DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method
The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating fr...
Saved in:
Published in | Journal of computational physics Vol. 209; no. 2; pp. 599 - 616 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.11.2005
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1016/j.jcp.2005.03.022 |
Cover
Abstract | The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy
k, the dissipation rate
ε and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant
C
S in LBE-LES should be smaller than the typical value used in traditional Navier–Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations. |
---|---|
AbstractList | The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate e and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant Cs in LBE-LES should be smaller than the typical value used in traditional Navier-Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations. The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate ε and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant C S in LBE-LES should be smaller than the typical value used in traditional Navier–Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations. The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the decay exponents of the kinetic energy k, the dissipation rate e and the low wave-number scaling of the energy spectrum are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rotation, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant C sub(S) in LBE-LES should be smaller than the typical value used in traditional Navier-Stokes (NS) LES approaches. Finally, we compare the LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational tool for turbulence simulations. |
Author | Luo, Li-Shi Yu, Huidan Girimaji, Sharath S. |
Author_xml | – sequence: 1 givenname: Huidan surname: Yu fullname: Yu, Huidan email: h0y5840@aero.tamu.edu organization: Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA – sequence: 2 givenname: Sharath S. surname: Girimaji fullname: Girimaji, Sharath S. email: girimaji@aero.tamu.edu organization: Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843-3141, USA – sequence: 3 givenname: Li-Shi surname: Luo fullname: Luo, Li-Shi email: lluo@odu.edu organization: Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529-0077, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16964956$$DView record in Pascal Francis |
BookMark | eNqNkU1v1DAQhi1UJLaFH8DNFxCXhLETf4kTlBaQVnAonC2v44CXxF5sB1R-fR22EhKHFaeZw_OMNO97js5CDA6hpwRaAoS_3Ld7e2gpAGuha4HSB2hDQEFDBeFnaANASaOUIo_Qec57AJCslxv0_e3HG2zCgLdXNziOeHDW3PrwFfscS4oHb3FZ0m6ZXLAO__Ll2x96XeJS8JjM7HCKxRQfA17yqk6mFF_pN3Eqv2cTAp5dxYfH6OFopuye3M8L9OX66vPl-2b76d2Hy9fbxvaUlsaMO7BKWCOt44LZvtuNatxRZjsJTo4KhJVkEK7-4BjjfATSC-Ci57ITPe0u0PPj3UOKPxaXi559tm6aTHBxyZpKrlinuv8AGaWqZxV8cRIkICkRveDrzWf3qMnWTDWgYH3Wh-Rnk2414Yr3ivHKkSNnU8w5ufEvAnqtVO91rVSvlWrodK20OuIfx_pj8iUZP500Xx1NV3P_6V3S2fq10sEnZ4seoj9h3wGi67ze |
CitedBy_id | crossref_primary_10_1115_1_4023323 crossref_primary_10_1016_j_ces_2016_06_053 crossref_primary_10_1016_j_compfluid_2013_01_013 crossref_primary_10_1016_j_compfluid_2019_104291 crossref_primary_10_1063_1_5138711 crossref_primary_10_1002_ceat_202300384 crossref_primary_10_1002_apj_2527 crossref_primary_10_1016_j_camwa_2015_01_010 crossref_primary_10_1155_2010_724578 crossref_primary_10_1016_j_jcp_2008_03_026 crossref_primary_10_1007_s10546_017_0233_6 crossref_primary_10_1016_j_cpc_2014_04_018 crossref_primary_10_1088_1742_6596_1064_1_012058 crossref_primary_10_1016_j_ijthermalsci_2007_11_007 crossref_primary_10_1016_j_camwa_2015_08_024 crossref_primary_10_1016_j_ces_2022_118183 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124480 crossref_primary_10_1016_j_camwa_2010_03_022 crossref_primary_10_1103_PhysRevE_89_063304 crossref_primary_10_1017_jfm_2014_604 crossref_primary_10_1038_s41598_023_48631_2 crossref_primary_10_1080_10407790_2023_2226822 crossref_primary_10_1080_10407782_2013_807690 crossref_primary_10_1016_j_icheatmasstransfer_2017_05_015 crossref_primary_10_1155_2014_742432 crossref_primary_10_1103_PhysRevE_73_066304 crossref_primary_10_1016_j_compfluid_2024_106269 crossref_primary_10_1016_j_camwa_2012_06_025 crossref_primary_10_1016_j_jcp_2012_12_032 crossref_primary_10_1016_j_oceaneng_2024_117264 crossref_primary_10_1016_j_ijheatmasstransfer_2017_07_044 crossref_primary_10_1002_nag_2481 crossref_primary_10_1142_S0129183119500748 crossref_primary_10_1103_PhysRevE_81_036706 crossref_primary_10_1016_j_ces_2021_117146 crossref_primary_10_1016_j_jcp_2015_06_018 crossref_primary_10_1063_5_0214033 crossref_primary_10_1016_j_ces_2023_119407 crossref_primary_10_1002_nme_2114 crossref_primary_10_2112_JCOASTRES_D_21_00090_1 crossref_primary_10_1016_j_ijheatmasstransfer_2018_08_135 crossref_primary_10_1016_j_softx_2018_02_004 crossref_primary_10_7498_aps_68_20190624 crossref_primary_10_3390_w15091717 crossref_primary_10_1016_j_physa_2009_02_041 crossref_primary_10_3390_fluids7120376 crossref_primary_10_1016_j_jcp_2007_12_001 crossref_primary_10_1108_HFF_06_2018_0264 crossref_primary_10_1016_j_pecs_2015_10_001 crossref_primary_10_1108_02644401211227617 crossref_primary_10_1007_s40571_017_0180_5 crossref_primary_10_1016_j_compfluid_2011_02_019 crossref_primary_10_1103_PhysRevE_89_033306 crossref_primary_10_1016_j_cherd_2023_05_008 crossref_primary_10_1002_bit_28869 crossref_primary_10_1016_j_compfluid_2005_04_009 crossref_primary_10_1103_PhysRevE_96_013314 crossref_primary_10_1142_S0129183121500157 crossref_primary_10_1142_S0129183106009631 crossref_primary_10_20485_jsaeijae_10_1_125 crossref_primary_10_1016_j_compfluid_2017_07_005 crossref_primary_10_1002_aic_17667 crossref_primary_10_1016_j_ces_2022_117725 crossref_primary_10_1142_S0129183124502164 crossref_primary_10_1016_j_energy_2018_07_049 crossref_primary_10_1080_10618562_2013_779679 crossref_primary_10_1103_PhysRevE_92_063305 crossref_primary_10_1016_j_compfluid_2014_02_006 crossref_primary_10_1063_1_2140021 crossref_primary_10_1016_j_bej_2024_109337 crossref_primary_10_1080_14685248_2014_954709 crossref_primary_10_1103_PhysRevE_89_043001 crossref_primary_10_2208_jscejhe_74_5_I_655 crossref_primary_10_1007_s11045_013_0264_1 crossref_primary_10_1142_S0129183122501455 crossref_primary_10_1088_1873_7005_ab3baf crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_116 crossref_primary_10_1016_j_powtec_2012_10_035 crossref_primary_10_1108_HFF_09_2018_0490 crossref_primary_10_1121_1_3458846 crossref_primary_10_1002_fld_5173 crossref_primary_10_1016_j_camwa_2020_04_033 crossref_primary_10_1002_nme_2689 crossref_primary_10_1016_j_ijheatmasstransfer_2016_08_008 crossref_primary_10_1080_10420150_2013_831856 crossref_primary_10_1016_j_jocs_2016_03_013 crossref_primary_10_1016_j_ijpharm_2023_123752 crossref_primary_10_1016_j_compstruc_2016_02_014 crossref_primary_10_1016_j_ijheatmasstransfer_2006_11_002 crossref_primary_10_1063_5_0131159 crossref_primary_10_1142_S0129183117500450 crossref_primary_10_1016_j_physleta_2006_07_074 crossref_primary_10_1007_s10483_017_2290_7 crossref_primary_10_1016_j_jcp_2024_113269 crossref_primary_10_1080_14685240600907310 crossref_primary_10_1103_PhysRevE_93_062612 crossref_primary_10_1016_j_camwa_2018_01_019 crossref_primary_10_1080_14685248_2015_1043132 crossref_primary_10_1080_00221686_2015_1110625 crossref_primary_10_1080_00986445_2022_2084392 crossref_primary_10_1016_j_jcp_2008_02_002 crossref_primary_10_1016_j_physleta_2017_12_016 crossref_primary_10_1016_j_jcp_2020_109713 crossref_primary_10_1140_epjst_e2009_01025_7 crossref_primary_10_1029_2021JF006504 crossref_primary_10_1016_j_camwa_2023_05_031 crossref_primary_10_1016_j_oceaneng_2018_09_033 crossref_primary_10_1002_bit_28264 crossref_primary_10_1016_j_jcp_2012_10_005 crossref_primary_10_1016_j_camwa_2021_12_014 crossref_primary_10_1016_j_ijheatmasstransfer_2017_09_072 crossref_primary_10_1016_S1001_6058_09_60045_7 crossref_primary_10_1063_5_0107078 crossref_primary_10_1002_aic_16091 crossref_primary_10_1063_5_0200035 crossref_primary_10_1016_j_jnnfm_2011_02_011 crossref_primary_10_1016_j_compstruc_2006_11_016 crossref_primary_10_1002_fld_1819 crossref_primary_10_1007_s11433_012_4856_9 crossref_primary_10_3795_KSME_B_2011_35_2_169 crossref_primary_10_1016_j_nucengdes_2007_01_016 crossref_primary_10_1016_j_camwa_2019_02_006 crossref_primary_10_1007_s00162_014_0338_1 crossref_primary_10_1016_j_amc_2018_11_056 crossref_primary_10_1016_j_jrmge_2024_03_006 crossref_primary_10_1016_j_powtec_2021_06_031 crossref_primary_10_1103_PhysRevE_93_023308 crossref_primary_10_1016_j_ijthermalsci_2019_02_015 crossref_primary_10_1080_14685240600990274 crossref_primary_10_1016_j_euromechflu_2018_03_008 crossref_primary_10_1063_5_0229126 crossref_primary_10_1007_s40571_017_0166_3 crossref_primary_10_1016_j_compfluid_2021_104969 crossref_primary_10_1038_s41598_022_05269_w crossref_primary_10_1103_PhysRevE_94_043304 crossref_primary_10_1016_j_compfluid_2014_05_015 crossref_primary_10_1103_PhysRevE_84_046318 crossref_primary_10_1016_j_cej_2022_137549 crossref_primary_10_1016_j_camwa_2019_10_002 crossref_primary_10_1002_fld_3660 crossref_primary_10_1016_j_compfluid_2021_105249 crossref_primary_10_1016_j_advwatres_2008_08_008 crossref_primary_10_1016_j_compfluid_2011_07_007 crossref_primary_10_1016_j_compfluid_2018_01_023 crossref_primary_10_1108_EC_08_2022_0556 crossref_primary_10_1063_1_4996040 crossref_primary_10_1088_0031_8949_91_8_084006 crossref_primary_10_1016_j_ceja_2023_100448 crossref_primary_10_1016_j_apt_2013_03_010 crossref_primary_10_1299_jfst_2014jfst0064 crossref_primary_10_1007_s11663_014_0250_5 crossref_primary_10_1016_j_ces_2021_117411 crossref_primary_10_1016_j_compfluid_2009_10_002 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124989 crossref_primary_10_1016_j_cpc_2017_03_009 crossref_primary_10_1080_14685240701528551 crossref_primary_10_1016_j_camwa_2016_04_032 crossref_primary_10_1088_1757_899X_50_1_012037 crossref_primary_10_1063_5_0199179 crossref_primary_10_1063_5_0256574 crossref_primary_10_1016_j_camwa_2020_01_007 crossref_primary_10_1016_j_ces_2013_06_019 crossref_primary_10_1016_j_ces_2023_119509 crossref_primary_10_1002_zamm_201900301 crossref_primary_10_1016_S1001_6279_10_60044_3 crossref_primary_10_1063_1_2842381 crossref_primary_10_1016_j_compfluid_2018_03_064 crossref_primary_10_1002_bit_28598 crossref_primary_10_1016_j_cma_2021_114040 crossref_primary_10_1016_S1004_9541_13_60523_6 crossref_primary_10_1016_j_compfluid_2018_03_079 crossref_primary_10_1016_j_physa_2010_11_037 crossref_primary_10_1016_j_jbiotec_2024_04_013 crossref_primary_10_1063_1_2842379 crossref_primary_10_1007_s10483_017_2194_9 crossref_primary_10_4208_cicp_090815_170316a crossref_primary_10_1016_j_ces_2025_121256 crossref_primary_10_1080_10618560601001122 crossref_primary_10_1103_PhysRevE_79_026703 crossref_primary_10_1016_j_compfluid_2005_08_008 crossref_primary_10_1016_j_jfluidstructs_2021_103323 crossref_primary_10_1016_j_compgeo_2021_104234 crossref_primary_10_1016_j_jcp_2021_110186 crossref_primary_10_1016_j_applthermaleng_2022_118705 crossref_primary_10_1103_PhysRevE_99_023302 crossref_primary_10_2208_jscejam_72_I_335 crossref_primary_10_2208_jscejam_73_I_429 crossref_primary_10_3390_app14093939 crossref_primary_10_1016_j_ijmultiphaseflow_2016_03_008 crossref_primary_10_1080_10407782_2017_1309211 crossref_primary_10_1063_5_0088648 crossref_primary_10_1016_j_camwa_2009_02_022 crossref_primary_10_1016_j_camwa_2009_08_051 crossref_primary_10_1016_j_ces_2021_116538 crossref_primary_10_1016_j_compfluid_2018_03_042 crossref_primary_10_1016_j_ijheatmasstransfer_2016_05_001 crossref_primary_10_1111_1755_6724_12740 crossref_primary_10_1016_j_applthermaleng_2017_10_059 crossref_primary_10_5194_wes_5_623_2020 crossref_primary_10_4028_www_scientific_net_AMM_554_665 crossref_primary_10_1063_1_5129818 crossref_primary_10_3390_pr9060950 crossref_primary_10_1016_j_advengsoft_2017_10_005 |
Cites_doi | 10.1002/aic.690460706 10.1103/PhysRevE.48.4823 10.1017/S0022112002003191 10.1007/BF01341754 10.1017/S0022112085001550 10.1016/S0021-9991(02)00048-7 10.1063/1.868366 10.1007/BF01061452 10.1063/1.869806 10.1142/9789812777591_0032 10.1103/PhysRevLett.28.76 10.1103/PhysRevE.68.036706 10.1103/PhysRevE.62.4982 10.1029/2003WR002120 10.1017/S0022112090002919 10.1063/1.1589015 10.1063/1.868319 10.1088/1468-5248/1/1/010 10.1142/S0217979203017059 10.1103/PhysRevE.67.021203 10.1103/PhysRevE.71.016708 10.1002/1617-7061(200203)1:1<294::AID-PAMM294>3.0.CO;2-W 10.1103/PhysRev.94.511 10.1209/0295-5075/17/6/001 10.1006/jcph.2002.7151 10.1023/B:JOSS.0000015179.12689.e4 10.1103/PhysRevLett.71.2583 10.1103/PhysRevE.53.R5565 10.1209/epl/i1998-00296-0 10.1016/0370-1573(92)90090-M 10.1063/1.858800 10.1103/PhysRevA.45.R5339 10.1143/JPSJ.71.81 10.1002/fld.646 10.1063/1.1355682 10.1016/j.ces.2004.01.065 10.1098/rsta.2001.0955 10.1103/PhysRevLett.61.2332 10.1002/cpa.3160070104 10.1016/S0376-0421(03)00003-4 10.1146/annurev.fluid.30.1.329 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1007/BF01082526 10.1017/S0022112067000552 10.1002/aic.690450202 10.1023/A:1014502402884 10.1023/A:1010414013942 |
ContentType | Journal Article |
Copyright | 2005 Elsevier Inc. 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 Elsevier Inc. – notice: 2005 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D H8D |
DOI | 10.1016/j.jcp.2005.03.022 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Aerospace Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Aerospace Database |
DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1090-2716 |
EndPage | 616 |
ExternalDocumentID | 16964956 10_1016_j_jcp_2005_03_022 S0021999105001907 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ XFK YQT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7U5 8FD ACLOT JQ2 L7M L~C L~D ~HD H8D |
ID | FETCH-LOGICAL-c422t-afb0c97ca8ce675c43bf9fb25c380e8f907c81d7e008e5566f014706746837423 |
IEDL.DBID | AIKHN |
ISSN | 0021-9991 |
IngestDate | Sat Sep 27 22:25:38 EDT 2025 Sun Sep 28 02:26:07 EDT 2025 Sat Sep 27 18:09:55 EDT 2025 Mon Jul 21 09:13:52 EDT 2025 Thu Apr 24 23:06:21 EDT 2025 Tue Jul 01 04:33:24 EDT 2025 Fri Feb 23 02:32:38 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Lattice Boltzmann equation Decaying homogeneous isotropic turbulence in 3D Smagorinsky model Direct numerical simulation Large-eddy simulation Inertial referential Boltzmann equation Turbulent flow Energy spectra Digital simulation Flow pattern Rossby number Calculation methods Rotating frame Energy dissipation Calculation Isotropic turbulence Kinetic energy Wave number Homogeneous turbulence |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-afb0c97ca8ce675c43bf9fb25c380e8f907c81d7e008e5566f014706746837423 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 1082174763 |
PQPubID | 23500 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_28695393 proquest_miscellaneous_28522945 proquest_miscellaneous_1082174763 pascalfrancis_primary_16964956 crossref_primary_10_1016_j_jcp_2005_03_022 crossref_citationtrail_10_1016_j_jcp_2005_03_022 elsevier_sciencedirect_doi_10_1016_j_jcp_2005_03_022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-11-01 |
PublicationDateYYYYMMDD | 2005-11-01 |
PublicationDate_xml | – month: 11 year: 2005 text: 2005-11-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of computational physics |
PublicationYear | 2005 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Orszag, Patterson (bib16) 1972; 28 Somers (bib38) 1993; 51 Chen, Doolen (bib5) 1998; 30 Ossia, Lesieur (bib20) 2000; 1 Pan, Hilpert, Miller (bib10) 2004; 40 Chen, Wang, Shan, Doolen (bib21) 1992; 68 Smagorinsky (bib46) 1963; 91 Chen, Chen, Matthaeus (bib2) 1992; 45 Bhatnagar, Gross, Krook (bib33) 1954; 94 Yu, Girimaji, Luo (bib49) 2005; 91 Lallemand, d’Hmières, Luo, Rubinstein (bib12) 2003; 67 L.-S. Luo, The lattice-gas and lattice Boltzmann methods: past, present and future, in: J.-H. Wu, Z.-J. Zhu, Proceedings of the International Conference on Applied CFD, October 17–20, 2000, Beijing, pp. 52–83 (Available from Hartmann, Derksen, Montavon, Pearson, Hamill, Van den Akker (bib45) 2004; 59 Smith, Donnelly, Goldenfeld, Vinen (bib32) 1993; 71 Ladd, Verberg (bib13) 2001; 104 Giraud, d’Humières, Lallemand (bib11) 1998; 42 Benzi, Succi, Vergassola (bib4) 1992; 222 Rotta (bib26) 1972 Mohamed, LaRue (bib25) 1990; 219 Horiuti (bib57) 1993; 5 ) Benzi, Struglia, Tripiccione (bib22) 1996; 53 Lallemand, Luo (bib53) 2003; 68 Qi, Luo, Aravamuthan, Strieder (bib14) 2002; 107 Luo (bib37) 2000; 62 Lu, Liao, Qian, McLauhlin, Derksen, Kontomaris (bib43) 2002; 181 Luo, Wang, Qi (bib23) 2002; vol. 21 Yamazaki, Kaneda, Rubinstein (bib51) 2002; 71 R. Mei, L.-S. Luo, and D. d’Humières, Initial conditions for the lattice Boltzmann equation, preprint, 2001 Hou, Sterling, Chen, Doolen (bib39) 1996; vol. 6 T. Miyauchi, T. Ishizu, Direct numerical simulation of homogeneous isotropic turbulence – decay of passive scalar fluctuation, in Preprint vol. JSME No. 914-2, 1991, pp. 166–168. (Available from Krafczyk, Tölke, Luo (bib44) 2003; 17 Mansour, Wray (bib17) 1994; 6 Derksen, Van den Akker (bib41) 2000; 46 Bardina, Ferziger, Rogallo (bib52) 1985; 154 Clark, Zemarch (bib50) 1998; 10 Pope (bib24) 2000 Basara (bib55) 2004; 44 Qian, d’Humières, Lallemand (bib3) 1992; 17 B. Basara, S. Jakirlic, V. Przulj, Vortex-shedding flows computed using a new, hybrid turbulence model, in: The 8th International Symposium on Flow Modeling and Turbulence Measurements (FMTM2001), December 4–6, 2001, Tokyo, Japan McNamara, Zanetti (bib1) 1988; 61 Saffman (bib30) 1967; 27 Derksen, Van den Akker (bib40) 1999; 45 Huang, Leonard (bib18) 1994; 6 Ginzburg, Steiner (bib8) 2003; 185 L.G. Loitsyansky, Some basic laws for isotopic turbulent flows, Moscow Centr. Aero. Hydrodyn. Inst. Rep. No. 440, 1939 [NACA Tech. Memo. 1079 (1939)] Clark (bib9) 2003; 15 Birkhoff (bib29) 1954; 7 R. Rubinstein, Private communication, 2005 Qi, Luo (bib15) 2003; 477 Samtaney, Pullin, Kosović (bib19) 2001; 13 Oberlack (bib31) 2002; 1 He, Luo (bib34) 1997; 88 M. Krafczyk, Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung, Habilitation Thesis, Tech. Univ. Munich, 2001 d’Humières, Ginzburg, Krafczyk, Lallemand, Luo (bib36) 2002; 360 Kolmogorov (bib28) 1941; 31 Yu, Mei, Luo, Shyy (bib7) 2003; 39 Skordos (bib35) 1993; 48 Yakhot, Orszag (bib56) 1986; 1 He (10.1016/j.jcp.2005.03.022_bib34) 1997; 88 10.1016/j.jcp.2005.03.022_bib58 Horiuti (10.1016/j.jcp.2005.03.022_bib57) 1993; 5 Bhatnagar (10.1016/j.jcp.2005.03.022_bib33) 1954; 94 10.1016/j.jcp.2005.03.022_bib54 Ladd (10.1016/j.jcp.2005.03.022_bib13) 2001; 104 Luo (10.1016/j.jcp.2005.03.022_bib23) 2002; vol. 21 Ginzburg (10.1016/j.jcp.2005.03.022_bib8) 2003; 185 Giraud (10.1016/j.jcp.2005.03.022_bib11) 1998; 42 Pope (10.1016/j.jcp.2005.03.022_bib24) 2000 Qian (10.1016/j.jcp.2005.03.022_bib3) 1992; 17 Orszag (10.1016/j.jcp.2005.03.022_bib16) 1972; 28 Birkhoff (10.1016/j.jcp.2005.03.022_bib29) 1954; 7 Mohamed (10.1016/j.jcp.2005.03.022_bib25) 1990; 219 Saffman (10.1016/j.jcp.2005.03.022_bib30) 1967; 27 Benzi (10.1016/j.jcp.2005.03.022_bib22) 1996; 53 Kolmogorov (10.1016/j.jcp.2005.03.022_bib28) 1941; 31 Hou (10.1016/j.jcp.2005.03.022_bib39) 1996; vol. 6 Samtaney (10.1016/j.jcp.2005.03.022_bib19) 2001; 13 10.1016/j.jcp.2005.03.022_bib47 10.1016/j.jcp.2005.03.022_bib48 Hartmann (10.1016/j.jcp.2005.03.022_bib45) 2004; 59 Somers (10.1016/j.jcp.2005.03.022_bib38) 1993; 51 Huang (10.1016/j.jcp.2005.03.022_bib18) 1994; 6 10.1016/j.jcp.2005.03.022_bib42 Bardina (10.1016/j.jcp.2005.03.022_bib52) 1985; 154 Qi (10.1016/j.jcp.2005.03.022_bib14) 2002; 107 Oberlack (10.1016/j.jcp.2005.03.022_bib31) 2002; 1 Smagorinsky (10.1016/j.jcp.2005.03.022_bib46) 1963; 91 Yu (10.1016/j.jcp.2005.03.022_bib49) 2005; 91 d’Humières (10.1016/j.jcp.2005.03.022_bib36) 2002; 360 Benzi (10.1016/j.jcp.2005.03.022_bib4) 1992; 222 Rotta (10.1016/j.jcp.2005.03.022_bib26) 1972 Lu (10.1016/j.jcp.2005.03.022_bib43) 2002; 181 Skordos (10.1016/j.jcp.2005.03.022_bib35) 1993; 48 Derksen (10.1016/j.jcp.2005.03.022_bib40) 1999; 45 Chen (10.1016/j.jcp.2005.03.022_bib21) 1992; 68 Chen (10.1016/j.jcp.2005.03.022_bib2) 1992; 45 Mansour (10.1016/j.jcp.2005.03.022_bib17) 1994; 6 Lallemand (10.1016/j.jcp.2005.03.022_bib53) 2003; 68 Qi (10.1016/j.jcp.2005.03.022_bib15) 2003; 477 Krafczyk (10.1016/j.jcp.2005.03.022_bib44) 2003; 17 Pan (10.1016/j.jcp.2005.03.022_bib10) 2004; 40 Smith (10.1016/j.jcp.2005.03.022_bib32) 1993; 71 Ossia (10.1016/j.jcp.2005.03.022_bib20) 2000; 1 Basara (10.1016/j.jcp.2005.03.022_bib55) 2004; 44 Derksen (10.1016/j.jcp.2005.03.022_bib41) 2000; 46 Yamazaki (10.1016/j.jcp.2005.03.022_bib51) 2002; 71 10.1016/j.jcp.2005.03.022_bib27 10.1016/j.jcp.2005.03.022_bib6 Yu (10.1016/j.jcp.2005.03.022_bib7) 2003; 39 Luo (10.1016/j.jcp.2005.03.022_bib37) 2000; 62 Chen (10.1016/j.jcp.2005.03.022_bib5) 1998; 30 Clark (10.1016/j.jcp.2005.03.022_bib50) 1998; 10 Yakhot (10.1016/j.jcp.2005.03.022_bib56) 1986; 1 McNamara (10.1016/j.jcp.2005.03.022_bib1) 1988; 61 Clark (10.1016/j.jcp.2005.03.022_bib9) 2003; 15 Lallemand (10.1016/j.jcp.2005.03.022_bib12) 2003; 67 |
References_xml | – volume: 222 start-page: 145 year: 1992 end-page: 197 ident: bib4 article-title: The lattice Boltzmann equation: theory and applications publication-title: Phys. Rep. – volume: 15 start-page: 2413 year: 2003 end-page: 2423 ident: bib9 article-title: A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer publication-title: Phys. Fluids – volume: 42 start-page: 625 year: 1998 end-page: 630 ident: bib11 article-title: A lattice Boltzmann model for Jeffreys viscoelastic fluid publication-title: Europhys. Lett. – volume: 62 start-page: 4982 year: 2000 end-page: 4996 ident: bib37 article-title: Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases publication-title: Phys. Rev. E – volume: 45 start-page: R5339 year: 1992 end-page: R5342 ident: bib2 article-title: Recovery of the Navier–Stokes equation using a lattice Boltzmann method publication-title: Phys. Rev. A – volume: 107 start-page: 101 year: 2002 end-page: 120 ident: bib14 article-title: Lateral migration and orientation of elliptical particles in Poiseuille flows publication-title: J. Stat. Phys. – volume: 94 start-page: 511 year: 1954 end-page: 525 ident: bib33 article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. – volume: 48 start-page: 4823 year: 1993 end-page: 4842 ident: bib35 article-title: Initial and boundary conditions for the lattice Boltzmann method publication-title: Phys. Rev. E – volume: 30 start-page: 329 year: 1998 end-page: 364 ident: bib5 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. – volume: 40 start-page: W01501 year: 2004 ident: bib10 article-title: Lattice Boltzmann simulation of two-phase flow in porous media publication-title: Water Resour. Res. – volume: 28 start-page: 76 year: 1972 end-page: 79 ident: bib16 article-title: Numerical simulation of three-dimensional homogeneous isotopic turbulence publication-title: Phys. Rev. Lett. – volume: 46 start-page: 1317 year: 2000 end-page: 1331 ident: bib41 article-title: Simulation of vortex core precession in a reverse-flow cyclone publication-title: AIChE J. – volume: 6 start-page: 808 year: 1994 end-page: 814 ident: bib17 article-title: Decay of isotropic turbulence at low Reynolds number publication-title: Phys. Fluids – volume: 88 start-page: 927 year: 1997 end-page: 944 ident: bib34 article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation publication-title: J. Stat. Phys. – volume: 45 start-page: 209 year: 1999 end-page: 221 ident: bib40 article-title: Large eddy simulations on the flow driven by a Rushton turbine publication-title: AIChE J. – reference: T. Miyauchi, T. Ishizu, Direct numerical simulation of homogeneous isotropic turbulence – decay of passive scalar fluctuation, in Preprint vol. JSME No. 914-2, 1991, pp. 166–168. (Available from: – volume: 104 start-page: 1191 year: 2001 end-page: 1251 ident: bib13 article-title: Lattice-Boltzmann simulations of particle-fluid suspensions publication-title: J. Stat. Phys. – volume: 59 start-page: 2419 year: 2004 end-page: 2432 ident: bib45 article-title: Assessment of large eddy and RANS stirred tank simulations by means of LDA publication-title: Chem. Eng. Sci. – reference: M. Krafczyk, Gitter-Boltzmann-Methoden: Von der Theorie zur Anwendung, Habilitation Thesis, Tech. Univ. Munich, 2001 – reference: B. Basara, S. Jakirlic, V. Przulj, Vortex-shedding flows computed using a new, hybrid turbulence model, in: The 8th International Symposium on Flow Modeling and Turbulence Measurements (FMTM2001), December 4–6, 2001, Tokyo, Japan – volume: 71 start-page: 81 year: 2002 end-page: 92 ident: bib51 article-title: Dynamics of inviscid truncated model of rotating turbulence publication-title: J. Phys. Soc. Japan – volume: 477 start-page: 201 year: 2003 end-page: 213 ident: bib15 article-title: Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow publication-title: J. Fluid Mech. – volume: 39 start-page: 329 year: 2003 end-page: 367 ident: bib7 article-title: Viscous flow computations with the method of lattice Boltzmann equation publication-title: Prog. Aerospace Sci. – year: 1972 ident: bib26 article-title: Turbulente Strömungen – volume: 6 start-page: 3765 year: 1994 end-page: 3775 ident: bib18 article-title: Power-law decay of homogeneous turbulence at low Reynolds numbers publication-title: Phys. Fluids – volume: 13 start-page: 1415 year: 2001 end-page: 1430 ident: bib19 article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics publication-title: Phys. Fluids – volume: vol. 6 start-page: 151 year: 1996 end-page: 166 ident: bib39 article-title: A lattice Boltzmann subgrid model for high Reynolds number flows publication-title: Pattern formation and lattice gas automata – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: bib46 article-title: General circulation experiments with the primitive equations: I. The basic equations publication-title: Mon. Weather Rev. – volume: 154 start-page: 321 year: 1985 end-page: 336 ident: bib52 article-title: Effect of rotation on isotropic turbulence: Computation and modelling publication-title: J. Fluid Mech. – volume: 181 start-page: 675 year: 2002 end-page: 704 ident: bib43 article-title: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid publication-title: J. Computat. Phys. – reference: L.G. Loitsyansky, Some basic laws for isotopic turbulent flows, Moscow Centr. Aero. Hydrodyn. Inst. Rep. No. 440, 1939 [NACA Tech. Memo. 1079 (1939)] – reference: R. Mei, L.-S. Luo, and D. d’Humières, Initial conditions for the lattice Boltzmann equation, preprint, 2001 – volume: 185 start-page: 61 year: 2003 end-page: 99 ident: bib8 article-title: Lattice Boltzmann model for free-surface flow and its application to filling process in casting publication-title: J. Computat. Phys. – reference: R. Rubinstein, Private communication, 2005 – volume: 71 start-page: 2583 year: 1993 end-page: 2586 ident: bib32 article-title: Decay of vorticity in homogeneous turbulence publication-title: Phys. Rev. Lett. – volume: vol. 21 start-page: 123 year: 2002 end-page: 130 ident: bib23 article-title: Applications of the lattice Boltzmann method to complex and turbulent flows publication-title: High performance scientific and engineering computing – reference: L.-S. Luo, The lattice-gas and lattice Boltzmann methods: past, present and future, in: J.-H. Wu, Z.-J. Zhu, Proceedings of the International Conference on Applied CFD, October 17–20, 2000, Beijing, pp. 52–83 (Available from: – volume: 31 start-page: 538 year: 1941 end-page: 540 ident: bib28 article-title: On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid publication-title: Dokl. Akad. Nauk SSSR A – volume: 7 start-page: 19 year: 1954 end-page: 44 ident: bib29 article-title: Fourier synthesis of homogeneous turbulence publication-title: Comm. Pure. Appl. Math. – volume: 17 start-page: 33 year: 2003 end-page: 39 ident: bib44 article-title: Large-eddy simulations with a multiple-relaxation-time LBE model publication-title: Int. J. Mod. Phys. B – volume: 61 start-page: 2332 year: 1988 end-page: 2335 ident: bib1 article-title: Use of the Boltzmann equation to simulate lattice-gas automata publication-title: Phys. Rev. Lett. – volume: 51 start-page: 127 year: 1993 end-page: 133 ident: bib38 article-title: Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation publication-title: Appl. Sci. Res. – volume: 1 start-page: 3 year: 1986 end-page: 51 ident: bib56 article-title: Renormalization group theory of turbulence. I. Basic theory publication-title: J. Sci. Comput. – year: 2000 ident: bib24 article-title: Turbulent flows – volume: 27 start-page: 581 year: 1967 end-page: 593 ident: bib30 article-title: The large-scale structure of homogeneous turbulence publication-title: J. Fluid Mech. – volume: 1 start-page: 294 year: 2002 end-page: 297 ident: bib31 article-title: On the decay exponent of isotropic turbulence publication-title: Proc. Appl. Math. Mech. – volume: 68 start-page: 379 year: 1992 end-page: 400 ident: bib21 article-title: Lattice Boltzmann computational fluid dynamics in three dimensions publication-title: J. Stat. Phys. – reference: ) – volume: 219 start-page: 195 year: 1990 end-page: 214 ident: bib25 article-title: The decay power law in grid-generated turbulence publication-title: J. Fluid Mech. – volume: 10 start-page: 2846 year: 1998 end-page: 2858 ident: bib50 article-title: Symmetries and the approach to statistical equilibrium in isotropic turbulence publication-title: Phys. Fluids – volume: 360 start-page: 437 year: 2002 end-page: 451 ident: bib36 article-title: Multiple-relaxation-time lattice Boltzmann models in three-dimensions publication-title: Philos. Trans. R. Soc. Lond. A – volume: 53 start-page: R5565 year: 1996 end-page: R5568 ident: bib22 article-title: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence publication-title: Phys. Rev. E – volume: 5 start-page: 146 year: 1993 end-page: 157 ident: bib57 article-title: A propert velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation publication-title: Phys. Fluids A – volume: 1 start-page: 010 year: 2000 ident: bib20 article-title: Energy backscatter in large-eddy simulations of three-dimensional incompressible isotropic turbulence publication-title: J. Turbulence – volume: 44 start-page: 377 year: 2004 end-page: 407 ident: bib55 article-title: Employment of the second-moment turbulence closure on arbitrary unstructured grids publication-title: Int. J. Numer. Meth. Fluids – volume: 91 start-page: 016708 year: 2005 ident: bib49 article-title: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence publication-title: Phys. Rev. E – volume: 17 start-page: 479 year: 1992 end-page: 484 ident: bib3 article-title: Lattice BGK models for Navier–Stokes equations publication-title: Europhys. Lett. – volume: 67 start-page: 021203 year: 2003 ident: bib12 article-title: Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids publication-title: Phys. Rev. E – volume: 68 start-page: 036706 year: 2003 ident: bib53 article-title: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions publication-title: Phys. Rev. E – volume: 46 start-page: 1317 year: 2000 ident: 10.1016/j.jcp.2005.03.022_bib41 article-title: Simulation of vortex core precession in a reverse-flow cyclone publication-title: AIChE J. doi: 10.1002/aic.690460706 – volume: 48 start-page: 4823 year: 1993 ident: 10.1016/j.jcp.2005.03.022_bib35 article-title: Initial and boundary conditions for the lattice Boltzmann method publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.48.4823 – volume: 477 start-page: 201 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib15 article-title: Rotational and orientational behaviour of a three-dimensional spheroidal particles in Couette flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112002003191 – year: 1972 ident: 10.1016/j.jcp.2005.03.022_bib26 – volume: 31 start-page: 538 year: 1941 ident: 10.1016/j.jcp.2005.03.022_bib28 article-title: On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid publication-title: Dokl. Akad. Nauk SSSR A – volume: 68 start-page: 379 year: 1992 ident: 10.1016/j.jcp.2005.03.022_bib21 article-title: Lattice Boltzmann computational fluid dynamics in three dimensions publication-title: J. Stat. Phys. doi: 10.1007/BF01341754 – ident: 10.1016/j.jcp.2005.03.022_bib27 – volume: 154 start-page: 321 year: 1985 ident: 10.1016/j.jcp.2005.03.022_bib52 article-title: Effect of rotation on isotropic turbulence: Computation and modelling publication-title: J. Fluid Mech. doi: 10.1017/S0022112085001550 – volume: 185 start-page: 61 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib8 article-title: Lattice Boltzmann model for free-surface flow and its application to filling process in casting publication-title: J. Computat. Phys. doi: 10.1016/S0021-9991(02)00048-7 – volume: 6 start-page: 3765 year: 1994 ident: 10.1016/j.jcp.2005.03.022_bib18 article-title: Power-law decay of homogeneous turbulence at low Reynolds numbers publication-title: Phys. Fluids doi: 10.1063/1.868366 – volume: 1 start-page: 3 year: 1986 ident: 10.1016/j.jcp.2005.03.022_bib56 article-title: Renormalization group theory of turbulence. I. Basic theory publication-title: J. Sci. Comput. doi: 10.1007/BF01061452 – volume: 10 start-page: 2846 year: 1998 ident: 10.1016/j.jcp.2005.03.022_bib50 article-title: Symmetries and the approach to statistical equilibrium in isotropic turbulence publication-title: Phys. Fluids doi: 10.1063/1.869806 – ident: 10.1016/j.jcp.2005.03.022_bib54 doi: 10.1142/9789812777591_0032 – volume: 28 start-page: 76 year: 1972 ident: 10.1016/j.jcp.2005.03.022_bib16 article-title: Numerical simulation of three-dimensional homogeneous isotopic turbulence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.28.76 – volume: 68 start-page: 036706 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib53 article-title: Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.68.036706 – volume: 62 start-page: 4982 year: 2000 ident: 10.1016/j.jcp.2005.03.022_bib37 article-title: Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.4982 – volume: 40 start-page: W01501 year: 2004 ident: 10.1016/j.jcp.2005.03.022_bib10 article-title: Lattice Boltzmann simulation of two-phase flow in porous media publication-title: Water Resour. Res. doi: 10.1029/2003WR002120 – volume: vol. 21 start-page: 123 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib23 article-title: Applications of the lattice Boltzmann method to complex and turbulent flows – volume: 219 start-page: 195 year: 1990 ident: 10.1016/j.jcp.2005.03.022_bib25 article-title: The decay power law in grid-generated turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112090002919 – volume: 15 start-page: 2413 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib9 article-title: A numerical study of the statistics of a two-dimensional Rayleigh–Taylor mixing layer publication-title: Phys. Fluids doi: 10.1063/1.1589015 – volume: 6 start-page: 808 year: 1994 ident: 10.1016/j.jcp.2005.03.022_bib17 article-title: Decay of isotropic turbulence at low Reynolds number publication-title: Phys. Fluids doi: 10.1063/1.868319 – ident: 10.1016/j.jcp.2005.03.022_bib47 – volume: 1 start-page: 010 year: 2000 ident: 10.1016/j.jcp.2005.03.022_bib20 article-title: Energy backscatter in large-eddy simulations of three-dimensional incompressible isotropic turbulence publication-title: J. Turbulence doi: 10.1088/1468-5248/1/1/010 – volume: 17 start-page: 33 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib44 article-title: Large-eddy simulations with a multiple-relaxation-time LBE model publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979203017059 – volume: 67 start-page: 021203 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib12 article-title: Theory of the lattice Boltzmann method: Three-dimensional model for linear viscoelastic fluids publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.021203 – volume: 91 start-page: 016708 year: 2005 ident: 10.1016/j.jcp.2005.03.022_bib49 article-title: Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.016708 – volume: 1 start-page: 294 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib31 article-title: On the decay exponent of isotropic turbulence publication-title: Proc. Appl. Math. Mech. doi: 10.1002/1617-7061(200203)1:1<294::AID-PAMM294>3.0.CO;2-W – volume: 94 start-page: 511 year: 1954 ident: 10.1016/j.jcp.2005.03.022_bib33 article-title: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems publication-title: Phys. Rev. doi: 10.1103/PhysRev.94.511 – volume: vol. 6 start-page: 151 year: 1996 ident: 10.1016/j.jcp.2005.03.022_bib39 article-title: A lattice Boltzmann subgrid model for high Reynolds number flows – ident: 10.1016/j.jcp.2005.03.022_bib58 – volume: 17 start-page: 479 year: 1992 ident: 10.1016/j.jcp.2005.03.022_bib3 article-title: Lattice BGK models for Navier–Stokes equations publication-title: Europhys. Lett. doi: 10.1209/0295-5075/17/6/001 – volume: 181 start-page: 675 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib43 article-title: Large eddy simulations of a stirred tank using the lattice Boltzmann method on a nonuniform grid publication-title: J. Computat. Phys. doi: 10.1006/jcph.2002.7151 – volume: 88 start-page: 927 year: 1997 ident: 10.1016/j.jcp.2005.03.022_bib34 article-title: Lattice Boltzmann model for the incompressible Navier–Stokes equation publication-title: J. Stat. Phys. doi: 10.1023/B:JOSS.0000015179.12689.e4 – volume: 71 start-page: 2583 year: 1993 ident: 10.1016/j.jcp.2005.03.022_bib32 article-title: Decay of vorticity in homogeneous turbulence publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.2583 – ident: 10.1016/j.jcp.2005.03.022_bib48 – volume: 53 start-page: R5565 year: 1996 ident: 10.1016/j.jcp.2005.03.022_bib22 article-title: Extended self-similarity in numerical simulations of three-dimensional anisotropic turbulence publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.R5565 – volume: 42 start-page: 625 year: 1998 ident: 10.1016/j.jcp.2005.03.022_bib11 article-title: A lattice Boltzmann model for Jeffreys viscoelastic fluid publication-title: Europhys. Lett. doi: 10.1209/epl/i1998-00296-0 – volume: 222 start-page: 145 year: 1992 ident: 10.1016/j.jcp.2005.03.022_bib4 article-title: The lattice Boltzmann equation: theory and applications publication-title: Phys. Rep. doi: 10.1016/0370-1573(92)90090-M – volume: 5 start-page: 146 year: 1993 ident: 10.1016/j.jcp.2005.03.022_bib57 article-title: A propert velocity scale for modeling subgrid-scale eddy viscosities in large eddy simulation publication-title: Phys. Fluids A doi: 10.1063/1.858800 – volume: 45 start-page: R5339 year: 1992 ident: 10.1016/j.jcp.2005.03.022_bib2 article-title: Recovery of the Navier–Stokes equation using a lattice Boltzmann method publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.R5339 – volume: 71 start-page: 81 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib51 article-title: Dynamics of inviscid truncated model of rotating turbulence publication-title: J. Phys. Soc. Japan doi: 10.1143/JPSJ.71.81 – volume: 44 start-page: 377 year: 2004 ident: 10.1016/j.jcp.2005.03.022_bib55 article-title: Employment of the second-moment turbulence closure on arbitrary unstructured grids publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.646 – volume: 13 start-page: 1415 year: 2001 ident: 10.1016/j.jcp.2005.03.022_bib19 article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics publication-title: Phys. Fluids doi: 10.1063/1.1355682 – volume: 59 start-page: 2419 year: 2004 ident: 10.1016/j.jcp.2005.03.022_bib45 article-title: Assessment of large eddy and RANS stirred tank simulations by means of LDA publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.01.065 – volume: 360 start-page: 437 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib36 article-title: Multiple-relaxation-time lattice Boltzmann models in three-dimensions publication-title: Philos. Trans. R. Soc. Lond. A doi: 10.1098/rsta.2001.0955 – volume: 61 start-page: 2332 year: 1988 ident: 10.1016/j.jcp.2005.03.022_bib1 article-title: Use of the Boltzmann equation to simulate lattice-gas automata publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.61.2332 – year: 2000 ident: 10.1016/j.jcp.2005.03.022_bib24 – volume: 7 start-page: 19 year: 1954 ident: 10.1016/j.jcp.2005.03.022_bib29 article-title: Fourier synthesis of homogeneous turbulence publication-title: Comm. Pure. Appl. Math. doi: 10.1002/cpa.3160070104 – volume: 39 start-page: 329 year: 2003 ident: 10.1016/j.jcp.2005.03.022_bib7 article-title: Viscous flow computations with the method of lattice Boltzmann equation publication-title: Prog. Aerospace Sci. doi: 10.1016/S0376-0421(03)00003-4 – volume: 30 start-page: 329 year: 1998 ident: 10.1016/j.jcp.2005.03.022_bib5 article-title: Lattice Boltzmann method for fluid flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.30.1.329 – volume: 91 start-page: 99 year: 1963 ident: 10.1016/j.jcp.2005.03.022_bib46 article-title: General circulation experiments with the primitive equations: I. The basic equations publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – ident: 10.1016/j.jcp.2005.03.022_bib6 – volume: 51 start-page: 127 issue: 3 year: 1993 ident: 10.1016/j.jcp.2005.03.022_bib38 article-title: Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation publication-title: Appl. Sci. Res. doi: 10.1007/BF01082526 – volume: 27 start-page: 581 year: 1967 ident: 10.1016/j.jcp.2005.03.022_bib30 article-title: The large-scale structure of homogeneous turbulence publication-title: J. Fluid Mech. doi: 10.1017/S0022112067000552 – volume: 45 start-page: 209 year: 1999 ident: 10.1016/j.jcp.2005.03.022_bib40 article-title: Large eddy simulations on the flow driven by a Rushton turbine publication-title: AIChE J. doi: 10.1002/aic.690450202 – ident: 10.1016/j.jcp.2005.03.022_bib42 – volume: 107 start-page: 101 year: 2002 ident: 10.1016/j.jcp.2005.03.022_bib14 article-title: Lateral migration and orientation of elliptical particles in Poiseuille flows publication-title: J. Stat. Phys. doi: 10.1023/A:1014502402884 – volume: 104 start-page: 1191 year: 2001 ident: 10.1016/j.jcp.2005.03.022_bib13 article-title: Lattice-Boltzmann simulations of particle-fluid suspensions publication-title: J. Stat. Phys. doi: 10.1023/A:1010414013942 |
SSID | ssj0008548 |
Score | 2.3302207 |
Snippet | The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational tool for performing direct numerical... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 599 |
SubjectTerms | Computation Computational fluid dynamics Computational techniques Computer simulation Decay Decaying homogeneous isotropic turbulence in 3D Direct numerical simulation Exact sciences and technology Frames Inertial Large-eddy simulation Lattice Boltzmann equation Mathematical methods in physics Navier-Stokes equations Physics Smagorinsky model Turbulence |
Title | DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method |
URI | https://dx.doi.org/10.1016/j.jcp.2005.03.022 https://www.proquest.com/docview/1082174763 https://www.proquest.com/docview/28522945 https://www.proquest.com/docview/28695393 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7QUJ8UYsj8VInJDShvgR-1hKq-W1l1Kpt8hxbLRlSaLd7IUDv52ZxCmqUPfALYrGijUTz3zjeQG8UcJRMEwkxgaeCO95oqmFqzCizL2WperHvX1dqPm5-HQhL_bgeKyFobTKqPsHnd5r6_jmMHLzsF0uqcY3oxp6BAiEU6iifD9Da68nsH_08fN8caWQtRSDQqZsBFwwBjf7NK9L18abFX6QZtlN5ulOazfItDBMu_hHcffW6PQ-3I0wkh0NO30Ae75-CPcipGTxwG4ewY8PizNm64p9OTljTWCVd5YKm9hy03Trpl06hjan3PalR4wuZXtqemi2HQuUusXWzRCvZ5Qk_52tbEcZc-x9s-p-_bR1zYYx1I_h_PTk2_E8ifMVEieyrEtsKFNncme18-g3OMHLYEKZScd16nVAnjqEs7lHFnqJuC-gP5WjeRMK3VrEYU9gUje1fwpMaiWDL51CNCjKyhtZ5VVqnc25CGgPp5CObC1cbD5OMzBWxZhldlmgJGgopixSXqAkpvD2akk7dN7YRSxGWRXXfp8CLcOuZbNrcv37IWUUuY5TeD0KusBzR8EUW_tmu6HGquTNoXqewqsbaDKN6NYIuYtCGckNf_Z_-38Ot4dWsnQl9AIm3XrrXyJI6soZ3Dr4_W4Wj8IfnFEQpg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZhc2ih9F26bZqo0FPBjbEeto5pHmyazV6SQG5CkqWw6dY2u95Lf31nbDklhOwhN2NGWMxYM99oXoR8k9xhMIwnygSWcO9ZUmALV664zX0hrOzGvZ3P5OSK_7oW11vkcKiFwbTKqPt7nd5p6_hmP3Jzv5nPscY3wxp6AAiIU7CifJvjUOsR2T44PZvM7hRyIXivkDEbARYMwc0uzevWNfFmhf1Is-wx8_SiMStgWuinXTxQ3J01OnlNXkYYSQ_6nb4hW756S15FSEnjgV29I7-PZhfUVCWdHl_QOtDSO4OFTXS-qttl3cwdBZtj113pEcVL2Y4aH-p1SwOmbtFl3cfrKSbJ39CFaTFjjv6sF-3fP6aqaD-G-j25Ojm-PJwkcb5C4niWtYkJNnUqd6ZwHvwGx5kNKthMOFakvgjAUwdwNvfAQi8A9wXwp3Iwb1yCWws47AMZVXXlPxIqCimCt04CGuS29EqUeZkaZ3LGA9jDMUkHtmoXm4_jDIyFHrLMbjVIAodiCp0yDZIYk-93S5q-88YmYj7ISt_7fTRYhk3Ldu_J9f-HpJLoOo7J10HQGs4dBlNM5ev1ChurojcH6nlM9h6hyQpAt4qLTRRSCabYp6ftf488m1yeT_X0dHb2mTzv28ri9dAOGbXLtf8CgKm1u_FA_AMGxhKM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DNS+and+LES+of+decaying+isotropic+turbulence+with+and+without+frame+rotation+using+lattice+Boltzmann+method&rft.jtitle=Journal+of+computational+physics&rft.au=HUIDAN+YU&rft.au=GIRIMAJI%2C+Sharath+S&rft.au=LUO%2C+Li-Shi&rft.date=2005-11-01&rft.pub=Elsevier&rft.issn=0021-9991&rft.volume=209&rft.issue=2&rft.spage=599&rft.epage=616&rft_id=info:doi/10.1016%2Fj.jcp.2005.03.022&rft.externalDBID=n%2Fa&rft.externalDocID=16964956 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |