Does NGC 6397 contain an intermediate-mass black hole or a more diffuse inner subcluster?
We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For thi...
Saved in:
Published in | Astronomy and astrophysics (Berlin) Vol. 646; p. A63 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
EDP Sciences
01.02.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0004-6361 1432-0746 |
DOI | 10.1051/0004-6361/202039650 |
Cover
Abstract | We analyze proper motions from the
Hubble
Space Telescope (HST) and the second
Gaia
data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSS
T
-PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000
M
⊙
, half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and
Gaia
data: HST for the inner diagnostics and
Gaia
for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO. |
---|---|
AbstractList | We analyze proper motions from the
Hubble
Space Telescope (HST) and the second
Gaia
data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSS
T
-PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000
M
⊙
, half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and
Gaia
data: HST for the inner diagnostics and
Gaia
for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO. We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph to detect imprints of an intermediate-mass black hole (IMBH) in the center of the nearby, core-collapsed, globular cluster NGC 6397. For this, we use the new MAMPOSST-PM Bayesian mass-modeling code, along with updated estimates of the surface density profile of NGC 6397. We consider different priors on velocity anisotropy and on the size of the central mass, and we also separate the stars into components of different mean mass to allow for mass segregation. The velocity ellipsoid is very isotropic throughout the cluster, as expected in post-core collapsed clusters subject to as strong a Galactic tidal field as NGC 6397. There is strong evidence for a central dark component of 0.8 to 2% of the total mass of the cluster. However, we find robust evidence disfavoring a central IMBH in NGC 6397, preferring instead a diffuse dark inner subcluster of unresolved objects with a total mass of 1000 to 2000 M⊙, half of which is concentrated within 6 arcsec (2% of the stellar effective radius). These results require the combination of HST and Gaia data: HST for the inner diagnostics and Gaia for the outer surface density and velocity anisotropy profiles. The small effective radius of the diffuse dark component suggests that it is composed of compact stars (white dwarfs and neutron stars) and stellar-mass black holes, whose inner locations are caused by dynamical friction given their high progenitor masses. We show that stellar-mass black holes should dominate the mass of this diffuse dark component, unless more than 25% escape from the cluster. Their mergers in the cores of core-collapsed globular clusters could be an important source of the gravitational wave events detected by LIGO. |
Author | Mamon, Gary A. Vitral, Eduardo |
Author_xml | – sequence: 1 givenname: Eduardo orcidid: 0000-0002-2732-9717 surname: Vitral fullname: Vitral, Eduardo – sequence: 2 givenname: Gary A. orcidid: 0000-0001-8956-5953 surname: Mamon fullname: Mamon, Gary A. |
BackLink | https://hal.science/hal-03139381$$DView record in HAL |
BookMark | eNp9kL1OwzAURi1UJNrCE7BYYmII9V-ceEJVgRapggUGJstxbNUltYudIPH2JCp0YGC6ulfnu_p0JmDkgzcAXGJ0g1GOZwghlnHK8YwggqjgOToBY8woyVDB-AiMj8QZmKS07VeCSzoGb3fBJPi0XEBORQF18K1yHioPnW9N3JnaqdZkO5USrBql3-EmNAaGCBXchWhg7aztkulxbyJMXaWbLvXJ23NwalWTzMXPnILXh_uXxSpbPy8fF_N1phkhbVbmhLFcWC24qaxQguZaGGZrzTUyvBII13XBiUB1aRkpdKE1LvNcWyaosZhOwfXh70Y1ch_dTsUvGZSTq_laDjdEMRW0xJ8De3Vg9zF8dCa1chu66Pt6kjDBCKVlQXpKHCgdQ0rRWKldq1rXu4nKNRIjOViXg1M5OJVH632W_sn-Vvov9Q2-9IOo |
CitedBy_id | crossref_primary_10_1093_mnras_stab474 crossref_primary_10_1051_0004_6361_202244530 crossref_primary_10_3847_1538_4357_acefbc crossref_primary_10_1093_mnras_stac643 crossref_primary_10_3847_1538_4357_acabbf crossref_primary_10_1103_PhysRevD_104_043004 crossref_primary_10_1093_mnras_stab2035 crossref_primary_10_1093_mnras_stab2872 crossref_primary_10_1093_mnras_stac1347 crossref_primary_10_1093_mnras_stae960 crossref_primary_10_1093_mnras_stab737 crossref_primary_10_1088_1475_7516_2023_07_038 crossref_primary_10_3847_1538_4357_ac5895 crossref_primary_10_1016_j_physletb_2021_136468 crossref_primary_10_3847_1538_4357_abfcc2 crossref_primary_10_3847_1538_4357_ad1dd9 crossref_primary_10_3847_2041_8213_ac81c3 crossref_primary_10_1093_mnras_stae470 crossref_primary_10_3390_galaxies11060120 crossref_primary_10_1093_mnras_staf121 crossref_primary_10_3847_1538_4357_ad571c crossref_primary_10_1093_mnras_stac1337 crossref_primary_10_1093_mnras_stab2047 crossref_primary_10_3847_2041_8213_ac13a0 crossref_primary_10_1016_j_ascom_2025_100933 crossref_primary_10_1093_mnras_stab947 crossref_primary_10_3367_UFNe_2021_02_038920 crossref_primary_10_1093_mnras_stad1068 crossref_primary_10_3847_2515_5172_abee77 crossref_primary_10_3847_1538_4357_ac06d4 crossref_primary_10_1051_0004_6361_202141452 crossref_primary_10_1093_mnras_stab2227 |
Cites_doi | 10.1093/mnras/173.3.729 10.1098/rsta.1916.0009 10.1109/MCSE.2011.37 10.1088/0004-637X/694/2/1498 10.1086/300653 10.1111/j.1365-2966.2008.13754.x 10.1086/591218 10.1051/0004-6361:20064960 10.1093/mnras/stz725 10.3847/1538-4357/836/2/244 10.1051/0004-6361/201526949 10.1093/mnras/263.1.168 10.1103/PhysRevLett.125.101102 10.1088/0004-637X/754/2/91 10.1086/505390 10.1080/03610927808827599 10.1088/0004-637X/710/2/1063 10.1111/j.1365-2966.2005.09675.x 10.1046/j.1365-8711.2003.06432.x 10.1086/174548 10.1051/0004-6361/201527065 10.1111/j.1365-2966.2012.21948.x 10.1086/117642 10.1126/science.aba4356 10.1093/mnras/sts565 10.1051/0004-6361:20031117 10.1146/annurev-astro-032620-021835 10.1086/312422 10.1088/0004-637X/708/1/698 10.1086/522567 10.1051/0004-6361/201832727 10.3847/2041-8213/ab0ec7 10.1038/1971040a0 10.1093/mnras/stw2488 10.1088/0004-6256/140/6/1830 10.1088/1475-7516/2020/12/002 10.1086/184685 10.3847/2041-8213/ab3800 10.1051/0004-6361/201322068 10.1051/0004-6361/201935081 10.3847/1538-4357/aad184 10.1086/118116 10.3847/1538-4357/ab0e6d 10.3847/1538-4357/835/1/77 10.1103/RevModPhys.86.47 10.1093/mnras/stx1798 10.1007/978-1-4612-1694-0_15 10.1086/168845 10.1093/mnras/staa3663 10.1093/mnras/stv2574 10.1086/512976 10.1103/PhysRev.128.2471 10.3847/1538-4357/aac9b9 10.1046/j.1365-8711.1999.02849.x 10.1086/113810 10.1046/j.1365-8711.2001.04064.x 10.1093/mnras/stu691 10.1093/mnras/sty2672 10.1088/0004-637X/812/2/149 10.1088/0004-637X/797/2/115 10.1093/mnras/152.1.75 10.1051/0004-6361/201016384 10.1093/mnras/stz505 10.1103/PhysRevD.66.103511 10.1103/PhysRev.56.455 10.3847/2041-8213/aaa401 10.1088/0004-637X/778/1/57 10.3847/1538-4357/aba51d 10.1086/117268 10.1051/0004-6361/201832698 10.1086/499298 10.1093/mnras/staa1017 10.1093/mnras/stz1586 10.1007/978-3-642-32362-1_6 10.1093/mnras/sts554 10.1093/mnras/sty1508 10.1515/9781400828722 10.1086/670067 10.1093/mnras/stu1032 10.1093/mnras/stv1161 10.1088/0004-637X/761/1/51 10.1111/j.1365-2966.2008.13949.x 10.1017/CBO9781139164535 10.1088/0004-6256/135/6/2055 10.1093/mnras/200.2.361 10.3847/2041-8213/aab55a 10.1080/01621459.1995.10476572 10.1088/0004-637X/737/2/103 10.3847/2041-8213/ab745b 10.2140/camcos.2010.5.65 10.1093/mnras/staa2821 10.1051/0004-6361/200912097 10.1086/115138 10.5303/JKAS.2013.46.4.173 10.1051/0004-6361/201936952 10.1086/426133 10.1007/s00159-010-0029-x 10.1093/mnras/sty2365 10.1093/mnras/sts434 10.1086/319848 10.1093/mnras/stz171 10.1088/0004-637X/803/1/29 10.1051/0004-6361/201833234 10.3847/1538-4357/ab518b 10.1214/aos/1176344136 10.1086/175164 10.1093/mnras/stt1756 10.1093/mnras/sts302 10.1093/mnras/stz2317 10.1093/mnras/stz2100 10.1016/B978-0-12-438150-6.50018-2 10.3847/2041-8205/820/1/L22 10.1051/0004-6361:20031003 10.1088/0004-637X/745/1/27 10.1086/164953 10.1051/0004-6361/201832916 10.1017/S0074180900001649 10.3847/1538-4357/aadfd6 10.1109/MCSE.2007.55 10.1046/j.1365-8711.2002.05112.x 10.1093/mnras/sty2997 10.1093/mnras/stv2162 10.1111/j.1365-2966.2011.19663.x 10.1086/145971 10.1086/144517 10.3847/1538-4357/ab5aee 10.1093/mnras/stz651 10.1093/mnras/286.3.709 10.1086/300231 10.1093/mnras/71.5.460 10.1103/PhysRevLett.116.061102 10.1051/0004-6361:20078569 10.1093/mnras/stw1104 10.1093/mnras/stv007 10.1093/mnrasl/slaa039 10.1088/0004-6256/135/6/2155 10.1038/197533a0 10.1007/978-1-4899-3324-9 10.1103/PhysRevLett.119.161101 10.1051/0004-6361/200912096 10.1051/0004-6361/201937202 10.1093/mnras/stx1680 10.1051/0004-6361:200810051 10.1093/mnras/stt2221 10.1086/305772 10.1086/341798 |
ContentType | Journal Article |
Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 8FD H8D L7M 1XC VOOES |
DOI | 10.1051/0004-6361/202039650 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1432-0746 |
ExternalDocumentID | oai_HAL_hal_03139381v1 10_1051_0004_6361_202039650 |
GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFNC AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AEILP AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RIG RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD H8D L7M 1XC VOOES |
ID | FETCH-LOGICAL-c422t-8524459fc96ebf9a935c9e4fdc6c0e6b901dd76290d8f427c7cc1855cf493ef13 |
ISSN | 0004-6361 |
IngestDate | Fri Sep 12 12:45:16 EDT 2025 Sun Jun 29 15:12:21 EDT 2025 Thu Apr 24 23:13:15 EDT 2025 Tue Jul 01 03:53:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | stars: kinematics and dynamics globular clusters: individual: NGC 6397 methods: data analysis black hole physics stars: statistics proper motions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-8524459fc96ebf9a935c9e4fdc6c0e6b901dd76290d8f427c7cc1855cf493ef13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2732-9717 0000-0001-8956-5953 |
OpenAccessLink | https://hal.science/hal-03139381 |
PQID | 2494233872 |
PQPubID | 1796397 |
ParticipantIDs | hal_primary_oai_HAL_hal_03139381v1 proquest_journals_2494233872 crossref_citationtrail_10_1051_0004_6361_202039650 crossref_primary_10_1051_0004_6361_202039650 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Astronomy and astrophysics (Berlin) |
PublicationYear | 2021 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | Merritt (R102) 1985; 90 Courteau (R37) 2014; 86 Chilingarian (R33) 2018; 863 Martinazzi (R99) 2014; 442 Rodrigues (R124) 1840; 5 Bianchini (R18) 2018; 481 Carretta (R28) 2009; 505 Pearson (R112) 1916; 216 Zocchi (R164) 2019; 482 R21 Bianchini (R16) 2016; 820 R20 Vitral (R156) 2020; 635 Croton (R38) 2006; 365 Ciotti (R35) 1999; 352 Akaike (R5) 1983; 44 R24 Vasiliev (R152) 2019; 482 Schlegel (R127) 1998; 500 R29 Helmi (R50) 2018; 616 Goodman (R57) 2010; 5 Hansen (R62) 2007; 671 Lin (R87) 2020; 892 Hoyle (R73) 1963; 197 Mashchenko (R100) 2005; 619 Jindal (R78) 2019; 487 Takahashi (R141) 1995; 47 R4 Carballo-Bello (R26) 2012; 419 Goldsbury (R56) 2013; 778 van der Walt (R151) 2011; 13 Ciotti (R34) 1991; 249 Mamon (R95) 2019; 631 Tiongco (R145) 2016; 455 Tremou (R148) 2018; 862 R31 Read (R118) 2020; 501 Trager (R147) 1995; 109 Husser (R75) 2016; 588 Bressan (R22) 2012; 427 Shao (R133) 2019; 489 Kaaret (R79) 2001; 321 Miller (R104) 2002; 330 Schlafly (R126) 2011; 737 Lewis (R85) 2002; 66 Reimers (R120) 1975; 8 Strigari (R139) 2007; 657 Zel’dovich (R162) 1966; 43 Akiyama (R47) 2019; 875 Oppenheimer (R109) 1939; 56 Plummer (R114) 1911; 71 Haehnelt (R60) 1993; 263 Abbott (R3) 2019; 882 Milone (R106) 2012; 540 Tiret (R146) 2007; 476 Jain (R77) 2020; 635 Dekel (R42) 2003; 341 Binney (R19) 1982; 200 Abbott (R2) 2017; 119 Noyola (R108) 2006; 132 Spera (R138) 2015; 451 Merritt (R103) 1987; 313 Aros (R8) 2020; 499 Shin (R134) 2013; 46 Sesana (R132) 2020; 494 Cappellari (R25) 2008; 390 Giersz (R54) 2015; 454 Sérsic (R130) 1963; 6 Dotter (R45) 2010; 708 Robitaille (R9) 2013; 558 Holley-Bockelmann (R71) 2008; 686 Read (R117) 2017; 471 Bellini (R15) 2014; 797 Mamon (R94) 2013; 429 Schmidt (R128) 1963; 197 Watkins (R160) 2015; 812 Giersz (R53) 1997; 286 Peres (R113) 1962; 128 Valcin (R149) 2020; 2020 Drukier (R46) 1998; 115 Pastorelli (R111) 2019; 485 Loeb (R90) 1994; 432 Gratton (R58) 2003; 408 McDonald (R101) 2015; 448 Djorgovski (R44) 1986; 305 Leonard (R84) 1989; 98 Auriere (R10) 1982; 109 Richardson (R122) 2014; 441 Davis (R40) 2008; 135 Watkins (R158) 2013; 436 R61 Farmer (R48) 2019; 887 Chandrasekhar (R32) 1943; 97 Lima Neto (R86) 1999; 309 Anderson (R6) 2008; 135 Greene (R59) 2020; 58 R64 Harris (R63) 1996; 112 R67 R68 Mignard (R51) 2018; 616 R131 Sollima (R137) 2019; 485 Goldsbury (R55) 2010; 140 Hopkins (R72) 2006; 163 Bahramian (R11) 2020; 901 Arenou (R7) 2018; 616 de Boer (R41) 2019; 485 Kamann (R80) 2016; 588 Mann (R96) 2019; 875 Leigh (R83) 2013; 429 Rezzolla (R121) 2018; 852 Portegies Zwart (R115) 2000; 528 Abbott (R1) 2016; 116 Cummings (R39) 2018; 866 Brown (R23) 2018; 856 Schwarz (R129) 1978; 6 Hawking (R65) 1971; 152 Salpeter (R125) 1955; 121 Lauzeral (R82) 1992; 262 Volonteri (R157) 2010; 18 Hernquist (R69) 1990; 356 Hunter (R74) 2007; 9 Bianchini (R17) 2017; 471 Portegies Zwart (R116) 2002; 576 Abbott (R143) 2020; 125 Baumgardt (R13) 2008; 391 Gebhardt (R52) 1995; 110 Marigo (R97) 2017; 835 Woosley (R161) 2017; 836 Lind (R88) 2008; 490 Milone (R105) 2006; 456 van der Marel (R150) 2010; 710 Kass (R81) 1995; 90 Lovisi (R91) 2012; 754 Osipkov (R110) 1979; 5 Simonneau (R136) 2004; 40 Lindegren (R89) 2018; 616 Lugger (R92) 1995; 439 Watkins (R159) 2015; 803 Heggie (R66) 1975; 173 Sugiura (R140) 1978; 7 Zocchi (R163) 2016; 462 Robin (R123) 2003; 409 Marín-Franch (R98) 2009; 694 Thompson (R144) 2020; 368 R135 Milone (R107) 2012; 745 Baumgardt (R14) 2019; 482 Vasiliev (R154) 2019; 489 Madau (R93) 2001; 551 Reid (R119) 1998; 116 Heyl (R70) 2012; 761 Cautun (R30) 2020; 494 Baumgardt (R12) 2017; 464 Carretta (R27) 2009; 505 Foreman-Mackey (R49) 2013; 125 Vesperini (R155) 2013; 429 Ibata (R76) 2013; 428 R142 Vasiliev (R153) 2019; 484 Cordoni (R36) 2020; 889 den Brok (R43) 2014; 438 |
References_xml | – volume: 173 start-page: 729 year: 1975 ident: R66 publication-title: MNRAS doi: 10.1093/mnras/173.3.729 – volume: 216 start-page: 429 year: 1916 ident: R112 publication-title: Philos. Trans. R. Soc. London Ser. A doi: 10.1098/rsta.1916.0009 – volume: 13 start-page: 22 year: 2011 ident: R151 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2011.37 – volume: 694 start-page: 1498 year: 2009 ident: R98 publication-title: ApJ doi: 10.1088/0004-637X/694/2/1498 – volume: 116 start-page: 2929 year: 1998 ident: R119 publication-title: AJ doi: 10.1086/300653 – volume: 390 start-page: 71 year: 2008 ident: R25 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13754.x – volume: 686 start-page: 829 year: 2008 ident: R71 publication-title: ApJ doi: 10.1086/591218 – volume: 456 start-page: 517 year: 2006 ident: R105 publication-title: A&A doi: 10.1051/0004-6361:20064960 – volume: 485 start-page: 5666 year: 2019 ident: R111 publication-title: MNRAS doi: 10.1093/mnras/stz725 – volume: 836 start-page: 244 year: 2017 ident: R161 publication-title: ApJ doi: 10.3847/1538-4357/836/2/244 – volume: 588 start-page: A148 year: 2016 ident: R75 publication-title: A&A doi: 10.1051/0004-6361/201526949 – volume: 263 start-page: 168 year: 1993 ident: R60 publication-title: MNRAS doi: 10.1093/mnras/263.1.168 – volume: 125 start-page: 101102 year: 2020 ident: R143 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.101102 – volume: 754 start-page: 91 year: 2012 ident: R91 publication-title: ApJ doi: 10.1088/0004-637X/754/2/91 – volume: 132 start-page: 447 year: 2006 ident: R108 publication-title: AJ doi: 10.1086/505390 – volume: 7 start-page: 13 year: 1978 ident: R140 publication-title: Commun. Stat. Theor. Meth. doi: 10.1080/03610927808827599 – volume: 710 start-page: 1063 year: 2010 ident: R150 publication-title: ApJ doi: 10.1088/0004-637X/710/2/1063 – volume: 365 start-page: 11 year: 2006 ident: R38 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09675.x – volume: 341 start-page: 326 year: 2003 ident: R42 publication-title: MNRAS doi: 10.1046/j.1365-8711.2003.06432.x – volume: 432 start-page: 52 year: 1994 ident: R90 publication-title: ApJ doi: 10.1086/174548 – volume: 6 start-page: 41 year: 1963 ident: R130 publication-title: Bull. Assoc. Argent. Astron. – volume: 588 start-page: A149 year: 2016 ident: R80 publication-title: A&A doi: 10.1051/0004-6361/201527065 – volume: 427 start-page: 127 year: 2012 ident: R22 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21948.x – volume: 110 start-page: 1699 year: 1995 ident: R52 publication-title: AJ doi: 10.1086/117642 – ident: R142 – volume: 368 start-page: eaba4356 year: 2020 ident: R144 publication-title: Science doi: 10.1126/science.aba4356 – volume: 429 start-page: 3079 year: 2013 ident: R94 publication-title: MNRAS doi: 10.1093/mnras/sts565 – volume: 409 start-page: 523 year: 2003 ident: R123 publication-title: A&A doi: 10.1051/0004-6361:20031117 – volume: 58 start-page: 257 year: 2020 ident: R59 publication-title: ARA&A doi: 10.1146/annurev-astro-032620-021835 – volume: 528 start-page: L17 year: 2000 ident: R115 publication-title: ApJ doi: 10.1086/312422 – volume: 708 start-page: 698 year: 2010 ident: R45 publication-title: ApJ doi: 10.1088/0004-637X/708/1/698 – volume: 671 start-page: 380 year: 2007 ident: R62 publication-title: ApJ doi: 10.1086/522567 – volume: 616 start-page: A2 year: 2018 ident: R89 publication-title: A&A doi: 10.1051/0004-6361/201832727 – volume: 875 start-page: L1 year: 2019 ident: R47 publication-title: ApJ doi: 10.3847/2041-8213/ab0ec7 – volume: 197 start-page: 1040 year: 1963 ident: R128 publication-title: Nature doi: 10.1038/1971040a0 – volume: 464 start-page: 2174 year: 2017 ident: R12 publication-title: MNRAS doi: 10.1093/mnras/stw2488 – volume: 140 start-page: 1830 year: 2010 ident: R55 publication-title: AJ doi: 10.1088/0004-6256/140/6/1830 – volume: 2020 start-page: 002 year: 2020 ident: R149 publication-title: JCAP doi: 10.1088/1475-7516/2020/12/002 – volume: 305 start-page: L61 year: 1986 ident: R44 publication-title: ApJ doi: 10.1086/184685 – volume: 882 start-page: L24 year: 2019 ident: R3 publication-title: ApJ doi: 10.3847/2041-8213/ab3800 – volume: 558 start-page: A33 year: 2013 ident: R9 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 631 start-page: A131 year: 2019 ident: R95 publication-title: A&A doi: 10.1051/0004-6361/201935081 – volume: 863 start-page: 1 year: 2018 ident: R33 publication-title: ApJ doi: 10.3847/1538-4357/aad184 – volume: 112 start-page: 1487 year: 1996 ident: R63 publication-title: AJ doi: 10.1086/118116 – volume: 875 start-page: 1 year: 2019 ident: R96 publication-title: ApJ doi: 10.3847/1538-4357/ab0e6d – volume: 835 start-page: 77 year: 2017 ident: R97 publication-title: ApJ doi: 10.3847/1538-4357/835/1/77 – volume: 86 start-page: 47 year: 2014 ident: R37 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.47 – volume: 471 start-page: 4541 year: 2017 ident: R117 publication-title: MNRAS doi: 10.1093/mnras/stx1798 – ident: R4 doi: 10.1007/978-1-4612-1694-0_15 – volume: 356 start-page: 359 year: 1990 ident: R69 publication-title: ApJ doi: 10.1086/168845 – volume: 501 start-page: 978 year: 2020 ident: R118 publication-title: MNRAS doi: 10.1093/mnras/staa3663 – volume: 455 start-page: 3693 year: 2016 ident: R145 publication-title: MNRAS doi: 10.1093/mnras/stv2574 – volume: 657 start-page: L1 year: 2007 ident: R139 publication-title: ApJ doi: 10.1086/512976 – volume: 262 start-page: 63 year: 1992 ident: R82 publication-title: A&A – volume: 128 start-page: 2471 year: 1962 ident: R113 publication-title: Phys. Rev. doi: 10.1103/PhysRev.128.2471 – volume: 862 start-page: 16 year: 2018 ident: R148 publication-title: ApJ doi: 10.3847/1538-4357/aac9b9 – volume: 249 start-page: 99 year: 1991 ident: R34 publication-title: A&A – volume: 309 start-page: 481 year: 1999 ident: R86 publication-title: MNRAS doi: 10.1046/j.1365-8711.1999.02849.x – ident: R131 – volume: 90 start-page: 1027 year: 1985 ident: R102 publication-title: AJ doi: 10.1086/113810 – volume: 321 start-page: L29 year: 2001 ident: R79 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04064.x – volume: 441 start-page: 1584 year: 2014 ident: R122 publication-title: MNRAS doi: 10.1093/mnras/stu691 – volume: 482 start-page: 1525 year: 2019 ident: R152 publication-title: MNRAS doi: 10.1093/mnras/sty2672 – volume: 812 start-page: 149 year: 2015 ident: R160 publication-title: ApJ doi: 10.1088/0004-637X/812/2/149 – volume: 797 start-page: 115 year: 2014 ident: R15 publication-title: ApJ doi: 10.1088/0004-637X/797/2/115 – volume: 152 start-page: 75 year: 1971 ident: R65 publication-title: MNRAS doi: 10.1093/mnras/152.1.75 – volume: 540 start-page: A16 year: 2012 ident: R106 publication-title: A&A doi: 10.1051/0004-6361/201016384 – volume: 485 start-page: 1460 year: 2019 ident: R137 publication-title: MNRAS doi: 10.1093/mnras/stz505 – volume: 66 start-page: 103511 year: 2002 ident: R85 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.66.103511 – volume: 56 start-page: 455 year: 1939 ident: R109 publication-title: Phys. Rev. doi: 10.1103/PhysRev.56.455 – volume: 852 start-page: L25 year: 2018 ident: R121 publication-title: ApJ doi: 10.3847/2041-8213/aaa401 – volume: 778 start-page: 57 year: 2013 ident: R56 publication-title: ApJ doi: 10.1088/0004-637X/778/1/57 – ident: R31 – volume: 901 start-page: 57 year: 2020 ident: R11 publication-title: ApJ doi: 10.3847/1538-4357/aba51d – volume: 109 start-page: 218 year: 1995 ident: R147 publication-title: AJ doi: 10.1086/117268 – volume: 616 start-page: A12 year: 2018 ident: R50 publication-title: A&A doi: 10.1051/0004-6361/201832698 – volume: 163 start-page: 1 year: 2006 ident: R72 publication-title: ApJS doi: 10.1086/499298 – volume: 494 start-page: 4291 year: 2020 ident: R30 publication-title: MNRAS doi: 10.1093/mnras/staa1017 – volume: 487 start-page: 3693 year: 2019 ident: R78 publication-title: MNRAS doi: 10.1093/mnras/stz1586 – ident: R61 doi: 10.1007/978-3-642-32362-1_6 – volume: 429 start-page: 2997 year: 2013 ident: R83 publication-title: MNRAS doi: 10.1093/mnras/sts554 – volume: 482 start-page: 4713 year: 2019 ident: R164 publication-title: MNRAS doi: 10.1093/mnras/sty1508 – ident: R20 doi: 10.1515/9781400828722 – volume: 5 start-page: 42 year: 1979 ident: R110 publication-title: Sov. Astron. Lett. – volume: 125 start-page: 306 year: 2013 ident: R49 publication-title: PASP doi: 10.1086/670067 – volume: 442 start-page: 3105 year: 2014 ident: R99 publication-title: MNRAS doi: 10.1093/mnras/stu1032 – volume: 451 start-page: 4086 year: 2015 ident: R138 publication-title: MNRAS doi: 10.1093/mnras/stv1161 – volume: 761 start-page: 51 year: 2012 ident: R70 publication-title: ApJ doi: 10.1088/0004-637X/761/1/51 – volume: 391 start-page: 942 year: 2008 ident: R13 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13949.x – ident: R68 doi: 10.1017/CBO9781139164535 – volume: 135 start-page: 2055 year: 2008 ident: R6 publication-title: AJ doi: 10.1088/0004-6256/135/6/2055 – volume: 200 start-page: 361 year: 1982 ident: R19 publication-title: MNRAS doi: 10.1093/mnras/200.2.361 – volume: 856 start-page: L6 year: 2018 ident: R23 publication-title: ApJ doi: 10.3847/2041-8213/aab55a – volume: 109 start-page: 301 year: 1982 ident: R10 publication-title: A&A – volume: 5 start-page: 380 year: 1840 ident: R124 publication-title: J. Math. Pures Appl. – volume: 90 start-page: 773 year: 1995 ident: R81 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – volume: 737 start-page: 103 year: 2011 ident: R126 publication-title: ApJ doi: 10.1088/0004-637X/737/2/103 – volume: 892 start-page: L25 year: 2020 ident: R87 publication-title: ApJ doi: 10.3847/2041-8213/ab745b – volume: 5 start-page: 65 year: 2010 ident: R57 publication-title: Commun. Appl. Math. Comput. Sci. doi: 10.2140/camcos.2010.5.65 – volume: 499 start-page: 4646 year: 2020 ident: R8 publication-title: MNRAS doi: 10.1093/mnras/staa2821 – volume: 505 start-page: 139 year: 2009 ident: R27 publication-title: A&A doi: 10.1051/0004-6361/200912097 – volume: 98 start-page: 217 year: 1989 ident: R84 publication-title: AJ doi: 10.1086/115138 – volume: 46 start-page: 173 year: 2013 ident: R134 publication-title: J. Korean Astron. Soc. doi: 10.5303/JKAS.2013.46.4.173 – volume: 635 start-page: A161 year: 2020 ident: R77 publication-title: A&A doi: 10.1051/0004-6361/201936952 – volume: 619 start-page: 258 year: 2005 ident: R100 publication-title: ApJ doi: 10.1086/426133 – volume: 18 start-page: 279 year: 2010 ident: R157 publication-title: A&ARv doi: 10.1007/s00159-010-0029-x – volume: 481 start-page: 2125 year: 2018 ident: R18 publication-title: MNRAS doi: 10.1093/mnras/sty2365 – volume: 429 start-page: 1913 year: 2013 ident: R155 publication-title: MNRAS doi: 10.1093/mnras/sts434 – volume: 551 start-page: L27 year: 2001 ident: R93 publication-title: ApJ doi: 10.1086/319848 – volume: 484 start-page: 2832 year: 2019 ident: R153 publication-title: MNRAS doi: 10.1093/mnras/stz171 – volume: 803 start-page: 29 year: 2015 ident: R159 publication-title: ApJ doi: 10.1088/0004-637X/803/1/29 – volume: 616 start-page: A17 year: 2018 ident: R7 publication-title: A&A doi: 10.1051/0004-6361/201833234 – volume: 887 start-page: 53 year: 2019 ident: R48 publication-title: ApJ doi: 10.3847/1538-4357/ab518b – volume: 6 start-page: 461 year: 1978 ident: R129 publication-title: Annal. Stat. doi: 10.1214/aos/1176344136 – volume: 439 start-page: 191 year: 1995 ident: R92 publication-title: ApJ doi: 10.1086/175164 – volume: 436 start-page: 2598 year: 2013 ident: R158 publication-title: MNRAS doi: 10.1093/mnras/stt1756 – ident: R64 – volume: 428 start-page: 3648 year: 2013 ident: R76 publication-title: MNRAS doi: 10.1093/mnras/sts302 – volume: 489 start-page: 3093 year: 2019 ident: R133 publication-title: MNRAS doi: 10.1093/mnras/stz2317 – volume: 489 start-page: 623 year: 2019 ident: R154 publication-title: MNRAS doi: 10.1093/mnras/stz2100 – ident: R21 doi: 10.1016/B978-0-12-438150-6.50018-2 – volume: 820 start-page: L22 year: 2016 ident: R16 publication-title: ApJ doi: 10.3847/2041-8205/820/1/L22 – volume: 408 start-page: 529 year: 2003 ident: R58 publication-title: A&A doi: 10.1051/0004-6361:20031003 – volume: 745 start-page: 27 year: 2012 ident: R107 publication-title: ApJ doi: 10.1088/0004-637X/745/1/27 – ident: R29 – volume: 43 start-page: 758 year: 1966 ident: R162 publication-title: AZh – volume: 313 start-page: 121 year: 1987 ident: R103 publication-title: ApJ doi: 10.1086/164953 – volume: 616 start-page: A14 year: 2018 ident: R51 publication-title: A&A doi: 10.1051/0004-6361/201832916 – ident: R67 doi: 10.1017/S0074180900001649 – volume: 44 start-page: 277 year: 1983 ident: R5 publication-title: Int. Stat. Inst. – volume: 866 start-page: 21 year: 2018 ident: R39 publication-title: ApJ doi: 10.3847/1538-4357/aadfd6 – volume: 9 start-page: 90 year: 2007 ident: R74 publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – volume: 330 start-page: 232 year: 2002 ident: R104 publication-title: MNRAS doi: 10.1046/j.1365-8711.2002.05112.x – volume: 482 start-page: 5138 year: 2019 ident: R14 publication-title: MNRAS doi: 10.1093/mnras/sty2997 – volume: 8 start-page: 369 year: 1975 ident: R120 publication-title: Mem. Soc. R. Sci. Liege – volume: 454 start-page: 3150 year: 2015 ident: R54 publication-title: MNRAS doi: 10.1093/mnras/stv2162 – volume: 419 start-page: 14 year: 2012 ident: R26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19663.x – volume: 121 start-page: 161 year: 1955 ident: R125 publication-title: ApJ doi: 10.1086/145971 – volume: 97 start-page: 255 year: 1943 ident: R32 publication-title: ApJ doi: 10.1086/144517 – volume: 889 start-page: 18 year: 2020 ident: R36 publication-title: ApJ doi: 10.3847/1538-4357/ab5aee – volume: 485 start-page: 4906 year: 2019 ident: R41 publication-title: MNRAS doi: 10.1093/mnras/stz651 – volume: 286 start-page: 709 year: 1997 ident: R53 publication-title: MNRAS doi: 10.1093/mnras/286.3.709 – volume: 115 start-page: 708 year: 1998 ident: R46 publication-title: AJ doi: 10.1086/300231 – volume: 352 start-page: 447 year: 1999 ident: R35 publication-title: A&A – volume: 71 start-page: 460 year: 1911 ident: R114 publication-title: MNRAS doi: 10.1093/mnras/71.5.460 – volume: 116 start-page: 061102 year: 2016 ident: R1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – volume: 47 start-page: 561 year: 1995 ident: R141 publication-title: PASJ – volume: 476 start-page: L1 year: 2007 ident: R146 publication-title: A&A doi: 10.1051/0004-6361:20078569 – volume: 462 start-page: 696 year: 2016 ident: R163 publication-title: MNRAS doi: 10.1093/mnras/stw1104 – volume: 448 start-page: 502 year: 2015 ident: R101 publication-title: MNRAS doi: 10.1093/mnras/stv007 – volume: 494 start-page: L75 year: 2020 ident: R132 publication-title: MNRAS doi: 10.1093/mnrasl/slaa039 – volume: 135 start-page: 2155 year: 2008 ident: R40 publication-title: AJ doi: 10.1088/0004-6256/135/6/2155 – volume: 197 start-page: 533 year: 1963 ident: R73 publication-title: Nature doi: 10.1038/197533a0 – ident: R135 doi: 10.1007/978-1-4899-3324-9 – volume: 119 start-page: 161101 year: 2017 ident: R2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – ident: R24 – volume: 505 start-page: 117 year: 2009 ident: R28 publication-title: A&A doi: 10.1051/0004-6361/200912096 – volume: 635 start-page: A20 year: 2020 ident: R156 publication-title: A&A doi: 10.1051/0004-6361/201937202 – volume: 471 start-page: 1181 year: 2017 ident: R17 publication-title: MNRAS doi: 10.1093/mnras/stx1680 – volume: 490 start-page: 777 year: 2008 ident: R88 publication-title: A&A doi: 10.1051/0004-6361:200810051 – volume: 40 start-page: 69 year: 2004 ident: R136 publication-title: Rev. Mex. Astron. Astrofis. – volume: 438 start-page: 487 year: 2014 ident: R43 publication-title: MNRAS doi: 10.1093/mnras/stt2221 – volume: 500 start-page: 525 year: 1998 ident: R127 publication-title: ApJ doi: 10.1086/305772 – volume: 576 start-page: 899 year: 2002 ident: R116 publication-title: ApJ doi: 10.1086/341798 |
SSID | ssj0002183 |
Score | 2.5542557 |
Snippet | We analyze proper motions from the
Hubble
Space Telescope (HST) and the second
Gaia
data release along with line-of-sight velocities from the MUSE spectrograph... We analyze proper motions from the Hubble Space Telescope (HST) and the second Gaia data release along with line-of-sight velocities from the MUSE spectrograph... |
SourceID | hal proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | A63 |
SubjectTerms | Anisotropy Astrophysics Black holes Density Galactic clusters Globular clusters Gravitational waves Hubble Space Telescope Neutron stars Physics Space telescopes White dwarf stars |
Title | Does NGC 6397 contain an intermediate-mass black hole or a more diffuse inner subcluster? |
URI | https://www.proquest.com/docview/2494233872 https://hal.science/hal-03139381 |
Volume | 646 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEBKXaQzQCgNZCHEJ2RLH-fAJRfsqqIwdWlROUeLYGtKaTG3KYQf-dt6zk7RlaAIuUeKmruT36_vyez8T8rbIIVwDw-4mSRG4PFHCzX0lXU8rT-egHbXpW_t8EQ0n_NM0nHZHwrfdJU1xKG__2FfyP1KFMZArdsn-g2T7SWEA7kG-cAUJw_WvZHxSK1BT58cO7puZqnOI8528MiQQc9MU0ih3Bv6xU2CizrkytYRzJ3ewvtacjrJcIG1IhaTOy0JeL81JHZvVfukC8-X1zFI15fhkEyImY2sJs9YyCl-_Y_bEKNkSAVivst4zu8d_jqV66XrCgfldjXKXBTu57PTOYkOzcjcKLLH6obLKlAdY2dqmGFttG9nHO5oblIMtdbTTYKMKbpKKyPLSbjJlX3zJziajUTY-nY63yEMWg9-Ejd4ff_ZWGF0_G_rYCTvGqdA_6seO-p_Y8Eq2rrAm9jfTbPyN8S7ZaQMFmlqpPyEPVLVH9ntR0Hc0XRPEHnl0ae-ekm8ICwqwoAgL2sKC5hW9AwtqYEERFrSe05wiLGgLC2pgQVew-PCMTM5Ox8dDtz1Bw5WcscZNQvDeQqGliFShRS6CUArFdSkj6amoAGewLMEcCq9MNGexjKUEBy6UmotAaT94TrarulL7hMYlmEbBkrIsGI88JUIw2bGK0QKEKtYDwroVzGRLL4-nnFxnpswh9LHMgWe47Fm_7APyvv_SjWVXuf_1NyCa_k1kRh-mowzHkIJUgPf5wx-Qg05yWftfXWSMC4gbgiRmL-7_-CV5vML8Adlu5kv1CtzOpnht8PULJyp6vw |
linkProvider | EDP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Does+NGC+6397+contain+an+intermediate-mass+black+hole+or+a+more+diffuse+inner+subcluster%3F&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Vitral%2C+Eduardo&rft.au=Mamon%2C+Gary+A&rft.date=2021-02-01&rft.pub=EDP+Sciences&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=646&rft_id=info:doi/10.1051%2F0004-6361%2F202039650&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |