Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification
Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applie...
Saved in:
| Published in | PloS one Vol. 20; no. 9; p. e0331307 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Public Library of Science
01.09.2025
Public Library of Science (PLoS) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-6203 1932-6203 |
| DOI | 10.1371/journal.pone.0331307 |
Cover
| Abstract | Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers. |
|---|---|
| AbstractList | Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers. Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers.Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority instances/intrusions in the imbalanced intrusion datasets. Data sampling methods such as over-sampling and under-sampling methods are commonly applied for dealing with imbalanced intrusion data. In over-sampling, synthetic minority instances are generated e.g. SMOTE (Synthetic Minority Over-sampling Technique) and on the contrary, under-sampling methods remove the majority-class instances to create balanced data e.g. random under-sampling. Both over-sampling and under-sampling methods have the disadvantages as over-sampling technique creates overfitting and under-sampling technique ignores a large portion of the data. Ensemble learning in supervised machine learning is also a common technique for handling imbalanced data. Random Forest and Bagging techniques address the overfitting problem, and Boosting (AdaBoost) gives more attention to the minority-class instances in its iterations. In this paper, we have proposed a method for selecting the most informative instances that represent the overall dataset. We have applied both over-sampling and under-sampling techniques to balance the data by employing the majority and minority informative instances. We have used Random Forest, Bagging, and Boosting (AdaBoost) algorithms and have compared their performances. We have used decision tree (C4.5) as the base classifier of Random Forest and AdaBoost classifiers and naïve Bayes classifier as the base classifier of the Bagging model. The proposed method Adaptive TreeHive addresses both the issues of imbalanced ratio and high dimensionality, resulting in reduced computational power and execution time requirements. We have evaluated the proposed Adaptive TreeHive method using five large-scale public benchmark datasets. The experimental results, compared to data balancing methods such as under-sampling and over-sampling, exhibit superior performance of the Adaptive TreeHive with accuracy rates of 99.96%, 85.65%, 99.83%, 99.77%, and 95.54% on the NSL-KDD, UNSW-NB15, CIC-IDS2017, CSE-CIC-IDS2018, and CICDDoS2019 datasets, respectively, establishing the Adaptive TreeHive as a superior performer compared to the traditional ensemble classifiers. |
| Author | Sobhani, Mahbub E. Rodela, Anika Tasnim Farid, Dewan Md |
| Author_xml | – sequence: 1 givenname: Mahbub E. orcidid: 0009-0006-6043-4507 surname: Sobhani fullname: Sobhani, Mahbub E. – sequence: 2 givenname: Anika Tasnim surname: Rodela fullname: Rodela, Anika Tasnim – sequence: 3 givenname: Dewan Md orcidid: 0000-0002-6413-4898 surname: Farid fullname: Farid, Dewan Md |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40971940$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1u1TAQhS1U1D_6BggisWFzbx3biWN2VVVopUpsWrbWxJkUXzl2sJOivj2-JK0QYsHK49HnM8dzTsiBDx4JeVvSbclleb4Lc_TgtmNubynnJafyFTkuFWebmlF-8Ed9RE5S2lFa8aauD8mRoEqWStBj8u2ig3Gyj1jcRcTrXHwqrnzCoXVYhL6YcjcVfYgF-u_gjfUPhR1acLnGrrB-inOywRfGQUq2twamfH1DXvfgEp6t5ym5_3x1d3m9uf365eby4nZjBGPTpmm7yqBUnUKF2PUUWhBYK2gEKxVlCkTdQGOUMaWQom4Va4wEqUTVMeCGn5L3i-7oQtLrSpLmrGIiawieiZuF6ALs9BjtAPFJB7D6dyPEBw1xssahNlz2lVB5iOBC1LQ10simNZxXtRHNXqtatGY_wtNPcO5FsKR6n8qzBb1PRa-p5HcfV5cx_JgxTXqwyaDLS8QwL3YrzgWvM_rhL_Tfn3q3UnM7YPfi4jnXDIgFMDGkFLH_P6O_AN7EuIo |
| Cites_doi | 10.3390/electronics11213571 10.1016/j.jisa.2022.103405 10.1007/s10723-021-09581-z 10.1109/ACCESS.2022.3233775 10.1016/j.inffus.2017.10.006 10.1016/j.inffus.2022.09.026 10.1023/A:1022643204877 10.1007/BF02289263 10.1016/j.jisa.2021.102923 10.1109/COMST.2023.3280465 10.1109/ACCESS.2020.2982418 10.18653/v1/2023.banglalp-1.3 10.1016/j.aej.2023.03.093 10.3390/cryptography6040062 10.1007/s11227-023-05073-x 10.1007/978-981-99-7649-2_13 10.1186/s40537-021-00448-4 10.3390/app122211752 10.1007/s12525-021-00475-2 10.1109/TIT.1967.1053964 10.1016/j.eswa.2013.05.001 10.5121/ijnsa.2010.2202 10.1109/I2CT51068.2021.9417971 10.1186/s40537-020-00379-6 10.1007/s00521-020-04986-5 10.1016/j.jnca.2020.102688 10.1016/j.cose.2022.102861 10.1016/j.engappai.2020.103770 10.1109/CVPR.2016.90 10.1109/TKDE.2012.232 10.3390/s22239326 10.3390/electronics11050805 10.1016/j.cose.2011.12.012 10.1109/TNSM.2020.3014929 10.1007/s41870-018-0225-x 10.1007/978-3-031-13870-6_53 10.1016/j.jnca.2021.103160 10.3390/s22197409 10.1186/s40537-019-0192-5 10.1109/ICASERT.2019.8934495 10.1109/ACCESS.2020.3009843 10.1145/3467470 10.1109/IJCNN.2008.4633969 10.1016/j.ins.2019.11.004 10.1016/j.eswa.2020.114170 10.1109/ACCESS.2023.3296444 10.1109/ACCESS.2020.2973219 10.1109/TENCON58879.2023.10322330 10.1109/ICONSTEM56934.2023.10142673 |
| ContentType | Journal Article |
| Copyright | Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. – notice: 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QG 7QL 7QO 7RV 7SN 7SS 7T5 7TG 7TM 7U9 7X2 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M7N M7P M7S NAPCQ P5Z P62 P64 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY RC3 7X8 ADTOC UNPAY DOA |
| DOI | 10.1371/journal.pone.0331307 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Nursing & Allied Health Database Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Meteorological & Geoastrophysical Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Genetics Abstracts MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts ProQuest Engineering Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Materials Science Collection ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1932-6203 |
| ExternalDocumentID | 3252484243 oai_doaj_org_article_c37f549b92434460bc7c78bc3356c483 10.1371/journal.pone.0331307 40971940 10_1371_journal_pone_0331307 |
| Genre | Journal Article |
| GroupedDBID | --- 123 29O 2WC 53G 5VS 7RV 7X2 7X7 7XC 88E 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ A8Z AAFWJ AAUCC AAWOE AAYXX ABDBF ABIVO ABJCF ABUWG ACGFO ACIHN ACIWK ACPRK ACUHS ADBBV AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI BWKFM CCPQU CITATION CS3 D1I D1J D1K DIK DU5 E3Z EAP EAS EBD EMOBN ESTFP ESX EX3 F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IAO IEA IGS IHR IHW INH INR IOV IPY ISE ISR ITC K6- KB. KQ8 L6V LK5 LK8 M0K M1P M48 M7P M7R M7S M~E NAPCQ O5R O5S OK1 OVT P2P P62 PATMY PDBOC PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PTHSS PUEGO PV9 PYCSY RNS RPM RZL SV3 TR2 UKHRP WOQ WOW ~02 ~KM ADRAZ CGR CUY CVF ECM EIF IPNFZ NPM RIG 3V. 7QG 7QL 7QO 7SN 7SS 7T5 7TG 7TM 7U9 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. KL. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 ADTOC UNPAY ACCTH AFFHD BBTPI |
| ID | FETCH-LOGICAL-c422t-8bd5ce79d9e9eedf0aba4e69a84219029a468a8c9cc14746b928c7a7945d2a3c3 |
| IEDL.DBID | M48 |
| ISSN | 1932-6203 |
| IngestDate | Wed Oct 29 23:52:57 EDT 2025 Tue Oct 14 18:30:06 EDT 2025 Sun Oct 26 04:13:18 EDT 2025 Sat Sep 20 18:32:45 EDT 2025 Tue Oct 07 09:10:24 EDT 2025 Mon Sep 22 02:45:12 EDT 2025 Wed Oct 01 05:14:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Copyright: © 2025 Sobhani et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. cc-by Creative Commons Attribution License |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-8bd5ce79d9e9eedf0aba4e69a84219029a468a8c9cc14746b928c7a7945d2a3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0006-6043-4507 0000-0002-6413-4898 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1371/journal.pone.0331307 |
| PMID | 40971940 |
| PQID | 3252484243 |
| PQPubID | 1436336 |
| ParticipantIDs | plos_journals_3252484243 doaj_primary_oai_doaj_org_article_c37f549b92434460bc7c78bc3356c483 unpaywall_primary_10_1371_journal_pone_0331307 proquest_miscellaneous_3252533436 proquest_journals_3252484243 pubmed_primary_40971940 crossref_primary_10_1371_journal_pone_0331307 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: San Francisco |
| PublicationTitle | PloS one |
| PublicationTitleAlternate | PLoS One |
| PublicationYear | 2025 |
| Publisher | Public Library of Science Public Library of Science (PLoS) |
| Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
| References | DMd Farid (pone.0331307.ref025) 2013; 40 P Vanin (pone.0331307.ref009) 2022; 12 M Rodríguez (pone.0331307.ref032) 2022; 22 pone.0331307.ref007 pone.0331307.ref008 Q Zhang (pone.0331307.ref020) 2018; 42 MdA Talukder (pone.0331307.ref043) 2023; 72 H Rajadurai (pone.0331307.ref038) 2020; 34 D Stiawan (pone.0331307.ref034) 2020; 8 P Vanin (pone.0331307.ref006) 2022; 12 pone.0331307.ref049 pone.0331307.ref004 F Laghrissi (pone.0331307.ref040) 2021; 8 P Vincent (pone.0331307.ref047) 2010; 11 pone.0331307.ref041 K Sethi (pone.0331307.ref046) 2021; 61 N Omer (pone.0331307.ref028) 2023; 72 T Zoppi (pone.0331307.ref031) 2021; 5 Z Azam (pone.0331307.ref012) 2022; 22 YJ Chew (pone.0331307.ref053) 2022; 11 C Zhang (pone.0331307.ref001) 2022; 121 JR Quinlan (pone.0331307.ref051) 1986; 1 MA Almaiah (pone.0331307.ref013) 2022; 11 A Shahraki (pone.0331307.ref016) 2020; 94 T Wu (pone.0331307.ref057) 2022; 2022 pone.0331307.ref010 OD Okey (pone.0331307.ref026) 2023; 11 pone.0331307.ref058 pone.0331307.ref015 H Jiang (pone.0331307.ref017) 2020; 8 Z Wu (pone.0331307.ref048) 2020; 164 pone.0331307.ref059 N Moustafa (pone.0331307.ref002) 2023; 25 F Thabtah (pone.0331307.ref036) 2020; 513 NJ Tithi (pone.0331307.ref042) 2019 YZ Okey (pone.0331307.ref033) 2022; 13 DM Singh (pone.0331307.ref024) 2010; 2 T Cover (pone.0331307.ref037) 1967; 13 MS ElSayed (pone.0331307.ref018) 2021; 191 Y Hamid (pone.0331307.ref067) 2018; 11 RL Thorndike (pone.0331307.ref050) 1953; 18 RH Dong (pone.0331307.ref066) 2020; 22 J Berkson (pone.0331307.ref044) 1944; 39 S Barua (pone.0331307.ref065) 2014; 26 C Janiesch (pone.0331307.ref011) 2021; 31 M Mahdavisharif (pone.0331307.ref029) 2021; 19 F Laghrissi (pone.0331307.ref019) 2021; 8 OD Okey (pone.0331307.ref021) 2022; 22 SM Kasongo (pone.0331307.ref027) 2020; 7 pone.0331307.ref064 pone.0331307.ref023 S Chauhan (pone.0331307.ref052) 2022; 6 G Karatas (pone.0331307.ref045) 2020; 8 pone.0331307.ref061 pone.0331307.ref060 pone.0331307.ref063 pone.0331307.ref062 A Shiravi (pone.0331307.ref056) 2012; 31 M Alkasassbeh (pone.0331307.ref054) 2017; 95 A Abdelkhalek (pone.0331307.ref055) 2023; 79 pone.0331307.ref039 A Thakkar (pone.0331307.ref005) 2023; 90 M Injadat (pone.0331307.ref022) 2021; 18 JM Johnson (pone.0331307.ref035) 2019; 6 I Sohn (pone.0331307.ref003) 2021; 167 pone.0331307.ref030 Z Azam (pone.0331307.ref014) 2023; 11 |
| References_xml | – ident: pone.0331307.ref010 – volume: 11 start-page: 3371 issue: 12 year: 2010 ident: pone.0331307.ref047 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: Journal of Machine Learning Research – volume: 11 start-page: 3571 issue: 21 year: 2022 ident: pone.0331307.ref013 article-title: Performance investigation of principal component analysis for intrusion detection system using different support vector machine kernels publication-title: Electronics doi: 10.3390/electronics11213571 – volume: 72 start-page: 103405 year: 2023 ident: pone.0331307.ref043 article-title: A dependable hybrid machine learning model for network intrusion detection publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2022.103405 – volume: 19 issue: 4 year: 2021 ident: pone.0331307.ref029 article-title: Big data-aware intrusion detection system in communication networks: a deep learning approach publication-title: J Grid Computing doi: 10.1007/s10723-021-09581-z – volume: 95 start-page: 5962 issue: 22 year: 2017 ident: pone.0331307.ref054 article-title: An empirical evaluation for the intrusion detection features based on machine learning and feature selection methods publication-title: Journal of Theoretical and Applied Information Technology – volume: 11 start-page: 1023 year: 2023 ident: pone.0331307.ref026 article-title: Transfer learning approach to IDS on cloud IoT devices using optimized CNN publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3233775 – volume: 42 start-page: 146 year: 2018 ident: pone.0331307.ref020 article-title: A survey on deep learning for big data publication-title: Information Fusion doi: 10.1016/j.inffus.2017.10.006 – volume: 90 start-page: 353 year: 2023 ident: pone.0331307.ref005 article-title: Fusion of statistical importance for feature selection in Deep Neural Network-based Intrusion Detection System publication-title: Information Fusion doi: 10.1016/j.inffus.2022.09.026 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: pone.0331307.ref051 article-title: Induction of Decision Trees publication-title: Mach Learn doi: 10.1023/A:1022643204877 – ident: pone.0331307.ref062 – volume: 18 start-page: 267 issue: 4 year: 1953 ident: pone.0331307.ref050 article-title: Who Belongs in the Family? publication-title: Psychometrika doi: 10.1007/BF02289263 – volume: 61 start-page: 102923 year: 2021 ident: pone.0331307.ref046 article-title: Attention based multi-agent intrusion detection systems using reinforcement learning publication-title: Journal of Information Security and Applications doi: 10.1016/j.jisa.2021.102923 – volume: 25 start-page: 1775 issue: 3 year: 2023 ident: pone.0331307.ref002 article-title: Explainable intrusion detection for cyber defences in the Internet of Things: opportunities and solutions publication-title: IEEE Commun Surv Tutorials doi: 10.1109/COMST.2023.3280465 – volume: 8 start-page: 58392 year: 2020 ident: pone.0331307.ref017 article-title: Network intrusion detection based on PSO-Xgboost model publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982418 – ident: pone.0331307.ref030 doi: 10.18653/v1/2023.banglalp-1.3 – volume: 72 start-page: 351 year: 2023 ident: pone.0331307.ref028 article-title: A novel optimized probabilistic neural network approach for intrusion detection and categorization publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2023.03.093 – volume: 6 start-page: 62 issue: 4 year: 2022 ident: pone.0331307.ref052 article-title: Intrusion detection system for IoT using logical analysis of data and information gain ratio publication-title: Cryptography doi: 10.3390/cryptography6040062 – volume: 79 start-page: 10611 issue: 10 year: 2023 ident: pone.0331307.ref055 article-title: Addressing the class imbalance problem in network intrusion detection systems using data resampling and deep learning publication-title: J Supercomput doi: 10.1007/s11227-023-05073-x – ident: pone.0331307.ref041 doi: 10.1007/978-981-99-7649-2_13 – volume: 8 issue: 1 year: 2021 ident: pone.0331307.ref019 article-title: Intrusion detection systems using long short-term memory (LSTM) publication-title: J Big Data doi: 10.1186/s40537-021-00448-4 – volume: 12 start-page: 11752 issue: 22 year: 2022 ident: pone.0331307.ref006 article-title: A study of network intrusion detection systems using artificial intelligence/machine learning publication-title: Applied Sciences doi: 10.3390/app122211752 – volume: 31 start-page: 685 issue: 3 year: 2021 ident: pone.0331307.ref011 article-title: Machine learning and deep learning publication-title: Electron Markets doi: 10.1007/s12525-021-00475-2 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: pone.0331307.ref037 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans Inform Theory doi: 10.1109/TIT.1967.1053964 – volume: 39 start-page: 357 issue: 227 year: 1944 ident: pone.0331307.ref044 article-title: Application to the logistic function to bio-assay publication-title: Journal of the American Statistical Association – volume: 2022 issue: 1 year: 2022 ident: pone.0331307.ref057 article-title: Intrusion detection system combined enhanced random forest with SMOTE algorithm publication-title: EURASIP J Adv Signal Process – volume: 40 start-page: 5895 issue: 15 year: 2013 ident: pone.0331307.ref025 article-title: An adaptive ensemble classifier for mining concept drifting data streams publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2013.05.001 – volume: 2 start-page: 12 issue: 2 year: 2010 ident: pone.0331307.ref024 article-title: Combining Naive Bayes and decision tree for adaptive intrusion detection publication-title: IJNSA doi: 10.5121/ijnsa.2010.2202 – ident: pone.0331307.ref015 doi: 10.1109/I2CT51068.2021.9417971 – volume: 7 issue: 1 year: 2020 ident: pone.0331307.ref027 article-title: Performance analysis of intrusion detection systems using a feature selection method on the UNSW-NB15 dataset publication-title: J Big Data doi: 10.1186/s40537-020-00379-6 – volume: 34 start-page: 15387 issue: 18 year: 2020 ident: pone.0331307.ref038 article-title: A stacked ensemble learning model for intrusion detection in wireless network publication-title: Neural Comput & Applic doi: 10.1007/s00521-020-04986-5 – ident: pone.0331307.ref063 – ident: pone.0331307.ref058 – ident: pone.0331307.ref060 – volume: 164 start-page: 102688 year: 2020 ident: pone.0331307.ref048 article-title: A network intrusion detection method based on semantic re-encoding and deep learning publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2020.102688 – volume: 22 start-page: 218 issue: 2 year: 2020 ident: pone.0331307.ref066 article-title: An intrusion detection model for wireless sensor network based on information gain ratio and bagging algorithm publication-title: Int J Netw Secur – volume: 121 start-page: 102861 year: 2022 ident: pone.0331307.ref001 article-title: Comparative research on network intrusion detection methods based on machine learning publication-title: Computers & Security doi: 10.1016/j.cose.2022.102861 – volume: 94 start-page: 103770 year: 2020 ident: pone.0331307.ref016 article-title: Boosting algorithms for network intrusion detection: a comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2020.103770 – ident: pone.0331307.ref049 doi: 10.1109/CVPR.2016.90 – volume: 26 start-page: 405 issue: 2 year: 2014 ident: pone.0331307.ref065 article-title: MWMOTE–majority weighted minority oversampling technique for imbalanced data set learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.232 – volume: 22 start-page: 9326 issue: 23 year: 2022 ident: pone.0331307.ref032 article-title: Evaluation of machine learning techniques for traffic flow-based intrusion detection publication-title: Sensors (Basel) doi: 10.3390/s22239326 – volume: 11 start-page: 805 issue: 5 year: 2022 ident: pone.0331307.ref053 article-title: Adoption of IP truncation in a privacy-based decision tree pruning design: a case study in network intrusion detection system publication-title: Electronics doi: 10.3390/electronics11050805 – volume: 31 start-page: 357 issue: 3 year: 2012 ident: pone.0331307.ref056 article-title: Toward developing a systematic approach to generate benchmark datasets for intrusion detection publication-title: Computers & Security doi: 10.1016/j.cose.2011.12.012 – volume: 18 start-page: 1803 issue: 2 year: 2021 ident: pone.0331307.ref022 article-title: Multi-stage optimized machine learning framework for network intrusion detection publication-title: IEEE Trans Netw Serv Manage doi: 10.1109/TNSM.2020.3014929 – volume: 11 start-page: 251 issue: 2 year: 2018 ident: pone.0331307.ref067 article-title: Wavelet neural network model for network intrusion detection system publication-title: Int J Inf Tecnol doi: 10.1007/s41870-018-0225-x – ident: pone.0331307.ref061 – volume: 8 issue: 1 year: 2021 ident: pone.0331307.ref040 article-title: Intrusion detection systems using long short-term memory (LSTM) publication-title: J Big Data doi: 10.1186/s40537-021-00448-4 – ident: pone.0331307.ref007 – ident: pone.0331307.ref064 doi: 10.1007/978-3-031-13870-6_53 – volume: 191 start-page: 103160 year: 2021 ident: pone.0331307.ref018 article-title: A novel hybrid model for intrusion detection systems in SDNs based on CNN and a new regularization technique publication-title: Journal of Network and Computer Applications doi: 10.1016/j.jnca.2021.103160 – volume: 22 start-page: 7409 issue: 19 year: 2022 ident: pone.0331307.ref021 article-title: BoostedEnML: efficient technique for detecting cyberattacks in IoT systems using boosted ensemble machine learning publication-title: Sensors (Basel) doi: 10.3390/s22197409 – volume: 13 issue: 7 year: 2022 ident: pone.0331307.ref033 article-title: An effective ensemble automatic feature selection method for network intrusion detection publication-title: Information – volume: 6 issue: 1 year: 2019 ident: pone.0331307.ref035 article-title: Survey on deep learning with class imbalance publication-title: J Big Data doi: 10.1186/s40537-019-0192-5 – ident: pone.0331307.ref023 doi: 10.1109/ICASERT.2019.8934495 – volume: 8 start-page: 132911 year: 2020 ident: pone.0331307.ref034 article-title: CICIDS-2017 dataset feature analysis with information gain for anomaly detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009843 – ident: pone.0331307.ref059 – volume: 12 issue: 22 year: 2022 ident: pone.0331307.ref009 article-title: A study of network intrusion detection systems using artificial intelligence/machine learning publication-title: Appl Sci doi: 10.3390/app122211752 – volume: 5 start-page: 1 issue: 4 year: 2021 ident: pone.0331307.ref031 article-title: Meta-learning to improve unsupervised intrusion detection in cyber-physical systems publication-title: ACM Trans Cyber-Phys Syst doi: 10.1145/3467470 – ident: pone.0331307.ref039 doi: 10.1109/IJCNN.2008.4633969 – volume: 513 start-page: 429 year: 2020 ident: pone.0331307.ref036 article-title: Data imbalance in classification: experimental evaluation publication-title: Information Sciences doi: 10.1016/j.ins.2019.11.004 – volume: 167 start-page: 114170 year: 2021 ident: pone.0331307.ref003 article-title: Deep belief network based intrusion detection techniques: a survey publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114170 – volume: 11 start-page: 80348 year: 2023 ident: pone.0331307.ref014 article-title: Comparative analysis of intrusion detection systems and machine learning-based model analysis through decision tree publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3296444 – volume: 8 start-page: 32150 year: 2020 ident: pone.0331307.ref045 article-title: Increasing the performance of machine learning-based IDSs on an imbalanced and up-to-date dataset publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973219 – ident: pone.0331307.ref008 doi: 10.1109/TENCON58879.2023.10322330 – ident: pone.0331307.ref004 doi: 10.1109/ICONSTEM56934.2023.10142673 – year: 2019 ident: pone.0331307.ref042 article-title: Hospital dietary control using automated planning publication-title: DUET Journal – volume: 22 issue: 16 year: 2022 ident: pone.0331307.ref012 article-title: A hybrid intrusion detection model using EGA-PSO and improved random forest method publication-title: Sensors |
| SSID | ssj0053866 |
| Score | 2.4882498 |
| Snippet | Imbalanced intrusion classification is a complex and challenging task as there are few number of instances/intrusions generally considered as minority... |
| SourceID | plos doaj unpaywall proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e0331307 |
| SubjectTerms | Algorithms Bagging Big Data Classification Collaboration Communication Communications networks Cybersecurity Data sampling Datasets Decision Trees Deep learning Design Ensemble learning Humans Intrusion Machine Learning Malware Neural networks Oversampling Sampling Sampling methods Sampling techniques Supervised learning |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hLtBDBfRBykOu1EN7yOLEju1wAwRaVWpPUHGL_EqLtHhXDQjx75lJsisqIbWH3qLYUuL5POMZzcxngE8ioOVVPOTK65BL16JKyahypWLkzppCOep3_vZdTa_k1-vq-tlVX1QTNtADD4I78kK3GMM4jBMEhi7cee21cV6ISnlpep5PbuplMDXYYNRipcZGOaGLoxGXyWKe4oQLgYZb_3EQ9Xz9xG86m3cv-ZqvYOM-Lezjg53Nnp0_F1vwenQc2cnww9uwFtMObI-q2bHPI3_0lzfw4yTYBVkxdvk7xik-HLPz1MVbN4ts3jLKQ3cMnVUW0y-i20g_2c2toxpHHwO7SdSHgXAxT541lRL16L2Fq4vzy7NpPl6fkHtZlne5caHyUdehjjWehC23ziIMtTUSzRQvayuVscbX3hdSS4UiNl5bVNAqlFZ48Q7WEwpsF1hhAxfOozcnuZRa2bayVanRNgRFqdsM8qUsm8XAktH0qTKN0cUgn4Zk34yyz-CUBL6aSxzX_QtEvhmRb_6GfAa7BNfyA10jyqqUuDiJQ_tLCF8e_rgaRm2iFIlNcX4_zKHmZKEyeD9Av_pJYgYraskzmKz2wj-t9sP_WO0ebJZ09XBf3rYP67gV4gH6Q3fusN_6T2oGB3M priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB_q9UF9EOtXo1VW8EEfck12N7uJINLKlUPwEGmlb2G_UgvXJDYt4n_vTD5OhSK-hWQhm_ntzM5mZn4D8Ep4tLwq8bFy2sfSVqhSMqhYqRASa_JUWap3_rRSyxP58TQ73YLVVAtDaZWTTewNtW8c_SPfFzzjMpdcivft95i6RlF0dWqhYcbWCv5dTzF2C7Y5MWPNYPtwsfr8ZbLNqN1KjQV0Qqf7I17ztqnDPBECDbr-a4PqefyJ93TddDf5oHfh9nXdmp8_zHr9x750dB_ujQ4lOxhWwA5shfoB7Iwq27HXI6_0m4fw9cCblqwbO74MYYkXb9mi7sKFXQfWVIzi0x1DJ5aF-hvRcNRn7PzCUu6jC56d11SfgTAyRx43pRj1qD6Ck6PF8YdlPLZViJ3k_CrOrc9c0IUvQoE7ZJUYaxCewqB00T3ghZEqN7krnEullsoWPHfaoOJmnhvhxGOY1SiwXWCp8YmwDr08mUiplakyk3GNNsMrCulGEE-yLNuBPaPsQ2gaTx2DfEqSfTnKPoJDEvhmLHFf9zeay7NyVKXSCV3hqRanJQUeZhPrtNO5dUJkyslcRLBLcE0v6MrfSyeCvQnCmx-_3DxGLaPQialDcz2MoaJloSJ4MkC_mSQxhqWFTCKYb9bCf33t03_P5hnc4dRsuE9o24MZghyeowd0ZV-My_oXYHkGXA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6AMqjTVuQkTiARIJjO3bCbYtarZBaceiicor8SqnYZldkVwh-PeM8VgW1UrlFsaN4nh5rZj4DvOYOPa-kLpZWuViYCk1KeBlL6T01Ok-lCf3OJ6dyMhWfzrPzDXg39MJcz99zlb7vOZos5rVPKOfoctU92JQZRt4j2Jyefh5_7RLHLJaM8r477rZP_9p9WpD-AGo6mzc3BZhbcH9VL_Svn3o2u7bpHD-Ck2G5Xa3J92S1NIn9_Q-S413peQwP--iTjDt12YYNXz-B7d6-G_KmB6F--xS-jJ1eBFdIzn54P8GHD-SobvyVmXkyr0hIZjcEI17i628Bs6O-IJdXJhRKWu_IZR2aOVDmxIbwPNQjtSrwDKbHR2cfJ3F_B0NsBWPLODcus14VrvAFbqcV1UajLAudC_R1lBVayFzntrA2FUpIU7DcKo1WnjmmueXPYVQjrbtAUu0oNxZDQkGFUFJXmc6YQgfjZMj_RhAPsikXHdRG2ebbFB5ROv6UgW1lz7YIDoMA13MDUHb7Avld9nZXWq4qPALjsgTHky81VlmVG8t5Jq3IeQS7QfzDD5qSs4wJJE7g0MGgEjcPv1oPo0mGPIuu_XzVzQkdzlxGsNOp0nqRAV4sLQSNIFnr1p2o3fvfD_bhAQt3Fbf1cAcwQrH7FxhALc3L3m7-ADlzGMU priority: 102 providerName: Unpaywall |
| Title | Adaptive TreeHive: Ensemble of trees for enhancing imbalanced intrusion classification |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40971940 https://www.proquest.com/docview/3252484243 https://www.proquest.com/docview/3252533436 https://doi.org/10.1371/journal.pone.0331307 https://doaj.org/article/c37f549b92434460bc7c78bc3356c483 http://dx.doi.org/10.1371/journal.pone.0331307 |
| UnpaywallVersion | publishedVersion |
| Volume | 20 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: HH5 dateStart: 20060101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: KQ8 dateStart: 20061001 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DOA dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO Food Science Source customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: A8Z dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 7X7 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: BENPR dateStart: 20061201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8FG dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1932-6203 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: 8C1 dateStart: 20061201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1932-6203 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0053866 issn: 1932-6203 databaseCode: M48 dateStart: 20061201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1db9Mw8LSPB-ABMT62wqiMxAM8pEpsx06QEOqmlgpp1YRWVJ4i23HGpC4tzSbYv-cuTSKQigQvVhQ7iX3n-8r57gBeixw5rwrzQDmdB9IWSFLSq0Ap70NrkkhZinc-m6rJTH6ax_MdaGu2NgCstpp2VE9qtl4Mfn6_-4AE_76u2qCj9qHBaln6QSgEsmW9C_soq1Iq5nAmO78CUnftvSStJVA8FE0w3d_e8oewqnP6Uw7UxbLapo8-gHu35crc_TCLxW8yavwIHjbKJRtudsMB7PjyMRw05FuxN02O6bdP4MswNyvidOxi7f0EL96xUVn5a7vwbFkw8lVXDBVa5stvlJKjvGRX15bOQTqfs6uSYjUQpcyR9k3HjWoMP4XZeHRxOgmaEguBk5zfBInNY-d1mqc-RWlZhMYaRFVqEomsLOSpkSoxiUudi6SWyqY8cdogEcc5N8KJZ7BXIsCOgEUmD4V1qPHJUEqtTBGbmGvkH7ki924PghaW2WqTSSOr3WkaLZANfDKCfdbAvgcnBPBuLOXBrm8s15dZQ1aZE7pACxenJQUatqF12unEOiFi5WQienBE6Go_UGWCx1zi4iR2Hbco3N79qutGiiM3iin98nYzhgKYherB4Qb13SQpe1iUyrAHg24v_NNqn_8ndF7AfU6ViOvTbsewh1j3L1E9urF92NVzjW1yGlE7_tiH_ZPR9Pxzv_7h0K8pAu_NpufDr78Au0AUkA |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKORQOiPJqoMAggQSHbLMzk5kECaECrbb0cdqivaXz2lJpmyxNq6p_it-InccCUoW49BYlUTKxP7_isQ3wWnjUvCrxsXLax9JOUaRkULFSISTWZENlqd55_0CNDuXXSTpZgp99LQxtq-x1YqOofeXoH_mG4CmXmeRSfJz_iGlqFGVX-xEaLSx2w9Ulhmz1h50vyN83nG9vjT-P4m6qQOwk5-dxZn3qgs59HnI0ENPEWIOryw0-HK0jz41Umclc7txQaqlszjOnDeI29dwIJ_C5t-C2FKhLUH70ZBHgoe5QqivPE3q40aFhMK_KMEiEQHOh_zJ_zZQA6qo6q-rrPNy7sHJRzs3VpZnN_rB62_fhXueuss0WX6uwFMoHsNophJq97bpWv3sI3za9mZPuZOOzEEZ48J5tlXU4tbPAqimj7HfN0EVmofxOTT7KY3ZyamlnpQuenZRU_YEgYY78edrA1GDmERzeCHkfw3KJBFsDNjQ-EdahDykTKbUy09SkXKNG8ooSxhHEPS2Ledubo2gSdBpjmpY-BdG-6GgfwSci-OJe6qzdnKjOjotOUAsn9BRjZlyWFBgqJ9ZppzPrhEiVk5mIYI3Y1b-gLn4DM4L1noXXX361uIwyTIkZU4bqor2HSqKFiuBJy_rFIqkf2TCXSQSDBRb-62uf_ns1L2FlNN7fK_Z2DnafwR1OY42brXPrsIwMD8_R1zq3LxqAMzi6aYn6BegxPWc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IMqrhgKLBBIcnDi7610bCaFCG6UUKg5tlZvZXa_bSqkd6lZV_xq_jhk_AkgV4tJbFFvxZuabl-cF8ErkqHlVlIfK6TyUtkCRkl6FSnkfWZOMlKV-56-7arIvP0_j6RL87HthqKyy14mNos4rR-_Ih4LHXCaSSzEsurKIb5vjD_MfIW2Qokxrv06jhciOv7zA8K1-v72JvH7N-Xhr79Mk7DYMhE5yfhYmNo-d12me-hSNRREZa_CkqcEHoaXkqZEqMYlLnRtJLZVNeeK0QQzHOTfCCfzdG3BTC5FSOaGeLoI91CNKda16Qo-GHTIG86r0g0gINB36L1PYbAygCauzqr7K212B2-fl3FxemNnsDws4vgd3O9eVbbRYW4UlX96H1U451OxNN8H67QM42MjNnPQo2zv1foIf3rGtsvYnduZZVTDKhNcM3WXmyyMa-FEesuMTS1WWzufsuKROEAQMc-TbUzFTg5-HsH8t5H0EyyUSbA3YyOSRsA79SRlJqZUpYhNzjdopV5Q8DiDsaZnN2zkdWZOs0xjftPTJiPZZR_sAPhLBF_fSlO3mi-r0MOuENnNCFxg_47GkwLA5sk47nVgnRKycTEQAa8Su_gF19hukAaz3LLz68svFZZRnStKY0lfn7T3UHi1UAI9b1i8OSbPJRqmMAhgssPBf__bJv0_zAm6hLGVftnd3nsIdThuOmyq6dVhGfvtn6Had2ecNvhl8v26B-gW7akGq |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QF6AMqjTVuQkTiARIJjO3bCbYtarZBaceiicor8SqnYZldkVwh-PeM8VgW1UrlFsaN4nh5rZj4DvOYOPa-kLpZWuViYCk1KeBlL6T01Ok-lCf3OJ6dyMhWfzrPzDXg39MJcz99zlb7vOZos5rVPKOfoctU92JQZRt4j2Jyefh5_7RLHLJaM8r477rZP_9p9WpD-AGo6mzc3BZhbcH9VL_Svn3o2u7bpHD-Ck2G5Xa3J92S1NIn9_Q-S413peQwP--iTjDt12YYNXz-B7d6-G_KmB6F--xS-jJ1eBFdIzn54P8GHD-SobvyVmXkyr0hIZjcEI17i628Bs6O-IJdXJhRKWu_IZR2aOVDmxIbwPNQjtSrwDKbHR2cfJ3F_B0NsBWPLODcus14VrvAFbqcV1UajLAudC_R1lBVayFzntrA2FUpIU7DcKo1WnjmmueXPYVQjrbtAUu0oNxZDQkGFUFJXmc6YQgfjZMj_RhAPsikXHdRG2ebbFB5ROv6UgW1lz7YIDoMA13MDUHb7Avld9nZXWq4qPALjsgTHky81VlmVG8t5Jq3IeQS7QfzDD5qSs4wJJE7g0MGgEjcPv1oPo0mGPIuu_XzVzQkdzlxGsNOp0nqRAV4sLQSNIFnr1p2o3fvfD_bhAQt3Fbf1cAcwQrH7FxhALc3L3m7-ADlzGMU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+TreeHive%3A+Ensemble+of+trees+for+enhancing+imbalanced+intrusion+classification&rft.jtitle=PloS+one&rft.au=Sobhani%2C+Mahbub+E.&rft.au=Rodela%2C+Anika+Tasnim&rft.au=Farid%2C+Dewan+Md&rft.date=2025-09-01&rft.issn=1932-6203&rft.eissn=1932-6203&rft.volume=20&rft.issue=9&rft.spage=e0331307&rft_id=info:doi/10.1371%2Fjournal.pone.0331307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_pone_0331307 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-6203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-6203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-6203&client=summon |