Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification

Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applie...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 20; no. 9; p. e0331307
Main Authors Sobhani, Mahbub E., Rodela, Anika Tasnim, Farid, Dewan Md
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.09.2025
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0331307

Cover

Abstract Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers.
AbstractList Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers.
Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers.Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers.
Author Sobhani, Mahbub E.
Rodela, Anika Tasnim
Farid, Dewan Md
Author_xml – sequence: 1
  givenname: Mahbub E.
  orcidid: 0009-0006-6043-4507
  surname: Sobhani
  fullname: Sobhani, Mahbub E.
– sequence: 2
  givenname: Anika Tasnim
  surname: Rodela
  fullname: Rodela, Anika Tasnim
– sequence: 3
  givenname: Dewan Md
  orcidid: 0000-0002-6413-4898
  surname: Farid
  fullname: Farid, Dewan Md
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40971940$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1TAQhS1U1D_6BggisWFzbx3biWN2VVVopUpsWrbWxJkUXzl2sJOivj2-JK0QYsHK49HnM8dzTsiBDx4JeVvSbclleb4Lc_TgtmNubynnJafyFTkuFWebmlF-8Ed9RE5S2lFa8aauD8mRoEqWStBj8u2ig3Gyj1jcRcTrXHwqrnzCoXVYhL6YcjcVfYgF-u_gjfUPhR1acLnGrrB-inOywRfGQUq2twamfH1DXvfgEp6t5ym5_3x1d3m9uf365eby4nZjBGPTpmm7yqBUnUKF2PUUWhBYK2gEKxVlCkTdQGOUMaWQom4Va4wEqUTVMeCGn5L3i-7oQtLrSpLmrGIiawieiZuF6ALs9BjtAPFJB7D6dyPEBw1xssahNlz2lVB5iOBC1LQ10simNZxXtRHNXqtatGY_wtNPcO5FsKR6n8qzBb1PRa-p5HcfV5cx_JgxTXqwyaDLS8QwL3YrzgWvM_rhL_Tfn3q3UnM7YPfi4jnXDIgFMDGkFLH_P6O_AN7EuIo
Cites_doi 10.3390/electronics11213571
10.1016/j.jisa.2022.103405
10.1007/s10723-021-09581-z
10.1109/ACCESS.2022.3233775
10.1016/j.inffus.2017.10.006
10.1016/j.inffus.2022.09.026
10.1023/A:1022643204877
10.1007/BF02289263
10.1016/j.jisa.2021.102923
10.1109/COMST.2023.3280465
10.1109/ACCESS.2020.2982418
10.18653/v1/2023.banglalp-1.3
10.1016/j.aej.2023.03.093
10.3390/cryptography6040062
10.1007/s11227-023-05073-x
10.1007/978-981-99-7649-2_13
10.1186/s40537-021-00448-4
10.3390/app122211752
10.1007/s12525-021-00475-2
10.1109/TIT.1967.1053964
10.1016/j.eswa.2013.05.001
10.5121/ijnsa.2010.2202
10.1109/I2CT51068.2021.9417971
10.1186/s40537-020-00379-6
10.1007/s00521-020-04986-5
10.1016/j.jnca.2020.102688
10.1016/j.cose.2022.102861
10.1016/j.engappai.2020.103770
10.1109/CVPR.2016.90
10.1109/TKDE.2012.232
10.3390/s22239326
10.3390/electronics11050805
10.1016/j.cose.2011.12.012
10.1109/TNSM.2020.3014929
10.1007/s41870-018-0225-x
10.1007/978-3-031-13870-6_53
10.1016/j.jnca.2021.103160
10.3390/s22197409
10.1186/s40537-019-0192-5
10.1109/ICASERT.2019.8934495
10.1109/ACCESS.2020.3009843
10.1145/3467470
10.1109/IJCNN.2008.4633969
10.1016/j.ins.2019.11.004
10.1016/j.eswa.2020.114170
10.1109/ACCESS.2023.3296444
10.1109/ACCESS.2020.2973219
10.1109/TENCON58879.2023.10322330
10.1109/ICONSTEM56934.2023.10142673
ContentType Journal Article
Copyright Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
– notice: 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QG
7QL
7QO
7RV
7SN
7SS
7T5
7TG
7TM
7U9
7X2
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB.
KB0
KL.
L6V
LK8
M0K
M0S
M1P
M7N
M7P
M7S
NAPCQ
P5Z
P62
P64
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
RC3
7X8
ADTOC
UNPAY
DOA
DOI 10.1371/journal.pone.0331307
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Nursing & Allied Health Database (Alumni Edition)
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest Engineering Collection
Biological Sciences
Agricultural Science Database
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Engineering Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database (Proquest)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Genetics Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
ProQuest Engineering Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
AIDS and Cancer Research Abstracts
Materials Science Database
ProQuest Materials Science Collection
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Animal Behavior Abstracts
Materials Science & Engineering Collection
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
CrossRef
Agricultural Science Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1932-6203
ExternalDocumentID 3252484243
oai_doaj_org_article_c37f549b92434460bc7c78bc3356c483
10.1371/journal.pone.0331307
40971940
10_1371_journal_pone_0331307
Genre Journal Article
GroupedDBID ---
123
29O
2WC
53G
5VS
7RV
7X2
7X7
7XC
88E
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
A8Z
AAFWJ
AAUCC
AAWOE
AAYXX
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BKEYQ
BPHCQ
BVXVI
BWKFM
CCPQU
CITATION
CS3
D1I
D1J
D1K
DIK
DU5
E3Z
EAP
EAS
EBD
EMOBN
ESTFP
ESX
EX3
F5P
FPL
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IAO
IEA
IGS
IHR
IHW
INH
INR
IOV
IPY
ISE
ISR
ITC
K6-
KB.
KQ8
L6V
LK5
LK8
M0K
M1P
M48
M7P
M7R
M7S
M~E
NAPCQ
O5R
O5S
OK1
OVT
P2P
P62
PATMY
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PTHSS
PUEGO
PV9
PYCSY
RNS
RPM
RZL
SV3
TR2
UKHRP
WOQ
WOW
~02
~KM
ADRAZ
CGR
CUY
CVF
ECM
EIF
IPNFZ
NPM
RIG
3V.
7QG
7QL
7QO
7SN
7SS
7T5
7TG
7TM
7U9
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
KL.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
ADTOC
UNPAY
ACCTH
AFFHD
BBTPI
ID FETCH-LOGICAL-c422t-8bd5ce79d9e9eedf0aba4e69a84219029a468a8c9cc14746b928c7a7945d2a3c3
IEDL.DBID M48
ISSN 1932-6203
IngestDate Wed Oct 29 23:52:57 EDT 2025
Tue Oct 14 18:30:06 EDT 2025
Sun Oct 26 04:13:18 EDT 2025
Sat Sep 20 18:32:45 EDT 2025
Tue Oct 07 09:10:24 EDT 2025
Mon Sep 22 02:45:12 EDT 2025
Wed Oct 01 05:14:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
cc-by
Creative Commons Attribution License
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-8bd5ce79d9e9eedf0aba4e69a84219029a468a8c9cc14746b928c7a7945d2a3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0006-6043-4507
0000-0002-6413-4898
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0331307
PMID 40971940
PQID 3252484243
PQPubID 1436336
ParticipantIDs plos_journals_3252484243
doaj_primary_oai_doaj_org_article_c37f549b92434460bc7c78bc3356c483
unpaywall_primary_10_1371_journal_pone_0331307
proquest_miscellaneous_3252533436
proquest_journals_3252484243
pubmed_primary_40971940
crossref_primary_10_1371_journal_pone_0331307
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: San Francisco
PublicationTitle PloS one
PublicationTitleAlternate PLoS One
PublicationYear 2025
Publisher Public Library of Science
Public Library of Science (PLoS)
Publisher_xml – name: Public Library of Science
– name: Public Library of Science (PLoS)
References DMd Farid (pone.0331307.ref025) 2013; 40
P Vanin (pone.0331307.ref009) 2022; 12
M Rodríguez (pone.0331307.ref032) 2022; 22
pone.0331307.ref007
pone.0331307.ref008
Q Zhang (pone.0331307.ref020) 2018; 42
MdA Talukder (pone.0331307.ref043) 2023; 72
H Rajadurai (pone.0331307.ref038) 2020; 34
D Stiawan (pone.0331307.ref034) 2020; 8
P Vanin (pone.0331307.ref006) 2022; 12
pone.0331307.ref049
pone.0331307.ref004
F Laghrissi (pone.0331307.ref040) 2021; 8
P Vincent (pone.0331307.ref047) 2010; 11
pone.0331307.ref041
K Sethi (pone.0331307.ref046) 2021; 61
N Omer (pone.0331307.ref028) 2023; 72
T Zoppi (pone.0331307.ref031) 2021; 5
Z Azam (pone.0331307.ref012) 2022; 22
YJ Chew (pone.0331307.ref053) 2022; 11
C Zhang (pone.0331307.ref001) 2022; 121
JR Quinlan (pone.0331307.ref051) 1986; 1
MA Almaiah (pone.0331307.ref013) 2022; 11
A Shahraki (pone.0331307.ref016) 2020; 94
T Wu (pone.0331307.ref057) 2022; 2022
pone.0331307.ref010
OD Okey (pone.0331307.ref026) 2023; 11
pone.0331307.ref058
pone.0331307.ref015
H Jiang (pone.0331307.ref017) 2020; 8
Z Wu (pone.0331307.ref048) 2020; 164
pone.0331307.ref059
N Moustafa (pone.0331307.ref002) 2023; 25
F Thabtah (pone.0331307.ref036) 2020; 513
NJ Tithi (pone.0331307.ref042) 2019
YZ Okey (pone.0331307.ref033) 2022; 13
DM Singh (pone.0331307.ref024) 2010; 2
T Cover (pone.0331307.ref037) 1967; 13
MS ElSayed (pone.0331307.ref018) 2021; 191
Y Hamid (pone.0331307.ref067) 2018; 11
RL Thorndike (pone.0331307.ref050) 1953; 18
RH Dong (pone.0331307.ref066) 2020; 22
J Berkson (pone.0331307.ref044) 1944; 39
S Barua (pone.0331307.ref065) 2014; 26
C Janiesch (pone.0331307.ref011) 2021; 31
M Mahdavisharif (pone.0331307.ref029) 2021; 19
F Laghrissi (pone.0331307.ref019) 2021; 8
OD Okey (pone.0331307.ref021) 2022; 22
SM Kasongo (pone.0331307.ref027) 2020; 7
pone.0331307.ref064
pone.0331307.ref023
S Chauhan (pone.0331307.ref052) 2022; 6
G Karatas (pone.0331307.ref045) 2020; 8
pone.0331307.ref061
pone.0331307.ref060
pone.0331307.ref063
pone.0331307.ref062
A Shiravi (pone.0331307.ref056) 2012; 31
M Alkasassbeh (pone.0331307.ref054) 2017; 95
A Abdelkhalek (pone.0331307.ref055) 2023; 79
pone.0331307.ref039
A Thakkar (pone.0331307.ref005) 2023; 90
M Injadat (pone.0331307.ref022) 2021; 18
JM Johnson (pone.0331307.ref035) 2019; 6
I Sohn (pone.0331307.ref003) 2021; 167
pone.0331307.ref030
Z Azam (pone.0331307.ref014) 2023; 11
References_xml – ident: pone.0331307.ref010
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: pone.0331307.ref047
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of Machine Learning Research
– volume: 11
  start-page: 3571
  issue: 21
  year: 2022
  ident: pone.0331307.ref013
  article-title: Performance investigation of principal component analysis for intrusion detection system using different support vector machine kernels
  publication-title: Electronics
  doi: 10.3390/electronics11213571
– volume: 72
  start-page: 103405
  year: 2023
  ident: pone.0331307.ref043
  article-title: A dependable hybrid machine learning model for network intrusion detection
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2022.103405
– volume: 19
  issue: 4
  year: 2021
  ident: pone.0331307.ref029
  article-title: Big data-aware intrusion detection system in communication networks: a deep learning approach
  publication-title: J Grid Computing
  doi: 10.1007/s10723-021-09581-z
– volume: 95
  start-page: 5962
  issue: 22
  year: 2017
  ident: pone.0331307.ref054
  article-title: An empirical evaluation for the intrusion detection features based on machine learning and feature selection methods
  publication-title: Journal of Theoretical and Applied Information Technology
– volume: 11
  start-page: 1023
  year: 2023
  ident: pone.0331307.ref026
  article-title: Transfer learning approach to IDS on cloud IoT devices using optimized CNN
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3233775
– volume: 42
  start-page: 146
  year: 2018
  ident: pone.0331307.ref020
  article-title: A survey on deep learning for big data
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2017.10.006
– volume: 90
  start-page: 353
  year: 2023
  ident: pone.0331307.ref005
  article-title: Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2022.09.026
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: pone.0331307.ref051
  article-title: Induction of Decision Trees
  publication-title: Mach Learn
  doi: 10.1023/A:1022643204877
– ident: pone.0331307.ref062
– volume: 18
  start-page: 267
  issue: 4
  year: 1953
  ident: pone.0331307.ref050
  article-title: Who Belongs in the Family?
  publication-title: Psychometrika
  doi: 10.1007/BF02289263
– volume: 61
  start-page: 102923
  year: 2021
  ident: pone.0331307.ref046
  article-title: Attention based multi-agent intrusion detection systems using reinforcement learning
  publication-title: Journal of Information Security and Applications
  doi: 10.1016/j.jisa.2021.102923
– volume: 25
  start-page: 1775
  issue: 3
  year: 2023
  ident: pone.0331307.ref002
  article-title: Explainable intrusion detection for cyber defences in the Internet of Things: opportunities and solutions
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/COMST.2023.3280465
– volume: 8
  start-page: 58392
  year: 2020
  ident: pone.0331307.ref017
  article-title: Network intrusion detection based on PSO-Xgboost model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982418
– ident: pone.0331307.ref030
  doi: 10.18653/v1/2023.banglalp-1.3
– volume: 72
  start-page: 351
  year: 2023
  ident: pone.0331307.ref028
  article-title: A novel optimized probabilistic neural network approach for intrusion detection and categorization
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2023.03.093
– volume: 6
  start-page: 62
  issue: 4
  year: 2022
  ident: pone.0331307.ref052
  article-title: Intrusion detection system for IoT using logical analysis of data and information gain ratio
  publication-title: Cryptography
  doi: 10.3390/cryptography6040062
– volume: 79
  start-page: 10611
  issue: 10
  year: 2023
  ident: pone.0331307.ref055
  article-title: Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05073-x
– ident: pone.0331307.ref041
  doi: 10.1007/978-981-99-7649-2_13
– volume: 8
  issue: 1
  year: 2021
  ident: pone.0331307.ref019
  article-title: Intrusion detection systems using long short-term memory (LSTM)
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00448-4
– volume: 12
  start-page: 11752
  issue: 22
  year: 2022
  ident: pone.0331307.ref006
  article-title: A study of network intrusion detection systems using artificial intelligence/machine learning
  publication-title: Applied Sciences
  doi: 10.3390/app122211752
– volume: 31
  start-page: 685
  issue: 3
  year: 2021
  ident: pone.0331307.ref011
  article-title: Machine learning and deep learning
  publication-title: Electron Markets
  doi: 10.1007/s12525-021-00475-2
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: pone.0331307.ref037
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans Inform Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 39
  start-page: 357
  issue: 227
  year: 1944
  ident: pone.0331307.ref044
  article-title: Application to the logistic function to bio-assay
  publication-title: Journal of the American Statistical Association
– volume: 2022
  issue: 1
  year: 2022
  ident: pone.0331307.ref057
  article-title: Intrusion detection system combined enhanced random forest with SMOTE algorithm
  publication-title: EURASIP J Adv Signal Process
– volume: 40
  start-page: 5895
  issue: 15
  year: 2013
  ident: pone.0331307.ref025
  article-title: An adaptive ensemble classifier for mining concept drifting data streams
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.05.001
– volume: 2
  start-page: 12
  issue: 2
  year: 2010
  ident: pone.0331307.ref024
  article-title: Combining Naive Bayes and decision tree for adaptive intrusion detection
  publication-title: IJNSA
  doi: 10.5121/ijnsa.2010.2202
– ident: pone.0331307.ref015
  doi: 10.1109/I2CT51068.2021.9417971
– volume: 7
  issue: 1
  year: 2020
  ident: pone.0331307.ref027
  article-title: Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00379-6
– volume: 34
  start-page: 15387
  issue: 18
  year: 2020
  ident: pone.0331307.ref038
  article-title: A stacked ensemble learning model for intrusion detection in wireless network
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-020-04986-5
– ident: pone.0331307.ref063
– ident: pone.0331307.ref058
– ident: pone.0331307.ref060
– volume: 164
  start-page: 102688
  year: 2020
  ident: pone.0331307.ref048
  article-title: A network intrusion detection method based on semantic re-encoding and deep learning
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2020.102688
– volume: 22
  start-page: 218
  issue: 2
  year: 2020
  ident: pone.0331307.ref066
  article-title: An intrusion detection model for wireless sensor network based on information gain ratio and bagging algorithm
  publication-title: Int J Netw Secur
– volume: 121
  start-page: 102861
  year: 2022
  ident: pone.0331307.ref001
  article-title: Comparative research on network intrusion detection methods based on machine learning
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2022.102861
– volume: 94
  start-page: 103770
  year: 2020
  ident: pone.0331307.ref016
  article-title: Boosting algorithms for network intrusion detection: a comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2020.103770
– ident: pone.0331307.ref049
  doi: 10.1109/CVPR.2016.90
– volume: 26
  start-page: 405
  issue: 2
  year: 2014
  ident: pone.0331307.ref065
  article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.232
– volume: 22
  start-page: 9326
  issue: 23
  year: 2022
  ident: pone.0331307.ref032
  article-title: Evaluation of machine learning techniques for traffic flow-based intrusion detection
  publication-title: Sensors (Basel)
  doi: 10.3390/s22239326
– volume: 11
  start-page: 805
  issue: 5
  year: 2022
  ident: pone.0331307.ref053
  article-title: Adoption of IP truncation in a privacy-based decision tree pruning design: a case study in network intrusion detection system
  publication-title: Electronics
  doi: 10.3390/electronics11050805
– volume: 31
  start-page: 357
  issue: 3
  year: 2012
  ident: pone.0331307.ref056
  article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection
  publication-title: Computers & Security
  doi: 10.1016/j.cose.2011.12.012
– volume: 18
  start-page: 1803
  issue: 2
  year: 2021
  ident: pone.0331307.ref022
  article-title: Multi-stage optimized machine learning framework for network intrusion detection
  publication-title: IEEE Trans Netw Serv Manage
  doi: 10.1109/TNSM.2020.3014929
– volume: 11
  start-page: 251
  issue: 2
  year: 2018
  ident: pone.0331307.ref067
  article-title: Wavelet neural network model for network intrusion detection system
  publication-title: Int J Inf Tecnol
  doi: 10.1007/s41870-018-0225-x
– ident: pone.0331307.ref061
– volume: 8
  issue: 1
  year: 2021
  ident: pone.0331307.ref040
  article-title: Intrusion detection systems using long short-term memory (LSTM)
  publication-title: J Big Data
  doi: 10.1186/s40537-021-00448-4
– ident: pone.0331307.ref007
– ident: pone.0331307.ref064
  doi: 10.1007/978-3-031-13870-6_53
– volume: 191
  start-page: 103160
  year: 2021
  ident: pone.0331307.ref018
  article-title: A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique
  publication-title: Journal of Network and Computer Applications
  doi: 10.1016/j.jnca.2021.103160
– volume: 22
  start-page: 7409
  issue: 19
  year: 2022
  ident: pone.0331307.ref021
  article-title: BoostedEnML: efficient technique for detecting cyberattacks in IoT systems using boosted ensemble machine learning
  publication-title: Sensors (Basel)
  doi: 10.3390/s22197409
– volume: 13
  issue: 7
  year: 2022
  ident: pone.0331307.ref033
  article-title: An effective ensemble automatic feature selection method for network intrusion detection
  publication-title: Information
– volume: 6
  issue: 1
  year: 2019
  ident: pone.0331307.ref035
  article-title: Survey on deep learning with class imbalance
  publication-title: J Big Data
  doi: 10.1186/s40537-019-0192-5
– ident: pone.0331307.ref023
  doi: 10.1109/ICASERT.2019.8934495
– volume: 8
  start-page: 132911
  year: 2020
  ident: pone.0331307.ref034
  article-title: CICIDS-2017 dataset feature analysis with information gain for anomaly detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009843
– ident: pone.0331307.ref059
– volume: 12
  issue: 22
  year: 2022
  ident: pone.0331307.ref009
  article-title: A study of network intrusion detection systems using artificial intelligence/machine learning
  publication-title: Appl Sci
  doi: 10.3390/app122211752
– volume: 5
  start-page: 1
  issue: 4
  year: 2021
  ident: pone.0331307.ref031
  article-title: Meta-learning to improve unsupervised intrusion detection in cyber-physical systems
  publication-title: ACM Trans Cyber-Phys Syst
  doi: 10.1145/3467470
– ident: pone.0331307.ref039
  doi: 10.1109/IJCNN.2008.4633969
– volume: 513
  start-page: 429
  year: 2020
  ident: pone.0331307.ref036
  article-title: Data imbalance in classification: experimental evaluation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2019.11.004
– volume: 167
  start-page: 114170
  year: 2021
  ident: pone.0331307.ref003
  article-title: Deep belief network based intrusion detection techniques: a survey
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.114170
– volume: 11
  start-page: 80348
  year: 2023
  ident: pone.0331307.ref014
  article-title: Comparative analysis of intrusion detection systems and machine learning-based model analysis through decision tree
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3296444
– volume: 8
  start-page: 32150
  year: 2020
  ident: pone.0331307.ref045
  article-title: Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973219
– ident: pone.0331307.ref008
  doi: 10.1109/TENCON58879.2023.10322330
– ident: pone.0331307.ref004
  doi: 10.1109/ICONSTEM56934.2023.10142673
– year: 2019
  ident: pone.0331307.ref042
  article-title: Hospital dietary control using automated planning
  publication-title: DUET Journal
– volume: 22
  issue: 16
  year: 2022
  ident: pone.0331307.ref012
  article-title: A hybrid intrusion detection model using EGA-PSO and improved random forest method
  publication-title: Sensors
SSID ssj0053866
Score 2.4882498
Snippet Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority...
SourceID plos
doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e0331307
SubjectTerms Algorithms
Bagging
Big Data
Classification
Collaboration
Communication
Communications networks
Cybersecurity
Data sampling
Datasets
Decision Trees
Deep learning
Design
Ensemble learning
Humans
Intrusion
Machine Learning
Malware
Neural networks
Oversampling
Sampling
Sampling methods
Sampling techniques
Supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hLtBDBfRBykOu1EN7yOLEju1wAwRaVWpPUHGL_EqLtHhXDQjx75lJsisqIbWH3qLYUuL5POMZzcxngE8ioOVVPOTK65BL16JKyahypWLkzppCOep3_vZdTa_k1-vq-tlVX1QTNtADD4I78kK3GMM4jBMEhi7cee21cV6ISnlpep5PbuplMDXYYNRipcZGOaGLoxGXyWKe4oQLgYZb_3EQ9Xz9xG86m3cv-ZqvYOM-Lezjg53Nnp0_F1vwenQc2cnww9uwFtMObI-q2bHPI3_0lzfw4yTYBVkxdvk7xik-HLPz1MVbN4ts3jLKQ3cMnVUW0y-i20g_2c2toxpHHwO7SdSHgXAxT541lRL16L2Fq4vzy7NpPl6fkHtZlne5caHyUdehjjWehC23ziIMtTUSzRQvayuVscbX3hdSS4UiNl5bVNAqlFZ48Q7WEwpsF1hhAxfOozcnuZRa2bayVanRNgRFqdsM8qUsm8XAktH0qTKN0cUgn4Zk34yyz-CUBL6aSxzX_QtEvhmRb_6GfAa7BNfyA10jyqqUuDiJQ_tLCF8e_rgaRm2iFIlNcX4_zKHmZKEyeD9Av_pJYgYraskzmKz2wj-t9sP_WO0ebJZ09XBf3rYP67gV4gH6Q3fusN_6T2oGB3M
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UF9EOtXo1VW8EEfck12N7uJINLKlUPwEGmlb2G_UgvXJDYt4n_vTD5OhSK-hWQhm_ntzM5mZn4D8Ep4tLwq8bFy2sfSVqhSMqhYqRASa_JUWap3_rRSyxP58TQ73YLVVAtDaZWTTewNtW8c_SPfFzzjMpdcivft95i6RlF0dWqhYcbWCv5dTzF2C7Y5MWPNYPtwsfr8ZbLNqN1KjQV0Qqf7I17ztqnDPBECDbr-a4PqefyJ93TddDf5oHfh9nXdmp8_zHr9x750dB_ujQ4lOxhWwA5shfoB7Iwq27HXI6_0m4fw9cCblqwbO74MYYkXb9mi7sKFXQfWVIzi0x1DJ5aF-hvRcNRn7PzCUu6jC56d11SfgTAyRx43pRj1qD6Ck6PF8YdlPLZViJ3k_CrOrc9c0IUvQoE7ZJUYaxCewqB00T3ghZEqN7krnEullsoWPHfaoOJmnhvhxGOY1SiwXWCp8YmwDr08mUiplakyk3GNNsMrCulGEE-yLNuBPaPsQ2gaTx2DfEqSfTnKPoJDEvhmLHFf9zeay7NyVKXSCV3hqRanJQUeZhPrtNO5dUJkyslcRLBLcE0v6MrfSyeCvQnCmx-_3DxGLaPQialDcz2MoaJloSJ4MkC_mSQxhqWFTCKYb9bCf33t03_P5hnc4dRsuE9o24MZghyeowd0ZV-My_oXYHkGXA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6AMqjTVuQkTiARIJjO3bCbYtarZBaceiicor8SqnYZldkVwh-PeM8VgW1UrlFsaN4nh5rZj4DvOYOPa-kLpZWuViYCk1KeBlL6T01Ok-lCf3OJ6dyMhWfzrPzDXg39MJcz99zlb7vOZos5rVPKOfoctU92JQZRt4j2Jyefh5_7RLHLJaM8r477rZP_9p9WpD-AGo6mzc3BZhbcH9VL_Svn3o2u7bpHD-Ck2G5Xa3J92S1NIn9_Q-S413peQwP--iTjDt12YYNXz-B7d6-G_KmB6F--xS-jJ1eBFdIzn54P8GHD-SobvyVmXkyr0hIZjcEI17i628Bs6O-IJdXJhRKWu_IZR2aOVDmxIbwPNQjtSrwDKbHR2cfJ3F_B0NsBWPLODcus14VrvAFbqcV1UajLAudC_R1lBVayFzntrA2FUpIU7DcKo1WnjmmueXPYVQjrbtAUu0oNxZDQkGFUFJXmc6YQgfjZMj_RhAPsikXHdRG2ebbFB5ROv6UgW1lz7YIDoMA13MDUHb7Avld9nZXWq4qPALjsgTHky81VlmVG8t5Jq3IeQS7QfzDD5qSs4wJJE7g0MGgEjcPv1oPo0mGPIuu_XzVzQkdzlxGsNOp0nqRAV4sLQSNIFnr1p2o3fvfD_bhAQt3Fbf1cAcwQrH7FxhALc3L3m7-ADlzGMU
  priority: 102
  providerName: Unpaywall
Title Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification
URI https://www.ncbi.nlm.nih.gov/pubmed/40971940
https://www.proquest.com/docview/3252484243
https://www.proquest.com/docview/3252533436
https://doi.org/10.1371/journal.pone.0331307
https://doaj.org/article/c37f549b92434460bc7c78bc3356c483
http://dx.doi.org/10.1371/journal.pone.0331307
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: HH5
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: KQ8
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DOA
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCO Food Science Source
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: A8Z
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 7X7
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: BENPR
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8FG
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: 8C1
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1932-6203
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0053866
  issn: 1932-6203
  databaseCode: M48
  dateStart: 20061201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LSPB-ABMT62wqiMxAM8pEpsx06QEOqmlgpp1YRWVJ4i23HGpC4tzSbYv-cuTSKQigQvVhQ7iX3n-8r57gBeixw5rwrzQDmdB9IWSFLSq0Ap70NrkkhZinc-m6rJTH6ax_MdaGu2NgCstpp2VE9qtl4Mfn6_-4AE_76u2qCj9qHBaln6QSgEsmW9C_soq1Iq5nAmO78CUnftvSStJVA8FE0w3d_e8oewqnP6Uw7UxbLapo8-gHu35crc_TCLxW8yavwIHjbKJRtudsMB7PjyMRw05FuxN02O6bdP4MswNyvidOxi7f0EL96xUVn5a7vwbFkw8lVXDBVa5stvlJKjvGRX15bOQTqfs6uSYjUQpcyR9k3HjWoMP4XZeHRxOgmaEguBk5zfBInNY-d1mqc-RWlZhMYaRFVqEomsLOSpkSoxiUudi6SWyqY8cdogEcc5N8KJZ7BXIsCOgEUmD4V1qPHJUEqtTBGbmGvkH7ki924PghaW2WqTSSOr3WkaLZANfDKCfdbAvgcnBPBuLOXBrm8s15dZQ1aZE7pACxenJQUatqF12unEOiFi5WQienBE6Go_UGWCx1zi4iR2Hbco3N79qutGiiM3iin98nYzhgKYherB4Qb13SQpe1iUyrAHg24v_NNqn_8ndF7AfU6ViOvTbsewh1j3L1E9urF92NVzjW1yGlE7_tiH_ZPR9Pxzv_7h0K8pAu_NpufDr78Au0AUkA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKORQOiPJqoMAggQSHbLMzk5kECaECrbb0cdqivaXz2lJpmyxNq6p_it-InccCUoW49BYlUTKxP7_isQ3wWnjUvCrxsXLax9JOUaRkULFSISTWZENlqd55_0CNDuXXSTpZgp99LQxtq-x1YqOofeXoH_mG4CmXmeRSfJz_iGlqFGVX-xEaLSx2w9Ulhmz1h50vyN83nG9vjT-P4m6qQOwk5-dxZn3qgs59HnI0ENPEWIOryw0-HK0jz41Umclc7txQaqlszjOnDeI29dwIJ_C5t-C2FKhLUH70ZBHgoe5QqivPE3q40aFhMK_KMEiEQHOh_zJ_zZQA6qo6q-rrPNy7sHJRzs3VpZnN_rB62_fhXueuss0WX6uwFMoHsNophJq97bpWv3sI3za9mZPuZOOzEEZ48J5tlXU4tbPAqimj7HfN0EVmofxOTT7KY3ZyamlnpQuenZRU_YEgYY78edrA1GDmERzeCHkfw3KJBFsDNjQ-EdahDykTKbUy09SkXKNG8ooSxhHEPS2Ledubo2gSdBpjmpY-BdG-6GgfwSci-OJe6qzdnKjOjotOUAsn9BRjZlyWFBgqJ9ZppzPrhEiVk5mIYI3Y1b-gLn4DM4L1noXXX361uIwyTIkZU4bqor2HSqKFiuBJy_rFIqkf2TCXSQSDBRb-62uf_ns1L2FlNN7fK_Z2DnafwR1OY42brXPrsIwMD8_R1zq3LxqAMzi6aYn6BegxPWc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IMqrhgKLBBIcnDi7610bCaFCG6UUKg5tlZvZXa_bSqkd6lZV_xq_jhk_AkgV4tJbFFvxZuabl-cF8ErkqHlVlIfK6TyUtkCRkl6FSnkfWZOMlKV-56-7arIvP0_j6RL87HthqKyy14mNos4rR-_Ih4LHXCaSSzEsurKIb5vjD_MfIW2Qokxrv06jhciOv7zA8K1-v72JvH7N-Xhr79Mk7DYMhE5yfhYmNo-d12me-hSNRREZa_CkqcEHoaXkqZEqMYlLnRtJLZVNeeK0QQzHOTfCCfzdG3BTC5FSOaGeLoI91CNKda16Qo-GHTIG86r0g0gINB36L1PYbAygCauzqr7K212B2-fl3FxemNnsDws4vgd3O9eVbbRYW4UlX96H1U451OxNN8H67QM42MjNnPQo2zv1foIf3rGtsvYnduZZVTDKhNcM3WXmyyMa-FEesuMTS1WWzufsuKROEAQMc-TbUzFTg5-HsH8t5H0EyyUSbA3YyOSRsA79SRlJqZUpYhNzjdopV5Q8DiDsaZnN2zkdWZOs0xjftPTJiPZZR_sAPhLBF_fSlO3mi-r0MOuENnNCFxg_47GkwLA5sk47nVgnRKycTEQAa8Su_gF19hukAaz3LLz68svFZZRnStKY0lfn7T3UHi1UAI9b1i8OSbPJRqmMAhgssPBf__bJv0_zAm6hLGVftnd3nsIdThuOmyq6dVhGfvtn6Had2ecNvhl8v26B-gW7akGq
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6AMqjTVuQkTiARIJjO3bCbYtarZBaceiicor8SqnYZldkVwh-PeM8VgW1UrlFsaN4nh5rZj4DvOYOPa-kLpZWuViYCk1KeBlL6T01Ok-lCf3OJ6dyMhWfzrPzDXg39MJcz99zlb7vOZos5rVPKOfoctU92JQZRt4j2Jyefh5_7RLHLJaM8r477rZP_9p9WpD-AGo6mzc3BZhbcH9VL_Svn3o2u7bpHD-Ck2G5Xa3J92S1NIn9_Q-S413peQwP--iTjDt12YYNXz-B7d6-G_KmB6F--xS-jJ1eBFdIzn54P8GHD-SobvyVmXkyr0hIZjcEI17i628Bs6O-IJdXJhRKWu_IZR2aOVDmxIbwPNQjtSrwDKbHR2cfJ3F_B0NsBWPLODcus14VrvAFbqcV1UajLAudC_R1lBVayFzntrA2FUpIU7DcKo1WnjmmueXPYVQjrbtAUu0oNxZDQkGFUFJXmc6YQgfjZMj_RhAPsikXHdRG2ebbFB5ROv6UgW1lz7YIDoMA13MDUHb7Avld9nZXWq4qPALjsgTHky81VlmVG8t5Jq3IeQS7QfzDD5qSs4wJJE7g0MGgEjcPv1oPo0mGPIuu_XzVzQkdzlxGsNOp0nqRAV4sLQSNIFnr1p2o3fvfD_bhAQt3Fbf1cAcwQrH7FxhALc3L3m7-ADlzGMU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+TreeHive%3A+Ensemble+of+trees+for+enhancing+imbalanced+intrusion+classification&rft.jtitle=PloS+one&rft.au=Sobhani%2C+Mahbub+E.&rft.au=Rodela%2C+Anika+Tasnim&rft.au=Farid%2C+Dewan+Md&rft.date=2025-09-01&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=9&rft.spage=e0331307&rft_id=info:doi/10.1371%2Fjournal.pone.0331307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0331307
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon