EEG-based 5- and 2-class CNN for Sleep Stage Classification
This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the s...
Saved in:
Published in | IFAC-PapersOnLine Vol. 56; no. 2; pp. 3211 - 3216 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2405-8963 2405-8963 |
DOI | 10.1016/j.ifacol.2023.10.1458 |
Cover
Abstract | This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the sleep stages and compare its performance with predictions made using a 5-class model. All the models were created using a CNN called EEGNet, and the experiments were carried out with the ISRUC-Sleep public dataset, which consist of 100 subjects and 6 EEG channels. With a single 5-class model for the entire dataset, we have obtained an average area under the receiver operating characteristic (AUROC) of 0.948. In the best case, we have obtained an average AUROC of 0.964, 0.967, 0.982 and 0.929 for the stratified 2-class models: Awake vs Sleep (Rapid Eye Movement (REM) + Non-REM [N1+N2+N3]), REM vs Non-REM (N1+N2+N3), (N1+N2) vs N3, and finally N1 vs N2. We have shown that in the four 2-class stratification-based models in a row, we can achieve an average AUROC of 0.97. The results obtained are promising and can lead to possible combinations of the 5- and 2-class models to improve the automatic sleep stage classification. |
---|---|
AbstractList | This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals using a Convolutional Neural Network (CNN) based on 5- and 2-class models. We defined two ways for 2-class stratification, to classify the sleep stages and compare its performance with predictions made using a 5-class model. All the models were created using a CNN called EEGNet, and the experiments were carried out with the ISRUC-Sleep public dataset, which consist of 100 subjects and 6 EEG channels. With a single 5-class model for the entire dataset, we have obtained an average area under the receiver operating characteristic (AUROC) of 0.948. In the best case, we have obtained an average AUROC of 0.964, 0.967, 0.982 and 0.929 for the stratified 2-class models: Awake vs Sleep (Rapid Eye Movement (REM) + Non-REM [N1+N2+N3]), REM vs Non-REM (N1+N2+N3), (N1+N2) vs N3, and finally N1 vs N2. We have shown that in the four 2-class stratification-based models in a row, we can achieve an average AUROC of 0.97. The results obtained are promising and can lead to possible combinations of the 5- and 2-class models to improve the automatic sleep stage classification. |
Author | Abe, Takashi Molinas, Marta Moctezuma, Luis Alfredo |
Author_xml | – sequence: 1 givenname: Luis Alfredo surname: Moctezuma fullname: Moctezuma, Luis Alfredo email: luisalfredomoctezuma@gmail.com organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan – sequence: 2 givenname: Takashi surname: Abe fullname: Abe, Takashi organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan – sequence: 3 givenname: Marta surname: Molinas fullname: Molinas, Marta organization: International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan |
BookMark | eNqFkMFKAzEQhoMoWGsfQcgLZE2ymzShB5GlVqHUQ3sPaTKRlHW3JIvg27vbehAvPc3wD98w892h67ZrAaEHRgtGmXw8FDFY1zUFp7wsxrQS6gpNeEUFUVqW13_6WzTL-UAp5VpWc60maLFcrsjeZvBYEGxbjzlxjc0Z15sNDl3C2wbgiLe9_QBcj5MYorN97Np7dBNsk2H2W6do97Lc1a9k_b56q5_XxFWc92Ruxd75oKVQlaKa-ZKzknOu9lLweXDSW6UD9VZT7phkTgIoPmReMF9BOUXivNalLucEwRxT_LTp2zBqRgfmYM4OzOjglA4OBm7xj3OxPx3eJxubi_TTmYbhs68IyWQXoXXgYwLXG9_FCxt-AFd0eeQ |
CitedBy_id | crossref_primary_10_1038_s41598_024_68978_4 |
Cites_doi | 10.1016/j.jneumeth.2019.108320 10.1109/TNSRE.2016.2601240 10.1371/journal.pone.0216456 10.1007/s10439-015-1444-y 10.1016/j.cmpb.2015.10.013 10.1016/j.bspc.2017.12.001 10.1016/j.patter.2021.100371 10.1016/j.sleep.2022.06.013 10.1016/j.bspc.2022.103751 10.1109/TNSRE.2017.2776149 10.3390/app12105248 10.5121/ijdkp.2015.5201 10.1088/1741-2552/aace8c 10.1016/j.knosys.2021.106890 10.1109/TNSRE.2021.3117970 10.1088/1741-2552/aab2f2 10.1016/j.bspc.2016.11.013 10.1093/sleep/32.2.139 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.ifacol.2023.10.1458 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2405-8963 |
EndPage | 3216 |
ExternalDocumentID | 10_1016_j_ifacol_2023_10_1458 S2405896323018669 |
GroupedDBID | 0R~ 0SF 457 6I. AAFTH AAJQP AALRI AAXUO ABMAC ACGFS ADBBV ADVLN AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ ATDSJ EBS EJD FDB HX~ KQ8 O9- ROL AAYWO AAYXX CITATION |
ID | FETCH-LOGICAL-c422t-7a5bcdf965848091d32132228b6527fc6da89f0da902c161c6ee82a89d51d4e3 |
ISSN | 2405-8963 |
IngestDate | Tue Jul 01 03:01:00 EDT 2025 Thu Apr 24 23:02:44 EDT 2025 Sat Oct 26 15:44:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | Electroencephalography (EEG) Convolutional Neural Networks (CNN) Brain-computer Interface Sleep staging |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-7a5bcdf965848091d32132228b6527fc6da89f0da902c161c6ee82a89d51d4e3 |
OpenAccessLink | https://dx.doi.org/10.1016/j.ifacol.2023.10.1458 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1016_j_ifacol_2023_10_1458 crossref_citationtrail_10_1016_j_ifacol_2023_10_1458 elsevier_sciencedirect_doi_10_1016_j_ifacol_2023_10_1458 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IFAC-PapersOnLine |
PublicationYear | 2023 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Khalighi, Sousa, Santos, Nunes (bib0008) 2016; 124 Wang, Lee, Kim, Kim, Kim (bib0020) 2020 Ghimatgar, Kazemi, Helfroush, Aarabi (bib0005) 2019; 324 Fiorillo, Favaro, Faraci (bib0004) 2021; 29 Sors, Bonnet, Mirek, Vercueil, Payen (bib0017) 2018; 42 Alsolai, Qureshi, Zeeshan Iqbal, Ameer, Cheaha, Henesey, Karrila (bib0001) 2022; 12 Tsinalis, Matthews, Guo (bib0018) 2016; 44 Tsinalis, Matthews, Guo, Zafeiriou (bib0019) 2016 Decat, Walter, Koh, Sribanditmongkol, Fulcher, Windt, Andrillon, Tsuchiya (bib0003) 2022; 98 Yin, Zhang (bib0021) 2017; 33 Lee, Kim, Heo, Kim, Kim (bib0010) 2021 Lu, Li, Ren, Miao (bib0012) 2016; 25 Hossin, Sulaiman (bib0006) 2015; 5 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (bib0009) 2018; 15 Lotte, Bougrain, Cichocki, Clerc, Congedo, Rakotomamonjy, Yger (bib0011) 2018; 15 Moser, Anderer, Gruber, Parapatics, Loretz, Boeck, Kloesch, Heller, Schmidt, Danker-Hopfe, Saletu, Zeitlhofer, Dorfner (bib0014) 2009; 32 Jia, Lin, Wang, Wang, Xie, Zhang (bib0007) 2021 Zhang, Wang, Li, Mehendale, Guan (bib0022) 2022; 3 Memar, Faradji (bib0013) 2017; 26 Mousavi, Afghah, Acharya (bib0015) 2019; 14 An, Yuan, Zhao, Jiang, Du (bib0002) 2021; 219 Sekkal, Bereksi-Reguig, Ruiz-Fernandez, Dib, Sekkal (bib0016) 2022; 77 An (10.1016/j.ifacol.2023.10.1458_bib0002) 2021; 219 Wang (10.1016/j.ifacol.2023.10.1458_bib0020) 2020 Sekkal (10.1016/j.ifacol.2023.10.1458_bib0016) 2022; 77 Decat (10.1016/j.ifacol.2023.10.1458_bib0003) 2022; 98 Fiorillo (10.1016/j.ifacol.2023.10.1458_bib0004) 2021; 29 Lotte (10.1016/j.ifacol.2023.10.1458_bib0011) 2018; 15 Lu (10.1016/j.ifacol.2023.10.1458_bib0012) 2016; 25 Mousavi (10.1016/j.ifacol.2023.10.1458_bib0015) 2019; 14 Alsolai (10.1016/j.ifacol.2023.10.1458_bib0001) 2022; 12 Tsinalis (10.1016/j.ifacol.2023.10.1458_bib0018) 2016; 44 Lee (10.1016/j.ifacol.2023.10.1458_bib0010) 2021 Ghimatgar (10.1016/j.ifacol.2023.10.1458_bib0005) 2019; 324 Sors (10.1016/j.ifacol.2023.10.1458_bib0017) 2018; 42 Hossin (10.1016/j.ifacol.2023.10.1458_bib0006) 2015; 5 Tsinalis (10.1016/j.ifacol.2023.10.1458_bib0019) 2016 Zhang (10.1016/j.ifacol.2023.10.1458_bib0022) 2022; 3 Moser (10.1016/j.ifacol.2023.10.1458_bib0014) 2009; 32 Lawhern (10.1016/j.ifacol.2023.10.1458_bib0009) 2018; 15 Khalighi (10.1016/j.ifacol.2023.10.1458_bib0008) 2016; 124 Jia (10.1016/j.ifacol.2023.10.1458_bib0007) 2021 Memar (10.1016/j.ifacol.2023.10.1458_bib0013) 2017; 26 Yin (10.1016/j.ifacol.2023.10.1458_bib0021) 2017; 33 |
References_xml | – volume: 14 year: 2019 ident: bib0015 article-title: Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PloS one – volume: 3 year: 2022 ident: bib0022 article-title: Auto-annotating sleep stages based on polysomnographic data publication-title: Patterns – volume: 98 start-page: 39 year: 2022 end-page: 52 ident: bib0003 article-title: Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series publication-title: Sleep Medicine – volume: 324 year: 2019 ident: bib0005 article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden markov model publication-title: Journal of neuroscience methods – volume: 33 start-page: 30 year: 2017 end-page: 47 ident: bib0021 article-title: Cross-session classification of mental workload levels using eeg and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control – volume: 15 year: 2018 ident: bib0009 article-title: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces publication-title: Journal of neural engineering – start-page: 394 year: 2020 end-page: 398 ident: bib0020 article-title: An ensemble deep learning approach for sleep stage classification via single-channel eeg and eog publication-title: 2020 International Conference on Information and Communication Technology Convergence (ICTC) – volume: 15 year: 2018 ident: bib0011 article-title: A review of classification algorithms for eeg-based brain– computer interfaces: a 10 year update publication-title: Journal of neural engineering – volume: 219 year: 2021 ident: bib0002 article-title: An effective multi-model fusion method for eeg-based sleep stage classification publication-title: Knowledge-Based Systems – volume: 77 year: 2022 ident: bib0016 article-title: Automatic sleep stage classification: From classical machine learning methods to deep learning publication-title: Biomedical Signal Processing and Control – volume: 44 start-page: 1587 year: 2016 end-page: 1597 ident: bib0018 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Annals of biomedical engineering – volume: 42 start-page: 107 year: 2018 end-page: 114 ident: bib0017 article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg publication-title: Biomedical Signal Processing and Control – volume: 29 start-page: 2076 year: 2021 end-page: 2085 ident: bib0004 article-title: Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates publication-title: IEEE transactions on neural systems and rehabilitation engineering – volume: 124 start-page: 180 year: 2016 end-page: 192 ident: bib0008 article-title: Isruc-sleep: A comprehensive public dataset for sleep researchers publication-title: Computer methods and programs in biomedicine – volume: 32 start-page: 139 year: 2009 ident: bib0014 article-title: Sleep classification according to aasm and rechtschafen & kales: Effects on sleep scoring parameters publication-title: Sleep – volume: 12 start-page: 5248 year: 2022 ident: bib0001 article-title: Employing a long-short-term memory neural network to improve automatic sleep stage classification of pharmaco-eeg profiles publication-title: Applied Sciences – year: 2016 ident: bib0019 article-title: Automatic sleep stage scoring with single-channel eeg using convolutional neural networks publication-title: arXiv preprint – volume: 26 start-page: 84 year: 2017 end-page: 95 ident: bib0013 article-title: A novel multi-class eeg-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2021 ident: bib0007 article-title: Salientsleepnet: Multimodal salient wave detection network for sleep staging publication-title: arXiv preprint – volume: 25 start-page: 566 year: 2016 end-page: 576 ident: bib0012 article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines publication-title: IEEE transactions on neural systems and rehabilitation engineering – start-page: 1 year: 2021 end-page: 5 ident: bib0010 article-title: Improving sleep stage classification performance by single-channel eeg data augmentation via spectral band blending publication-title: 2021 9th International Winter Conference on Brain-Computer Interface (BCI) – volume: 5 start-page: 1 year: 2015 ident: bib0006 article-title: A review on evaluation metrics for data classification evaluations publication-title: International journal of data mining & knowledge management process – volume: 324 year: 2019 ident: 10.1016/j.ifacol.2023.10.1458_bib0005 article-title: An automatic single-channel eeg-based sleep stage scoring method based on hidden markov model publication-title: Journal of neuroscience methods doi: 10.1016/j.jneumeth.2019.108320 – volume: 25 start-page: 566 issue: 6 year: 2016 ident: 10.1016/j.ifacol.2023.10.1458_bib0012 article-title: A deep learning scheme for motor imagery classification based on restricted boltzmann machines publication-title: IEEE transactions on neural systems and rehabilitation engineering doi: 10.1109/TNSRE.2016.2601240 – start-page: 394 year: 2020 ident: 10.1016/j.ifacol.2023.10.1458_bib0020 article-title: An ensemble deep learning approach for sleep stage classification via single-channel eeg and eog – volume: 14 issue: 5 year: 2019 ident: 10.1016/j.ifacol.2023.10.1458_bib0015 article-title: Sleepeegnet: Automated sleep stage scoring with sequence to sequence deep learning approach publication-title: PloS one doi: 10.1371/journal.pone.0216456 – volume: 44 start-page: 1587 issue: 5 year: 2016 ident: 10.1016/j.ifacol.2023.10.1458_bib0018 article-title: Automatic sleep stage scoring using time-frequency analysis and stacked sparse autoencoders publication-title: Annals of biomedical engineering doi: 10.1007/s10439-015-1444-y – volume: 124 start-page: 180 year: 2016 ident: 10.1016/j.ifacol.2023.10.1458_bib0008 article-title: Isruc-sleep: A comprehensive public dataset for sleep researchers publication-title: Computer methods and programs in biomedicine doi: 10.1016/j.cmpb.2015.10.013 – volume: 42 start-page: 107 year: 2018 ident: 10.1016/j.ifacol.2023.10.1458_bib0017 article-title: A convolutional neural network for sleep stage scoring from raw single-channel eeg publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2017.12.001 – start-page: 1 year: 2021 ident: 10.1016/j.ifacol.2023.10.1458_bib0010 article-title: Improving sleep stage classification performance by single-channel eeg data augmentation via spectral band blending – volume: 3 issue: 1 year: 2022 ident: 10.1016/j.ifacol.2023.10.1458_bib0022 article-title: Auto-annotating sleep stages based on polysomnographic data publication-title: Patterns doi: 10.1016/j.patter.2021.100371 – volume: 98 start-page: 39 year: 2022 ident: 10.1016/j.ifacol.2023.10.1458_bib0003 article-title: Beyond traditional sleep scoring: Massive feature extraction and data-driven clustering of sleep time series publication-title: Sleep Medicine doi: 10.1016/j.sleep.2022.06.013 – volume: 77 year: 2022 ident: 10.1016/j.ifacol.2023.10.1458_bib0016 article-title: Automatic sleep stage classification: From classical machine learning methods to deep learning publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.103751 – volume: 26 start-page: 84 issue: 1 year: 2017 ident: 10.1016/j.ifacol.2023.10.1458_bib0013 article-title: A novel multi-class eeg-based sleep stage classification system publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2776149 – volume: 12 start-page: 5248 issue: 10 year: 2022 ident: 10.1016/j.ifacol.2023.10.1458_bib0001 article-title: Employing a long-short-term memory neural network to improve automatic sleep stage classification of pharmaco-eeg profiles publication-title: Applied Sciences doi: 10.3390/app12105248 – year: 2016 ident: 10.1016/j.ifacol.2023.10.1458_bib0019 article-title: Automatic sleep stage scoring with single-channel eeg using convolutional neural networks publication-title: arXiv preprint – volume: 5 start-page: 1 issue: 2 year: 2015 ident: 10.1016/j.ifacol.2023.10.1458_bib0006 article-title: A review on evaluation metrics for data classification evaluations publication-title: International journal of data mining & knowledge management process doi: 10.5121/ijdkp.2015.5201 – volume: 15 issue: 5 year: 2018 ident: 10.1016/j.ifacol.2023.10.1458_bib0009 article-title: Eegnet: a compact convolutional neural network for eeg-based brain–computer interfaces publication-title: Journal of neural engineering doi: 10.1088/1741-2552/aace8c – volume: 219 year: 2021 ident: 10.1016/j.ifacol.2023.10.1458_bib0002 article-title: An effective multi-model fusion method for eeg-based sleep stage classification publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.106890 – volume: 29 start-page: 2076 year: 2021 ident: 10.1016/j.ifacol.2023.10.1458_bib0004 article-title: Deepsleepnet-lite: A simplified automatic sleep stage scoring model with uncertainty estimates publication-title: IEEE transactions on neural systems and rehabilitation engineering doi: 10.1109/TNSRE.2021.3117970 – volume: 15 issue: 3 year: 2018 ident: 10.1016/j.ifacol.2023.10.1458_bib0011 article-title: A review of classification algorithms for eeg-based brain– computer interfaces: a 10 year update publication-title: Journal of neural engineering doi: 10.1088/1741-2552/aab2f2 – volume: 33 start-page: 30 year: 2017 ident: 10.1016/j.ifacol.2023.10.1458_bib0021 article-title: Cross-session classification of mental workload levels using eeg and an adaptive deep learning model publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2016.11.013 – year: 2021 ident: 10.1016/j.ifacol.2023.10.1458_bib0007 article-title: Salientsleepnet: Multimodal salient wave detection network for sleep staging publication-title: arXiv preprint – volume: 32 start-page: 139 year: 2009 ident: 10.1016/j.ifacol.2023.10.1458_bib0014 article-title: Sleep classification according to aasm and rechtschafen & kales: Effects on sleep scoring parameters publication-title: Sleep doi: 10.1093/sleep/32.2.139 |
SSID | ssj0002964798 |
Score | 1.9342488 |
Snippet | This paper investigates the performance of automatic sleep stage classification with automatically selected features from electroencephalographic (EEG) signals... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3211 |
SubjectTerms | Brain-computer Interface Convolutional Neural Networks (CNN) Electroencephalography (EEG) Sleep staging |
Title | EEG-based 5- and 2-class CNN for Sleep Stage Classification |
URI | https://dx.doi.org/10.1016/j.ifacol.2023.10.1458 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFLYGu3BBoA0BG8iH3SqH4NhJLE5VVcYQ60AUiVuUOA4CulKN9MKv5z3bTToUwcYlap_q1PX79PrFz-97hHzjhzoRObZJFSpkQlWK5UjkVGhMGBUyiUqr9jmKT67E6bW8btul2uqSugj0U2ddyXu8CjbwK1bJ_odnm5uCAV6Df-EKHobrP_l4OPzO8G-o7ElmswCcaWTDvcFoZM8PXk6MmSGhvDGu_SUeDGp94Unpj-P-gJ3nM2CCv6ZnS4n2nw-6Nk_z35Zgns1vH3v9SYUKo23SyIn25vfYk6kdhlW-j74UqM6XdxZ49GJnoSl5ac8XQVQCBiBZqnxUMh02H1adXriHD1-KkRH34dUs3sadsdxtK9wFtxUKeAc4wwDtwmm9v5DJvsRJ4BzgmQpF_NQK-cgT4FOYqL9Im303TDMntkVyM-u2sOug89u6KcsSDRlvkHX__ED7Dgyb5IOZfiJHDRCoZBSAQD0QKACBAhCoBQK1QKB_A-EzGR8Px4MT5rtiMC04r1mSy0KXFYr2iBTYXgkLiOmytIglTyodl3mqqrDMVcg18HkdG5NysJXysBQm2iKr04ep2SY01jGvkkLhB4WQvADuHGu4IfAmKVS0Q8Tid2faK8Zj45JJtjgaeJe55cpwuawVlmuHBM2wmZNMeWtAuljUzPM-x-cygMLrQ3ffP_QLWWtB_5Ws1n_mZg8IZl3sW8Q8A0fLcuM |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+5-+and+2-class+CNN+for+Sleep+Stage+Classification&rft.jtitle=IFAC-PapersOnLine&rft.au=Moctezuma%2C+Luis+Alfredo&rft.au=Abe%2C+Takashi&rft.au=Molinas%2C+Marta&rft.date=2023-01-01&rft.pub=Elsevier+Ltd&rft.issn=2405-8963&rft.eissn=2405-8963&rft.volume=56&rft.issue=2&rft.spage=3211&rft.epage=3216&rft_id=info:doi/10.1016%2Fj.ifacol.2023.10.1458&rft.externalDocID=S2405896323018669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2405-8963&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2405-8963&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2405-8963&client=summon |