans. R. Soc. Lond. A
  doi: 10.1098/rsta.2001.0955
– volume: 61
  start-page: 2332
  year: 1988
  ident: 10.1016/j.jcp.2005.03.022_bib1
  article-title: Use of the Boltzmann equation to simulate lattice-gas automata
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.61.2332
– year: 2000
  ident: 10.1016/j.jcp.2005.03.022_bib24
– volume: 7
  start-page: 19
  year: 1954
  ident: 10.1016/j.jcp.2005.03.022_bib29
  article-title: Fourier synthesis of homogeneous turbulence
  publication-title: Comm. Pure. Appl. Math.
  doi: 10.1002/cpa.3160070104
– volume: 39
  start-page: 329
  year: 2003
  ident: 10.1016/j.jcp.2005.03.022_bib7
  article-title: Viscous flow computations with the method of lattice Boltzmann equation
  publication-title: Prog. Aerospace Sci.
  doi: 10.1016/S0376-0421(03)00003-4
– volume: 30
  start-page: 329
  year: 1998
  ident: 10.1016/j.jcp.2005.03.022_bib5
  article-title: Lattice Boltzmann method for fluid flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.30.1.329
– volume: 91
  start-page: 99
  year: 1963
  ident: 10.1016/j.jcp.2005.03.022_bib46
  article-title: General circulation experiments with the primitive equations: I. The basic equations
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– ident: 10.1016/j.jcp.2005.03.022_bib6
– volume: 51
  start-page: 127
  issue: 3
  year: 1993
  ident: 10.1016/j.jcp.2005.03.022_bib38
  article-title: Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation
  publication-title: Appl. Sci. Res.
  doi: 10.1007/BF01082526
– volume: 27
  start-page: 581
  year: 1967
  ident: 10.1016/j.jcp.2005.03.022_bib30
  article-title: The large-scale structure of homogeneous turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112067000552
– volume: 45
  start-page: 209
  year: 1999
  ident: 10.1016/j.jcp.2005.03.022_bib40
  article-title: Large eddy simulations on the flow driven by a Rushton turbine
  publication-title: AIChE J.
  doi: 10.1002/aic.690450202
– ident: 10.1016/j.jcp.2005.03.022_bib42
– volume: 107
  start-page: 101
  year: 2002
  ident: 10.1016/j.jcp.2005.03.022_bib14
  article-title: Lateral migration and orientation of elliptical particles in Poiseuille flows
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1014502402884
– volume: 104
  start-page: 1191
  year: 2001
  ident: 10.1016/j.jcp.2005.03.022_bib13
  article-title: Lattice-Boltzmann simulations of particle-fluid suspensions
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1010414013942
SSID ssj0008548
Score 2.3302207
Snippet The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 599
SubjectTerms Computation
Computational fluid dynamics
Computational techniques
Computer simulation
Decay
Decaying homogeneous isotropic turbulence in 3D
Direct numerical simulation
Exact sciences and technology
Frames
Inertial
Large-eddy simulation
Lattice Boltzmann equation
Mathematical methods in physics
Navier-Stokes equations
Physics
Smagorinsky model
Turbulence
Title DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method
URI https://dx.doi.org/10.1016/j.jcp.2005.03.022
https://www.proquest.com/docview/1082174763
https://www.proquest.com/docview/28522945
https://www.proquest.com/docview/28695393
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QUJ8UYsj8VInJDShvgR-1hKq-W1l1Kpt8hxbLRlSaLd7IUDv52ZxCmqUPfALYrGijUTz3zjeQG8UcJRMEwkxgaeCO95oqmFqzCizL2WperHvX1dqPm5-HQhL_bgeKyFobTKqPsHnd5r6_jmMHLzsF0uqcY3oxp6BAiEU6iifD9Da68nsH_08fN8caWQtRSDQqZsBFwwBjf7NK9L18abFX6QZtlN5ulOazfItDBMu_hHcffW6PQ-3I0wkh0NO30Ae75-CPcipGTxwG4ewY8PizNm64p9OTljTWCVd5YKm9hy03Trpl06hjan3PalR4wuZXtqemi2HQuUusXWzRCvZ5Qk_52tbEcZc-x9s-p-_bR1zYYx1I_h_PTk2_E8ifMVEieyrEtsKFNncme18-g3OMHLYEKZScd16nVAnjqEs7lHFnqJuC-gP5WjeRMK3VrEYU9gUje1fwpMaiWDL51CNCjKyhtZ5VVqnc25CGgPp5CObC1cbD5OMzBWxZhldlmgJGgopixSXqAkpvD2akk7dN7YRSxGWRXXfp8CLcOuZbNrcv37IWUUuY5TeD0KusBzR8EUW_tmu6HGquTNoXqewqsbaDKN6NYIuYtCGckNf_Z_-38Ot4dWsnQl9AIm3XrrXyJI6soZ3Dr4_W4Wj8IfnFEQpg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2ih9F26bZqo0FPBjbEeto5pHmyazV6SQG5CkqWw6dY2u95Lf31nbDklhOwhN2NGWMxYM99oXoR8k9xhMIwnygSWcO9ZUmALV664zX0hrOzGvZ3P5OSK_7oW11vkcKiFwbTKqPt7nd5p6_hmP3Jzv5nPscY3wxp6AAiIU7CifJvjUOsR2T44PZvM7hRyIXivkDEbARYMwc0uzevWNfFmhf1Is-wx8_SiMStgWuinXTxQ3J01OnlNXkYYSQ_6nb4hW756S15FSEnjgV29I7-PZhfUVCWdHl_QOtDSO4OFTXS-qttl3cwdBZtj113pEcVL2Y4aH-p1SwOmbtFl3cfrKSbJ39CFaTFjjv6sF-3fP6aqaD-G-j25Ojm-PJwkcb5C4niWtYkJNnUqd6ZwHvwGx5kNKthMOFakvgjAUwdwNvfAQi8A9wXwp3Iwb1yCWws47AMZVXXlPxIqCimCt04CGuS29EqUeZkaZ3LGA9jDMUkHtmoXm4_jDIyFHrLMbjVIAodiCp0yDZIYk-93S5q-88YmYj7ISt_7fTRYhk3Ldu_J9f-HpJLoOo7J10HQGs4dBlNM5ev1ChurojcH6nlM9h6hyQpAt4qLTRRSCabYp6ftf488m1yeT_X0dHb2mTzv28ri9dAOGbXLtf8CgKm1u_FA_AMGxhKM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNS+and+LES+of+decaying+isotropic+turbulence+with+and+without+frame+rotation+using+lattice+Boltzmann+method&rft.jtitle=Journal+of+computational+physics&rft.au=HUIDAN+YU&rft.au=GIRIMAJI%2C+Sharath+S&rft.au=LUO%2C+Li-Shi&rft.date=2005-11-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.volume=209&rft.issue=2&rft.spage=599&rft.epage=616&rft_id=info:doi/10.1016%2Fj.jcp.2005.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=16964956
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon