Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement
Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary s...
Saved in:
| Published in | Astronomy and astrophysics (Berlin) Vol. 656; p. A8 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Heidelberg
EDP Sciences
01.12.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0004-6361 1432-0746 1432-0746 |
| DOI | 10.1051/0004-6361/202140838 |
Cover
| Abstract | Context.
Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem.
Aims.
This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock.
Methods.
We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements.
Results.
Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope.
Conclusions.
Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded. |
|---|---|
| AbstractList | Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded. Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded. |
| Author | Pomoell, J. Dresing, N. Angelini, V. Ho, G. C. Vainio, R. Kilpua, E. K. J. Gieseler, J. Heyner, D. O’Brien, H. Wimmer-Schweingruber, R. Asvestari, E. Good, S. W. Morosan, D. E. Davies, E. E. Price, D. J. Gómez Herrero, R. Evans, V. Rodriguez-Pacheco, J. Forsyth, R. J. Horbury, T. S. Lavraud, B. |
| Author_xml | – sequence: 1 givenname: E. K. J. surname: Kilpua fullname: Kilpua, E. K. J. – sequence: 2 givenname: S. W. surname: Good fullname: Good, S. W. – sequence: 3 givenname: N. surname: Dresing fullname: Dresing, N. – sequence: 4 givenname: R. surname: Vainio fullname: Vainio, R. – sequence: 5 givenname: E. E. surname: Davies fullname: Davies, E. E. – sequence: 6 givenname: R. J. surname: Forsyth fullname: Forsyth, R. J. – sequence: 7 givenname: J. surname: Gieseler fullname: Gieseler, J. – sequence: 8 givenname: B. surname: Lavraud fullname: Lavraud, B. – sequence: 9 givenname: E. surname: Asvestari fullname: Asvestari, E. – sequence: 10 givenname: D. E. surname: Morosan fullname: Morosan, D. E. – sequence: 11 givenname: J. surname: Pomoell fullname: Pomoell, J. – sequence: 12 givenname: D. J. surname: Price fullname: Price, D. J. – sequence: 13 givenname: D. surname: Heyner fullname: Heyner, D. – sequence: 14 givenname: T. S. surname: Horbury fullname: Horbury, T. S. – sequence: 15 givenname: V. surname: Angelini fullname: Angelini, V. – sequence: 16 givenname: H. surname: O’Brien fullname: O’Brien, H. – sequence: 17 givenname: V. surname: Evans fullname: Evans, V. – sequence: 18 givenname: J. surname: Rodriguez-Pacheco fullname: Rodriguez-Pacheco, J. – sequence: 19 givenname: R. surname: Gómez Herrero fullname: Gómez Herrero, R. – sequence: 20 givenname: G. C. surname: Ho fullname: Ho, G. C. – sequence: 21 givenname: R. surname: Wimmer-Schweingruber fullname: Wimmer-Schweingruber, R. |
| BackLink | https://hal.science/hal-04889325$$DView record in HAL |
| BookMark | eNqNkM9q3DAQh0XZQnfTPEEvgp56cKK_XvsYQpotbOilPYuxPI69eCVHkrfsQ-SdY2fLBnpJQSBm9P2G0bciC-cdEvKFsyvONL9mjKkslzm_FkxwxQpZfCBLrqTI2FrlC7I8E5_IKsbdVApeyCV5fhj71GVxAIs2QJOoryKGA6TOu0h9Q1OLNKYw2jQGPDdahNTOFTjauYRh6MFhgnCk1gfvoKd7iJHiDu08auJqGrCHhDVFh-ERU2fp_IKuBWdxjy59Jh8b6CNe_r0vyO_vd79uN9n25_2P25ttZpUQKdMVCqWURml1vl5rFFgoC1zVpcUGc4FVXbK6gVxqgdxaXjGtpVSirOS60fKCqNPc0Q1w_AN9b4bQ7aftDWdmVmpmYWYWZs5Kp9i3U6yFt4CHzmxutmbuMVUUpRT6wCf264kdgn8aMSaz82OYvEQjcq6no0sxUeWJssHHGLAxtkuv7lOArn9nG_lP9n_-8AI_kKk9 |
| CitedBy_id | crossref_primary_10_1016_j_ast_2025_109975 crossref_primary_10_1051_0004_6361_202347250 crossref_primary_10_3389_fspas_2023_1179344 crossref_primary_10_3389_fspas_2023_1185603 crossref_primary_10_1051_0004_6361_202140940 crossref_primary_10_3847_1538_4357_acf99e crossref_primary_10_1093_mnras_stae2606 crossref_primary_10_3847_1538_4357_ad1883 crossref_primary_10_3847_1538_4357_ad1ab4 crossref_primary_10_1051_0004_6361_202348699 crossref_primary_10_1051_0004_6361_202040113 crossref_primary_10_3389_fspas_2023_1195805 crossref_primary_10_1051_0004_6361_202142191 crossref_primary_10_3389_fspas_2022_943247 crossref_primary_10_3847_1538_4357_acdcf7 crossref_primary_10_1007_s11207_023_02119_4 crossref_primary_10_1007_s10509_023_04201_6 crossref_primary_10_1051_0004_6361_202449831 |
| Cites_doi | 10.1086/319816 10.1051/0004-6361/201526750 10.1088/0004-637X/761/1/28 10.3847/2041-8213/ab8d2d 10.1029/2019JA026579 10.3847/1538-4365/ab5221 10.1007/s11207-009-9341-x 10.1007/s11214-017-0411-3 10.5194/angeo-28-233-2010 10.1029/93JA00216 10.5194/angeo-31-1251-2013 10.1023/A:1005092216668 10.5194/angeo-38-999-2020 10.3389/fspas.2020.610278 10.1088/1742-6596/1620/1/012014 10.3847/2041-8213/aaa3d7 10.1029/2000JA000060 10.1016/j.jastp.2007.08.064 10.1051/0004-6361/201937257 10.1029/2001JA009158 10.1007/s11214-013-9958-9 10.5194/angeo-36-793-2018 10.1051/0004-6361/201014473 10.3847/1538-4365/ab4ff1 10.1016/S0273-1177(97)00439-0 10.1029/93JA00636 10.1088/0004-637X/729/2/112 10.1016/0032-0633(70)90064-4 10.1051/0004-6361/201935287 10.1029/2000JA000120 10.1029/2019JA026952 10.1002/2016GL068045 10.1007/s41116-016-0002-5 10.1051/0004-6361/201731343 10.3847/0004-637X/827/2/122 10.1002/2015JA021632 10.1029/JA086iA08p06673 10.1051/0004-6361/202040113 10.1029/GL001i004p00149 10.1134/S0016793212060060 10.3847/1538-3881/ab1e49 10.1029/2006GL027188 10.1093/mnras/182.2.147 10.1086/427768 10.1029/GL014i004p00355 10.1086/510284 10.3847/1538-4357/aad8b3 10.1029/JA088iA08p06109 10.1051/0004-6361:20054754 10.1029/JA092iA08p08519 10.1007/BF00751330 10.1002/2015GL066820 10.1007/BF00751326 10.1002/2014JA020465 10.1007/s11214-009-9496-7 10.1088/0004-637X/734/1/7 10.1007/s11207-012-0085-7 10.3847/1538-4357/ab15d7 10.1088/0004-637X/715/1/300 10.1029/JA093iA04p02519 10.1023/A:1005088115759 10.1029/JA093iA07p07217 10.1093/mnras/120.2.89 10.3847/1538-4357/ab8821 10.3847/1538-4365/ab5dac 10.1016/j.pss.2009.09.020 10.3847/1538-4357/ab7fa2 10.1023/A:1005082526237 10.1051/0004-6361/201322522 10.1029/1999GL010724 10.1016/j.pss.2008.06.018 10.1002/2013JA019115 10.1007/s41116-017-0009-6 10.3847/1538-4357/aa98e2 10.1002/2015JA021138 10.1007/BF00751328 |
| ContentType | Journal Article |
| Copyright | Copyright EDP Sciences Dec 2021 Attribution |
| Copyright_xml | – notice: Copyright EDP Sciences Dec 2021 – notice: Attribution |
| DBID | AAYXX CITATION 8FD H8D L7M 1XC VOOES ADTOC UNPAY |
| DOI | 10.1051/0004-6361/202140838 |
| DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | CrossRef Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics Physics |
| EISSN | 1432-0746 |
| ExternalDocumentID | 10.1051/0004-6361/202140838 oai:HAL:hal-04889325v1 10_1051_0004_6361_202140838 |
| GroupedDBID | -DZ -~X 2.D 23N 2WC 4.4 5GY 5VS 6TJ 85S AACRX AAFWJ AAJMC AAOGA AAOTM AAYXX ABDNZ ABDPE ABNSH ABPPZ ABUBZ ABZDU ACACO ACGFS ACNCT ACRPL ACYGS ACYRX ADCOW ADHUB ADIYS ADNMO AENEX AGQPQ AI. AIZTS ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZPVJ CITATION CS3 E.L E3Z EBS EJD F5P FRP GI~ HG6 I09 IL9 LAS MVM OHT OK1 RED RHV RNS SDH SJN TR2 UPT UQL VH1 VOH WH7 XOL ZY4 8FD AAFNC AEILP H8D L7M 1XC ABUFD VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c422t-5be24445e3c56775e2e84ca14d9cefe62ebd90dfa6352e1cc1b05533429b37f53 |
| IEDL.DBID | UNPAY |
| ISSN | 0004-6361 1432-0746 |
| IngestDate | Sun Oct 26 02:54:26 EDT 2025 Sat Oct 25 11:15:20 EDT 2025 Mon Jun 30 03:32:29 EDT 2025 Thu Apr 24 23:03:26 EDT 2025 Wed Oct 01 04:31:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://www.edpsciences.org/en/authors/copyright-and-licensing Attribution: http://creativecommons.org/licenses/by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c422t-5be24445e3c56775e2e84ca14d9cefe62ebd90dfa6352e1cc1b05533429b37f53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.aanda.org/articles/aa/pdf/2021/12/aa40838-21.pdf |
| PQID | 2615615592 |
| PQPubID | 1796397 |
| ParticipantIDs | unpaywall_primary_10_1051_0004_6361_202140838 hal_primary_oai_HAL_hal_04889325v1 proquest_journals_2615615592 crossref_citationtrail_10_1051_0004_6361_202140838 crossref_primary_10_1051_0004_6361_202140838 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-12-01 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Heidelberg |
| PublicationPlace_xml | – name: Heidelberg |
| PublicationTitle | Astronomy and astrophysics (Berlin) |
| PublicationYear | 2021 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | McComas (R52) 1988; 93 Mistry (R54) 2015; 42 Nakanotani (R59) 2020; 1620 Sheeley (R69) 2010; 715 Zheng (R82) 2018; 852 Burlaga (R10) 1981; 86 Reames (R64) 2013; 175 Feng (R20) 2011; 527 Müller (R57) 2013; 285 Neugebauer (R60) 2015; 120 Afanasiev (R2) 2018; 614 Eastwood (R16) 2002; 107 Smith (R71) 2001; 106 Neugebauer (R61) 1993; 98 Gilbert (R24) 2001; 550 Manchester (R51) 2005; 622 Forman (R21) 1970; 18 Giacalone (R23) 2020; 246 Lee (R48) 1983; 88 Davies (R13) 2021; 656 Moldwin (R56) 2000; 27 Ipavich (R33) 1974; 1 Yu (R80) 2014; 119 Kilpua (R37) 2017; 14 Vainio (R78) 2009; 147 Lin (R50) 1995; 71 Gold (R27) 1998; 86 Kilpua (R40) 2021; 7 Smith (R72) 1998; 86 Tessein (R75) 2016; 43 Feng (R19) 2007; 112 Shodhan (R70) 2000; 105 Ogilvie (R63) 1995; 71 Das (R12) 2011; 729 Zhao (R81) 2020; 246 Bell (R6) 1978; 182 Feng (R18) 2013; 559 Lavraud (R46) 2020; 894 Benkhoff (R7) 2010; 58 Sanchez-Diaz (R67) 2017; 851 Webb (R79) 2012; 9 Kilpua (R35) 2013; 31 Kilpua (R36) 2015; 120 Lepping (R49) 1995; 71 Moissard (R55) 2019; 124 Murphy (R58) 2020; 894 Crooker (R11) 1993; 98 Afanasiev (R1) 2015; 584 Lavraud (R44) 2009; 256 Glassmeier (R25) 2010; 58 Gold (R26) 1960; 120 Szabo (R74) 2020; 246 Kilpua (R38) 2017; 212 Gosling (R29) 1987; 14 Lavraud (R45) 2010; 28 Axford (R5) 1977; 11 Stone (R73) 1998; 86 Kouloumvakos (R41) 2019; 876 Mistry (R53) 2015; 120 Gosling (R31) 2006; 33 Giacalone (R22) 2012; 761 Khabarova (R34) 2016; 827 Burlaga (R9) 1988; 93 Ala-Lahti (R3) 2018; 36 le Roux (R47) 2018; 864 Vainio (R77) 2008; 70 Horbury (R32) 2020; 642 Dresing (R15) 2012; 281 Krivolutsky (R42) 2012; 52 Ala-Lahti (R4) 2019; 124 Rodríguez-Pacheco (R65) 2020; 642 Ogilvie (R62) 1997; 20 Borovsky (R8) 2008; 113 Desai (R14) 2016; 13 Kilpua (R39) 2020; 38 Rouillard (R66) 2011; 734 Gosling (R30) 1987; 92 Good (R28) 2020; 893 Vainio (R76) 2007; 658 R17 Sandroos (R68) 2006; 455 Lario (R43) 2019; 158 |
| References_xml | – volume: 550 start-page: 1093 year: 2001 ident: R24 publication-title: ApJ doi: 10.1086/319816 – volume: 584 start-page: A81 year: 2015 ident: R1 publication-title: A&A doi: 10.1051/0004-6361/201526750 – volume: 761 start-page: 28 year: 2012 ident: R22 publication-title: ApJ doi: 10.1088/0004-637X/761/1/28 – volume: 894 start-page: L19 year: 2020 ident: R46 publication-title: ApJ doi: 10.3847/2041-8213/ab8d2d – volume: 124 start-page: 3893 year: 2019 ident: R4 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1029/2019JA026579 – volume: 246 start-page: 29 year: 2020 ident: R23 publication-title: ApJS doi: 10.3847/1538-4365/ab5221 – volume: 256 start-page: 379 year: 2009 ident: R44 publication-title: Sol. Phys. doi: 10.1007/s11207-009-9341-x – volume: 212 start-page: 1271 year: 2017 ident: R38 publication-title: Space Sci. Rev. doi: 10.1007/s11214-017-0411-3 – volume: 28 start-page: 233 year: 2010 ident: R45 publication-title: Ann. Geophys. doi: 10.5194/angeo-28-233-2010 – volume: 98 start-page: 9383 year: 1993 ident: R61 publication-title: J. Geophys. Res. doi: 10.1029/93JA00216 – volume: 281 start-page: 281 year: 2012 ident: R15 publication-title: Sol. Phys. – volume: 31 start-page: 1251 year: 2013 ident: R35 publication-title: Ann. Geophys. doi: 10.5194/angeo-31-1251-2013 – volume: 86 start-page: 613 year: 1998 ident: R72 publication-title: Space Sci. Rev. doi: 10.1023/A:1005092216668 – volume: 38 start-page: 999 year: 2020 ident: R39 publication-title: Ann. Geophys. doi: 10.5194/angeo-38-999-2020 – volume: 7 start-page: 109 year: 2021 ident: R40 publication-title: Front. Astron. Space Sci. doi: 10.3389/fspas.2020.610278 – volume: 1620 start-page: 012014 year: 2020 ident: R59 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1620/1/012014 – volume: 852 start-page: L23 year: 2018 ident: R82 publication-title: ApJ doi: 10.3847/2041-8213/aaa3d7 – volume: 112 start-page: A02102 year: 2007 ident: R19 publication-title: J. Geophys. Res.: Space Phys. – volume: 105 start-page: 27261 year: 2000 ident: R70 publication-title: J. Geophys. Res. doi: 10.1029/2000JA000060 – volume: 70 start-page: 467 year: 2008 ident: R77 publication-title: J. Atm. Solar-Terr. Phys. doi: 10.1016/j.jastp.2007.08.064 – volume: 642 start-page: A9 year: 2020 ident: R32 publication-title: A&A doi: 10.1051/0004-6361/201937257 – volume: 107 start-page: 1365 year: 2002 ident: R16 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1029/2001JA009158 – volume: 175 start-page: 53 year: 2013 ident: R64 publication-title: Space Sci. Rev. doi: 10.1007/s11214-013-9958-9 – volume: 36 start-page: 793 year: 2018 ident: R3 publication-title: Ann. Geophys. doi: 10.5194/angeo-36-793-2018 – volume: 527 start-page: A67 year: 2011 ident: R20 publication-title: A&A doi: 10.1051/0004-6361/201014473 – volume: 246 start-page: 26 year: 2020 ident: R81 publication-title: ApJS doi: 10.3847/1538-4365/ab4ff1 – volume: 20 start-page: 559 year: 1997 ident: R62 publication-title: Adv. Space Res. doi: 10.1016/S0273-1177(97)00439-0 – volume: 98 start-page: 9371 year: 1993 ident: R11 publication-title: J. Geophys. Res. doi: 10.1029/93JA00636 – volume: 729 start-page: 112 year: 2011 ident: R12 publication-title: ApJ doi: 10.1088/0004-637X/729/2/112 – volume: 18 start-page: 25 year: 1970 ident: R21 publication-title: Planet. Space Sci. doi: 10.1016/0032-0633(70)90064-4 – volume: 642 start-page: A7 year: 2020 ident: R65 publication-title: A&A doi: 10.1051/0004-6361/201935287 – volume: 106 start-page: 15819 year: 2001 ident: R71 publication-title: J. Geophys. Res. doi: 10.1029/2000JA000120 – volume: 124 start-page: 8208 year: 2019 ident: R55 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1029/2019JA026952 – volume: 43 start-page: 3620 year: 2016 ident: R75 publication-title: Geophys. Res. Lett. doi: 10.1002/2016GL068045 – volume: 113 start-page: A08110 year: 2008 ident: R8 publication-title: J. Geophys. Res.: Space Phys. – volume: 13 start-page: 3 year: 2016 ident: R14 publication-title: Liv. Rev. Sol. Phys. doi: 10.1007/s41116-016-0002-5 – volume: 614 start-page: A4 year: 2018 ident: R2 publication-title: A&A doi: 10.1051/0004-6361/201731343 – volume: 827 start-page: 122 year: 2016 ident: R34 publication-title: ApJ doi: 10.3847/0004-637X/827/2/122 – volume: 120 start-page: 8281 year: 2015 ident: R60 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1002/2015JA021632 – volume: 86 start-page: 6673 year: 1981 ident: R10 publication-title: J. Geophys. Res. doi: 10.1029/JA086iA08p06673 – volume: 656 start-page: A2 year: 2021 ident: R13 publication-title: A&A doi: 10.1051/0004-6361/202040113 – volume: 1 start-page: 149 year: 1974 ident: R33 publication-title: Geophys. Res. Lett. doi: 10.1029/GL001i004p00149 – volume: 52 start-page: 685 year: 2012 ident: R42 publication-title: Geomagn. Aeron. doi: 10.1134/S0016793212060060 – volume: 158 start-page: 12 year: 2019 ident: R43 publication-title: AJ doi: 10.3847/1538-3881/ab1e49 – volume: 33 start-page: L17102 year: 2006 ident: R31 publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL027188 – volume: 9 start-page: 3 year: 2012 ident: R79 publication-title: Liv. Rev. Sol. Phys. – volume: 182 start-page: 147 year: 1978 ident: R6 publication-title: MNRAS doi: 10.1093/mnras/182.2.147 – volume: 622 start-page: 1225 year: 2005 ident: R51 publication-title: ApJ doi: 10.1086/427768 – volume: 14 start-page: 355 year: 1987 ident: R29 publication-title: Geophys. Res. Lett. doi: 10.1029/GL014i004p00355 – volume: 658 start-page: 622 year: 2007 ident: R76 publication-title: ApJ doi: 10.1086/510284 – volume: 11 start-page: 132 year: 1977 ident: R5 publication-title: Int. Cosmic Ray Conf. – volume: 864 start-page: 158 year: 2018 ident: R47 publication-title: ApJ doi: 10.3847/1538-4357/aad8b3 – volume: 88 start-page: 6109 year: 1983 ident: R48 publication-title: J. Geophys. Res. doi: 10.1029/JA088iA08p06109 – volume: 455 start-page: 685 year: 2006 ident: R68 publication-title: A&A doi: 10.1051/0004-6361:20054754 – volume: 92 start-page: 8519 year: 1987 ident: R30 publication-title: J. Geophys. Res. doi: 10.1029/JA092iA08p08519 – volume: 71 start-page: 207 year: 1995 ident: R49 publication-title: Space Sci. Rev. doi: 10.1007/BF00751330 – volume: 42 start-page: 10,513 year: 2015 ident: R54 publication-title: Geophys. Res. Lett. doi: 10.1002/2015GL066820 – volume: 71 start-page: 55 year: 1995 ident: R63 publication-title: Space Sci. Rev. doi: 10.1007/BF00751326 – volume: 120 start-page: 30 year: 2015 ident: R53 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1002/2014JA020465 – volume: 147 start-page: 187 year: 2009 ident: R78 publication-title: Space Sci. Rev. doi: 10.1007/s11214-009-9496-7 – volume: 734 start-page: 7 year: 2011 ident: R66 publication-title: ApJ doi: 10.1088/0004-637X/734/1/7 – volume: 285 start-page: 25 year: 2013 ident: R57 publication-title: Sol. Phys. doi: 10.1007/s11207-012-0085-7 – volume: 876 start-page: 80 year: 2019 ident: R41 publication-title: ApJ doi: 10.3847/1538-4357/ab15d7 – volume: 715 start-page: 300 year: 2010 ident: R69 publication-title: ApJ doi: 10.1088/0004-637X/715/1/300 – volume: 93 start-page: 2519 year: 1988 ident: R52 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1029/JA093iA04p02519 – volume: 86 start-page: 541 year: 1998 ident: R27 publication-title: Space Sci. Rev. doi: 10.1023/A:1005088115759 – volume: 93 start-page: 7217 year: 1988 ident: R9 publication-title: J. Geophys. Res. doi: 10.1029/JA093iA07p07217 – volume: 120 start-page: 89 year: 1960 ident: R26 publication-title: MNRAS doi: 10.1093/mnras/120.2.89 – volume: 894 start-page: 120 year: 2020 ident: R58 publication-title: ApJ doi: 10.3847/1538-4357/ab8821 – volume: 246 start-page: 47 year: 2020 ident: R74 publication-title: ApJS doi: 10.3847/1538-4365/ab5dac – volume: 58 start-page: 2 year: 2010 ident: R7 publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2009.09.020 – volume: 893 start-page: 110 year: 2020 ident: R28 publication-title: ApJ doi: 10.3847/1538-4357/ab7fa2 – volume: 86 start-page: 1 year: 1998 ident: R73 publication-title: Space Sci. Rev. doi: 10.1023/A:1005082526237 – volume: 559 start-page: A92 year: 2013 ident: R18 publication-title: A&A doi: 10.1051/0004-6361/201322522 – volume: 27 start-page: 57 year: 2000 ident: R56 publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010724 – volume: 58 start-page: 287 year: 2010 ident: R25 publication-title: Planet. Space Sci. doi: 10.1016/j.pss.2008.06.018 – volume: 119 start-page: 689 year: 2014 ident: R80 publication-title: J. Geophys. Res. doi: 10.1002/2013JA019115 – volume: 14 start-page: 5 year: 2017 ident: R37 publication-title: Liv. Rev. Sol. Phys. doi: 10.1007/s41116-017-0009-6 – volume: 851 start-page: 32 year: 2017 ident: R67 publication-title: ApJ doi: 10.3847/1538-4357/aa98e2 – volume: 120 start-page: 4112 year: 2015 ident: R36 publication-title: J. Geophys. Res.: Space Phys. doi: 10.1002/2015JA021138 – volume: 71 start-page: 125 year: 1995 ident: R50 publication-title: Space Sci. Rev. doi: 10.1007/BF00751328 – ident: R17 |
| SSID | ssj0002183 |
| Score | 2.484681 |
| Snippet | Context.
Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation... Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation... |
| SourceID | unpaywall hal proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | A8 |
| SubjectTerms | Amplitudes Astrophysics Charged particles Compressibility Coronal mass ejection Current sheets Energetic particles Interplanetary space Ion flux Mach number Magnetic fields Magnetic variations Physics Propagation modes Sheaths Solar and Stellar Astrophysics Solar Orbiter (ESA) Solar wind Spacecraft Upstream |
| Title | Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement |
| URI | https://www.proquest.com/docview/2615615592 https://hal.science/hal-04889325 https://www.aanda.org/articles/aa/pdf/2021/12/aa40838-21.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 656 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Sciences Free backfiles and Open Access customDbUrl: eissn: 1432-0746 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002183 issn: 0004-6361 databaseCode: GI~ dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41qRBceBSqBkq1QogTbrL2rh1LXCJECQiqHohUDsjaXc8qQOpEjQMKB_4B_5kZv1Q4IOC23ocf8njn29lvPgM8TsiLpgp9MEqdDshDYWAxDwNyJujHuXWR59zht6fxdKZen-vzHXjW5sIwrdLwGrrWCG7IYUNjhqvc80pdDmVIh4qgA71immdy34PdWBMS78Pu7PRs8r5GvCqIo1ouVUVMsFRxKzqk5bBrr05ZnewXx9SbMy3yCua8vilWZvvVLBZX3M_JLfjQ3njNOvl8vCntsfv2m6bj_z7ZbbjZ4FIxqQfcgR0s9uBgsuZI-fJiK56IqlwHQtZ7cO2sLt2FH1UOb0AzkyMIanwplrYL9a7F0gvCmKLWqd1cYlfBXmDOR6YQHyvqI_NuS3O5FY5lFehuLgjZC_xUscUK6peLKvUGc8Fi2Zwg5wS3YDFn4-VA5z2Ynbx493waND95CJwKwzLQFglhKI2R03GSaAxxrJyRKk8deoxDtHk6yr0hZBSidE7akeb84TC1UeJ1tA_9YlngAYhR7JyWXqXWWpUm0shI6RTHaeJkFEc4gLB9w5lrFND5RxyLrNqJ15J34lXGZpF1ZjGAp92gVS0A8ufuj8h0up4s3j2dvMm4judKQsv6ixzAYWtZWTNlrDNayupqkzgcQNBZ299c8_4_9n8AN7hck3IOoU8GgA8JWpX2CHovX30_ar6jnwM-G14 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TgheuAzQCgNZCPGE19qxk0bipUJMFYJpD1QaDyiynWN10KXVmm4q_4H_zDlxGg0eEPDm-JKLcuLz-fg7Xxh7maEXzTUEMcy9EeihQDgolUBnAmFUOp8Eyh3-eJJOpvr9mTnbYW-2uTBEq7S0ho4awS05bGDtYFkGWqnLgVR4qBE64CvGeaYMu2wvNYjEe2xvenI6_hwRrxZpEuVSdUIES51uRYeMHHTtzSmbk_3imHZnRIu8gTlvr6ul3Vzb-fyG-zm-x75sbzyyTr4drWt35L__pun4v092n91tcSkfxwEP2A5U--xgvKJI-eJiw1_xphwDIat9dus0lh6yH00Or8CZySMEtaHmC9eFeld8EThiTB51ateX0FWQF5jRka34eUN9JN5tbS833JOsAt7NBSJ7Dl8btliF_UrepN5AyUksmxLkPKcWqGZkvBTofMSmx-8-vZ2I9icPwmulamEcIMLQBhJv0iwzoGCkvZW6zD0ESBW4Mh-WwSIyUiC9l25oKH9Y5S7Jgkkes161qOCA8WHqvZFB5845nWfSykSbHEZ55mWSJtBnavuGC98qoNOPOOZFsxNvJO3E64LMoujMos9ed4OWUQDkz91foOl0PUm8ezL-UFAdzZWIls2V7LPDrWUV7ZSxKnApa5pNYtVnorO2v7nmk3_s_5TdoXIk5RyyHhoAPENoVbvn7Rf0E2QYGi8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-spacecraft+observations+of+the+structure+of+the+sheath+of+an+interplanetary+coronal+mass+ejection+and+related+energetic+ion+enhancement&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Kilpua%2C+E.+K.+J.&rft.au=Good%2C+S.+W.&rft.au=Dresing%2C+N.&rft.au=Vainio%2C+R.&rft.date=2021-12-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=656&rft.spage=A8&rft_id=info:doi/10.1051%2F0004-6361%2F202140838&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202140838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon |