EEG-based 5- and 2-class CNN for Sleep Stage Classification

This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the s...

Full description

Saved in:
Bibliographic Details
Published inIFAC-PapersOnLine Vol. 56; no. 2; pp. 3211 - 3216
Main Authors Moctezuma, Luis Alfredo, Abe, Takashi, Molinas, Marta
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text
ISSN2405-8963
2405-8963
DOI10.1016/j.ifacol.2023.10.1458

Cover

Abstract This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the sleep stages and compare its performance with predictions made using a 5-class model. All the models were created using a CNN called EEGNet, and the experiments were carried out with the ISRUC-Sleep public dataset, which consist of 100 subjects and 6 EEG channels. With a single 5-class model for the entire dataset, we have obtained an average area under the receiver operating characteristic (AUROC) of 0.948. In the best case, we have obtained an average AUROC of 0.964, 0.967, 0.982 and 0.929 for the stratified 2-class models: Awake vs Sleep (Rapid Eye Movement (REM) + Non-REM [N1+N2+N3]), REM vs Non-REM (N1+N2+N3), (N1+N2) vs N3, and finally N1 vs N2. We have shown that in the four 2-class stratification-based models in a row, we can achieve an average AUROC of 0.97. The results obtained are promising and can lead to possible combinations of the 5- and 2-class models to improve the automatic sleep stage classification.
AbstractList This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the sleep stages and compare its performance with predictions made using a 5-class model. All the models were created using a CNN called EEGNet, and the experiments were carried out with the ISRUC-Sleep public dataset, which consist of 100 subjects and 6 EEG channels. With a single 5-class model for the entire dataset, we have obtained an average area under the receiver operating characteristic (AUROC) of 0.948. In the best case, we have obtained an average AUROC of 0.964, 0.967, 0.982 and 0.929 for the stratified 2-class models: Awake vs Sleep (Rapid Eye Movement (REM) + Non-REM [N1+N2+N3]), REM vs Non-REM (N1+N2+N3), (N1+N2) vs N3, and finally N1 vs N2. We have shown that in the four 2-class stratification-based models in a row, we can achieve an average AUROC of 0.97. The results obtained are promising and can lead to possible combinations of the 5- and 2-class models to improve the automatic sleep stage classification.
Author Abe, Takashi
Molinas, Marta
Moctezuma, Luis Alfredo
Author_xml – sequence: 1
  givenname: Luis Alfredo
  surname: Moctezuma
  fullname: Moctezuma, Luis Alfredo
  email: luisalfredomoctezuma@gmail.com
  organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
– sequence: 2
  givenname: Takashi
  surname: Abe
  fullname: Abe, Takashi
  organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
– sequence: 3
  givenname: Marta
  surname: Molinas
  fullname: Molinas, Marta
  organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
BookMark eNqFkMFKAzEQhoMoWGsfQcgLZE2ymzShB5GlVqHUQ3sPaTKRlHW3JIvg27vbehAvPc3wD98w892h67ZrAaEHRgtGmXw8FDFY1zUFp7wsxrQS6gpNeEUFUVqW13_6WzTL-UAp5VpWc60maLFcrsjeZvBYEGxbjzlxjc0Z15sNDl3C2wbgiLe9_QBcj5MYorN97Np7dBNsk2H2W6do97Lc1a9k_b56q5_XxFWc92Ruxd75oKVQlaKa-ZKzknOu9lLweXDSW6UD9VZT7phkTgIoPmReMF9BOUXivNalLucEwRxT_LTp2zBqRgfmYM4OzOjglA4OBm7xj3OxPx3eJxubi_TTmYbhs68IyWQXoXXgYwLXG9_FCxt-AFd0eeQ
CitedBy_id crossref_primary_10_1038_s41598_024_68978_4
Cites_doi 10.1016/j.jneumeth.2019.108320
10.1109/TNSRE.2016.2601240
10.1371/journal.pone.0216456
10.1007/s10439-015-1444-y
10.1016/j.cmpb.2015.10.013
10.1016/j.bspc.2017.12.001
10.1016/j.patter.2021.100371
10.1016/j.sleep.2022.06.013
10.1016/j.bspc.2022.103751
10.1109/TNSRE.2017.2776149
10.3390/app12105248
10.5121/ijdkp.2015.5201
10.1088/1741-2552/aace8c
10.1016/j.knosys.2021.106890
10.1109/TNSRE.2021.3117970
10.1088/1741-2552/aab2f2
10.1016/j.bspc.2016.11.013
10.1093/sleep/32.2.139
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ifacol.2023.10.1458
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2405-8963
EndPage 3216
ExternalDocumentID 10_1016_j_ifacol_2023_10_1458
S2405896323018669
GroupedDBID 0R~
0SF
457
6I.
AAFTH
AAJQP
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ATDSJ
EBS
EJD
FDB
HX~
KQ8
O9-
ROL
AAYWO
AAYXX
CITATION
ID FETCH-LOGICAL-c422t-7a5bcdf965848091d32132228b6527fc6da89f0da902c161c6ee82a89d51d4e3
ISSN 2405-8963
IngestDate Tue Jul 01 03:01:00 EDT 2025
Thu Apr 24 23:02:44 EDT 2025
Sat Oct 26 15:44:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Electroencephalography (EEG)
Convolutional Neural Networks (CNN)
Brain-computer Interface
Sleep staging
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-7a5bcdf965848091d32132228b6527fc6da89f0da902c161c6ee82a89d51d4e3
OpenAccessLink https://dx.doi.org/10.1016/j.ifacol.2023.10.1458
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_ifacol_2023_10_1458
crossref_citationtrail_10_1016_j_ifacol_2023_10_1458
elsevier_sciencedirect_doi_10_1016_j_ifacol_2023_10_1458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle IFAC-PapersOnLine
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Khalighi, Sousa, Santos, Nunes (bib0008) 2016; 124
Wang, Lee, Kim, Kim, Kim (bib0020) 2020
Ghimatgar, Kazemi, Helfroush, Aarabi (bib0005) 2019; 324
Fiorillo, Favaro, Faraci (bib0004) 2021; 29
Sors, Bonnet, Mirek, Vercueil, Payen (bib0017) 2018; 42
Alsolai, Qureshi, Zeeshan Iqbal, Ameer, Cheaha, Henesey, Karrila (bib0001) 2022; 12
Tsinalis, Matthews, Guo (bib0018) 2016; 44
Tsinalis, Matthews, Guo, Zafeiriou (bib0019) 2016
Decat, Walter, Koh, Sribanditmongkol, Fulcher, Windt, Andrillon, Tsuchiya (bib0003) 2022; 98
Yin, Zhang (bib0021) 2017; 33
Lee, Kim, Heo, Kim, Kim (bib0010) 2021
Lu, Li, Ren, Miao (bib0012) 2016; 25
Hossin, Sulaiman (bib0006) 2015; 5
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0009) 2018; 15
Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (bib0011) 2018; 15
Moser, Anderer, Gruber, Parapatics, Loretz, Boeck, Kloesch, Heller, Schmidt, Danker-Hopfe, Saletu, Zeitlhofer, Dorfner (bib0014) 2009; 32
Jia, Lin, Wang, Wang, Xie, Zhang (bib0007) 2021
Zhang, Wang, Li, Mehendale, Guan (bib0022) 2022; 3
Memar, Faradji (bib0013) 2017; 26
Mousavi, Afghah, Acharya (bib0015) 2019; 14
An, Yuan, Zhao, Jiang, Du (bib0002) 2021; 219
Sekkal, Bereksi-Reguig, Ruiz-Fernandez, Dib, Sekkal (bib0016) 2022; 77
An (10.1016/j.ifacol.2023.10.1458_bib0002) 2021; 219
Wang (10.1016/j.ifacol.2023.10.1458_bib0020) 2020
Sekkal (10.1016/j.ifacol.2023.10.1458_bib0016) 2022; 77
Decat (10.1016/j.ifacol.2023.10.1458_bib0003) 2022; 98
Fiorillo (10.1016/j.ifacol.2023.10.1458_bib0004) 2021; 29
Lotte (10.1016/j.ifacol.2023.10.1458_bib0011) 2018; 15
Lu (10.1016/j.ifacol.2023.10.1458_bib0012) 2016; 25
Mousavi (10.1016/j.ifacol.2023.10.1458_bib0015) 2019; 14
Alsolai (10.1016/j.ifacol.2023.10.1458_bib0001) 2022; 12
Tsinalis (10.1016/j.ifacol.2023.10.1458_bib0018) 2016; 44
Lee (10.1016/j.ifacol.2023.10.1458_bib0010) 2021
Ghimatgar (10.1016/j.ifacol.2023.10.1458_bib0005) 2019; 324
Sors (10.1016/j.ifacol.2023.10.1458_bib0017) 2018; 42
Hossin (10.1016/j.ifacol.2023.10.1458_bib0006) 2015; 5
Tsinalis (10.1016/j.ifacol.2023.10.1458_bib0019) 2016
Zhang (10.1016/j.ifacol.2023.10.1458_bib0022) 2022; 3
Moser (10.1016/j.ifacol.2023.10.1458_bib0014) 2009; 32
Lawhern (10.1016/j.ifacol.2023.10.1458_bib0009) 2018; 15
Khalighi (10.1016/j.ifacol.2023.10.1458_bib0008) 2016; 124
Jia (10.1016/j.ifacol.2023.10.1458_bib0007) 2021
Memar (10.1016/j.ifacol.2023.10.1458_bib0013) 2017; 26
Yin (10.1016/j.ifacol.2023.10.1458_bib0021) 2017; 33
References_xml – volume: 14
  year: 2019
  ident: bib0015
  article-title: Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PloS one
– volume: 3
  year: 2022
  ident: bib0022
  article-title: Auto-annotating sleep stages based on polysomnographic data
  publication-title: Patterns
– volume: 98
  start-page: 39
  year: 2022
  end-page: 52
  ident: bib0003
  article-title: Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series
  publication-title: Sleep Medicine
– volume: 324
  year: 2019
  ident: bib0005
  article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden markov model
  publication-title: Journal of neuroscience methods
– volume: 33
  start-page: 30
  year: 2017
  end-page: 47
  ident: bib0021
  article-title: Cross-session classification of mental workload levels using eeg and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
– volume: 15
  year: 2018
  ident: bib0009
  article-title: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces
  publication-title: Journal of neural engineering
– start-page: 394
  year: 2020
  end-page: 398
  ident: bib0020
  article-title: An ensemble deep learning approach for sleep stage classification via single-channel eeg and eog
  publication-title: 2020 International Conference on Information and Communication Technology Convergence (ICTC)
– volume: 15
  year: 2018
  ident: bib0011
  article-title: A review of classification algorithms for eeg-based brain– computer interfaces: a 10 year update
  publication-title: Journal of neural engineering
– volume: 219
  year: 2021
  ident: bib0002
  article-title: An effective multi-model fusion method for eeg-based sleep stage classification
  publication-title: Knowledge-Based Systems
– volume: 77
  year: 2022
  ident: bib0016
  article-title: Automatic sleep stage classification: From classical machine learning methods to deep learning
  publication-title: Biomedical Signal Processing and Control
– volume: 44
  start-page: 1587
  year: 2016
  end-page: 1597
  ident: bib0018
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Annals of biomedical engineering
– volume: 42
  start-page: 107
  year: 2018
  end-page: 114
  ident: bib0017
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg
  publication-title: Biomedical Signal Processing and Control
– volume: 29
  start-page: 2076
  year: 2021
  end-page: 2085
  ident: bib0004
  article-title: Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
– volume: 124
  start-page: 180
  year: 2016
  end-page: 192
  ident: bib0008
  article-title: Isruc-sleep: A comprehensive public dataset for sleep researchers
  publication-title: Computer methods and programs in biomedicine
– volume: 32
  start-page: 139
  year: 2009
  ident: bib0014
  article-title: Sleep classification according to aasm and rechtschafen & kales: Effects on sleep scoring parameters
  publication-title: Sleep
– volume: 12
  start-page: 5248
  year: 2022
  ident: bib0001
  article-title: Employing a long-short-term memory neural network to improve automatic sleep stage classification of pharmaco-eeg profiles
  publication-title: Applied Sciences
– year: 2016
  ident: bib0019
  article-title: Automatic sleep stage scoring with single-channel eeg using convolutional neural networks
  publication-title: arXiv preprint
– volume: 26
  start-page: 84
  year: 2017
  end-page: 95
  ident: bib0013
  article-title: A novel multi-class eeg-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2021
  ident: bib0007
  article-title: Salientsleepnet: Multimodal salient wave detection network for sleep staging
  publication-title: arXiv preprint
– volume: 25
  start-page: 566
  year: 2016
  end-page: 576
  ident: bib0012
  article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
– start-page: 1
  year: 2021
  end-page: 5
  ident: bib0010
  article-title: Improving sleep stage classification performance by single-channel eeg data augmentation via spectral band blending
  publication-title: 2021 9th International Winter Conference on Brain-Computer Interface (BCI)
– volume: 5
  start-page: 1
  year: 2015
  ident: bib0006
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: International journal of data mining & knowledge management process
– volume: 324
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1458_bib0005
  article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden markov model
  publication-title: Journal of neuroscience methods
  doi: 10.1016/j.jneumeth.2019.108320
– volume: 25
  start-page: 566
  issue: 6
  year: 2016
  ident: 10.1016/j.ifacol.2023.10.1458_bib0012
  article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
  doi: 10.1109/TNSRE.2016.2601240
– start-page: 394
  year: 2020
  ident: 10.1016/j.ifacol.2023.10.1458_bib0020
  article-title: An ensemble deep learning approach for sleep stage classification via single-channel eeg and eog
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.ifacol.2023.10.1458_bib0015
  article-title: Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PloS one
  doi: 10.1371/journal.pone.0216456
– volume: 44
  start-page: 1587
  issue: 5
  year: 2016
  ident: 10.1016/j.ifacol.2023.10.1458_bib0018
  article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders
  publication-title: Annals of biomedical engineering
  doi: 10.1007/s10439-015-1444-y
– volume: 124
  start-page: 180
  year: 2016
  ident: 10.1016/j.ifacol.2023.10.1458_bib0008
  article-title: Isruc-sleep: A comprehensive public dataset for sleep researchers
  publication-title: Computer methods and programs in biomedicine
  doi: 10.1016/j.cmpb.2015.10.013
– volume: 42
  start-page: 107
  year: 2018
  ident: 10.1016/j.ifacol.2023.10.1458_bib0017
  article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2017.12.001
– start-page: 1
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1458_bib0010
  article-title: Improving sleep stage classification performance by single-channel eeg data augmentation via spectral band blending
– volume: 3
  issue: 1
  year: 2022
  ident: 10.1016/j.ifacol.2023.10.1458_bib0022
  article-title: Auto-annotating sleep stages based on polysomnographic data
  publication-title: Patterns
  doi: 10.1016/j.patter.2021.100371
– volume: 98
  start-page: 39
  year: 2022
  ident: 10.1016/j.ifacol.2023.10.1458_bib0003
  article-title: Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series
  publication-title: Sleep Medicine
  doi: 10.1016/j.sleep.2022.06.013
– volume: 77
  year: 2022
  ident: 10.1016/j.ifacol.2023.10.1458_bib0016
  article-title: Automatic sleep stage classification: From classical machine learning methods to deep learning
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.103751
– volume: 26
  start-page: 84
  issue: 1
  year: 2017
  ident: 10.1016/j.ifacol.2023.10.1458_bib0013
  article-title: A novel multi-class eeg-based sleep stage classification system
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2776149
– volume: 12
  start-page: 5248
  issue: 10
  year: 2022
  ident: 10.1016/j.ifacol.2023.10.1458_bib0001
  article-title: Employing a long-short-term memory neural network to improve automatic sleep stage classification of pharmaco-eeg profiles
  publication-title: Applied Sciences
  doi: 10.3390/app12105248
– year: 2016
  ident: 10.1016/j.ifacol.2023.10.1458_bib0019
  article-title: Automatic sleep stage scoring with single-channel eeg using convolutional neural networks
  publication-title: arXiv preprint
– volume: 5
  start-page: 1
  issue: 2
  year: 2015
  ident: 10.1016/j.ifacol.2023.10.1458_bib0006
  article-title: A review on evaluation metrics for data classification evaluations
  publication-title: International journal of data mining & knowledge management process
  doi: 10.5121/ijdkp.2015.5201
– volume: 15
  issue: 5
  year: 2018
  ident: 10.1016/j.ifacol.2023.10.1458_bib0009
  article-title: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2552/aace8c
– volume: 219
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1458_bib0002
  article-title: An effective multi-model fusion method for eeg-based sleep stage classification
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.106890
– volume: 29
  start-page: 2076
  year: 2021
  ident: 10.1016/j.ifacol.2023.10.1458_bib0004
  article-title: Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates
  publication-title: IEEE transactions on neural systems and rehabilitation engineering
  doi: 10.1109/TNSRE.2021.3117970
– volume: 15
  issue: 3
  year: 2018
  ident: 10.1016/j.ifacol.2023.10.1458_bib0011
  article-title: A review of classification algorithms for eeg-based brain– computer interfaces: a 10 year update
  publication-title: Journal of neural engineering
  doi: 10.1088/1741-2552/aab2f2
– volume: 33
  start-page: 30
  year: 2017
  ident: 10.1016/j.ifacol.2023.10.1458_bib0021
  article-title: Cross-session classification of mental workload levels using eeg and an adaptive deep learning model
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2016.11.013
– year: 2021
  ident: 10.1016/j.ifacol.2023.10.1458_bib0007
  article-title: Salientsleepnet: Multimodal salient wave detection network for sleep staging
  publication-title: arXiv preprint
– volume: 32
  start-page: 139
  year: 2009
  ident: 10.1016/j.ifacol.2023.10.1458_bib0014
  article-title: Sleep classification according to aasm and rechtschafen & kales: Effects on sleep scoring parameters
  publication-title: Sleep
  doi: 10.1093/sleep/32.2.139
SSID ssj0002964798
Score 1.9342488
Snippet This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3211
SubjectTerms Brain-computer Interface
Convolutional Neural Networks (CNN)
Electroencephalography (EEG)
Sleep staging
Title EEG-based 5- and 2-class CNN for Sleep Stage Classification
URI https://dx.doi.org/10.1016/j.ifacol.2023.10.1458
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYGu3BBoA0BG8iH3SqH4NhJLE5VVcYQ60AUiVuUOA4CulKN9MKv5z3bTToUwcYlap_q1PX79PrFz-97hHzjhzoRObZJFSpkQlWK5UjkVGhMGBUyiUqr9jmKT67E6bW8btul2uqSugj0U2ddyXu8CjbwK1bJ_odnm5uCAV6Df-EKHobrP_l4OPzO8G-o7ElmswCcaWTDvcFoZM8PXk6MmSGhvDGu_SUeDGp94Unpj-P-gJ3nM2CCv6ZnS4n2nw-6Nk_z35Zgns1vH3v9SYUKo23SyIn25vfYk6kdhlW-j74UqM6XdxZ49GJnoSl5ac8XQVQCBiBZqnxUMh02H1adXriHD1-KkRH34dUs3sadsdxtK9wFtxUKeAc4wwDtwmm9v5DJvsRJ4BzgmQpF_NQK-cgT4FOYqL9Im303TDMntkVyM-u2sOug89u6KcsSDRlvkHX__ED7Dgyb5IOZfiJHDRCoZBSAQD0QKACBAhCoBQK1QKB_A-EzGR8Px4MT5rtiMC04r1mSy0KXFYr2iBTYXgkLiOmytIglTyodl3mqqrDMVcg18HkdG5NysJXysBQm2iKr04ep2SY01jGvkkLhB4WQvADuHGu4IfAmKVS0Q8Tid2faK8Zj45JJtjgaeJe55cpwuawVlmuHBM2wmZNMeWtAuljUzPM-x-cygMLrQ3ffP_QLWWtB_5Ws1n_mZg8IZl3sW8Q8A0fLcuM
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+5-+and+2-class+CNN+for+Sleep+Stage+Classification&rft.jtitle=IFAC-PapersOnLine&rft.au=Moctezuma%2C+Luis+Alfredo&rft.au=Abe%2C+Takashi&rft.au=Molinas%2C+Marta&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=56&rft.issue=2&rft.spage=3211&rft.epage=3216&rft_id=info:doi/10.1016%2Fj.ifacol.2023.10.1458&rft.externalDocID=S2405896323018669
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon