Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement

Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary s...

Full description

Saved in:
Bibliographic Details
Published inAstronomy and astrophysics (Berlin) Vol. 656; p. A8
Main Authors Kilpua, E. K. J., Good, S. W., Dresing, N., Vainio, R., Davies, E. E., Forsyth, R. J., Gieseler, J., Lavraud, B., Asvestari, E., Morosan, D. E., Pomoell, J., Price, D. J., Heyner, D., Horbury, T. S., Angelini, V., O’Brien, H., Evans, V., Rodriguez-Pacheco, J., Gómez Herrero, R., Ho, G. C., Wimmer-Schweingruber, R.
Format Journal Article
LanguageEnglish
Published Heidelberg EDP Sciences 01.12.2021
Subjects
Online AccessGet full text
ISSN0004-6361
1432-0746
1432-0746
DOI10.1051/0004-6361/202140838

Cover

Abstract Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded.
AbstractList Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded.
Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation from the Sun. Turbulent and compressed sheaths could contribute to the acceleration of charged particles in the corona and in interplanetary space, but the relation of their internal structure to the particle energization process is still a relatively little studied subject. In particular, the role of sheaths in accelerating particles when the shock Mach number is low is a significant open research problem. Aims. This work seeks to provide new insights on the internal structure of CME-driven sheaths with regard to energetic particle enhancements. A good opportunity to achieve this aim was provided by multi-point, in-situ observations of a sheath region made by radially aligned spacecraft at 0.8 and ∼1 AU (Solar Orbiter, the L1 spacecraft Wind and ACE, and BepiColombo) on April 19−21, 2020. The sheath was preceded by a weak and slowly propagating fast-mode shock. Methods. We apply a range of analysis techniques to in situ magnetic field, plasma and particle observations. The study focuses on smaller scale sheath structures and magnetic field fluctuations that coincide with energetic ion enhancements. Results. Energetic ion enhancements were identified in the sheath, but at different locations within the sheath structure at Solar Orbiter and L1. Magnetic fluctuation amplitudes at inertial-range scales increased in the sheath relative to the solar wind upstream of the shock, as is typically observed. However, when normalised to the local mean field, fluctuation amplitudes did not increase significantly; magnetic compressibility of fluctuation also did not increase within the sheath. Various substructures were found to be embedded within the sheath at the different spacecraft, including multiple heliospheric current sheet (HCS) crossings and a small-scale flux rope. At L1, the ion flux enhancement was associated with the HCS crossings, while at Solar Orbiter, the ion enhancement occurred within a compressed, small-scale flux rope. Conclusions. Several internal smaller-scale substructures and clear difference in their occurrence and properties between the used spacecraft was identified within the analyzed CME-driven sheath. These substructures are favourable locations for the energization of charged particles in interplanetary space. In particular, substructures that are swept from the upstream solar wind and compressed into the sheath can act as effective acceleration sites. A possible acceleration mechanism is betatron acceleration associated with a small-scale flux rope and warped HCS compressed in the sheath, while the contribution of shock acceleration to the latter cannot be excluded.
Author Pomoell, J.
Dresing, N.
Angelini, V.
Ho, G. C.
Vainio, R.
Kilpua, E. K. J.
Gieseler, J.
Heyner, D.
O’Brien, H.
Wimmer-Schweingruber, R.
Asvestari, E.
Good, S. W.
Morosan, D. E.
Davies, E. E.
Price, D. J.
Gómez Herrero, R.
Evans, V.
Rodriguez-Pacheco, J.
Forsyth, R. J.
Horbury, T. S.
Lavraud, B.
Author_xml – sequence: 1
  givenname: E. K. J.
  surname: Kilpua
  fullname: Kilpua, E. K. J.
– sequence: 2
  givenname: S. W.
  surname: Good
  fullname: Good, S. W.
– sequence: 3
  givenname: N.
  surname: Dresing
  fullname: Dresing, N.
– sequence: 4
  givenname: R.
  surname: Vainio
  fullname: Vainio, R.
– sequence: 5
  givenname: E. E.
  surname: Davies
  fullname: Davies, E. E.
– sequence: 6
  givenname: R. J.
  surname: Forsyth
  fullname: Forsyth, R. J.
– sequence: 7
  givenname: J.
  surname: Gieseler
  fullname: Gieseler, J.
– sequence: 8
  givenname: B.
  surname: Lavraud
  fullname: Lavraud, B.
– sequence: 9
  givenname: E.
  surname: Asvestari
  fullname: Asvestari, E.
– sequence: 10
  givenname: D. E.
  surname: Morosan
  fullname: Morosan, D. E.
– sequence: 11
  givenname: J.
  surname: Pomoell
  fullname: Pomoell, J.
– sequence: 12
  givenname: D. J.
  surname: Price
  fullname: Price, D. J.
– sequence: 13
  givenname: D.
  surname: Heyner
  fullname: Heyner, D.
– sequence: 14
  givenname: T. S.
  surname: Horbury
  fullname: Horbury, T. S.
– sequence: 15
  givenname: V.
  surname: Angelini
  fullname: Angelini, V.
– sequence: 16
  givenname: H.
  surname: O’Brien
  fullname: O’Brien, H.
– sequence: 17
  givenname: V.
  surname: Evans
  fullname: Evans, V.
– sequence: 18
  givenname: J.
  surname: Rodriguez-Pacheco
  fullname: Rodriguez-Pacheco, J.
– sequence: 19
  givenname: R.
  surname: Gómez Herrero
  fullname: Gómez Herrero, R.
– sequence: 20
  givenname: G. C.
  surname: Ho
  fullname: Ho, G. C.
– sequence: 21
  givenname: R.
  surname: Wimmer-Schweingruber
  fullname: Wimmer-Schweingruber, R.
BackLink https://hal.science/hal-04889325$$DView record in HAL
BookMark eNqNkM9q3DAQh0XZQnfTPEEvgp56cKK_XvsYQpotbOilPYuxPI69eCVHkrfsQ-SdY2fLBnpJQSBm9P2G0bciC-cdEvKFsyvONL9mjKkslzm_FkxwxQpZfCBLrqTI2FrlC7I8E5_IKsbdVApeyCV5fhj71GVxAIs2QJOoryKGA6TOu0h9Q1OLNKYw2jQGPDdahNTOFTjauYRh6MFhgnCk1gfvoKd7iJHiDu08auJqGrCHhDVFh-ERU2fp_IKuBWdxjy59Jh8b6CNe_r0vyO_vd79uN9n25_2P25ttZpUQKdMVCqWURml1vl5rFFgoC1zVpcUGc4FVXbK6gVxqgdxaXjGtpVSirOS60fKCqNPc0Q1w_AN9b4bQ7aftDWdmVmpmYWYWZs5Kp9i3U6yFt4CHzmxutmbuMVUUpRT6wCf264kdgn8aMSaz82OYvEQjcq6no0sxUeWJssHHGLAxtkuv7lOArn9nG_lP9n_-8AI_kKk9
CitedBy_id crossref_primary_10_1016_j_ast_2025_109975
crossref_primary_10_1051_0004_6361_202347250
crossref_primary_10_3389_fspas_2023_1179344
crossref_primary_10_3389_fspas_2023_1185603
crossref_primary_10_1051_0004_6361_202140940
crossref_primary_10_3847_1538_4357_acf99e
crossref_primary_10_1093_mnras_stae2606
crossref_primary_10_3847_1538_4357_ad1883
crossref_primary_10_3847_1538_4357_ad1ab4
crossref_primary_10_1051_0004_6361_202348699
crossref_primary_10_1051_0004_6361_202040113
crossref_primary_10_3389_fspas_2023_1195805
crossref_primary_10_1051_0004_6361_202142191
crossref_primary_10_3389_fspas_2022_943247
crossref_primary_10_3847_1538_4357_acdcf7
crossref_primary_10_1007_s11207_023_02119_4
crossref_primary_10_1007_s10509_023_04201_6
crossref_primary_10_1051_0004_6361_202449831
Cites_doi 10.1086/319816
10.1051/0004-6361/201526750
10.1088/0004-637X/761/1/28
10.3847/2041-8213/ab8d2d
10.1029/2019JA026579
10.3847/1538-4365/ab5221
10.1007/s11207-009-9341-x
10.1007/s11214-017-0411-3
10.5194/angeo-28-233-2010
10.1029/93JA00216
10.5194/angeo-31-1251-2013
10.1023/A:1005092216668
10.5194/angeo-38-999-2020
10.3389/fspas.2020.610278
10.1088/1742-6596/1620/1/012014
10.3847/2041-8213/aaa3d7
10.1029/2000JA000060
10.1016/j.jastp.2007.08.064
10.1051/0004-6361/201937257
10.1029/2001JA009158
10.1007/s11214-013-9958-9
10.5194/angeo-36-793-2018
10.1051/0004-6361/201014473
10.3847/1538-4365/ab4ff1
10.1016/S0273-1177(97)00439-0
10.1029/93JA00636
10.1088/0004-637X/729/2/112
10.1016/0032-0633(70)90064-4
10.1051/0004-6361/201935287
10.1029/2000JA000120
10.1029/2019JA026952
10.1002/2016GL068045
10.1007/s41116-016-0002-5
10.1051/0004-6361/201731343
10.3847/0004-637X/827/2/122
10.1002/2015JA021632
10.1029/JA086iA08p06673
10.1051/0004-6361/202040113
10.1029/GL001i004p00149
10.1134/S0016793212060060
10.3847/1538-3881/ab1e49
10.1029/2006GL027188
10.1093/mnras/182.2.147
10.1086/427768
10.1029/GL014i004p00355
10.1086/510284
10.3847/1538-4357/aad8b3
10.1029/JA088iA08p06109
10.1051/0004-6361:20054754
10.1029/JA092iA08p08519
10.1007/BF00751330
10.1002/2015GL066820
10.1007/BF00751326
10.1002/2014JA020465
10.1007/s11214-009-9496-7
10.1088/0004-637X/734/1/7
10.1007/s11207-012-0085-7
10.3847/1538-4357/ab15d7
10.1088/0004-637X/715/1/300
10.1029/JA093iA04p02519
10.1023/A:1005088115759
10.1029/JA093iA07p07217
10.1093/mnras/120.2.89
10.3847/1538-4357/ab8821
10.3847/1538-4365/ab5dac
10.1016/j.pss.2009.09.020
10.3847/1538-4357/ab7fa2
10.1023/A:1005082526237
10.1051/0004-6361/201322522
10.1029/1999GL010724
10.1016/j.pss.2008.06.018
10.1002/2013JA019115
10.1007/s41116-017-0009-6
10.3847/1538-4357/aa98e2
10.1002/2015JA021138
10.1007/BF00751328
ContentType Journal Article
Copyright Copyright EDP Sciences Dec 2021
Attribution
Copyright_xml – notice: Copyright EDP Sciences Dec 2021
– notice: Attribution
DBID AAYXX
CITATION
8FD
H8D
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1051/0004-6361/202140838
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1432-0746
ExternalDocumentID 10.1051/0004-6361/202140838
oai:HAL:hal-04889325v1
10_1051_0004_6361_202140838
GroupedDBID -DZ
-~X
2.D
23N
2WC
4.4
5GY
5VS
6TJ
85S
AACRX
AAFWJ
AAJMC
AAOGA
AAOTM
AAYXX
ABDNZ
ABDPE
ABNSH
ABPPZ
ABUBZ
ABZDU
ACACO
ACGFS
ACNCT
ACRPL
ACYGS
ACYRX
ADCOW
ADHUB
ADIYS
ADNMO
AENEX
AGQPQ
AI.
AIZTS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZPVJ
CITATION
CS3
E.L
E3Z
EBS
EJD
F5P
FRP
GI~
HG6
I09
IL9
LAS
MVM
OHT
OK1
RED
RHV
RNS
SDH
SJN
TR2
UPT
UQL
VH1
VOH
WH7
XOL
ZY4
8FD
AAFNC
AEILP
H8D
L7M
1XC
ABUFD
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c422t-5be24445e3c56775e2e84ca14d9cefe62ebd90dfa6352e1cc1b05533429b37f53
IEDL.DBID UNPAY
ISSN 0004-6361
1432-0746
IngestDate Sun Oct 26 02:54:26 EDT 2025
Sat Oct 25 11:15:20 EDT 2025
Mon Jun 30 03:32:29 EDT 2025
Thu Apr 24 23:03:26 EDT 2025
Wed Oct 01 04:31:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-5be24445e3c56775e2e84ca14d9cefe62ebd90dfa6352e1cc1b05533429b37f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.aanda.org/articles/aa/pdf/2021/12/aa40838-21.pdf
PQID 2615615592
PQPubID 1796397
ParticipantIDs unpaywall_primary_10_1051_0004_6361_202140838
hal_primary_oai_HAL_hal_04889325v1
proquest_journals_2615615592
crossref_citationtrail_10_1051_0004_6361_202140838
crossref_primary_10_1051_0004_6361_202140838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Astronomy and astrophysics (Berlin)
PublicationYear 2021
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References McComas (R52) 1988; 93
Mistry (R54) 2015; 42
Nakanotani (R59) 2020; 1620
Sheeley (R69) 2010; 715
Zheng (R82) 2018; 852
Burlaga (R10) 1981; 86
Reames (R64) 2013; 175
Feng (R20) 2011; 527
Müller (R57) 2013; 285
Neugebauer (R60) 2015; 120
Afanasiev (R2) 2018; 614
Eastwood (R16) 2002; 107
Smith (R71) 2001; 106
Neugebauer (R61) 1993; 98
Gilbert (R24) 2001; 550
Manchester (R51) 2005; 622
Forman (R21) 1970; 18
Giacalone (R23) 2020; 246
Lee (R48) 1983; 88
Davies (R13) 2021; 656
Moldwin (R56) 2000; 27
Ipavich (R33) 1974; 1
Yu (R80) 2014; 119
Kilpua (R37) 2017; 14
Vainio (R78) 2009; 147
Lin (R50) 1995; 71
Gold (R27) 1998; 86
Kilpua (R40) 2021; 7
Smith (R72) 1998; 86
Tessein (R75) 2016; 43
Feng (R19) 2007; 112
Shodhan (R70) 2000; 105
Ogilvie (R63) 1995; 71
Das (R12) 2011; 729
Zhao (R81) 2020; 246
Bell (R6) 1978; 182
Feng (R18) 2013; 559
Lavraud (R46) 2020; 894
Benkhoff (R7) 2010; 58
Sanchez-Diaz (R67) 2017; 851
Webb (R79) 2012; 9
Kilpua (R35) 2013; 31
Kilpua (R36) 2015; 120
Lepping (R49) 1995; 71
Moissard (R55) 2019; 124
Murphy (R58) 2020; 894
Crooker (R11) 1993; 98
Afanasiev (R1) 2015; 584
Lavraud (R44) 2009; 256
Glassmeier (R25) 2010; 58
Gold (R26) 1960; 120
Szabo (R74) 2020; 246
Kilpua (R38) 2017; 212
Gosling (R29) 1987; 14
Lavraud (R45) 2010; 28
Axford (R5) 1977; 11
Stone (R73) 1998; 86
Kouloumvakos (R41) 2019; 876
Mistry (R53) 2015; 120
Gosling (R31) 2006; 33
Giacalone (R22) 2012; 761
Khabarova (R34) 2016; 827
Burlaga (R9) 1988; 93
Ala-Lahti (R3) 2018; 36
le Roux (R47) 2018; 864
Vainio (R77) 2008; 70
Horbury (R32) 2020; 642
Dresing (R15) 2012; 281
Krivolutsky (R42) 2012; 52
Ala-Lahti (R4) 2019; 124
Rodríguez-Pacheco (R65) 2020; 642
Ogilvie (R62) 1997; 20
Borovsky (R8) 2008; 113
Desai (R14) 2016; 13
Kilpua (R39) 2020; 38
Rouillard (R66) 2011; 734
Gosling (R30) 1987; 92
Good (R28) 2020; 893
Vainio (R76) 2007; 658
R17
Sandroos (R68) 2006; 455
Lario (R43) 2019; 158
References_xml – volume: 550
  start-page: 1093
  year: 2001
  ident: R24
  publication-title: ApJ
  doi: 10.1086/319816
– volume: 584
  start-page: A81
  year: 2015
  ident: R1
  publication-title: A&A
  doi: 10.1051/0004-6361/201526750
– volume: 761
  start-page: 28
  year: 2012
  ident: R22
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/1/28
– volume: 894
  start-page: L19
  year: 2020
  ident: R46
  publication-title: ApJ
  doi: 10.3847/2041-8213/ab8d2d
– volume: 124
  start-page: 3893
  year: 2019
  ident: R4
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2019JA026579
– volume: 246
  start-page: 29
  year: 2020
  ident: R23
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab5221
– volume: 256
  start-page: 379
  year: 2009
  ident: R44
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-009-9341-x
– volume: 212
  start-page: 1271
  year: 2017
  ident: R38
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-017-0411-3
– volume: 28
  start-page: 233
  year: 2010
  ident: R45
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-28-233-2010
– volume: 98
  start-page: 9383
  year: 1993
  ident: R61
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JA00216
– volume: 281
  start-page: 281
  year: 2012
  ident: R15
  publication-title: Sol. Phys.
– volume: 31
  start-page: 1251
  year: 2013
  ident: R35
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-31-1251-2013
– volume: 86
  start-page: 613
  year: 1998
  ident: R72
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005092216668
– volume: 38
  start-page: 999
  year: 2020
  ident: R39
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-38-999-2020
– volume: 7
  start-page: 109
  year: 2021
  ident: R40
  publication-title: Front. Astron. Space Sci.
  doi: 10.3389/fspas.2020.610278
– volume: 1620
  start-page: 012014
  year: 2020
  ident: R59
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1620/1/012014
– volume: 852
  start-page: L23
  year: 2018
  ident: R82
  publication-title: ApJ
  doi: 10.3847/2041-8213/aaa3d7
– volume: 112
  start-page: A02102
  year: 2007
  ident: R19
  publication-title: J. Geophys. Res.: Space Phys.
– volume: 105
  start-page: 27261
  year: 2000
  ident: R70
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA000060
– volume: 70
  start-page: 467
  year: 2008
  ident: R77
  publication-title: J. Atm. Solar-Terr. Phys.
  doi: 10.1016/j.jastp.2007.08.064
– volume: 642
  start-page: A9
  year: 2020
  ident: R32
  publication-title: A&A
  doi: 10.1051/0004-6361/201937257
– volume: 107
  start-page: 1365
  year: 2002
  ident: R16
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2001JA009158
– volume: 175
  start-page: 53
  year: 2013
  ident: R64
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-013-9958-9
– volume: 36
  start-page: 793
  year: 2018
  ident: R3
  publication-title: Ann. Geophys.
  doi: 10.5194/angeo-36-793-2018
– volume: 527
  start-page: A67
  year: 2011
  ident: R20
  publication-title: A&A
  doi: 10.1051/0004-6361/201014473
– volume: 246
  start-page: 26
  year: 2020
  ident: R81
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab4ff1
– volume: 20
  start-page: 559
  year: 1997
  ident: R62
  publication-title: Adv. Space Res.
  doi: 10.1016/S0273-1177(97)00439-0
– volume: 98
  start-page: 9371
  year: 1993
  ident: R11
  publication-title: J. Geophys. Res.
  doi: 10.1029/93JA00636
– volume: 729
  start-page: 112
  year: 2011
  ident: R12
  publication-title: ApJ
  doi: 10.1088/0004-637X/729/2/112
– volume: 18
  start-page: 25
  year: 1970
  ident: R21
  publication-title: Planet. Space Sci.
  doi: 10.1016/0032-0633(70)90064-4
– volume: 642
  start-page: A7
  year: 2020
  ident: R65
  publication-title: A&A
  doi: 10.1051/0004-6361/201935287
– volume: 106
  start-page: 15819
  year: 2001
  ident: R71
  publication-title: J. Geophys. Res.
  doi: 10.1029/2000JA000120
– volume: 124
  start-page: 8208
  year: 2019
  ident: R55
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/2019JA026952
– volume: 43
  start-page: 3620
  year: 2016
  ident: R75
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2016GL068045
– volume: 113
  start-page: A08110
  year: 2008
  ident: R8
  publication-title: J. Geophys. Res.: Space Phys.
– volume: 13
  start-page: 3
  year: 2016
  ident: R14
  publication-title: Liv. Rev. Sol. Phys.
  doi: 10.1007/s41116-016-0002-5
– volume: 614
  start-page: A4
  year: 2018
  ident: R2
  publication-title: A&A
  doi: 10.1051/0004-6361/201731343
– volume: 827
  start-page: 122
  year: 2016
  ident: R34
  publication-title: ApJ
  doi: 10.3847/0004-637X/827/2/122
– volume: 120
  start-page: 8281
  year: 2015
  ident: R60
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/2015JA021632
– volume: 86
  start-page: 6673
  year: 1981
  ident: R10
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA086iA08p06673
– volume: 656
  start-page: A2
  year: 2021
  ident: R13
  publication-title: A&A
  doi: 10.1051/0004-6361/202040113
– volume: 1
  start-page: 149
  year: 1974
  ident: R33
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL001i004p00149
– volume: 52
  start-page: 685
  year: 2012
  ident: R42
  publication-title: Geomagn. Aeron.
  doi: 10.1134/S0016793212060060
– volume: 158
  start-page: 12
  year: 2019
  ident: R43
  publication-title: AJ
  doi: 10.3847/1538-3881/ab1e49
– volume: 33
  start-page: L17102
  year: 2006
  ident: R31
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL027188
– volume: 9
  start-page: 3
  year: 2012
  ident: R79
  publication-title: Liv. Rev. Sol. Phys.
– volume: 182
  start-page: 147
  year: 1978
  ident: R6
  publication-title: MNRAS
  doi: 10.1093/mnras/182.2.147
– volume: 622
  start-page: 1225
  year: 2005
  ident: R51
  publication-title: ApJ
  doi: 10.1086/427768
– volume: 14
  start-page: 355
  year: 1987
  ident: R29
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/GL014i004p00355
– volume: 658
  start-page: 622
  year: 2007
  ident: R76
  publication-title: ApJ
  doi: 10.1086/510284
– volume: 11
  start-page: 132
  year: 1977
  ident: R5
  publication-title: Int. Cosmic Ray Conf.
– volume: 864
  start-page: 158
  year: 2018
  ident: R47
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad8b3
– volume: 88
  start-page: 6109
  year: 1983
  ident: R48
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA088iA08p06109
– volume: 455
  start-page: 685
  year: 2006
  ident: R68
  publication-title: A&A
  doi: 10.1051/0004-6361:20054754
– volume: 92
  start-page: 8519
  year: 1987
  ident: R30
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA092iA08p08519
– volume: 71
  start-page: 207
  year: 1995
  ident: R49
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00751330
– volume: 42
  start-page: 10,513
  year: 2015
  ident: R54
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/2015GL066820
– volume: 71
  start-page: 55
  year: 1995
  ident: R63
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00751326
– volume: 120
  start-page: 30
  year: 2015
  ident: R53
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/2014JA020465
– volume: 147
  start-page: 187
  year: 2009
  ident: R78
  publication-title: Space Sci. Rev.
  doi: 10.1007/s11214-009-9496-7
– volume: 734
  start-page: 7
  year: 2011
  ident: R66
  publication-title: ApJ
  doi: 10.1088/0004-637X/734/1/7
– volume: 285
  start-page: 25
  year: 2013
  ident: R57
  publication-title: Sol. Phys.
  doi: 10.1007/s11207-012-0085-7
– volume: 876
  start-page: 80
  year: 2019
  ident: R41
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab15d7
– volume: 715
  start-page: 300
  year: 2010
  ident: R69
  publication-title: ApJ
  doi: 10.1088/0004-637X/715/1/300
– volume: 93
  start-page: 2519
  year: 1988
  ident: R52
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1029/JA093iA04p02519
– volume: 86
  start-page: 541
  year: 1998
  ident: R27
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005088115759
– volume: 93
  start-page: 7217
  year: 1988
  ident: R9
  publication-title: J. Geophys. Res.
  doi: 10.1029/JA093iA07p07217
– volume: 120
  start-page: 89
  year: 1960
  ident: R26
  publication-title: MNRAS
  doi: 10.1093/mnras/120.2.89
– volume: 894
  start-page: 120
  year: 2020
  ident: R58
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8821
– volume: 246
  start-page: 47
  year: 2020
  ident: R74
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab5dac
– volume: 58
  start-page: 2
  year: 2010
  ident: R7
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2009.09.020
– volume: 893
  start-page: 110
  year: 2020
  ident: R28
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab7fa2
– volume: 86
  start-page: 1
  year: 1998
  ident: R73
  publication-title: Space Sci. Rev.
  doi: 10.1023/A:1005082526237
– volume: 559
  start-page: A92
  year: 2013
  ident: R18
  publication-title: A&A
  doi: 10.1051/0004-6361/201322522
– volume: 27
  start-page: 57
  year: 2000
  ident: R56
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL010724
– volume: 58
  start-page: 287
  year: 2010
  ident: R25
  publication-title: Planet. Space Sci.
  doi: 10.1016/j.pss.2008.06.018
– volume: 119
  start-page: 689
  year: 2014
  ident: R80
  publication-title: J. Geophys. Res.
  doi: 10.1002/2013JA019115
– volume: 14
  start-page: 5
  year: 2017
  ident: R37
  publication-title: Liv. Rev. Sol. Phys.
  doi: 10.1007/s41116-017-0009-6
– volume: 851
  start-page: 32
  year: 2017
  ident: R67
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa98e2
– volume: 120
  start-page: 4112
  year: 2015
  ident: R36
  publication-title: J. Geophys. Res.: Space Phys.
  doi: 10.1002/2015JA021138
– volume: 71
  start-page: 125
  year: 1995
  ident: R50
  publication-title: Space Sci. Rev.
  doi: 10.1007/BF00751328
– ident: R17
SSID ssj0002183
Score 2.484681
Snippet Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation...
Context. Sheath regions ahead of coronal mass ejections (CMEs) are large-scale heliospheric structures that form gradually with CME expansion and propagation...
SourceID unpaywall
hal
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage A8
SubjectTerms Amplitudes
Astrophysics
Charged particles
Compressibility
Coronal mass ejection
Current sheets
Energetic particles
Interplanetary space
Ion flux
Mach number
Magnetic fields
Magnetic variations
Physics
Propagation modes
Sheaths
Solar and Stellar Astrophysics
Solar Orbiter (ESA)
Solar wind
Spacecraft
Upstream
Title Multi-spacecraft observations of the structure of the sheath of an interplanetary coronal mass ejection and related energetic ion enhancement
URI https://www.proquest.com/docview/2615615592
https://hal.science/hal-04889325
https://www.aanda.org/articles/aa/pdf/2021/12/aa40838-21.pdf
UnpaywallVersion publishedVersion
Volume 656
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Sciences Free backfiles and Open Access
  customDbUrl:
  eissn: 1432-0746
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002183
  issn: 0004-6361
  databaseCode: GI~
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB41qRBceBSqBkq1QogTbrL2rh1LXCJECQiqHohUDsjaXc8qQOpEjQMKB_4B_5kZv1Q4IOC23ocf8njn29lvPgM8TsiLpgp9MEqdDshDYWAxDwNyJujHuXWR59zht6fxdKZen-vzHXjW5sIwrdLwGrrWCG7IYUNjhqvc80pdDmVIh4qgA71immdy34PdWBMS78Pu7PRs8r5GvCqIo1ouVUVMsFRxKzqk5bBrr05ZnewXx9SbMy3yCua8vilWZvvVLBZX3M_JLfjQ3njNOvl8vCntsfv2m6bj_z7ZbbjZ4FIxqQfcgR0s9uBgsuZI-fJiK56IqlwHQtZ7cO2sLt2FH1UOb0AzkyMIanwplrYL9a7F0gvCmKLWqd1cYlfBXmDOR6YQHyvqI_NuS3O5FY5lFehuLgjZC_xUscUK6peLKvUGc8Fi2Zwg5wS3YDFn4-VA5z2Ynbx493waND95CJwKwzLQFglhKI2R03GSaAxxrJyRKk8deoxDtHk6yr0hZBSidE7akeb84TC1UeJ1tA_9YlngAYhR7JyWXqXWWpUm0shI6RTHaeJkFEc4gLB9w5lrFND5RxyLrNqJ15J34lXGZpF1ZjGAp92gVS0A8ufuj8h0up4s3j2dvMm4judKQsv6ixzAYWtZWTNlrDNayupqkzgcQNBZ299c8_4_9n8AN7hck3IOoU8GgA8JWpX2CHovX30_ar6jnwM-G14
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2TgheuAzQCgNZCPGE19qxk0bipUJMFYJpD1QaDyiynWN10KXVmm4q_4H_zDlxGg0eEPDm-JKLcuLz-fg7Xxh7maEXzTUEMcy9EeihQDgolUBnAmFUOp8Eyh3-eJJOpvr9mTnbYW-2uTBEq7S0ho4awS05bGDtYFkGWqnLgVR4qBE64CvGeaYMu2wvNYjEe2xvenI6_hwRrxZpEuVSdUIES51uRYeMHHTtzSmbk_3imHZnRIu8gTlvr6ul3Vzb-fyG-zm-x75sbzyyTr4drWt35L__pun4v092n91tcSkfxwEP2A5U--xgvKJI-eJiw1_xphwDIat9dus0lh6yH00Or8CZySMEtaHmC9eFeld8EThiTB51ateX0FWQF5jRka34eUN9JN5tbS833JOsAt7NBSJ7Dl8btliF_UrepN5AyUksmxLkPKcWqGZkvBTofMSmx-8-vZ2I9icPwmulamEcIMLQBhJv0iwzoGCkvZW6zD0ESBW4Mh-WwSIyUiC9l25oKH9Y5S7Jgkkes161qOCA8WHqvZFB5845nWfSykSbHEZ55mWSJtBnavuGC98qoNOPOOZFsxNvJO3E64LMoujMos9ed4OWUQDkz91foOl0PUm8ezL-UFAdzZWIls2V7LPDrWUV7ZSxKnApa5pNYtVnorO2v7nmk3_s_5TdoXIk5RyyHhoAPENoVbvn7Rf0E2QYGi8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-spacecraft+observations+of+the+structure+of+the+sheath+of+an+interplanetary+coronal+mass+ejection+and+related+energetic+ion+enhancement&rft.jtitle=Astronomy+and+astrophysics+%28Berlin%29&rft.au=Kilpua%2C+E.+K.+J.&rft.au=Good%2C+S.+W.&rft.au=Dresing%2C+N.&rft.au=Vainio%2C+R.&rft.date=2021-12-01&rft.issn=0004-6361&rft.eissn=1432-0746&rft.volume=656&rft.spage=A8&rft_id=info:doi/10.1051%2F0004-6361%2F202140838&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_0004_6361_202140838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-6361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-6361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-6361&client=summon