Comparison of distributed evolutionary k-means clustering algorithms

Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of cont...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 163; pp. 78 - 93
Main Authors Naldi, M.C., Campello, R.J.G.B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 02.09.2015
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
1872-8286
DOI10.1016/j.neucom.2014.07.083

Cover

Abstract Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of contexts and application domains. However, exact distributed versions of k-means are still sensitive to the selection of the initial cluster prototypes and require the number of clusters to be specified in advance. Additionally, preserving data privacy among repositories may be a complicating factor. In order to overcome k-means limitations, two different approaches were adopted in this paper: the first obtains a final model identical to the centralized version of the clustering algorithm and the second generates and selects clusters for each distributed data subset and combines them afterwards. It is also described how to apply the algorithms compared while preserving data privacy. The algorithms are compared experimentally from two perspectives: the theoretical one, through asymptotic complexity analyses, and the experimental one, through a comparative evaluation of results obtained from a collection of experiments and statistical tests. The results obtained indicate which algorithm is more suitable for each application scenario.
AbstractList Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of contexts and application domains. However, exact distributed versions of k-means are still sensitive to the selection of the initial cluster prototypes and require the number of clusters to be specified in advance. Additionally, preserving data privacy among repositories may be a complicating factor. In order to overcome k-means limitations, two different approaches were adopted in this paper: the first obtains a final model identical to the centralized version of the clustering algorithm and the second generates and selects clusters for each distributed data subset and combines them afterwards. It is also described how to apply the algorithms compared while preserving data privacy. The algorithms are compared experimentally from two perspectives: the theoretical one, through asymptotic complexity analyses, and the experimental one, through a comparative evaluation of results obtained from a collection of experiments and statistical tests. The results obtained indicate which algorithm is more suitable for each application scenario.
Author Campello, R.J.G.B.
Naldi, M.C.
Author_xml – sequence: 1
  givenname: M.C.
  surname: Naldi
  fullname: Naldi, M.C.
  email: murilocn@ufv.br
  organization: Federal University of Viçosa – UFV, Rodovia BR 354 – km 310, Caixa Postal: 22, CEP: 38.810-000, Rio Paranaíba, MG, Brazil
– sequence: 2
  givenname: R.J.G.B.
  orcidid: 0000-0002-3107-8236
  surname: Campello
  fullname: Campello, R.J.G.B.
  email: campello@icmc.usp.br
  organization: Institute of Mathematics and Computer Sciences, University of São Paulo – USP, Av. Trabalhador São-Carlense, 400 Centro, Caixa Postal: 668, CEP: 13560-970, São Carlos, SP, Brazil
BookMark eNqN0L1OwzAUhmELFYm2cAcMuYEE20nshAEJlV-pEgvM1ontFJfErmynqHdPqjAxANOZ3k9HzwLNrLMaoUuCM4IJu9pmVg_S9RnFpMgwz3CVn6A5qThNK1qxGZrjmpYpzQk9Q4sQthgTTmg9R3cr1-_Am-Bs4tpEmRC9aYaoVaL3rhuicRb8IflIew02JLIbQtTe2E0C3cZ5E9_7cI5OW-iCvvi-S_T2cP-6ekrXL4_Pq9t1KgtKY1rrsmCsAdwwkBVTnHHWtpw1RaUoz_O6oKViVFJgtMxrKEFp0jS1klCyuqL5EpXT7mB3cPiErhM7b_rxP0GwOFKIrZgoxJFCYC5GirErpk56F4LX7X-z6x-ZNBGOItGD6f6Kb6ZYjyB7o70I0mgrtTJeyyiUM78PfAHwCZHw
CitedBy_id crossref_primary_10_1016_j_neucom_2016_07_074
crossref_primary_10_1016_j_neucom_2021_08_154
crossref_primary_10_1007_s10115_016_0946_8
crossref_primary_10_3390_axioms11080377
crossref_primary_10_1016_j_ins_2020_06_056
crossref_primary_10_3390_math10132167
crossref_primary_10_1016_j_swevo_2019_04_008
crossref_primary_10_3233_JIFS_18113
crossref_primary_10_1016_j_neucom_2019_03_055
crossref_primary_10_1016_j_eswa_2016_03_008
crossref_primary_10_1016_j_jpdc_2025_105038
crossref_primary_10_1007_s12061_020_09346_3
crossref_primary_10_1007_s12206_016_1232_0
crossref_primary_10_3390_app9112326
crossref_primary_10_1016_j_jocs_2017_08_016
crossref_primary_10_1007_s12652_019_01335_w
crossref_primary_10_1016_j_jlp_2017_02_028
crossref_primary_10_1016_j_neucom_2019_07_001
Cites_doi 10.1093/biomet/75.4.800
10.1109/ISDA.2009.78
10.1109/CEC.2006.1688522
10.1109/IDEAS.2006.36
10.1007/s10732-007-9059-6
10.1145/380995.381010
10.1109/TKDE.2008.189
10.1145/331499.331504
10.1016/j.ins.2005.11.007
10.1109/TEVC.2006.877146
10.5772/13945
10.1016/j.asoc.2010.06.010
10.1016/S0020-0255(02)00208-6
10.1145/967900.968029
10.1109/TKDE.2008.222
10.1093/comjnl/40.9.547
10.1109/MSP.2004.108
10.1109/ISDA.2009.80
10.1109/ICDM.2004.10073
10.1002/sam.10080
10.1109/TNN.2005.845141
10.1016/j.fss.2005.04.009
10.1023/A:1022521428870
10.1109/BRACIS.2013.20
10.1109/91.413225
10.1007/BF02294245
10.1016/S0031-3203(96)00131-8
10.1145/233269.233324
10.1016/j.datak.2007.03.015
10.1016/j.parco.2005.01.001
10.1109/TSMCC.2008.2007252
10.1007/978-3-642-01088-0_8
10.1007/BF01908075
10.1137/1.9781611972795.63
10.1348/000711005X48266
10.1109/3477.764879
10.1109/4434.806975
10.1186/1471-2105-5-172
10.1007/3-540-46502-2_13
10.1016/S1007-0214(05)70069-9
10.3233/HIS-2010-0119
10.1007/978-3-642-10675-0
10.1016/0167-8191(95)00017-I
10.1109/SBRN.2012.11
10.1016/j.ins.2005.07.015
10.1109/CEC.2005.1554991
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.neucom.2014.07.083
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 93
ExternalDocumentID 002689097
10_1016_j_neucom_2014_07_083
S0925231215004567
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c422t-9e5466ba0b6ac86d7676ff76b48d27339425d62c2a62539a5ade1bb9dca569823
IEDL.DBID UNPAY
ISSN 0925-2312
1872-8286
IngestDate Sun Oct 26 04:11:16 EDT 2025
Wed Oct 01 06:00:20 EDT 2025
Thu Apr 24 22:56:07 EDT 2025
Fri Feb 23 02:28:29 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Privacy preservation
Distributed clustering
Low data transmission
Evolutionary k-means
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-9e5466ba0b6ac86d7676ff76b48d27339425d62c2a62539a5ade1bb9dca569823
ORCID 0000-0002-3107-8236
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.neucom.2014.07.083
PageCount 16
ParticipantIDs unpaywall_primary_10_1016_j_neucom_2014_07_083
crossref_primary_10_1016_j_neucom_2014_07_083
crossref_citationtrail_10_1016_j_neucom_2014_07_083
elsevier_sciencedirect_doi_10_1016_j_neucom_2014_07_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-02
PublicationDateYYYYMMDD 2015-09-02
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-02
  day: 02
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, 2005.
Hruschka, Campello, Freitas, Ponce Leon, de Carvalho (bib9) 2009; 39
W. Sheng, X. Liu, A hybrid algorithm for k-medoid clustering of large data sets, in: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 2004, pp. 77–82.
Dodonov, Mello, Yang (bib59) 2005; vol. 3824
V. Rayward-Smith, Metaheuristics for clustering in kdd, in: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, Edinburgh, UK, 2005, pp. 2380–2387.
S.R.M. Oliveira, O.R. Zaïne, Privacy preserving clustering by data transformation, in: Proceedings of the 18th Brazilian Symposium on Databases 2003, pp. 304–318.
Hubert, Arabie (bib58) 1985; 2
Falkenauer (bib8) 1998
Pakhira, Bandyopadhyay, Maulik (bib62) 2005; 155
Calinski, Harabasz (bib54) 1974; 3
Mitchell (bib27) 1997
D. Horta, M.C. Naldi, R.J.G.B. Campello, E.R. Hruschka, A.C.P.L.F. Carvalho, in: Bio-Inspired Data Mining: Theoretical Foundations and Applications, Foundations of Computational Intelligence, vol. 4, 2009, Springer-Verlag, Berlin, Germany, pp. 167–195.
Bandyopadhyay, Giannella, Maulik, Kargupta, Liu, Datta (bib38) 2006; 176
Krishna, Murty (bib12) 1999; 29
Naldi, Campello (bib29) 2013; 75
M.C. Naldi, A. Fontana, R.J.G.B. Campello, Comparison among methods for k estimation in k-means, in: The 9th International Conference on Intelligent Systems Design and Applications, ISDA, Pisa, Italy, 2009, pp. 1006–1013.
Naldi, Campello, Hruschka, Carvalho (bib21) 2011; 11
V. Alves, R. Campello, E. Hruschka, Towards a fast evolutionary algorithm for clustering, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 1776–1783.
Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: a fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC׳04, ACM, New York, NY, USA, 2004, pp. 622–623.
M.C. Naldi, R.J.G.B. Campello, Distributed
Mitchell (bib49) 1998
Fränti, Kivijärvi, Kaukoranta, Nevalainen (bib10) 1997; 40
Lu, Lu, Fotouhi, Deng, Brown (bib15) 2004; 28
Campello, Hruschka, Alves (bib20) 2009; 15
M.C. Naldi, R.J.G.B. Campello, Combining information from distributed evolutionary
Scheunders (bib11) 1997; 30
Hammouda, Kamel (bib34) 2009; 21
Milligan, Cooper (bib55) 1985; 50
R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (2005) 645–678.
Zaki (bib32) 1999; 7
Vendramin, Campello, Hruschka (bib48) 2010; 3
F.L. Gorgônio, J.A.F. Costa, Privacy-preserving clustering on distributed databases: a review and some contributions, in: Self Organizing Maps—Applications and Novel Algorithm Design, InTech, 2011, pp. 33–54.
X. Wu, Top 10 Algorithms in Data Mining, April 9, 2009 by Chapman and Hall/CRC Reference - 232 Pages - 53 B/W Illustrations ISBN 9781420089646
Freitas, Lavington (bib33) 1997
A. Inan, S.V. Kaya, Y. SaygIn, E. Savas, A.A. Hintoglu, A. Levi, Privacy preserving clustering on horizontally partitioned data, Data Knowl. Eng. 63 (2007) 646–666 (25th International Conference on Conceptual Modeling (ER 2006)—‘Four of the best papers presented).
Steinley (bib5) 2006; 59
Jain, Dubes (bib1) 1988
Hochberg, Tamhane (bib66) 1987
I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory multiprocessors, in: Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, Springer-Verlag, London, UK, 2000, pp. 245–260.
means, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, Curitiba, Brazil, 2012, pp. 43–48.
L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in: SIAM International Conference on Data Mining, Sparks/USA, 2009, pp. 733–744.
Hijmans (bib25) 2010; 12
Datta, Giannella, Kargupta (bib39) 2009; 21
F. de Vega, E. Cantú-Paz, Parallel and Distributed Computational Intelligence, in: Studies in Computational Intelligence, vol. 269, Springer, Berlin, Heidelberg, 2010.
Davis (bib56) 1996
Tian, Zhu, Zhang, Liu (bib37) 2005; 10
Januzaj, Kriegel, Pfeifle (bib43) 2004; vol. 2992
Du, Lin (bib42) 2005; 31
Hruschka, Campello, de Castro (bib18) 2006; 176
Anderberg (bib64) 1973
Jain, Murty, Flynn (bib2) 1999; 31
A. Garg, A. Mangla, N. Gupta, V. Bhatnagar, PBIRCH: a scalable parallel clustering algorithm for incremental data, in: 10th International Database Engineering and Applications Symposium, IDEAS׳06, 2006, pp. 315–316.
Handl, Knowles (bib60) 2007; 34
Kivijärvi, Fränti, Nevalainen (bib14) 2003; 9
Olson (bib41) 1995; 21
D. Horta, R.J.G.B. Campello, Fast evolutionary algorithms for relational clustering, in: The International Conference on Intelligent Systems Design and Applications, Pisa, Tuscany, Italy, 2009, pp. 1456–1462.
Walpole, Myers, Myers (bib65) 2006
Horta, Campello (bib23) 2010; 7
K. Bhaduri, K. Das, K. Liu, H. Kargupta, J. Ryan, Distributed Data Mining Bibliography
Bandyopadhyay, Maulik (bib13) 2002; 146
Forman, Zhang (bib40) 2000; 2
Hochberg (bib67) 1988; 75
Vaidya, Clifton (bib45) 2004; 2
Fogel (bib50) 1995
T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996, pp. 103–114.
means clustering with low transmission cost, in: Proceedings of the Brazilian Conference on Intelligent Systems, IEEE Computer Society, Fortaleza, Brazil, 2013, pp. 70–75.
Zaki (bib24) 2000
E.R. Hruschka, R.J.G.B. Campello, L.N. de Castro, Evolutionary algorithms for clustering gene-expression data, in: Proceedings of the IEEE International Conference on Data Mining, Brighton/England, 2004, pp. 403–406.
Pal, Bezdek (bib61) 1995; 3
2008.
Hammouda (10.1016/j.neucom.2014.07.083_bib34) 2009; 21
Du (10.1016/j.neucom.2014.07.083_bib42) 2005; 31
10.1016/j.neucom.2014.07.083_bib31
Hubert (10.1016/j.neucom.2014.07.083_bib58) 1985; 2
Scheunders (10.1016/j.neucom.2014.07.083_bib11) 1997; 30
10.1016/j.neucom.2014.07.083_bib36
10.1016/j.neucom.2014.07.083_bib35
Campello (10.1016/j.neucom.2014.07.083_bib20) 2009; 15
Forman (10.1016/j.neucom.2014.07.083_bib40) 2000; 2
Freitas (10.1016/j.neucom.2014.07.083_bib33) 1997
10.1016/j.neucom.2014.07.083_bib28
Bandyopadhyay (10.1016/j.neucom.2014.07.083_bib38) 2006; 176
Lu (10.1016/j.neucom.2014.07.083_bib15) 2004; 28
10.1016/j.neucom.2014.07.083_bib22
Milligan (10.1016/j.neucom.2014.07.083_bib55) 1985; 50
Vendramin (10.1016/j.neucom.2014.07.083_bib48) 2010; 3
Pal (10.1016/j.neucom.2014.07.083_bib61) 1995; 3
10.1016/j.neucom.2014.07.083_bib26
Walpole (10.1016/j.neucom.2014.07.083_bib65) 2006
Bandyopadhyay (10.1016/j.neucom.2014.07.083_bib13) 2002; 146
10.1016/j.neucom.2014.07.083_bib30
Datta (10.1016/j.neucom.2014.07.083_bib39) 2009; 21
Dodonov (10.1016/j.neucom.2014.07.083_bib59) 2005; vol. 3824
Mitchell (10.1016/j.neucom.2014.07.083_bib27) 1997
Zaki (10.1016/j.neucom.2014.07.083_bib24) 2000
Anderberg (10.1016/j.neucom.2014.07.083_bib64) 1973
Tian (10.1016/j.neucom.2014.07.083_bib37) 2005; 10
10.1016/j.neucom.2014.07.083_bib17
Januzaj (10.1016/j.neucom.2014.07.083_bib43) 2004; vol. 2992
Steinley (10.1016/j.neucom.2014.07.083_bib5) 2006; 59
10.1016/j.neucom.2014.07.083_bib19
Vaidya (10.1016/j.neucom.2014.07.083_bib45) 2004; 2
10.1016/j.neucom.2014.07.083_bib53
Zaki (10.1016/j.neucom.2014.07.083_bib32) 1999; 7
Calinski (10.1016/j.neucom.2014.07.083_bib54) 1974; 3
Krishna (10.1016/j.neucom.2014.07.083_bib12) 1999; 29
10.1016/j.neucom.2014.07.083_bib57
10.1016/j.neucom.2014.07.083_bib16
Hochberg (10.1016/j.neucom.2014.07.083_bib67) 1988; 75
Jain (10.1016/j.neucom.2014.07.083_bib1) 1988
Naldi (10.1016/j.neucom.2014.07.083_bib29) 2013; 75
Naldi (10.1016/j.neucom.2014.07.083_bib21) 2011; 11
10.1016/j.neucom.2014.07.083_bib63
Horta (10.1016/j.neucom.2014.07.083_bib23) 2010; 7
Hochberg (10.1016/j.neucom.2014.07.083_bib66) 1987
Fränti (10.1016/j.neucom.2014.07.083_bib10) 1997; 40
10.1016/j.neucom.2014.07.083_bib3
10.1016/j.neucom.2014.07.083_bib4
10.1016/j.neucom.2014.07.083_bib6
Hruschka (10.1016/j.neucom.2014.07.083_bib18) 2006; 176
10.1016/j.neucom.2014.07.083_bib7
Kivijärvi (10.1016/j.neucom.2014.07.083_bib14) 2003; 9
Pakhira (10.1016/j.neucom.2014.07.083_bib62) 2005; 155
Falkenauer (10.1016/j.neucom.2014.07.083_bib8) 1998
10.1016/j.neucom.2014.07.083_bib44
Mitchell (10.1016/j.neucom.2014.07.083_bib49) 1998
10.1016/j.neucom.2014.07.083_bib47
Davis (10.1016/j.neucom.2014.07.083_bib56) 1996
10.1016/j.neucom.2014.07.083_bib46
Hijmans (10.1016/j.neucom.2014.07.083_bib25) 2010; 12
Fogel (10.1016/j.neucom.2014.07.083_bib50) 1995
Hruschka (10.1016/j.neucom.2014.07.083_bib9) 2009; 39
Jain (10.1016/j.neucom.2014.07.083_bib2) 1999; 31
Handl (10.1016/j.neucom.2014.07.083_bib60) 2007; 34
10.1016/j.neucom.2014.07.083_bib52
10.1016/j.neucom.2014.07.083_bib51
Olson (10.1016/j.neucom.2014.07.083_bib41) 1995; 21
References_xml – volume: 2
  start-page: 34
  year: 2000
  end-page: 38
  ident: bib40
  article-title: Distributed data clustering can be efficient and exact
  publication-title: ACM SIGKDD Explor. Newslett.
– volume: 15
  start-page: 43
  year: 2009
  end-page: 75
  ident: bib20
  article-title: On the efficiency of evolutionary fuzzy clustering
  publication-title: J. Heuristics
– volume: 21
  start-page: 1372
  year: 2009
  end-page: 1388
  ident: bib39
  article-title: Approximate distributed k-means clustering over a peer-to-peer network
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 146
  start-page: 221
  year: 2002
  end-page: 237
  ident: bib13
  article-title: An evolutionary technique based on k-means algorithm for optimal clustering in R
  publication-title: Inf. Sci.
– year: 1997
  ident: bib33
  article-title: Mining Very Large Databases with Parallel Processing
– year: 1995
  ident: bib50
  article-title: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
– reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996, pp. 103–114.
– volume: 21
  start-page: 1313
  year: 1995
  end-page: 1325
  ident: bib41
  article-title: Parallel algorithms for hierarchical clustering
  publication-title: Parallel Comput.
– reference: L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, 2005.
– reference: D. Horta, M.C. Naldi, R.J.G.B. Campello, E.R. Hruschka, A.C.P.L.F. Carvalho, in: Bio-Inspired Data Mining: Theoretical Foundations and Applications, Foundations of Computational Intelligence, vol. 4, 2009, Springer-Verlag, Berlin, Germany, pp. 167–195.
– reference: F. de Vega, E. Cantú-Paz, Parallel and Distributed Computational Intelligence, in: Studies in Computational Intelligence, vol. 269, Springer, Berlin, Heidelberg, 2010.
– volume: 75
  start-page: 800
  year: 1988
  end-page: 802
  ident: bib67
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
– reference: M.C. Naldi, R.J.G.B. Campello, Combining information from distributed evolutionary
– reference: A. Inan, S.V. Kaya, Y. SaygIn, E. Savas, A.A. Hintoglu, A. Levi, Privacy preserving clustering on horizontally partitioned data, Data Knowl. Eng. 63 (2007) 646–666 (25th International Conference on Conceptual Modeling (ER 2006)—‘Four of the best papers presented).
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: bib2
  article-title: Data clustering
  publication-title: ACM Comput. Surv.
– volume: 29
  start-page: 433
  year: 1999
  end-page: 439
  ident: bib12
  article-title: Genetic k-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
– reference: K. Bhaduri, K. Das, K. Liu, H. Kargupta, J. Ryan, Distributed Data Mining Bibliography 〈
– reference: R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (2005) 645–678.
– volume: 10
  start-page: 277
  year: 2005
  end-page: 281
  ident: bib37
  article-title: Improvement and parallelism of k-means clustering algorithm
  publication-title: Tsinghua Sci. Technol.
– year: 1996
  ident: bib56
  article-title: Handbook of Genetic Algorithms
– volume: 176
  start-page: 1952
  year: 2006
  end-page: 1985
  ident: bib38
  article-title: Clustering distributed data streams in peer-to-peer environments
  publication-title: Inf. Sci.
– reference: F.L. Gorgônio, J.A.F. Costa, Privacy-preserving clustering on distributed databases: a review and some contributions, in: Self Organizing Maps—Applications and Novel Algorithm Design, InTech, 2011, pp. 33–54.
– volume: 75
  start-page: 800
  year: 2013
  end-page: 802
  ident: bib29
  article-title: Evolutionary k-means for distributed datasets
  publication-title: Neurocomputing
– reference: -means clustering with low transmission cost, in: Proceedings of the Brazilian Conference on Intelligent Systems, IEEE Computer Society, Fortaleza, Brazil, 2013, pp. 70–75.
– reference: V. Alves, R. Campello, E. Hruschka, Towards a fast evolutionary algorithm for clustering, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 1776–1783.
– start-page: 804
  year: 2000
  end-page: 827
  ident: bib24
  article-title: Parallel and Distributed data Mining: An Introduction
– reference: I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory multiprocessors, in: Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, Springer-Verlag, London, UK, 2000, pp. 245–260.
– volume: 9
  start-page: 113
  year: 2003
  end-page: 129
  ident: bib14
  article-title: Self-adaptive genetic algorithm for clustering
  publication-title: J. Heuristics
– reference: E.R. Hruschka, R.J.G.B. Campello, L.N. de Castro, Evolutionary algorithms for clustering gene-expression data, in: Proceedings of the IEEE International Conference on Data Mining, Brighton/England, 2004, pp. 403–406.
– volume: 39
  start-page: 133
  year: 2009
  end-page: 155
  ident: bib9
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
– year: 1973
  ident: bib64
  publication-title: Cluster Analysis for Applications
– year: 1987
  ident: bib66
  article-title: Multiple Comparison Procedures
– reference: S.R.M. Oliveira, O.R. Zaïne, Privacy preserving clustering by data transformation, in: Proceedings of the 18th Brazilian Symposium on Databases 2003, pp. 304–318.
– volume: vol. 3824
  start-page: 1133
  year: 2005
  end-page: 1146
  ident: bib59
  article-title: A network evaluation for LAN, MAN and WAN Grid environments
  publication-title: Embedded and Ubiquitous Computing—EUC 2005, Lecture Notes in Computer Science
– year: 2006
  ident: bib65
  publication-title: Probability & Statistics for Engineers & Scientists
– reference: W. Sheng, X. Liu, A hybrid algorithm for k-medoid clustering of large data sets, in: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 2004, pp. 77–82.
– reference: A. Garg, A. Mangla, N. Gupta, V. Bhatnagar, PBIRCH: a scalable parallel clustering algorithm for incremental data, in: 10th International Database Engineering and Applications Symposium, IDEAS׳06, 2006, pp. 315–316.
– volume: 3
  start-page: 209
  year: 2010
  end-page: 235
  ident: bib48
  article-title: Relative clustering validity criteria
  publication-title: Stat. Anal. Data Min.
– volume: 34
  start-page: 56
  year: 2007
  end-page: 76
  ident: bib60
  article-title: An evolutionary approach to multiobjective clustering
  publication-title: IEEE Trans. Evol. Comput.
– volume: 155
  start-page: 191
  year: 2005
  end-page: 214
  ident: bib62
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets Syst.
– volume: 30
  start-page: 859
  year: 1997
  end-page: 866
  ident: bib11
  article-title: A genetic c-means clustering algorithm applied to color image quantization
  publication-title: Pattern Recognit.
– volume: 7
  start-page: 261
  year: 2010
  end-page: 281
  ident: bib23
  article-title: Evolutionary clustering of relational data
  publication-title: Int. J. Hybrid Intell. Syst.
– year: 1988
  ident: bib1
  article-title: Algorithms for Clustering Data
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: bib54
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– reference: X. Wu, Top 10 Algorithms in Data Mining, April 9, 2009 by Chapman and Hall/CRC Reference - 232 Pages - 53 B/W Illustrations ISBN 9781420089646
– reference: M.C. Naldi, R.J.G.B. Campello, Distributed
– volume: 176
  start-page: 1898
  year: 2006
  end-page: 1927
  ident: bib18
  article-title: Evolving clusters in gene-expression data
  publication-title: Inf. Sci.
– reference: -means, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, Curitiba, Brazil, 2012, pp. 43–48.
– reference: D. Horta, R.J.G.B. Campello, Fast evolutionary algorithms for relational clustering, in: The International Conference on Intelligent Systems Design and Applications, Pisa, Tuscany, Italy, 2009, pp. 1456–1462.
– year: 1998
  ident: bib8
  article-title: Genetic Algorithms and Grouping Problems
– volume: 7
  start-page: 14
  year: 1999
  end-page: 25
  ident: bib32
  article-title: Parallel and distributed data mining
  publication-title: IEEE Concurr.
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: bib58
  article-title: Comparing partitions
  publication-title: J. Classif.
– volume: 21
  start-page: 681
  year: 2009
  end-page: 698
  ident: bib34
  article-title: Hierarchically distributed peer-to-peer document clustering and cluster summarization
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: M.C. Naldi, A. Fontana, R.J.G.B. Campello, Comparison among methods for k estimation in k-means, in: The 9th International Conference on Intelligent Systems Design and Applications, ISDA, Pisa, Italy, 2009, pp. 1006–1013.
– volume: vol. 2992
  start-page: 88
  year: 2004
  end-page: 105
  ident: bib43
  article-title: DBDC
  publication-title: Advances in Database Technology—EDBT 2004, Lecture Notes in Computer Science
– volume: 28
  start-page: 172
  year: 2004
  ident: bib15
  article-title: Incremental genetic k-means algorithm and its application in gene expression data analysis
  publication-title: BMC Bioinform.
– reference: 〉, 2008.
– year: 1997
  ident: bib27
  article-title: Machine Learning
– volume: 59
  start-page: 1
  year: 2006
  end-page: 34
  ident: bib5
  article-title: K-means clustering
  publication-title: Br. J. Math. Stat. Psychol.
– volume: 31
  start-page: 523
  year: 2005
  end-page: 527
  ident: bib42
  article-title: A novel parallelization approach for hierarchical clustering
  publication-title: Parallel Comput.
– reference: V. Rayward-Smith, Metaheuristics for clustering in kdd, in: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, Edinburgh, UK, 2005, pp. 2380–2387.
– volume: 11
  start-page: 1938
  year: 2011
  end-page: 1952
  ident: bib21
  article-title: Efficiency issues of evolutionary
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 1
  year: 2010
  end-page: 13
  ident: bib25
  article-title: Recent developments in data protection at European union level
  publication-title: ERA-Forum, Online First
– year: 1998
  ident: bib49
  article-title: An Introduction to Genetic Algorithms
– volume: 3
  start-page: 370
  year: 1995
  end-page: 379
  ident: bib61
  article-title: On cluster validity for the fuzzy c-means model
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 50
  start-page: 159
  year: 1985
  end-page: 179
  ident: bib55
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
– reference: Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: a fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC׳04, ACM, New York, NY, USA, 2004, pp. 622–623.
– volume: 40
  start-page: 547
  year: 1997
  end-page: 554
  ident: bib10
  article-title: Genetic algorithms for large scale clustering problems
  publication-title: Comput. J.
– reference: L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in: SIAM International Conference on Data Mining, Sparks/USA, 2009, pp. 733–744.
– volume: 2
  start-page: 19
  year: 2004
  end-page: 27
  ident: bib45
  article-title: Privacy-preserving data mining
  publication-title: IEEE Secur. Priv.
– volume: 75
  start-page: 800
  year: 1988
  ident: 10.1016/j.neucom.2014.07.083_bib67
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
– volume: 12
  start-page: 1
  year: 2010
  ident: 10.1016/j.neucom.2014.07.083_bib25
  article-title: Recent developments in data protection at European union level
  publication-title: ERA-Forum, Online First
– year: 1997
  ident: 10.1016/j.neucom.2014.07.083_bib33
– ident: 10.1016/j.neucom.2014.07.083_bib6
– ident: 10.1016/j.neucom.2014.07.083_bib22
  doi: 10.1109/ISDA.2009.78
– year: 2006
  ident: 10.1016/j.neucom.2014.07.083_bib65
– ident: 10.1016/j.neucom.2014.07.083_bib35
– ident: 10.1016/j.neucom.2014.07.083_bib19
  doi: 10.1109/CEC.2006.1688522
– ident: 10.1016/j.neucom.2014.07.083_bib28
  doi: 10.1109/IDEAS.2006.36
– volume: 15
  start-page: 43
  year: 2009
  ident: 10.1016/j.neucom.2014.07.083_bib20
  article-title: On the efficiency of evolutionary fuzzy clustering
  publication-title: J. Heuristics
  doi: 10.1007/s10732-007-9059-6
– volume: 2
  start-page: 34
  year: 2000
  ident: 10.1016/j.neucom.2014.07.083_bib40
  article-title: Distributed data clustering can be efficient and exact
  publication-title: ACM SIGKDD Explor. Newslett.
  doi: 10.1145/380995.381010
– volume: 21
  start-page: 681
  year: 2009
  ident: 10.1016/j.neucom.2014.07.083_bib34
  article-title: Hierarchically distributed peer-to-peer document clustering and cluster summarization
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.189
– volume: 31
  start-page: 264
  year: 1999
  ident: 10.1016/j.neucom.2014.07.083_bib2
  article-title: Data clustering
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 176
  start-page: 1952
  year: 2006
  ident: 10.1016/j.neucom.2014.07.083_bib38
  article-title: Clustering distributed data streams in peer-to-peer environments
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2005.11.007
– volume: 34
  start-page: 56
  year: 2007
  ident: 10.1016/j.neucom.2014.07.083_bib60
  article-title: An evolutionary approach to multiobjective clustering
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.877146
– year: 1996
  ident: 10.1016/j.neucom.2014.07.083_bib56
– year: 1997
  ident: 10.1016/j.neucom.2014.07.083_bib27
– ident: 10.1016/j.neucom.2014.07.083_bib47
  doi: 10.5772/13945
– ident: 10.1016/j.neucom.2014.07.083_bib17
– volume: 11
  start-page: 1938
  year: 2011
  ident: 10.1016/j.neucom.2014.07.083_bib21
  article-title: Efficiency issues of evolutionary k-means
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.06.010
– volume: 146
  start-page: 221
  year: 2002
  ident: 10.1016/j.neucom.2014.07.083_bib13
  article-title: An evolutionary technique based on k-means algorithm for optimal clustering in Rn
  publication-title: Inf. Sci.
  doi: 10.1016/S0020-0255(02)00208-6
– ident: 10.1016/j.neucom.2014.07.083_bib16
  doi: 10.1145/967900.968029
– volume: 21
  start-page: 1372
  year: 2009
  ident: 10.1016/j.neucom.2014.07.083_bib39
  article-title: Approximate distributed k-means clustering over a peer-to-peer network
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.222
– ident: 10.1016/j.neucom.2014.07.083_bib44
– volume: 40
  start-page: 547
  year: 1997
  ident: 10.1016/j.neucom.2014.07.083_bib10
  article-title: Genetic algorithms for large scale clustering problems
  publication-title: Comput. J.
  doi: 10.1093/comjnl/40.9.547
– volume: 2
  start-page: 19
  year: 2004
  ident: 10.1016/j.neucom.2014.07.083_bib45
  article-title: Privacy-preserving data mining
  publication-title: IEEE Secur. Priv.
  doi: 10.1109/MSP.2004.108
– ident: 10.1016/j.neucom.2014.07.083_bib57
  doi: 10.1109/ISDA.2009.80
– year: 1995
  ident: 10.1016/j.neucom.2014.07.083_bib50
– ident: 10.1016/j.neucom.2014.07.083_bib51
  doi: 10.1109/ICDM.2004.10073
– volume: 3
  start-page: 209
  year: 2010
  ident: 10.1016/j.neucom.2014.07.083_bib48
  article-title: Relative clustering validity criteria
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10080
– year: 1998
  ident: 10.1016/j.neucom.2014.07.083_bib49
– year: 1988
  ident: 10.1016/j.neucom.2014.07.083_bib1
– ident: 10.1016/j.neucom.2014.07.083_bib3
  doi: 10.1109/TNN.2005.845141
– ident: 10.1016/j.neucom.2014.07.083_bib52
– volume: 155
  start-page: 191
  year: 2005
  ident: 10.1016/j.neucom.2014.07.083_bib62
  article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2005.04.009
– volume: 9
  start-page: 113
  year: 2003
  ident: 10.1016/j.neucom.2014.07.083_bib14
  article-title: Self-adaptive genetic algorithm for clustering
  publication-title: J. Heuristics
  doi: 10.1023/A:1022521428870
– ident: 10.1016/j.neucom.2014.07.083_bib31
  doi: 10.1109/BRACIS.2013.20
– volume: vol. 3824
  start-page: 1133
  year: 2005
  ident: 10.1016/j.neucom.2014.07.083_bib59
  article-title: A network evaluation for LAN, MAN and WAN Grid environments
– year: 1973
  ident: 10.1016/j.neucom.2014.07.083_bib64
– volume: 3
  start-page: 370
  year: 1995
  ident: 10.1016/j.neucom.2014.07.083_bib61
  article-title: On cluster validity for the fuzzy c-means model
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/91.413225
– volume: 50
  start-page: 159
  year: 1985
  ident: 10.1016/j.neucom.2014.07.083_bib55
  article-title: An examination of procedures for determining the number of clusters in a data set
  publication-title: Psychometrika
  doi: 10.1007/BF02294245
– start-page: 804
  year: 2000
  ident: 10.1016/j.neucom.2014.07.083_bib24
– volume: vol. 2992
  start-page: 88
  year: 2004
  ident: 10.1016/j.neucom.2014.07.083_bib43
  article-title: DBDC
– volume: 30
  start-page: 859
  year: 1997
  ident: 10.1016/j.neucom.2014.07.083_bib11
  article-title: A genetic c-means clustering algorithm applied to color image quantization
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(96)00131-8
– ident: 10.1016/j.neucom.2014.07.083_bib26
  doi: 10.1145/233269.233324
– ident: 10.1016/j.neucom.2014.07.083_bib46
  doi: 10.1016/j.datak.2007.03.015
– volume: 31
  start-page: 523
  year: 2005
  ident: 10.1016/j.neucom.2014.07.083_bib42
  article-title: A novel parallelization approach for hierarchical clustering
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2005.01.001
– volume: 39
  start-page: 133
  year: 2009
  ident: 10.1016/j.neucom.2014.07.083_bib9
  article-title: A survey of evolutionary algorithms for clustering
  publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev.
  doi: 10.1109/TSMCC.2008.2007252
– ident: 10.1016/j.neucom.2014.07.083_bib63
  doi: 10.1007/978-3-642-01088-0_8
– volume: 2
  start-page: 193
  year: 1985
  ident: 10.1016/j.neucom.2014.07.083_bib58
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– ident: 10.1016/j.neucom.2014.07.083_bib53
  doi: 10.1137/1.9781611972795.63
– volume: 59
  start-page: 1
  issue: May (34)
  year: 2006
  ident: 10.1016/j.neucom.2014.07.083_bib5
  article-title: K-means clustering
  publication-title: Br. J. Math. Stat. Psychol.
  doi: 10.1348/000711005X48266
– volume: 29
  start-page: 433
  year: 1999
  ident: 10.1016/j.neucom.2014.07.083_bib12
  article-title: Genetic k-means algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/3477.764879
– volume: 7
  start-page: 14
  year: 1999
  ident: 10.1016/j.neucom.2014.07.083_bib32
  article-title: Parallel and distributed data mining
  publication-title: IEEE Concurr.
  doi: 10.1109/4434.806975
– year: 1998
  ident: 10.1016/j.neucom.2014.07.083_bib8
– volume: 28
  start-page: 172
  year: 2004
  ident: 10.1016/j.neucom.2014.07.083_bib15
  article-title: Incremental genetic k-means algorithm and its application in gene expression data analysis
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-5-172
– ident: 10.1016/j.neucom.2014.07.083_bib36
  doi: 10.1007/3-540-46502-2_13
– volume: 10
  start-page: 277
  year: 2005
  ident: 10.1016/j.neucom.2014.07.083_bib37
  article-title: Improvement and parallelism of k-means clustering algorithm
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1016/S1007-0214(05)70069-9
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.neucom.2014.07.083_bib54
  article-title: A dendrite method for cluster analysis
  publication-title: Commun. Stat.
– volume: 7
  start-page: 261
  year: 2010
  ident: 10.1016/j.neucom.2014.07.083_bib23
  article-title: Evolutionary clustering of relational data
  publication-title: Int. J. Hybrid Intell. Syst.
  doi: 10.3233/HIS-2010-0119
– ident: 10.1016/j.neucom.2014.07.083_bib4
  doi: 10.1007/978-3-642-10675-0
– volume: 21
  start-page: 1313
  year: 1995
  ident: 10.1016/j.neucom.2014.07.083_bib41
  article-title: Parallel algorithms for hierarchical clustering
  publication-title: Parallel Comput.
  doi: 10.1016/0167-8191(95)00017-I
– ident: 10.1016/j.neucom.2014.07.083_bib30
  doi: 10.1109/SBRN.2012.11
– volume: 75
  start-page: 800
  year: 2013
  ident: 10.1016/j.neucom.2014.07.083_bib29
  article-title: Evolutionary k-means for distributed datasets
  publication-title: Neurocomputing
– volume: 176
  start-page: 1898
  year: 2006
  ident: 10.1016/j.neucom.2014.07.083_bib18
  article-title: Evolving clusters in gene-expression data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2005.07.015
– ident: 10.1016/j.neucom.2014.07.083_bib7
  doi: 10.1109/CEC.2005.1554991
– year: 1987
  ident: 10.1016/j.neucom.2014.07.083_bib66
SSID ssj0017129
Score 2.2797585
Snippet Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means,...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 78
SubjectTerms Distributed clustering
Evolutionary k-means
Low data transmission
Privacy preservation
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqLrDwRpSXPLC6TRzHdkZUqCokWKBSt-jGdqCQplVpQF34duw8KhgQiDGRLUcn92Xp3HMRugCZaNBSE18LIE6fxMbBlBKWpn5qrIv5ZX_F7R0fjtjNOBy3UL_phXG0yjr2VzG9jNb1m16NZm8-mfTuvYjaW5RTRyjrEtdRzphwUwy6H2uahy98Wunt0ZC41U37XMnxyk3hOCM2CbJSwlMGP6WnjSKfw-odsuxL-hnsoK26bsSX1aftopbJ99B2M5MB1y66j67668GCeJZi7XRx3Ugro7F5q80MFiv8QqbGZimsssJJJdgEhiF7nC0my6fp6wEaDa4f-kNST0ogilG6JJEJGecJeAkHJbkWXPA0FTxhUtv6JIisZ2pOFQV73QkiCEEbP0kirSDkkaTBIWrns9wcIayYsSACFwY8lkglRSCYp4H5UoEMVAcFDUCxqmXE3TSLLG74Ys9xBWvsYI09EVtYO4isd80rGY1f1osG-_ibOcQ20v-ys7v-VX866vjfR52gTfsUlowzeoray0VhzmyJskzOSxv8BEab5Xw
  priority: 102
  providerName: Elsevier
Title Comparison of distributed evolutionary k-means clustering algorithms
URI https://dx.doi.org/10.1016/j.neucom.2014.07.083
http://doi.org/10.1016/j.neucom.2014.07.083
UnpaywallVersion publishedVersion
Volume 163
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owEB4VOLSX0qeW7Rb50Ksj4ji2c0RsEduqqIci0VPkV_rYEBAkXbGH_e3rvGirCi09RvLE8jwyX-SZbwDeSaGMNMJg33CJS34S9x1MCKZJ4ifWhZhf9Vd8mrPZgn5YhsvfPNt_Xd9XZViZLcqyDpenaMWyKYIO9FjogHcXeov55_HXik2PhNghlepuU3BSNUe3jXJHXnMsET0uso3c38g0_SPRTPt1B_eu4ics60uuvSJXnr79l73xlDM8g6cN4ETj2kOewyObvYB-O8wBNbH9Ei4nh4mEaJ0gUxLqlrOwrEH2V-OfcrtH13hlXXpDOi1KjgWX-ZBMv623P_Lvq90rWEzff5nMcDNiAWtKSI4jG1LGlBwpJrVghjPOkoQzRYVxwCaIXEgbRjSR7j8piGQojfWVioyWIYsECV5DN1tn9gyQppZyt45bOaJKaMEDTkdGUl9oKQI9gKDVd6wb_vFyDEYat4VmP-NaUXGpqHjEY6eoAeCD1Kbm33hgPW9NGTcYosYGsTPLA5LewfInbXX-vwJv4Il7CqsKNXIB3Xxb2LcO0uRqCB3vzh9Cb3z1cTYfNo59D1Gc89Y
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6xuE8exnREVqgKFBZC6WY7tQCFNq9KCuvDbsfOoYEAg1uQsR1_uKd19B8Cp5LGWmmvkayaR4yexfjDBiCSJnxhrYn4-X3FzS7sP5Kof9mugXc3CuLbK0vcXPj331uWTVolmazwYtO68CNsqyrEj5HkJWwLLJMTMVWDNj0Wfh898XBDu4RA58Wp-Lm_yyszMNY3YKEhyDk8e_BSfVmbZWM7fZZp-iT-dDbBWJo7wrPi2TVAz2RZYr5YywNJGt8F5e7FZEI4SqB0xrttpZTQ0b6WeyckcvqChsWEKqnTmuBJsBIMyfRxNBtOn4esOeOhc3Le7qFyVgBTBeIoiExJKY-nFVCpONaOMJgmjMeHaJihBZE1TU6ywtPVOEMlQauPHcaSVDGnEcbAL6tkoM3sAKmIIs3LMSI_EXHEWMOJpSXyuJA9UAwQVQEKVPOJunUUqqoaxZ1HAKhyswmPCwtoAaHFqXPBo_CLPKuzFN30Q1tX_crK5-FV_umr_31edgJXu_U1P9C5vrw_Aqn0T5u1n-BDUp5OZObL5yjQ-zvXxE-Ft6J8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPcCFHVE2-cDVVeI4tnOsCgghUXGgUjlF3sLSNEUlAZWvx3GSAkIIOEbyxPIsmRd55g0AJ4JLLTTXyNdMoJKfxH4HE4xIkviJsSHmu_6KqwG9GJLLUTj64Nn-cn3vyrAyU5RlHTZPEceyyYNl0KahBd4t0B4Ornu3jk0Ph8giFXe3yRl2zdFNo9wPr_kpEa0U2ZOYv4o0_ZRozterDu5nx09Y1peMu0Uuu-rtO3vjX86wAdZqwAl7lYdsgiWTbYH1ZpgDrGN7G5z2FxMJ4TSBuiTULWdhGQ3NS-2fYjaHYzQxNr1BlRYlx4LNfFCkd9PZQ34_ed4Bw_Ozm_4FqkcsIEUwzlFkQkKpFJ6kQnGqGWU0SRiVhGsLbILIhrSmWGFh_5OCSIRCG1_KSCsR0ojjYBe0smlm9gBUxBBm1zEjPCK54ixgxNOC-FwJHqgOCBp9x6rmHy_HYKRxU2j2GFeKiktFxR6LraI6AC2knir-jV_Ws8aUcY0hKmwQW7P8ItldWP5PW-3_V-AArNqn0FWo4UPQymeFObKQJpfHtSu_AxJw8Uo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+distributed+evolutionary+k-means+clustering+algorithms&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Naldi%2C+M.C.&rft.au=Campello%2C+R.J.G.B.&rft.date=2015-09-02&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=163&rft.spage=78&rft.epage=93&rft_id=info:doi/10.1016%2Fj.neucom.2014.07.083&rft.externalDocID=S0925231215004567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon