Comparison of distributed evolutionary k-means clustering algorithms
Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of cont...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 163; pp. 78 - 93 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
02.09.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 1872-8286 |
| DOI | 10.1016/j.neucom.2014.07.083 |
Cover
| Abstract | Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of contexts and application domains. However, exact distributed versions of k-means are still sensitive to the selection of the initial cluster prototypes and require the number of clusters to be specified in advance. Additionally, preserving data privacy among repositories may be a complicating factor. In order to overcome k-means limitations, two different approaches were adopted in this paper: the first obtains a final model identical to the centralized version of the clustering algorithm and the second generates and selects clusters for each distributed data subset and combines them afterwards. It is also described how to apply the algorithms compared while preserving data privacy. The algorithms are compared experimentally from two perspectives: the theoretical one, through asymptotic complexity analyses, and the experimental one, through a comparative evaluation of results obtained from a collection of experiments and statistical tests. The results obtained indicate which algorithm is more suitable for each application scenario. |
|---|---|
| AbstractList | Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means, has been elected as one of the most influential data mining algorithms for being simple, scalable, and easily modifiable to a variety of contexts and application domains. However, exact distributed versions of k-means are still sensitive to the selection of the initial cluster prototypes and require the number of clusters to be specified in advance. Additionally, preserving data privacy among repositories may be a complicating factor. In order to overcome k-means limitations, two different approaches were adopted in this paper: the first obtains a final model identical to the centralized version of the clustering algorithm and the second generates and selects clusters for each distributed data subset and combines them afterwards. It is also described how to apply the algorithms compared while preserving data privacy. The algorithms are compared experimentally from two perspectives: the theoretical one, through asymptotic complexity analyses, and the experimental one, through a comparative evaluation of results obtained from a collection of experiments and statistical tests. The results obtained indicate which algorithm is more suitable for each application scenario. |
| Author | Campello, R.J.G.B. Naldi, M.C. |
| Author_xml | – sequence: 1 givenname: M.C. surname: Naldi fullname: Naldi, M.C. email: murilocn@ufv.br organization: Federal University of Viçosa – UFV, Rodovia BR 354 – km 310, Caixa Postal: 22, CEP: 38.810-000, Rio Paranaíba, MG, Brazil – sequence: 2 givenname: R.J.G.B. orcidid: 0000-0002-3107-8236 surname: Campello fullname: Campello, R.J.G.B. email: campello@icmc.usp.br organization: Institute of Mathematics and Computer Sciences, University of São Paulo – USP, Av. Trabalhador São-Carlense, 400 Centro, Caixa Postal: 668, CEP: 13560-970, São Carlos, SP, Brazil |
| BookMark | eNqN0L1OwzAUhmELFYm2cAcMuYEE20nshAEJlV-pEgvM1ontFJfErmynqHdPqjAxANOZ3k9HzwLNrLMaoUuCM4IJu9pmVg_S9RnFpMgwz3CVn6A5qThNK1qxGZrjmpYpzQk9Q4sQthgTTmg9R3cr1-_Am-Bs4tpEmRC9aYaoVaL3rhuicRb8IflIew02JLIbQtTe2E0C3cZ5E9_7cI5OW-iCvvi-S_T2cP-6ekrXL4_Pq9t1KgtKY1rrsmCsAdwwkBVTnHHWtpw1RaUoz_O6oKViVFJgtMxrKEFp0jS1klCyuqL5EpXT7mB3cPiErhM7b_rxP0GwOFKIrZgoxJFCYC5GirErpk56F4LX7X-z6x-ZNBGOItGD6f6Kb6ZYjyB7o70I0mgrtTJeyyiUM78PfAHwCZHw |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2016_07_074 crossref_primary_10_1016_j_neucom_2021_08_154 crossref_primary_10_1007_s10115_016_0946_8 crossref_primary_10_3390_axioms11080377 crossref_primary_10_1016_j_ins_2020_06_056 crossref_primary_10_3390_math10132167 crossref_primary_10_1016_j_swevo_2019_04_008 crossref_primary_10_3233_JIFS_18113 crossref_primary_10_1016_j_neucom_2019_03_055 crossref_primary_10_1016_j_eswa_2016_03_008 crossref_primary_10_1016_j_jpdc_2025_105038 crossref_primary_10_1007_s12061_020_09346_3 crossref_primary_10_1007_s12206_016_1232_0 crossref_primary_10_3390_app9112326 crossref_primary_10_1016_j_jocs_2017_08_016 crossref_primary_10_1007_s12652_019_01335_w crossref_primary_10_1016_j_jlp_2017_02_028 crossref_primary_10_1016_j_neucom_2019_07_001 |
| Cites_doi | 10.1093/biomet/75.4.800 10.1109/ISDA.2009.78 10.1109/CEC.2006.1688522 10.1109/IDEAS.2006.36 10.1007/s10732-007-9059-6 10.1145/380995.381010 10.1109/TKDE.2008.189 10.1145/331499.331504 10.1016/j.ins.2005.11.007 10.1109/TEVC.2006.877146 10.5772/13945 10.1016/j.asoc.2010.06.010 10.1016/S0020-0255(02)00208-6 10.1145/967900.968029 10.1109/TKDE.2008.222 10.1093/comjnl/40.9.547 10.1109/MSP.2004.108 10.1109/ISDA.2009.80 10.1109/ICDM.2004.10073 10.1002/sam.10080 10.1109/TNN.2005.845141 10.1016/j.fss.2005.04.009 10.1023/A:1022521428870 10.1109/BRACIS.2013.20 10.1109/91.413225 10.1007/BF02294245 10.1016/S0031-3203(96)00131-8 10.1145/233269.233324 10.1016/j.datak.2007.03.015 10.1016/j.parco.2005.01.001 10.1109/TSMCC.2008.2007252 10.1007/978-3-642-01088-0_8 10.1007/BF01908075 10.1137/1.9781611972795.63 10.1348/000711005X48266 10.1109/3477.764879 10.1109/4434.806975 10.1186/1471-2105-5-172 10.1007/3-540-46502-2_13 10.1016/S1007-0214(05)70069-9 10.3233/HIS-2010-0119 10.1007/978-3-642-10675-0 10.1016/0167-8191(95)00017-I 10.1109/SBRN.2012.11 10.1016/j.ins.2005.07.015 10.1109/CEC.2005.1554991 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.neucom.2014.07.083 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 93 |
| ExternalDocumentID | 002689097 10_1016_j_neucom_2014_07_083 S0925231215004567 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c422t-9e5466ba0b6ac86d7676ff76b48d27339425d62c2a62539a5ade1bb9dca569823 |
| IEDL.DBID | UNPAY |
| ISSN | 0925-2312 1872-8286 |
| IngestDate | Sun Oct 26 04:11:16 EDT 2025 Wed Oct 01 06:00:20 EDT 2025 Thu Apr 24 22:56:07 EDT 2025 Fri Feb 23 02:28:29 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Privacy preservation Distributed clustering Low data transmission Evolutionary k-means |
| Language | English |
| License | other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-9e5466ba0b6ac86d7676ff76b48d27339425d62c2a62539a5ade1bb9dca569823 |
| ORCID | 0000-0002-3107-8236 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://doi.org/10.1016/j.neucom.2014.07.083 |
| PageCount | 16 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neucom_2014_07_083 crossref_primary_10_1016_j_neucom_2014_07_083 crossref_citationtrail_10_1016_j_neucom_2014_07_083 elsevier_sciencedirect_doi_10_1016_j_neucom_2014_07_083 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-09-02 |
| PublicationDateYYYYMMDD | 2015-09-02 |
| PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-02 day: 02 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, 2005. Hruschka, Campello, Freitas, Ponce Leon, de Carvalho (bib9) 2009; 39 W. Sheng, X. Liu, A hybrid algorithm for k-medoid clustering of large data sets, in: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 2004, pp. 77–82. Dodonov, Mello, Yang (bib59) 2005; vol. 3824 V. Rayward-Smith, Metaheuristics for clustering in kdd, in: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, Edinburgh, UK, 2005, pp. 2380–2387. S.R.M. Oliveira, O.R. Zaïne, Privacy preserving clustering by data transformation, in: Proceedings of the 18th Brazilian Symposium on Databases 2003, pp. 304–318. Hubert, Arabie (bib58) 1985; 2 Falkenauer (bib8) 1998 Pakhira, Bandyopadhyay, Maulik (bib62) 2005; 155 Calinski, Harabasz (bib54) 1974; 3 Mitchell (bib27) 1997 D. Horta, M.C. Naldi, R.J.G.B. Campello, E.R. Hruschka, A.C.P.L.F. Carvalho, in: Bio-Inspired Data Mining: Theoretical Foundations and Applications, Foundations of Computational Intelligence, vol. 4, 2009, Springer-Verlag, Berlin, Germany, pp. 167–195. Bandyopadhyay, Giannella, Maulik, Kargupta, Liu, Datta (bib38) 2006; 176 Krishna, Murty (bib12) 1999; 29 Naldi, Campello (bib29) 2013; 75 M.C. Naldi, A. Fontana, R.J.G.B. Campello, Comparison among methods for k estimation in k-means, in: The 9th International Conference on Intelligent Systems Design and Applications, ISDA, Pisa, Italy, 2009, pp. 1006–1013. Naldi, Campello, Hruschka, Carvalho (bib21) 2011; 11 V. Alves, R. Campello, E. Hruschka, Towards a fast evolutionary algorithm for clustering, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 1776–1783. Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: a fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC׳04, ACM, New York, NY, USA, 2004, pp. 622–623. M.C. Naldi, R.J.G.B. Campello, Distributed Mitchell (bib49) 1998 Fränti, Kivijärvi, Kaukoranta, Nevalainen (bib10) 1997; 40 Lu, Lu, Fotouhi, Deng, Brown (bib15) 2004; 28 Campello, Hruschka, Alves (bib20) 2009; 15 M.C. Naldi, R.J.G.B. Campello, Combining information from distributed evolutionary Scheunders (bib11) 1997; 30 Hammouda, Kamel (bib34) 2009; 21 Milligan, Cooper (bib55) 1985; 50 R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (2005) 645–678. Zaki (bib32) 1999; 7 Vendramin, Campello, Hruschka (bib48) 2010; 3 F.L. Gorgônio, J.A.F. Costa, Privacy-preserving clustering on distributed databases: a review and some contributions, in: Self Organizing Maps—Applications and Novel Algorithm Design, InTech, 2011, pp. 33–54. X. Wu, Top 10 Algorithms in Data Mining, April 9, 2009 by Chapman and Hall/CRC Reference - 232 Pages - 53 B/W Illustrations ISBN 9781420089646 Freitas, Lavington (bib33) 1997 A. Inan, S.V. Kaya, Y. SaygIn, E. Savas, A.A. Hintoglu, A. Levi, Privacy preserving clustering on horizontally partitioned data, Data Knowl. Eng. 63 (2007) 646–666 (25th International Conference on Conceptual Modeling (ER 2006)—‘Four of the best papers presented). Steinley (bib5) 2006; 59 Jain, Dubes (bib1) 1988 Hochberg, Tamhane (bib66) 1987 I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory multiprocessors, in: Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, Springer-Verlag, London, UK, 2000, pp. 245–260. means, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, Curitiba, Brazil, 2012, pp. 43–48. L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in: SIAM International Conference on Data Mining, Sparks/USA, 2009, pp. 733–744. Hijmans (bib25) 2010; 12 Datta, Giannella, Kargupta (bib39) 2009; 21 F. de Vega, E. Cantú-Paz, Parallel and Distributed Computational Intelligence, in: Studies in Computational Intelligence, vol. 269, Springer, Berlin, Heidelberg, 2010. Davis (bib56) 1996 Tian, Zhu, Zhang, Liu (bib37) 2005; 10 Januzaj, Kriegel, Pfeifle (bib43) 2004; vol. 2992 Du, Lin (bib42) 2005; 31 Hruschka, Campello, de Castro (bib18) 2006; 176 Anderberg (bib64) 1973 Jain, Murty, Flynn (bib2) 1999; 31 A. Garg, A. Mangla, N. Gupta, V. Bhatnagar, PBIRCH: a scalable parallel clustering algorithm for incremental data, in: 10th International Database Engineering and Applications Symposium, IDEAS׳06, 2006, pp. 315–316. Handl, Knowles (bib60) 2007; 34 Kivijärvi, Fränti, Nevalainen (bib14) 2003; 9 Olson (bib41) 1995; 21 D. Horta, R.J.G.B. Campello, Fast evolutionary algorithms for relational clustering, in: The International Conference on Intelligent Systems Design and Applications, Pisa, Tuscany, Italy, 2009, pp. 1456–1462. Walpole, Myers, Myers (bib65) 2006 Horta, Campello (bib23) 2010; 7 K. Bhaduri, K. Das, K. Liu, H. Kargupta, J. Ryan, Distributed Data Mining Bibliography Bandyopadhyay, Maulik (bib13) 2002; 146 Forman, Zhang (bib40) 2000; 2 Hochberg (bib67) 1988; 75 Vaidya, Clifton (bib45) 2004; 2 Fogel (bib50) 1995 T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996, pp. 103–114. means clustering with low transmission cost, in: Proceedings of the Brazilian Conference on Intelligent Systems, IEEE Computer Society, Fortaleza, Brazil, 2013, pp. 70–75. Zaki (bib24) 2000 E.R. Hruschka, R.J.G.B. Campello, L.N. de Castro, Evolutionary algorithms for clustering gene-expression data, in: Proceedings of the IEEE International Conference on Data Mining, Brighton/England, 2004, pp. 403–406. Pal, Bezdek (bib61) 1995; 3 2008. Hammouda (10.1016/j.neucom.2014.07.083_bib34) 2009; 21 Du (10.1016/j.neucom.2014.07.083_bib42) 2005; 31 10.1016/j.neucom.2014.07.083_bib31 Hubert (10.1016/j.neucom.2014.07.083_bib58) 1985; 2 Scheunders (10.1016/j.neucom.2014.07.083_bib11) 1997; 30 10.1016/j.neucom.2014.07.083_bib36 10.1016/j.neucom.2014.07.083_bib35 Campello (10.1016/j.neucom.2014.07.083_bib20) 2009; 15 Forman (10.1016/j.neucom.2014.07.083_bib40) 2000; 2 Freitas (10.1016/j.neucom.2014.07.083_bib33) 1997 10.1016/j.neucom.2014.07.083_bib28 Bandyopadhyay (10.1016/j.neucom.2014.07.083_bib38) 2006; 176 Lu (10.1016/j.neucom.2014.07.083_bib15) 2004; 28 10.1016/j.neucom.2014.07.083_bib22 Milligan (10.1016/j.neucom.2014.07.083_bib55) 1985; 50 Vendramin (10.1016/j.neucom.2014.07.083_bib48) 2010; 3 Pal (10.1016/j.neucom.2014.07.083_bib61) 1995; 3 10.1016/j.neucom.2014.07.083_bib26 Walpole (10.1016/j.neucom.2014.07.083_bib65) 2006 Bandyopadhyay (10.1016/j.neucom.2014.07.083_bib13) 2002; 146 10.1016/j.neucom.2014.07.083_bib30 Datta (10.1016/j.neucom.2014.07.083_bib39) 2009; 21 Dodonov (10.1016/j.neucom.2014.07.083_bib59) 2005; vol. 3824 Mitchell (10.1016/j.neucom.2014.07.083_bib27) 1997 Zaki (10.1016/j.neucom.2014.07.083_bib24) 2000 Anderberg (10.1016/j.neucom.2014.07.083_bib64) 1973 Tian (10.1016/j.neucom.2014.07.083_bib37) 2005; 10 10.1016/j.neucom.2014.07.083_bib17 Januzaj (10.1016/j.neucom.2014.07.083_bib43) 2004; vol. 2992 Steinley (10.1016/j.neucom.2014.07.083_bib5) 2006; 59 10.1016/j.neucom.2014.07.083_bib19 Vaidya (10.1016/j.neucom.2014.07.083_bib45) 2004; 2 10.1016/j.neucom.2014.07.083_bib53 Zaki (10.1016/j.neucom.2014.07.083_bib32) 1999; 7 Calinski (10.1016/j.neucom.2014.07.083_bib54) 1974; 3 Krishna (10.1016/j.neucom.2014.07.083_bib12) 1999; 29 10.1016/j.neucom.2014.07.083_bib57 10.1016/j.neucom.2014.07.083_bib16 Hochberg (10.1016/j.neucom.2014.07.083_bib67) 1988; 75 Jain (10.1016/j.neucom.2014.07.083_bib1) 1988 Naldi (10.1016/j.neucom.2014.07.083_bib29) 2013; 75 Naldi (10.1016/j.neucom.2014.07.083_bib21) 2011; 11 10.1016/j.neucom.2014.07.083_bib63 Horta (10.1016/j.neucom.2014.07.083_bib23) 2010; 7 Hochberg (10.1016/j.neucom.2014.07.083_bib66) 1987 Fränti (10.1016/j.neucom.2014.07.083_bib10) 1997; 40 10.1016/j.neucom.2014.07.083_bib3 10.1016/j.neucom.2014.07.083_bib4 10.1016/j.neucom.2014.07.083_bib6 Hruschka (10.1016/j.neucom.2014.07.083_bib18) 2006; 176 10.1016/j.neucom.2014.07.083_bib7 Kivijärvi (10.1016/j.neucom.2014.07.083_bib14) 2003; 9 Pakhira (10.1016/j.neucom.2014.07.083_bib62) 2005; 155 Falkenauer (10.1016/j.neucom.2014.07.083_bib8) 1998 10.1016/j.neucom.2014.07.083_bib44 Mitchell (10.1016/j.neucom.2014.07.083_bib49) 1998 10.1016/j.neucom.2014.07.083_bib47 Davis (10.1016/j.neucom.2014.07.083_bib56) 1996 10.1016/j.neucom.2014.07.083_bib46 Hijmans (10.1016/j.neucom.2014.07.083_bib25) 2010; 12 Fogel (10.1016/j.neucom.2014.07.083_bib50) 1995 Hruschka (10.1016/j.neucom.2014.07.083_bib9) 2009; 39 Jain (10.1016/j.neucom.2014.07.083_bib2) 1999; 31 Handl (10.1016/j.neucom.2014.07.083_bib60) 2007; 34 10.1016/j.neucom.2014.07.083_bib52 10.1016/j.neucom.2014.07.083_bib51 Olson (10.1016/j.neucom.2014.07.083_bib41) 1995; 21 |
| References_xml | – volume: 2 start-page: 34 year: 2000 end-page: 38 ident: bib40 article-title: Distributed data clustering can be efficient and exact publication-title: ACM SIGKDD Explor. Newslett. – volume: 15 start-page: 43 year: 2009 end-page: 75 ident: bib20 article-title: On the efficiency of evolutionary fuzzy clustering publication-title: J. Heuristics – volume: 21 start-page: 1372 year: 2009 end-page: 1388 ident: bib39 article-title: Approximate distributed k-means clustering over a peer-to-peer network publication-title: IEEE Trans. Knowl. Data Eng. – volume: 146 start-page: 221 year: 2002 end-page: 237 ident: bib13 article-title: An evolutionary technique based on k-means algorithm for optimal clustering in R publication-title: Inf. Sci. – year: 1997 ident: bib33 article-title: Mining Very Large Databases with Parallel Processing – year: 1995 ident: bib50 article-title: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence – reference: T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: Proceedings of the ACM SIGMOD International Conference on Management of Data, Montreal, Canada, 1996, pp. 103–114. – volume: 21 start-page: 1313 year: 1995 end-page: 1325 ident: bib41 article-title: Parallel algorithms for hierarchical clustering publication-title: Parallel Comput. – reference: L. Kaufman, P. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, Wiley Series in Probability and Statistics, 2005. – reference: D. Horta, M.C. Naldi, R.J.G.B. Campello, E.R. Hruschka, A.C.P.L.F. Carvalho, in: Bio-Inspired Data Mining: Theoretical Foundations and Applications, Foundations of Computational Intelligence, vol. 4, 2009, Springer-Verlag, Berlin, Germany, pp. 167–195. – reference: F. de Vega, E. Cantú-Paz, Parallel and Distributed Computational Intelligence, in: Studies in Computational Intelligence, vol. 269, Springer, Berlin, Heidelberg, 2010. – volume: 75 start-page: 800 year: 1988 end-page: 802 ident: bib67 article-title: A sharper Bonferroni procedure for multiple tests of significance publication-title: Biometrika – reference: M.C. Naldi, R.J.G.B. Campello, Combining information from distributed evolutionary – reference: A. Inan, S.V. Kaya, Y. SaygIn, E. Savas, A.A. Hintoglu, A. Levi, Privacy preserving clustering on horizontally partitioned data, Data Knowl. Eng. 63 (2007) 646–666 (25th International Conference on Conceptual Modeling (ER 2006)—‘Four of the best papers presented). – volume: 31 start-page: 264 year: 1999 end-page: 323 ident: bib2 article-title: Data clustering publication-title: ACM Comput. Surv. – volume: 29 start-page: 433 year: 1999 end-page: 439 ident: bib12 article-title: Genetic k-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. – reference: K. Bhaduri, K. Das, K. Liu, H. Kargupta, J. Ryan, Distributed Data Mining Bibliography 〈 – reference: R. Xu, D. Wunsch, Survey of clustering algorithms, IEEE Trans. Neural Netw. 16 (2005) 645–678. – volume: 10 start-page: 277 year: 2005 end-page: 281 ident: bib37 article-title: Improvement and parallelism of k-means clustering algorithm publication-title: Tsinghua Sci. Technol. – year: 1996 ident: bib56 article-title: Handbook of Genetic Algorithms – volume: 176 start-page: 1952 year: 2006 end-page: 1985 ident: bib38 article-title: Clustering distributed data streams in peer-to-peer environments publication-title: Inf. Sci. – reference: F.L. Gorgônio, J.A.F. Costa, Privacy-preserving clustering on distributed databases: a review and some contributions, in: Self Organizing Maps—Applications and Novel Algorithm Design, InTech, 2011, pp. 33–54. – volume: 75 start-page: 800 year: 2013 end-page: 802 ident: bib29 article-title: Evolutionary k-means for distributed datasets publication-title: Neurocomputing – reference: -means clustering with low transmission cost, in: Proceedings of the Brazilian Conference on Intelligent Systems, IEEE Computer Society, Fortaleza, Brazil, 2013, pp. 70–75. – reference: V. Alves, R. Campello, E. Hruschka, Towards a fast evolutionary algorithm for clustering, in: IEEE Congress on Evolutionary Computation, Vancouver, Canada, 2006, pp. 1776–1783. – start-page: 804 year: 2000 end-page: 827 ident: bib24 article-title: Parallel and Distributed data Mining: An Introduction – reference: I.S. Dhillon, D.S. Modha, A data-clustering algorithm on distributed memory multiprocessors, in: Revised Papers from Large-Scale Parallel Data Mining, Workshop on Large-Scale Parallel KDD Systems, SIGKDD, Springer-Verlag, London, UK, 2000, pp. 245–260. – volume: 9 start-page: 113 year: 2003 end-page: 129 ident: bib14 article-title: Self-adaptive genetic algorithm for clustering publication-title: J. Heuristics – reference: E.R. Hruschka, R.J.G.B. Campello, L.N. de Castro, Evolutionary algorithms for clustering gene-expression data, in: Proceedings of the IEEE International Conference on Data Mining, Brighton/England, 2004, pp. 403–406. – volume: 39 start-page: 133 year: 2009 end-page: 155 ident: bib9 article-title: A survey of evolutionary algorithms for clustering publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. – year: 1973 ident: bib64 publication-title: Cluster Analysis for Applications – year: 1987 ident: bib66 article-title: Multiple Comparison Procedures – reference: S.R.M. Oliveira, O.R. Zaïne, Privacy preserving clustering by data transformation, in: Proceedings of the 18th Brazilian Symposium on Databases 2003, pp. 304–318. – volume: vol. 3824 start-page: 1133 year: 2005 end-page: 1146 ident: bib59 article-title: A network evaluation for LAN, MAN and WAN Grid environments publication-title: Embedded and Ubiquitous Computing—EUC 2005, Lecture Notes in Computer Science – year: 2006 ident: bib65 publication-title: Probability & Statistics for Engineers & Scientists – reference: W. Sheng, X. Liu, A hybrid algorithm for k-medoid clustering of large data sets, in: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, IEEE Press, Portland, USA, 2004, pp. 77–82. – reference: A. Garg, A. Mangla, N. Gupta, V. Bhatnagar, PBIRCH: a scalable parallel clustering algorithm for incremental data, in: 10th International Database Engineering and Applications Symposium, IDEAS׳06, 2006, pp. 315–316. – volume: 3 start-page: 209 year: 2010 end-page: 235 ident: bib48 article-title: Relative clustering validity criteria publication-title: Stat. Anal. Data Min. – volume: 34 start-page: 56 year: 2007 end-page: 76 ident: bib60 article-title: An evolutionary approach to multiobjective clustering publication-title: IEEE Trans. Evol. Comput. – volume: 155 start-page: 191 year: 2005 end-page: 214 ident: bib62 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets Syst. – volume: 30 start-page: 859 year: 1997 end-page: 866 ident: bib11 article-title: A genetic c-means clustering algorithm applied to color image quantization publication-title: Pattern Recognit. – volume: 7 start-page: 261 year: 2010 end-page: 281 ident: bib23 article-title: Evolutionary clustering of relational data publication-title: Int. J. Hybrid Intell. Syst. – year: 1988 ident: bib1 article-title: Algorithms for Clustering Data – volume: 3 start-page: 1 year: 1974 end-page: 27 ident: bib54 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – reference: X. Wu, Top 10 Algorithms in Data Mining, April 9, 2009 by Chapman and Hall/CRC Reference - 232 Pages - 53 B/W Illustrations ISBN 9781420089646 – reference: M.C. Naldi, R.J.G.B. Campello, Distributed – volume: 176 start-page: 1898 year: 2006 end-page: 1927 ident: bib18 article-title: Evolving clusters in gene-expression data publication-title: Inf. Sci. – reference: -means, in: Proceedings of the Brazilian Symposium on Neural Networks, IEEE Computer Society, Curitiba, Brazil, 2012, pp. 43–48. – reference: D. Horta, R.J.G.B. Campello, Fast evolutionary algorithms for relational clustering, in: The International Conference on Intelligent Systems Design and Applications, Pisa, Tuscany, Italy, 2009, pp. 1456–1462. – year: 1998 ident: bib8 article-title: Genetic Algorithms and Grouping Problems – volume: 7 start-page: 14 year: 1999 end-page: 25 ident: bib32 article-title: Parallel and distributed data mining publication-title: IEEE Concurr. – volume: 2 start-page: 193 year: 1985 end-page: 218 ident: bib58 article-title: Comparing partitions publication-title: J. Classif. – volume: 21 start-page: 681 year: 2009 end-page: 698 ident: bib34 article-title: Hierarchically distributed peer-to-peer document clustering and cluster summarization publication-title: IEEE Trans. Knowl. Data Eng. – reference: M.C. Naldi, A. Fontana, R.J.G.B. Campello, Comparison among methods for k estimation in k-means, in: The 9th International Conference on Intelligent Systems Design and Applications, ISDA, Pisa, Italy, 2009, pp. 1006–1013. – volume: vol. 2992 start-page: 88 year: 2004 end-page: 105 ident: bib43 article-title: DBDC publication-title: Advances in Database Technology—EDBT 2004, Lecture Notes in Computer Science – volume: 28 start-page: 172 year: 2004 ident: bib15 article-title: Incremental genetic k-means algorithm and its application in gene expression data analysis publication-title: BMC Bioinform. – reference: 〉, 2008. – year: 1997 ident: bib27 article-title: Machine Learning – volume: 59 start-page: 1 year: 2006 end-page: 34 ident: bib5 article-title: K-means clustering publication-title: Br. J. Math. Stat. Psychol. – volume: 31 start-page: 523 year: 2005 end-page: 527 ident: bib42 article-title: A novel parallelization approach for hierarchical clustering publication-title: Parallel Comput. – reference: V. Rayward-Smith, Metaheuristics for clustering in kdd, in: The 2005 IEEE Congress on Evolutionary Computation, vol. 3, Edinburgh, UK, 2005, pp. 2380–2387. – volume: 11 start-page: 1938 year: 2011 end-page: 1952 ident: bib21 article-title: Efficiency issues of evolutionary publication-title: Appl. Soft Comput. – volume: 12 start-page: 1 year: 2010 end-page: 13 ident: bib25 article-title: Recent developments in data protection at European union level publication-title: ERA-Forum, Online First – year: 1998 ident: bib49 article-title: An Introduction to Genetic Algorithms – volume: 3 start-page: 370 year: 1995 end-page: 379 ident: bib61 article-title: On cluster validity for the fuzzy c-means model publication-title: IEEE Trans. Fuzzy Syst. – volume: 50 start-page: 159 year: 1985 end-page: 179 ident: bib55 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika – reference: Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S.J. Brown, FGKA: a fast genetic k-means clustering algorithm, in: Proceedings of the 2004 ACM Symposium on Applied Computing, SAC׳04, ACM, New York, NY, USA, 2004, pp. 622–623. – volume: 40 start-page: 547 year: 1997 end-page: 554 ident: bib10 article-title: Genetic algorithms for large scale clustering problems publication-title: Comput. J. – reference: L. Vendramin, R.J.G.B. Campello, E.R. Hruschka, On the comparison of relative clustering validity criteria, in: SIAM International Conference on Data Mining, Sparks/USA, 2009, pp. 733–744. – volume: 2 start-page: 19 year: 2004 end-page: 27 ident: bib45 article-title: Privacy-preserving data mining publication-title: IEEE Secur. Priv. – volume: 75 start-page: 800 year: 1988 ident: 10.1016/j.neucom.2014.07.083_bib67 article-title: A sharper Bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/75.4.800 – volume: 12 start-page: 1 year: 2010 ident: 10.1016/j.neucom.2014.07.083_bib25 article-title: Recent developments in data protection at European union level publication-title: ERA-Forum, Online First – year: 1997 ident: 10.1016/j.neucom.2014.07.083_bib33 – ident: 10.1016/j.neucom.2014.07.083_bib6 – ident: 10.1016/j.neucom.2014.07.083_bib22 doi: 10.1109/ISDA.2009.78 – year: 2006 ident: 10.1016/j.neucom.2014.07.083_bib65 – ident: 10.1016/j.neucom.2014.07.083_bib35 – ident: 10.1016/j.neucom.2014.07.083_bib19 doi: 10.1109/CEC.2006.1688522 – ident: 10.1016/j.neucom.2014.07.083_bib28 doi: 10.1109/IDEAS.2006.36 – volume: 15 start-page: 43 year: 2009 ident: 10.1016/j.neucom.2014.07.083_bib20 article-title: On the efficiency of evolutionary fuzzy clustering publication-title: J. Heuristics doi: 10.1007/s10732-007-9059-6 – volume: 2 start-page: 34 year: 2000 ident: 10.1016/j.neucom.2014.07.083_bib40 article-title: Distributed data clustering can be efficient and exact publication-title: ACM SIGKDD Explor. Newslett. doi: 10.1145/380995.381010 – volume: 21 start-page: 681 year: 2009 ident: 10.1016/j.neucom.2014.07.083_bib34 article-title: Hierarchically distributed peer-to-peer document clustering and cluster summarization publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.189 – volume: 31 start-page: 264 year: 1999 ident: 10.1016/j.neucom.2014.07.083_bib2 article-title: Data clustering publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 176 start-page: 1952 year: 2006 ident: 10.1016/j.neucom.2014.07.083_bib38 article-title: Clustering distributed data streams in peer-to-peer environments publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.11.007 – volume: 34 start-page: 56 year: 2007 ident: 10.1016/j.neucom.2014.07.083_bib60 article-title: An evolutionary approach to multiobjective clustering publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.877146 – year: 1996 ident: 10.1016/j.neucom.2014.07.083_bib56 – year: 1997 ident: 10.1016/j.neucom.2014.07.083_bib27 – ident: 10.1016/j.neucom.2014.07.083_bib47 doi: 10.5772/13945 – ident: 10.1016/j.neucom.2014.07.083_bib17 – volume: 11 start-page: 1938 year: 2011 ident: 10.1016/j.neucom.2014.07.083_bib21 article-title: Efficiency issues of evolutionary k-means publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2010.06.010 – volume: 146 start-page: 221 year: 2002 ident: 10.1016/j.neucom.2014.07.083_bib13 article-title: An evolutionary technique based on k-means algorithm for optimal clustering in Rn publication-title: Inf. Sci. doi: 10.1016/S0020-0255(02)00208-6 – ident: 10.1016/j.neucom.2014.07.083_bib16 doi: 10.1145/967900.968029 – volume: 21 start-page: 1372 year: 2009 ident: 10.1016/j.neucom.2014.07.083_bib39 article-title: Approximate distributed k-means clustering over a peer-to-peer network publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.222 – ident: 10.1016/j.neucom.2014.07.083_bib44 – volume: 40 start-page: 547 year: 1997 ident: 10.1016/j.neucom.2014.07.083_bib10 article-title: Genetic algorithms for large scale clustering problems publication-title: Comput. J. doi: 10.1093/comjnl/40.9.547 – volume: 2 start-page: 19 year: 2004 ident: 10.1016/j.neucom.2014.07.083_bib45 article-title: Privacy-preserving data mining publication-title: IEEE Secur. Priv. doi: 10.1109/MSP.2004.108 – ident: 10.1016/j.neucom.2014.07.083_bib57 doi: 10.1109/ISDA.2009.80 – year: 1995 ident: 10.1016/j.neucom.2014.07.083_bib50 – ident: 10.1016/j.neucom.2014.07.083_bib51 doi: 10.1109/ICDM.2004.10073 – volume: 3 start-page: 209 year: 2010 ident: 10.1016/j.neucom.2014.07.083_bib48 article-title: Relative clustering validity criteria publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.10080 – year: 1998 ident: 10.1016/j.neucom.2014.07.083_bib49 – year: 1988 ident: 10.1016/j.neucom.2014.07.083_bib1 – ident: 10.1016/j.neucom.2014.07.083_bib3 doi: 10.1109/TNN.2005.845141 – ident: 10.1016/j.neucom.2014.07.083_bib52 – volume: 155 start-page: 191 year: 2005 ident: 10.1016/j.neucom.2014.07.083_bib62 article-title: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2005.04.009 – volume: 9 start-page: 113 year: 2003 ident: 10.1016/j.neucom.2014.07.083_bib14 article-title: Self-adaptive genetic algorithm for clustering publication-title: J. Heuristics doi: 10.1023/A:1022521428870 – ident: 10.1016/j.neucom.2014.07.083_bib31 doi: 10.1109/BRACIS.2013.20 – volume: vol. 3824 start-page: 1133 year: 2005 ident: 10.1016/j.neucom.2014.07.083_bib59 article-title: A network evaluation for LAN, MAN and WAN Grid environments – year: 1973 ident: 10.1016/j.neucom.2014.07.083_bib64 – volume: 3 start-page: 370 year: 1995 ident: 10.1016/j.neucom.2014.07.083_bib61 article-title: On cluster validity for the fuzzy c-means model publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/91.413225 – volume: 50 start-page: 159 year: 1985 ident: 10.1016/j.neucom.2014.07.083_bib55 article-title: An examination of procedures for determining the number of clusters in a data set publication-title: Psychometrika doi: 10.1007/BF02294245 – start-page: 804 year: 2000 ident: 10.1016/j.neucom.2014.07.083_bib24 – volume: vol. 2992 start-page: 88 year: 2004 ident: 10.1016/j.neucom.2014.07.083_bib43 article-title: DBDC – volume: 30 start-page: 859 year: 1997 ident: 10.1016/j.neucom.2014.07.083_bib11 article-title: A genetic c-means clustering algorithm applied to color image quantization publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(96)00131-8 – ident: 10.1016/j.neucom.2014.07.083_bib26 doi: 10.1145/233269.233324 – ident: 10.1016/j.neucom.2014.07.083_bib46 doi: 10.1016/j.datak.2007.03.015 – volume: 31 start-page: 523 year: 2005 ident: 10.1016/j.neucom.2014.07.083_bib42 article-title: A novel parallelization approach for hierarchical clustering publication-title: Parallel Comput. doi: 10.1016/j.parco.2005.01.001 – volume: 39 start-page: 133 year: 2009 ident: 10.1016/j.neucom.2014.07.083_bib9 article-title: A survey of evolutionary algorithms for clustering publication-title: IEEE Trans. Syst. Man Cybern. Part C: Appl. Rev. doi: 10.1109/TSMCC.2008.2007252 – ident: 10.1016/j.neucom.2014.07.083_bib63 doi: 10.1007/978-3-642-01088-0_8 – volume: 2 start-page: 193 year: 1985 ident: 10.1016/j.neucom.2014.07.083_bib58 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 – ident: 10.1016/j.neucom.2014.07.083_bib53 doi: 10.1137/1.9781611972795.63 – volume: 59 start-page: 1 issue: May (34) year: 2006 ident: 10.1016/j.neucom.2014.07.083_bib5 article-title: K-means clustering publication-title: Br. J. Math. Stat. Psychol. doi: 10.1348/000711005X48266 – volume: 29 start-page: 433 year: 1999 ident: 10.1016/j.neucom.2014.07.083_bib12 article-title: Genetic k-means algorithm publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/3477.764879 – volume: 7 start-page: 14 year: 1999 ident: 10.1016/j.neucom.2014.07.083_bib32 article-title: Parallel and distributed data mining publication-title: IEEE Concurr. doi: 10.1109/4434.806975 – year: 1998 ident: 10.1016/j.neucom.2014.07.083_bib8 – volume: 28 start-page: 172 year: 2004 ident: 10.1016/j.neucom.2014.07.083_bib15 article-title: Incremental genetic k-means algorithm and its application in gene expression data analysis publication-title: BMC Bioinform. doi: 10.1186/1471-2105-5-172 – ident: 10.1016/j.neucom.2014.07.083_bib36 doi: 10.1007/3-540-46502-2_13 – volume: 10 start-page: 277 year: 2005 ident: 10.1016/j.neucom.2014.07.083_bib37 article-title: Improvement and parallelism of k-means clustering algorithm publication-title: Tsinghua Sci. Technol. doi: 10.1016/S1007-0214(05)70069-9 – volume: 3 start-page: 1 year: 1974 ident: 10.1016/j.neucom.2014.07.083_bib54 article-title: A dendrite method for cluster analysis publication-title: Commun. Stat. – volume: 7 start-page: 261 year: 2010 ident: 10.1016/j.neucom.2014.07.083_bib23 article-title: Evolutionary clustering of relational data publication-title: Int. J. Hybrid Intell. Syst. doi: 10.3233/HIS-2010-0119 – ident: 10.1016/j.neucom.2014.07.083_bib4 doi: 10.1007/978-3-642-10675-0 – volume: 21 start-page: 1313 year: 1995 ident: 10.1016/j.neucom.2014.07.083_bib41 article-title: Parallel algorithms for hierarchical clustering publication-title: Parallel Comput. doi: 10.1016/0167-8191(95)00017-I – ident: 10.1016/j.neucom.2014.07.083_bib30 doi: 10.1109/SBRN.2012.11 – volume: 75 start-page: 800 year: 2013 ident: 10.1016/j.neucom.2014.07.083_bib29 article-title: Evolutionary k-means for distributed datasets publication-title: Neurocomputing – volume: 176 start-page: 1898 year: 2006 ident: 10.1016/j.neucom.2014.07.083_bib18 article-title: Evolving clusters in gene-expression data publication-title: Inf. Sci. doi: 10.1016/j.ins.2005.07.015 – ident: 10.1016/j.neucom.2014.07.083_bib7 doi: 10.1109/CEC.2005.1554991 – year: 1987 ident: 10.1016/j.neucom.2014.07.083_bib66 |
| SSID | ssj0017129 |
| Score | 2.2797585 |
| Snippet | Dealing with distributed data is one of the challenges for clustering, as most clustering techniques require the data to be centralized. One of them, k-means,... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 78 |
| SubjectTerms | Distributed clustering Evolutionary k-means Low data transmission Privacy preservation |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFLWqLrDwRpSXPLC6TRzHdkZUqCokWKBSt-jGdqCQplVpQF34duw8KhgQiDGRLUcn92Xp3HMRugCZaNBSE18LIE6fxMbBlBKWpn5qrIv5ZX_F7R0fjtjNOBy3UL_phXG0yjr2VzG9jNb1m16NZm8-mfTuvYjaW5RTRyjrEtdRzphwUwy6H2uahy98Wunt0ZC41U37XMnxyk3hOCM2CbJSwlMGP6WnjSKfw-odsuxL-hnsoK26bsSX1aftopbJ99B2M5MB1y66j67668GCeJZi7XRx3Ugro7F5q80MFiv8QqbGZimsssJJJdgEhiF7nC0my6fp6wEaDa4f-kNST0ogilG6JJEJGecJeAkHJbkWXPA0FTxhUtv6JIisZ2pOFQV73QkiCEEbP0kirSDkkaTBIWrns9wcIayYsSACFwY8lkglRSCYp4H5UoEMVAcFDUCxqmXE3TSLLG74Ys9xBWvsYI09EVtYO4isd80rGY1f1osG-_ibOcQ20v-ys7v-VX866vjfR52gTfsUlowzeoray0VhzmyJskzOSxv8BEab5Xw priority: 102 providerName: Elsevier |
| Title | Comparison of distributed evolutionary k-means clustering algorithms |
| URI | https://dx.doi.org/10.1016/j.neucom.2014.07.083 http://doi.org/10.1016/j.neucom.2014.07.083 |
| UnpaywallVersion | publishedVersion |
| Volume | 163 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9owEB4VOLSX0qeW7Rb50Ksj4ji2c0RsEduqqIci0VPkV_rYEBAkXbGH_e3rvGirCi09RvLE8jwyX-SZbwDeSaGMNMJg33CJS34S9x1MCKZJ4ifWhZhf9Vd8mrPZgn5YhsvfPNt_Xd9XZViZLcqyDpenaMWyKYIO9FjogHcXeov55_HXik2PhNghlepuU3BSNUe3jXJHXnMsET0uso3c38g0_SPRTPt1B_eu4ics60uuvSJXnr79l73xlDM8g6cN4ETj2kOewyObvYB-O8wBNbH9Ei4nh4mEaJ0gUxLqlrOwrEH2V-OfcrtH13hlXXpDOi1KjgWX-ZBMv623P_Lvq90rWEzff5nMcDNiAWtKSI4jG1LGlBwpJrVghjPOkoQzRYVxwCaIXEgbRjSR7j8piGQojfWVioyWIYsECV5DN1tn9gyQppZyt45bOaJKaMEDTkdGUl9oKQI9gKDVd6wb_vFyDEYat4VmP-NaUXGpqHjEY6eoAeCD1Kbm33hgPW9NGTcYosYGsTPLA5LewfInbXX-vwJv4Il7CqsKNXIB3Xxb2LcO0uRqCB3vzh9Cb3z1cTYfNo59D1Gc89Y |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGWDhjShPD6xuE8exnREVqgKFBZC6WY7tQCFNq9KCuvDbsfOoYEAg1uQsR1_uKd19B8Cp5LGWmmvkayaR4yexfjDBiCSJnxhrYn4-X3FzS7sP5Kof9mugXc3CuLbK0vcXPj331uWTVolmazwYtO68CNsqyrEj5HkJWwLLJMTMVWDNj0Wfh898XBDu4RA58Wp-Lm_yyszMNY3YKEhyDk8e_BSfVmbZWM7fZZp-iT-dDbBWJo7wrPi2TVAz2RZYr5YywNJGt8F5e7FZEI4SqB0xrttpZTQ0b6WeyckcvqChsWEKqnTmuBJsBIMyfRxNBtOn4esOeOhc3Le7qFyVgBTBeIoiExJKY-nFVCpONaOMJgmjMeHaJihBZE1TU6ywtPVOEMlQauPHcaSVDGnEcbAL6tkoM3sAKmIIs3LMSI_EXHEWMOJpSXyuJA9UAwQVQEKVPOJunUUqqoaxZ1HAKhyswmPCwtoAaHFqXPBo_CLPKuzFN30Q1tX_crK5-FV_umr_31edgJXu_U1P9C5vrw_Aqn0T5u1n-BDUp5OZObL5yjQ-zvXxE-Ft6J8 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgPcCFHVE2-cDVVeI4tnOsCgghUXGgUjlF3sLSNEUlAZWvx3GSAkIIOEbyxPIsmRd55g0AJ4JLLTTXyNdMoJKfxH4HE4xIkviJsSHmu_6KqwG9GJLLUTj64Nn-cn3vyrAyU5RlHTZPEceyyYNl0KahBd4t0B4Ornu3jk0Ph8giFXe3yRl2zdFNo9wPr_kpEa0U2ZOYv4o0_ZRozterDu5nx09Y1peMu0Uuu-rtO3vjX86wAdZqwAl7lYdsgiWTbYH1ZpgDrGN7G5z2FxMJ4TSBuiTULWdhGQ3NS-2fYjaHYzQxNr1BlRYlx4LNfFCkd9PZQ34_ed4Bw_Ozm_4FqkcsIEUwzlFkQkKpFJ6kQnGqGWU0SRiVhGsLbILIhrSmWGFh_5OCSIRCG1_KSCsR0ojjYBe0smlm9gBUxBBm1zEjPCK54ixgxNOC-FwJHqgOCBp9x6rmHy_HYKRxU2j2GFeKiktFxR6LraI6AC2knir-jV_Ws8aUcY0hKmwQW7P8ItldWP5PW-3_V-AArNqn0FWo4UPQymeFObKQJpfHtSu_AxJw8Uo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+distributed+evolutionary+k-means+clustering+algorithms&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Naldi%2C+M.C.&rft.au=Campello%2C+R.J.G.B.&rft.date=2015-09-02&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=163&rft.spage=78&rft.epage=93&rft_id=info:doi/10.1016%2Fj.neucom.2014.07.083&rft.externalDocID=S0925231215004567 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |