Does NGC 6397 contain an intermediate-mass black hole or a more diffuse inner subcluster?

We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For thi...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 646; p. A63
Main Authors Vitral, Eduardo, Mamon, Gary A.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.02.2021
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
DOI10.1051/0004-6361/202039650

Cover

Abstract We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSS T -PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000  M ⊙ , half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and Gaia data: HST for the inner diagnostics and Gaia for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO.
AbstractList We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSS T -PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000  M ⊙ , half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and Gaia data: HST for the inner diagnostics and Gaia for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO.
We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSST-PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000 M⊙, half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and Gaia data: HST for the inner diagnostics and Gaia for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO.
Author Mamon, Gary A.
Vitral, Eduardo
Author_xml – sequence: 1
  givenname: Eduardo
  orcidid: 0000-0002-2732-9717
  surname: Vitral
  fullname: Vitral, Eduardo
– sequence: 2
  givenname: Gary A.
  orcidid: 0000-0001-8956-5953
  surname: Mamon
  fullname: Mamon, Gary A.
BackLink https://hal.science/hal-03139381$$DView record in HAL
BookMark eNp9kL1OwzAURi1UJNrCE7BYYmII9V-ceEJVgRapggUGJstxbNUltYudIPH2JCp0YGC6ulfnu_p0JmDkgzcAXGJ0g1GOZwghlnHK8YwggqjgOToBY8woyVDB-AiMj8QZmKS07VeCSzoGb3fBJPi0XEBORQF18K1yHioPnW9N3JnaqdZkO5USrBql3-EmNAaGCBXchWhg7aztkulxbyJMXaWbLvXJ23NwalWTzMXPnILXh_uXxSpbPy8fF_N1phkhbVbmhLFcWC24qaxQguZaGGZrzTUyvBII13XBiUB1aRkpdKE1LvNcWyaosZhOwfXh70Y1ch_dTsUvGZSTq_laDjdEMRW0xJ8De3Vg9zF8dCa1chu66Pt6kjDBCKVlQXpKHCgdQ0rRWKldq1rXu4nKNRIjOViXg1M5OJVH632W_sn-Vvov9Q2-9IOo
CitedBy_id crossref_primary_10_1093_mnras_stab474
crossref_primary_10_1051_0004_6361_202244530
crossref_primary_10_3847_1538_4357_acefbc
crossref_primary_10_1093_mnras_stac643
crossref_primary_10_3847_1538_4357_acabbf
crossref_primary_10_1103_PhysRevD_104_043004
crossref_primary_10_1093_mnras_stab2035
crossref_primary_10_1093_mnras_stab2872
crossref_primary_10_1093_mnras_stac1347
crossref_primary_10_1093_mnras_stae960
crossref_primary_10_1093_mnras_stab737
crossref_primary_10_1088_1475_7516_2023_07_038
crossref_primary_10_3847_1538_4357_ac5895
crossref_primary_10_1016_j_physletb_2021_136468
crossref_primary_10_3847_1538_4357_abfcc2
crossref_primary_10_3847_1538_4357_ad1dd9
crossref_primary_10_3847_2041_8213_ac81c3
crossref_primary_10_1093_mnras_stae470
crossref_primary_10_3390_galaxies11060120
crossref_primary_10_1093_mnras_staf121
crossref_primary_10_3847_1538_4357_ad571c
crossref_primary_10_1093_mnras_stac1337
crossref_primary_10_1093_mnras_stab2047
crossref_primary_10_3847_2041_8213_ac13a0
crossref_primary_10_1016_j_ascom_2025_100933
crossref_primary_10_1093_mnras_stab947
crossref_primary_10_3367_UFNe_2021_02_038920
crossref_primary_10_1093_mnras_stad1068
crossref_primary_10_3847_2515_5172_abee77
crossref_primary_10_3847_1538_4357_ac06d4
crossref_primary_10_1051_0004_6361_202141452
crossref_primary_10_1093_mnras_stab2227
Cites_doi 10.1093/mnras/173.3.729
10.1098/rsta.1916.0009
10.1109/MCSE.2011.37
10.1088/0004-637X/694/2/1498
10.1086/300653
10.1111/j.1365-2966.2008.13754.x
10.1086/591218
10.1051/0004-6361:20064960
10.1093/mnras/stz725
10.3847/1538-4357/836/2/244
10.1051/0004-6361/201526949
10.1093/mnras/263.1.168
10.1103/PhysRevLett.125.101102
10.1088/0004-637X/754/2/91
10.1086/505390
10.1080/03610927808827599
10.1088/0004-637X/710/2/1063
10.1111/j.1365-2966.2005.09675.x
10.1046/j.1365-8711.2003.06432.x
10.1086/174548
10.1051/0004-6361/201527065
10.1111/j.1365-2966.2012.21948.x
10.1086/117642
10.1126/science.aba4356
10.1093/mnras/sts565
10.1051/0004-6361:20031117
10.1146/annurev-astro-032620-021835
10.1086/312422
10.1088/0004-637X/708/1/698
10.1086/522567
10.1051/0004-6361/201832727
10.3847/2041-8213/ab0ec7
10.1038/1971040a0
10.1093/mnras/stw2488
10.1088/0004-6256/140/6/1830
10.1088/1475-7516/2020/12/002
10.1086/184685
10.3847/2041-8213/ab3800
10.1051/0004-6361/201322068
10.1051/0004-6361/201935081
10.3847/1538-4357/aad184
10.1086/118116
10.3847/1538-4357/ab0e6d
10.3847/1538-4357/835/1/77
10.1103/RevModPhys.86.47
10.1093/mnras/stx1798
10.1007/978-1-4612-1694-0_15
10.1086/168845
10.1093/mnras/staa3663
10.1093/mnras/stv2574
10.1086/512976
10.1103/PhysRev.128.2471
10.3847/1538-4357/aac9b9
10.1046/j.1365-8711.1999.02849.x
10.1086/113810
10.1046/j.1365-8711.2001.04064.x
10.1093/mnras/stu691
10.1093/mnras/sty2672
10.1088/0004-637X/812/2/149
10.1088/0004-637X/797/2/115
10.1093/mnras/152.1.75
10.1051/0004-6361/201016384
10.1093/mnras/stz505
10.1103/PhysRevD.66.103511
10.1103/PhysRev.56.455
10.3847/2041-8213/aaa401
10.1088/0004-637X/778/1/57
10.3847/1538-4357/aba51d
10.1086/117268
10.1051/0004-6361/201832698
10.1086/499298
10.1093/mnras/staa1017
10.1093/mnras/stz1586
10.1007/978-3-642-32362-1_6
10.1093/mnras/sts554
10.1093/mnras/sty1508
10.1515/9781400828722
10.1086/670067
10.1093/mnras/stu1032
10.1093/mnras/stv1161
10.1088/0004-637X/761/1/51
10.1111/j.1365-2966.2008.13949.x
10.1017/CBO9781139164535
10.1088/0004-6256/135/6/2055
10.1093/mnras/200.2.361
10.3847/2041-8213/aab55a
10.1080/01621459.1995.10476572
10.1088/0004-637X/737/2/103
10.3847/2041-8213/ab745b
10.2140/camcos.2010.5.65
10.1093/mnras/staa2821
10.1051/0004-6361/200912097
10.1086/115138
10.5303/JKAS.2013.46.4.173
10.1051/0004-6361/201936952
10.1086/426133
10.1007/s00159-010-0029-x
10.1093/mnras/sty2365
10.1093/mnras/sts434
10.1086/319848
10.1093/mnras/stz171
10.1088/0004-637X/803/1/29
10.1051/0004-6361/201833234
10.3847/1538-4357/ab518b
10.1214/aos/1176344136
10.1086/175164
10.1093/mnras/stt1756
10.1093/mnras/sts302
10.1093/mnras/stz2317
10.1093/mnras/stz2100
10.1016/B978-0-12-438150-6.50018-2
10.3847/2041-8205/820/1/L22
10.1051/0004-6361:20031003
10.1088/0004-637X/745/1/27
10.1086/164953
10.1051/0004-6361/201832916
10.1017/S0074180900001649
10.3847/1538-4357/aadfd6
10.1109/MCSE.2007.55
10.1046/j.1365-8711.2002.05112.x
10.1093/mnras/sty2997
10.1093/mnras/stv2162
10.1111/j.1365-2966.2011.19663.x
10.1086/145971
10.1086/144517
10.3847/1538-4357/ab5aee
10.1093/mnras/stz651
10.1093/mnras/286.3.709
10.1086/300231
10.1093/mnras/71.5.460
10.1103/PhysRevLett.116.061102
10.1051/0004-6361:20078569
10.1093/mnras/stw1104
10.1093/mnras/stv007
10.1093/mnrasl/slaa039
10.1088/0004-6256/135/6/2155
10.1038/197533a0
10.1007/978-1-4899-3324-9
10.1103/PhysRevLett.119.161101
10.1051/0004-6361/200912096
10.1051/0004-6361/201937202
10.1093/mnras/stx1680
10.1051/0004-6361:200810051
10.1093/mnras/stt2221
10.1086/305772
10.1086/341798
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
DOI 10.1051/0004-6361/202039650
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID oai_HAL_hal_03139381v1
10_1051_0004_6361_202039650
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFNC
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AEILP
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RIG
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
H8D
L7M
1XC
VOOES
ID FETCH-LOGICAL-c422t-8524459fc96ebf9a935c9e4fdc6c0e6b901dd76290d8f427c7cc1855cf493ef13
ISSN 0004-6361
IngestDate Fri Sep 12 12:45:16 EDT 2025
Sun Jun 29 15:12:21 EDT 2025
Thu Apr 24 23:13:15 EDT 2025
Tue Jul 01 03:53:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stars: kinematics and dynamics
globular clusters: individual: NGC 6397
methods: data analysis
black hole physics
stars: statistics
proper motions
Language English
License https://creativecommons.org/licenses/by/4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-8524459fc96ebf9a935c9e4fdc6c0e6b901dd76290d8f427c7cc1855cf493ef13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2732-9717
0000-0001-8956-5953
OpenAccessLink https://hal.science/hal-03139381
PQID 2494233872
PQPubID 1796397
ParticipantIDs hal_primary_oai_HAL_hal_03139381v1
proquest_journals_2494233872
crossref_citationtrail_10_1051_0004_6361_202039650
crossref_primary_10_1051_0004_6361_202039650
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Merritt (R102) 1985; 90
Courteau (R37) 2014; 86
Chilingarian (R33) 2018; 863
Martinazzi (R99) 2014; 442
Rodrigues (R124) 1840; 5
Bianchini (R18) 2018; 481
Carretta (R28) 2009; 505
Pearson (R112) 1916; 216
Zocchi (R164) 2019; 482
R21
Bianchini (R16) 2016; 820
R20
Vitral (R156) 2020; 635
Croton (R38) 2006; 365
Ciotti (R35) 1999; 352
Akaike (R5) 1983; 44
R24
Vasiliev (R152) 2019; 482
Schlegel (R127) 1998; 500
R29
Helmi (R50) 2018; 616
Goodman (R57) 2010; 5
Hansen (R62) 2007; 671
Lin (R87) 2020; 892
Hoyle (R73) 1963; 197
Mashchenko (R100) 2005; 619
Jindal (R78) 2019; 487
Takahashi (R141) 1995; 47
R4
Carballo-Bello (R26) 2012; 419
Goldsbury (R56) 2013; 778
van der Walt (R151) 2011; 13
Ciotti (R34) 1991; 249
Mamon (R95) 2019; 631
Tiongco (R145) 2016; 455
Tremou (R148) 2018; 862
R31
Read (R118) 2020; 501
Trager (R147) 1995; 109
Husser (R75) 2016; 588
Bressan (R22) 2012; 427
Shao (R133) 2019; 489
Kaaret (R79) 2001; 321
Miller (R104) 2002; 330
Schlafly (R126) 2011; 737
Lewis (R85) 2002; 66
Reimers (R120) 1975; 8
Strigari (R139) 2007; 657
Zel’dovich (R162) 1966; 43
Akiyama (R47) 2019; 875
Oppenheimer (R109) 1939; 56
Plummer (R114) 1911; 71
Haehnelt (R60) 1993; 263
Abbott (R3) 2019; 882
Milone (R106) 2012; 540
Tiret (R146) 2007; 476
Jain (R77) 2020; 635
Dekel (R42) 2003; 341
Binney (R19) 1982; 200
Abbott (R2) 2017; 119
Noyola (R108) 2006; 132
Spera (R138) 2015; 451
Merritt (R103) 1987; 313
Aros (R8) 2020; 499
Shin (R134) 2013; 46
Sesana (R132) 2020; 494
Cappellari (R25) 2008; 390
Giersz (R54) 2015; 454
Sérsic (R130) 1963; 6
Dotter (R45) 2010; 708
Robitaille (R9) 2013; 558
Holley-Bockelmann (R71) 2008; 686
Read (R117) 2017; 471
Bellini (R15) 2014; 797
Mamon (R94) 2013; 429
Schmidt (R128) 1963; 197
Watkins (R160) 2015; 812
Giersz (R53) 1997; 286
Peres (R113) 1962; 128
Valcin (R149) 2020; 2020
Drukier (R46) 1998; 115
Pastorelli (R111) 2019; 485
Loeb (R90) 1994; 432
Gratton (R58) 2003; 408
McDonald (R101) 2015; 448
Djorgovski (R44) 1986; 305
Leonard (R84) 1989; 98
Auriere (R10) 1982; 109
Richardson (R122) 2014; 441
Davis (R40) 2008; 135
Watkins (R158) 2013; 436
R61
Farmer (R48) 2019; 887
Chandrasekhar (R32) 1943; 97
Lima Neto (R86) 1999; 309
Anderson (R6) 2008; 135
Greene (R59) 2020; 58
R64
Harris (R63) 1996; 112
R67
R68
Mignard (R51) 2018; 616
R131
Sollima (R137) 2019; 485
Goldsbury (R55) 2010; 140
Hopkins (R72) 2006; 163
Bahramian (R11) 2020; 901
Arenou (R7) 2018; 616
de Boer (R41) 2019; 485
Kamann (R80) 2016; 588
Mann (R96) 2019; 875
Leigh (R83) 2013; 429
Rezzolla (R121) 2018; 852
Portegies Zwart (R115) 2000; 528
Abbott (R1) 2016; 116
Cummings (R39) 2018; 866
Brown (R23) 2018; 856
Schwarz (R129) 1978; 6
Hawking (R65) 1971; 152
Salpeter (R125) 1955; 121
Lauzeral (R82) 1992; 262
Volonteri (R157) 2010; 18
Hernquist (R69) 1990; 356
Hunter (R74) 2007; 9
Bianchini (R17) 2017; 471
Portegies Zwart (R116) 2002; 576
Abbott (R143) 2020; 125
Baumgardt (R13) 2008; 391
Gebhardt (R52) 1995; 110
Marigo (R97) 2017; 835
Woosley (R161) 2017; 836
Lind (R88) 2008; 490
Milone (R105) 2006; 456
van der Marel (R150) 2010; 710
Kass (R81) 1995; 90
Lovisi (R91) 2012; 754
Osipkov (R110) 1979; 5
Simonneau (R136) 2004; 40
Lindegren (R89) 2018; 616
Lugger (R92) 1995; 439
Watkins (R159) 2015; 803
Heggie (R66) 1975; 173
Sugiura (R140) 1978; 7
Zocchi (R163) 2016; 462
Robin (R123) 2003; 409
Marín-Franch (R98) 2009; 694
Thompson (R144) 2020; 368
R135
Milone (R107) 2012; 745
Baumgardt (R14) 2019; 482
Vasiliev (R154) 2019; 489
Madau (R93) 2001; 551
Reid (R119) 1998; 116
Heyl (R70) 2012; 761
Cautun (R30) 2020; 494
Baumgardt (R12) 2017; 464
Carretta (R27) 2009; 505
Foreman-Mackey (R49) 2013; 125
Vesperini (R155) 2013; 429
Ibata (R76) 2013; 428
R142
Vasiliev (R153) 2019; 484
Cordoni (R36) 2020; 889
den Brok (R43) 2014; 438
References_xml – volume: 173
  start-page: 729
  year: 1975
  ident: R66
  publication-title: MNRAS
  doi: 10.1093/mnras/173.3.729
– volume: 216
  start-page: 429
  year: 1916
  ident: R112
  publication-title: Philos. Trans. R. Soc. London Ser. A
  doi: 10.1098/rsta.1916.0009
– volume: 13
  start-page: 22
  year: 2011
  ident: R151
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2011.37
– volume: 694
  start-page: 1498
  year: 2009
  ident: R98
  publication-title: ApJ
  doi: 10.1088/0004-637X/694/2/1498
– volume: 116
  start-page: 2929
  year: 1998
  ident: R119
  publication-title: AJ
  doi: 10.1086/300653
– volume: 390
  start-page: 71
  year: 2008
  ident: R25
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13754.x
– volume: 686
  start-page: 829
  year: 2008
  ident: R71
  publication-title: ApJ
  doi: 10.1086/591218
– volume: 456
  start-page: 517
  year: 2006
  ident: R105
  publication-title: A&A
  doi: 10.1051/0004-6361:20064960
– volume: 485
  start-page: 5666
  year: 2019
  ident: R111
  publication-title: MNRAS
  doi: 10.1093/mnras/stz725
– volume: 836
  start-page: 244
  year: 2017
  ident: R161
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/2/244
– volume: 588
  start-page: A148
  year: 2016
  ident: R75
  publication-title: A&A
  doi: 10.1051/0004-6361/201526949
– volume: 263
  start-page: 168
  year: 1993
  ident: R60
  publication-title: MNRAS
  doi: 10.1093/mnras/263.1.168
– volume: 125
  start-page: 101102
  year: 2020
  ident: R143
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.101102
– volume: 754
  start-page: 91
  year: 2012
  ident: R91
  publication-title: ApJ
  doi: 10.1088/0004-637X/754/2/91
– volume: 132
  start-page: 447
  year: 2006
  ident: R108
  publication-title: AJ
  doi: 10.1086/505390
– volume: 7
  start-page: 13
  year: 1978
  ident: R140
  publication-title: Commun. Stat. Theor. Meth.
  doi: 10.1080/03610927808827599
– volume: 710
  start-page: 1063
  year: 2010
  ident: R150
  publication-title: ApJ
  doi: 10.1088/0004-637X/710/2/1063
– volume: 365
  start-page: 11
  year: 2006
  ident: R38
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09675.x
– volume: 341
  start-page: 326
  year: 2003
  ident: R42
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2003.06432.x
– volume: 432
  start-page: 52
  year: 1994
  ident: R90
  publication-title: ApJ
  doi: 10.1086/174548
– volume: 6
  start-page: 41
  year: 1963
  ident: R130
  publication-title: Bull. Assoc. Argent. Astron.
– volume: 588
  start-page: A149
  year: 2016
  ident: R80
  publication-title: A&A
  doi: 10.1051/0004-6361/201527065
– volume: 427
  start-page: 127
  year: 2012
  ident: R22
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21948.x
– volume: 110
  start-page: 1699
  year: 1995
  ident: R52
  publication-title: AJ
  doi: 10.1086/117642
– ident: R142
– volume: 368
  start-page: eaba4356
  year: 2020
  ident: R144
  publication-title: Science
  doi: 10.1126/science.aba4356
– volume: 429
  start-page: 3079
  year: 2013
  ident: R94
  publication-title: MNRAS
  doi: 10.1093/mnras/sts565
– volume: 409
  start-page: 523
  year: 2003
  ident: R123
  publication-title: A&A
  doi: 10.1051/0004-6361:20031117
– volume: 58
  start-page: 257
  year: 2020
  ident: R59
  publication-title: ARA&A
  doi: 10.1146/annurev-astro-032620-021835
– volume: 528
  start-page: L17
  year: 2000
  ident: R115
  publication-title: ApJ
  doi: 10.1086/312422
– volume: 708
  start-page: 698
  year: 2010
  ident: R45
  publication-title: ApJ
  doi: 10.1088/0004-637X/708/1/698
– volume: 671
  start-page: 380
  year: 2007
  ident: R62
  publication-title: ApJ
  doi: 10.1086/522567
– volume: 616
  start-page: A2
  year: 2018
  ident: R89
  publication-title: A&A
  doi: 10.1051/0004-6361/201832727
– volume: 875
  start-page: L1
  year: 2019
  ident: R47
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab0ec7
– volume: 197
  start-page: 1040
  year: 1963
  ident: R128
  publication-title: Nature
  doi: 10.1038/1971040a0
– volume: 464
  start-page: 2174
  year: 2017
  ident: R12
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2488
– volume: 140
  start-page: 1830
  year: 2010
  ident: R55
  publication-title: AJ
  doi: 10.1088/0004-6256/140/6/1830
– volume: 2020
  start-page: 002
  year: 2020
  ident: R149
  publication-title: JCAP
  doi: 10.1088/1475-7516/2020/12/002
– volume: 305
  start-page: L61
  year: 1986
  ident: R44
  publication-title: ApJ
  doi: 10.1086/184685
– volume: 882
  start-page: L24
  year: 2019
  ident: R3
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab3800
– volume: 558
  start-page: A33
  year: 2013
  ident: R9
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 631
  start-page: A131
  year: 2019
  ident: R95
  publication-title: A&A
  doi: 10.1051/0004-6361/201935081
– volume: 863
  start-page: 1
  year: 2018
  ident: R33
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad184
– volume: 112
  start-page: 1487
  year: 1996
  ident: R63
  publication-title: AJ
  doi: 10.1086/118116
– volume: 875
  start-page: 1
  year: 2019
  ident: R96
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab0e6d
– volume: 835
  start-page: 77
  year: 2017
  ident: R97
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/1/77
– volume: 86
  start-page: 47
  year: 2014
  ident: R37
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.47
– volume: 471
  start-page: 4541
  year: 2017
  ident: R117
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1798
– ident: R4
  doi: 10.1007/978-1-4612-1694-0_15
– volume: 356
  start-page: 359
  year: 1990
  ident: R69
  publication-title: ApJ
  doi: 10.1086/168845
– volume: 501
  start-page: 978
  year: 2020
  ident: R118
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3663
– volume: 455
  start-page: 3693
  year: 2016
  ident: R145
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2574
– volume: 657
  start-page: L1
  year: 2007
  ident: R139
  publication-title: ApJ
  doi: 10.1086/512976
– volume: 262
  start-page: 63
  year: 1992
  ident: R82
  publication-title: A&A
– volume: 128
  start-page: 2471
  year: 1962
  ident: R113
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.128.2471
– volume: 862
  start-page: 16
  year: 2018
  ident: R148
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac9b9
– volume: 249
  start-page: 99
  year: 1991
  ident: R34
  publication-title: A&A
– volume: 309
  start-page: 481
  year: 1999
  ident: R86
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.1999.02849.x
– ident: R131
– volume: 90
  start-page: 1027
  year: 1985
  ident: R102
  publication-title: AJ
  doi: 10.1086/113810
– volume: 321
  start-page: L29
  year: 2001
  ident: R79
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04064.x
– volume: 441
  start-page: 1584
  year: 2014
  ident: R122
  publication-title: MNRAS
  doi: 10.1093/mnras/stu691
– volume: 482
  start-page: 1525
  year: 2019
  ident: R152
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2672
– volume: 812
  start-page: 149
  year: 2015
  ident: R160
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/2/149
– volume: 797
  start-page: 115
  year: 2014
  ident: R15
  publication-title: ApJ
  doi: 10.1088/0004-637X/797/2/115
– volume: 152
  start-page: 75
  year: 1971
  ident: R65
  publication-title: MNRAS
  doi: 10.1093/mnras/152.1.75
– volume: 540
  start-page: A16
  year: 2012
  ident: R106
  publication-title: A&A
  doi: 10.1051/0004-6361/201016384
– volume: 485
  start-page: 1460
  year: 2019
  ident: R137
  publication-title: MNRAS
  doi: 10.1093/mnras/stz505
– volume: 66
  start-page: 103511
  year: 2002
  ident: R85
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.103511
– volume: 56
  start-page: 455
  year: 1939
  ident: R109
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.56.455
– volume: 852
  start-page: L25
  year: 2018
  ident: R121
  publication-title: ApJ
  doi: 10.3847/2041-8213/aaa401
– volume: 778
  start-page: 57
  year: 2013
  ident: R56
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/1/57
– ident: R31
– volume: 901
  start-page: 57
  year: 2020
  ident: R11
  publication-title: ApJ
  doi: 10.3847/1538-4357/aba51d
– volume: 109
  start-page: 218
  year: 1995
  ident: R147
  publication-title: AJ
  doi: 10.1086/117268
– volume: 616
  start-page: A12
  year: 2018
  ident: R50
  publication-title: A&A
  doi: 10.1051/0004-6361/201832698
– volume: 163
  start-page: 1
  year: 2006
  ident: R72
  publication-title: ApJS
  doi: 10.1086/499298
– volume: 494
  start-page: 4291
  year: 2020
  ident: R30
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1017
– volume: 487
  start-page: 3693
  year: 2019
  ident: R78
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1586
– ident: R61
  doi: 10.1007/978-3-642-32362-1_6
– volume: 429
  start-page: 2997
  year: 2013
  ident: R83
  publication-title: MNRAS
  doi: 10.1093/mnras/sts554
– volume: 482
  start-page: 4713
  year: 2019
  ident: R164
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1508
– ident: R20
  doi: 10.1515/9781400828722
– volume: 5
  start-page: 42
  year: 1979
  ident: R110
  publication-title: Sov. Astron. Lett.
– volume: 125
  start-page: 306
  year: 2013
  ident: R49
  publication-title: PASP
  doi: 10.1086/670067
– volume: 442
  start-page: 3105
  year: 2014
  ident: R99
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1032
– volume: 451
  start-page: 4086
  year: 2015
  ident: R138
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1161
– volume: 761
  start-page: 51
  year: 2012
  ident: R70
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/1/51
– volume: 391
  start-page: 942
  year: 2008
  ident: R13
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13949.x
– ident: R68
  doi: 10.1017/CBO9781139164535
– volume: 135
  start-page: 2055
  year: 2008
  ident: R6
  publication-title: AJ
  doi: 10.1088/0004-6256/135/6/2055
– volume: 200
  start-page: 361
  year: 1982
  ident: R19
  publication-title: MNRAS
  doi: 10.1093/mnras/200.2.361
– volume: 856
  start-page: L6
  year: 2018
  ident: R23
  publication-title: ApJ
  doi: 10.3847/2041-8213/aab55a
– volume: 109
  start-page: 301
  year: 1982
  ident: R10
  publication-title: A&A
– volume: 5
  start-page: 380
  year: 1840
  ident: R124
  publication-title: J. Math. Pures Appl.
– volume: 90
  start-page: 773
  year: 1995
  ident: R81
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 737
  start-page: 103
  year: 2011
  ident: R126
  publication-title: ApJ
  doi: 10.1088/0004-637X/737/2/103
– volume: 892
  start-page: L25
  year: 2020
  ident: R87
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab745b
– volume: 5
  start-page: 65
  year: 2010
  ident: R57
  publication-title: Commun. Appl. Math. Comput. Sci.
  doi: 10.2140/camcos.2010.5.65
– volume: 499
  start-page: 4646
  year: 2020
  ident: R8
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2821
– volume: 505
  start-page: 139
  year: 2009
  ident: R27
  publication-title: A&A
  doi: 10.1051/0004-6361/200912097
– volume: 98
  start-page: 217
  year: 1989
  ident: R84
  publication-title: AJ
  doi: 10.1086/115138
– volume: 46
  start-page: 173
  year: 2013
  ident: R134
  publication-title: J. Korean Astron. Soc.
  doi: 10.5303/JKAS.2013.46.4.173
– volume: 635
  start-page: A161
  year: 2020
  ident: R77
  publication-title: A&A
  doi: 10.1051/0004-6361/201936952
– volume: 619
  start-page: 258
  year: 2005
  ident: R100
  publication-title: ApJ
  doi: 10.1086/426133
– volume: 18
  start-page: 279
  year: 2010
  ident: R157
  publication-title: A&ARv
  doi: 10.1007/s00159-010-0029-x
– volume: 481
  start-page: 2125
  year: 2018
  ident: R18
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2365
– volume: 429
  start-page: 1913
  year: 2013
  ident: R155
  publication-title: MNRAS
  doi: 10.1093/mnras/sts434
– volume: 551
  start-page: L27
  year: 2001
  ident: R93
  publication-title: ApJ
  doi: 10.1086/319848
– volume: 484
  start-page: 2832
  year: 2019
  ident: R153
  publication-title: MNRAS
  doi: 10.1093/mnras/stz171
– volume: 803
  start-page: 29
  year: 2015
  ident: R159
  publication-title: ApJ
  doi: 10.1088/0004-637X/803/1/29
– volume: 616
  start-page: A17
  year: 2018
  ident: R7
  publication-title: A&A
  doi: 10.1051/0004-6361/201833234
– volume: 887
  start-page: 53
  year: 2019
  ident: R48
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab518b
– volume: 6
  start-page: 461
  year: 1978
  ident: R129
  publication-title: Annal. Stat.
  doi: 10.1214/aos/1176344136
– volume: 439
  start-page: 191
  year: 1995
  ident: R92
  publication-title: ApJ
  doi: 10.1086/175164
– volume: 436
  start-page: 2598
  year: 2013
  ident: R158
  publication-title: MNRAS
  doi: 10.1093/mnras/stt1756
– ident: R64
– volume: 428
  start-page: 3648
  year: 2013
  ident: R76
  publication-title: MNRAS
  doi: 10.1093/mnras/sts302
– volume: 489
  start-page: 3093
  year: 2019
  ident: R133
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2317
– volume: 489
  start-page: 623
  year: 2019
  ident: R154
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2100
– ident: R21
  doi: 10.1016/B978-0-12-438150-6.50018-2
– volume: 820
  start-page: L22
  year: 2016
  ident: R16
  publication-title: ApJ
  doi: 10.3847/2041-8205/820/1/L22
– volume: 408
  start-page: 529
  year: 2003
  ident: R58
  publication-title: A&A
  doi: 10.1051/0004-6361:20031003
– volume: 745
  start-page: 27
  year: 2012
  ident: R107
  publication-title: ApJ
  doi: 10.1088/0004-637X/745/1/27
– ident: R29
– volume: 43
  start-page: 758
  year: 1966
  ident: R162
  publication-title: AZh
– volume: 313
  start-page: 121
  year: 1987
  ident: R103
  publication-title: ApJ
  doi: 10.1086/164953
– volume: 616
  start-page: A14
  year: 2018
  ident: R51
  publication-title: A&A
  doi: 10.1051/0004-6361/201832916
– ident: R67
  doi: 10.1017/S0074180900001649
– volume: 44
  start-page: 277
  year: 1983
  ident: R5
  publication-title: Int. Stat. Inst.
– volume: 866
  start-page: 21
  year: 2018
  ident: R39
  publication-title: ApJ
  doi: 10.3847/1538-4357/aadfd6
– volume: 9
  start-page: 90
  year: 2007
  ident: R74
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– volume: 330
  start-page: 232
  year: 2002
  ident: R104
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2002.05112.x
– volume: 482
  start-page: 5138
  year: 2019
  ident: R14
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2997
– volume: 8
  start-page: 369
  year: 1975
  ident: R120
  publication-title: Mem. Soc. R. Sci. Liege
– volume: 454
  start-page: 3150
  year: 2015
  ident: R54
  publication-title: MNRAS
  doi: 10.1093/mnras/stv2162
– volume: 419
  start-page: 14
  year: 2012
  ident: R26
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.19663.x
– volume: 121
  start-page: 161
  year: 1955
  ident: R125
  publication-title: ApJ
  doi: 10.1086/145971
– volume: 97
  start-page: 255
  year: 1943
  ident: R32
  publication-title: ApJ
  doi: 10.1086/144517
– volume: 889
  start-page: 18
  year: 2020
  ident: R36
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab5aee
– volume: 485
  start-page: 4906
  year: 2019
  ident: R41
  publication-title: MNRAS
  doi: 10.1093/mnras/stz651
– volume: 286
  start-page: 709
  year: 1997
  ident: R53
  publication-title: MNRAS
  doi: 10.1093/mnras/286.3.709
– volume: 115
  start-page: 708
  year: 1998
  ident: R46
  publication-title: AJ
  doi: 10.1086/300231
– volume: 352
  start-page: 447
  year: 1999
  ident: R35
  publication-title: A&A
– volume: 71
  start-page: 460
  year: 1911
  ident: R114
  publication-title: MNRAS
  doi: 10.1093/mnras/71.5.460
– volume: 116
  start-page: 061102
  year: 2016
  ident: R1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– volume: 47
  start-page: 561
  year: 1995
  ident: R141
  publication-title: PASJ
– volume: 476
  start-page: L1
  year: 2007
  ident: R146
  publication-title: A&A
  doi: 10.1051/0004-6361:20078569
– volume: 462
  start-page: 696
  year: 2016
  ident: R163
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1104
– volume: 448
  start-page: 502
  year: 2015
  ident: R101
  publication-title: MNRAS
  doi: 10.1093/mnras/stv007
– volume: 494
  start-page: L75
  year: 2020
  ident: R132
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa039
– volume: 135
  start-page: 2155
  year: 2008
  ident: R40
  publication-title: AJ
  doi: 10.1088/0004-6256/135/6/2155
– volume: 197
  start-page: 533
  year: 1963
  ident: R73
  publication-title: Nature
  doi: 10.1038/197533a0
– ident: R135
  doi: 10.1007/978-1-4899-3324-9
– volume: 119
  start-page: 161101
  year: 2017
  ident: R2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– ident: R24
– volume: 505
  start-page: 117
  year: 2009
  ident: R28
  publication-title: A&A
  doi: 10.1051/0004-6361/200912096
– volume: 635
  start-page: A20
  year: 2020
  ident: R156
  publication-title: A&A
  doi: 10.1051/0004-6361/201937202
– volume: 471
  start-page: 1181
  year: 2017
  ident: R17
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1680
– volume: 490
  start-page: 777
  year: 2008
  ident: R88
  publication-title: A&A
  doi: 10.1051/0004-6361:200810051
– volume: 40
  start-page: 69
  year: 2004
  ident: R136
  publication-title: Rev. Mex. Astron. Astrofis.
– volume: 438
  start-page: 487
  year: 2014
  ident: R43
  publication-title: MNRAS
  doi: 10.1093/mnras/stt2221
– volume: 500
  start-page: 525
  year: 1998
  ident: R127
  publication-title: ApJ
  doi: 10.1086/305772
– volume: 576
  start-page: 899
  year: 2002
  ident: R116
  publication-title: ApJ
  doi: 10.1086/341798
SSID ssj0002183
Score 2.5542557
Snippet We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph...
We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph...
SourceID hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A63
SubjectTerms Anisotropy
Astrophysics
Black holes
Density
Galactic clusters
Globular clusters
Gravitational waves
Hubble Space Telescope
Neutron stars
Physics
Space telescopes
White dwarf stars
Title Does NGC 6397 contain an intermediate-mass black hole or a more diffuse inner subcluster?
URI https://www.proquest.com/docview/2494233872
https://hal.science/hal-03139381
Volume 646
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEBKXaQzQCgNZCHEJ2RLH-fAJRfsqqIwdWlROUeLYGtKaTG3KYQf-dt6zk7RlaAIuUeKmruT36_vyez8T8rbIIVwDw-4mSRG4PFHCzX0lXU8rT-egHbXpW_t8EQ0n_NM0nHZHwrfdJU1xKG__2FfyP1KFMZArdsn-g2T7SWEA7kG-cAUJw_WvZHxSK1BT58cO7puZqnOI8528MiQQc9MU0ih3Bv6xU2CizrkytYRzJ3ewvtacjrJcIG1IhaTOy0JeL81JHZvVfukC8-X1zFI15fhkEyImY2sJs9YyCl-_Y_bEKNkSAVivst4zu8d_jqV66XrCgfldjXKXBTu57PTOYkOzcjcKLLH6obLKlAdY2dqmGFttG9nHO5oblIMtdbTTYKMKbpKKyPLSbjJlX3zJziajUTY-nY63yEMWg9-Ejd4ff_ZWGF0_G_rYCTvGqdA_6seO-p_Y8Eq2rrAm9jfTbPyN8S7ZaQMFmlqpPyEPVLVH9ntR0Hc0XRPEHnl0ae-ekm8ICwqwoAgL2sKC5hW9AwtqYEERFrSe05wiLGgLC2pgQVew-PCMTM5Ox8dDtz1Bw5WcscZNQvDeQqGliFShRS6CUArFdSkj6amoAGewLMEcCq9MNGexjKUEBy6UmotAaT94TrarulL7hMYlmEbBkrIsGI88JUIw2bGK0QKEKtYDwroVzGRLL4-nnFxnpswh9LHMgWe47Fm_7APyvv_SjWVXuf_1NyCa_k1kRh-mowzHkIJUgPf5wx-Qg05yWftfXWSMC4gbgiRmL-7_-CV5vML8Adlu5kv1CtzOpnht8PULJyp6vw
linkProvider EDP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+NGC+6397+contain+an+intermediate-mass+black+hole+or+a+more+diffuse+inner+subcluster%3F&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Vitral%2C+Eduardo&rft.au=Mamon%2C+Gary+A&rft.date=2021-02-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=646&rft_id=info:doi/10.1051%2F0004-6361%2F202039650&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon