Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films?
The limited ductility of metallic thin films (< 1%) poses a challenge to MEMS and flexible electronics applications. Here, we report on freestanding gold specimens with the remarkable ability to accommodate ≥10% plastic deformation while retaining a high strength. Using in situ nanomechanical tes...
Saved in:
Published in | Acta materialia Vol. 215; p. 117079 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.08.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1359-6454 1873-2453 |
DOI | 10.1016/j.actamat.2021.117079 |
Cover
Abstract | The limited ductility of metallic thin films (< 1%) poses a challenge to MEMS and flexible electronics applications. Here, we report on freestanding gold specimens with the remarkable ability to accommodate ≥10% plastic deformation while retaining a high strength. Using in situ nanomechanical testing in a transmission electron microscope, this exceptionally high ductility is traced back to the combination of an ultrathin thickness, a columnar microstructure and a (111) fiber texture. Under such conditions, the deformation is largely mediated by grain boundaries through grain boundary sliding and shear coupled grain boundary migration. Because these non-conventional mechanisms preserve the cross-sectional thickness of the specimens, necking is postponed and the samples can reach a high ductility. Since the mechanisms were evidenced at room temperature and under strain-rate conditions typical of most applications, the findings open up promising outlooks for developing ductile metallic films by microstructural engineering. |
---|---|
AbstractList | The limited ductility of metallic thin films (< 1%) poses a challenge to MEMS and flexible electronics applications. Here, we report on freestanding gold specimens with the remarkable ability to accommodate ≥10% plastic deformation while retaining a high strength. Using in situ nanomechanical testing in a transmission electron microscope, this exceptionally high ductility is traced back to the combination of an ultrathin thickness, a columnar microstructure and a (111) fiber texture. Under such conditions, the deformation is largely mediated by grain boundaries through grain boundary sliding and shear coupled grain boundary migration. Because these non-conventional mechanisms preserve the cross-sectional thickness of the specimens, necking is postponed and the samples can reach a high ductility. Since the mechanisms were evidenced at room temperature and under strain-rate conditions typical of most applications, the findings open up promising outlooks for developing ductile metallic films by microstructural engineering. |
ArticleNumber | 117079 |
Author | Liebig, Jan P. Spiecker, Erdmann Göken, Mathias Merle, Benoit Mačković, Mirza |
Author_xml | – sequence: 1 givenname: Jan P. surname: Liebig fullname: Liebig, Jan P. organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science & Engineering – Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany – sequence: 2 givenname: Mirza surname: Mačković fullname: Mačković, Mirza organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Erlangen, Germany – sequence: 3 givenname: Erdmann orcidid: 0000-0002-2723-5227 surname: Spiecker fullname: Spiecker, Erdmann organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute of Micro- and Nanostructure Research (IMN), Center for Nanoanalysis and Electron Microscopy (CENEM), Erlangen, Germany – sequence: 4 givenname: Mathias orcidid: 0000-0002-3226-0304 surname: Göken fullname: Göken, Mathias organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science & Engineering – Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany – sequence: 5 givenname: Benoit orcidid: 0000-0002-9562-1429 surname: Merle fullname: Merle, Benoit email: benoit.merle@fau.de organization: Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science & Engineering – Institute I, Interdisciplinary Center for Nanostructured Films (IZNF), Erlangen, Germany |
BookMark | eNqFkNFKwzAUhoNMcJs-gpAXaE3Spmn1YoyhUxh4o-BdSJMTzUjb0WTC3t6M7cqbXZ0Dh-_n_N8MTfqhB4TuKckpodXDNlc6qk7FnBFGc0oFEc0VmtJaFBkreTFJe8GbrCp5eYNmIWwJoUyUZIq-1qNyPW6HfW_UeMAdGKciGLzzKkSnXTw84iVuPYTg-m9shxHHH8Bmr6Pz6YoHm6CovHc6XVKWdb4Li1t0bZUPcHeec_T58vyxes027-u31XKT6ZKxmPGagUr_UsZFWXHDCCUCKKkNFZa3qrKMmFZwS5SuNTcN1aYRgkBdNRqAF3PET7l6HEIYwcrd6LpURVIij3rkVp71yKMeedKTuKd_XOqqohv6mIz4i_TiREOq9utglEE76HWyN4KO0gzuQsIfEUuG6Q |
CitedBy_id | crossref_primary_10_1016_j_tsf_2021_139033 crossref_primary_10_1016_j_tsf_2023_140125 crossref_primary_10_1016_j_msea_2023_145759 crossref_primary_10_1016_j_scriptamat_2023_115864 crossref_primary_10_1016_j_actamat_2024_120081 crossref_primary_10_1016_j_actamat_2024_119835 crossref_primary_10_1016_j_eml_2023_102037 crossref_primary_10_1038_s41598_021_98875_z crossref_primary_10_1007_s12274_023_6091_2 crossref_primary_10_1016_j_msea_2025_148193 crossref_primary_10_1002_adem_202400216 crossref_primary_10_1016_j_actamat_2023_119237 crossref_primary_10_1016_j_ijplas_2022_103466 crossref_primary_10_1016_j_actamat_2025_120877 crossref_primary_10_1007_s11837_025_07241_1 crossref_primary_10_1142_S2424913023500030 crossref_primary_10_1002_apxr_202400162 crossref_primary_10_1088_2631_6331_acc3d5 crossref_primary_10_1016_j_jmps_2024_105541 crossref_primary_10_1016_j_matchar_2023_113073 crossref_primary_10_1016_j_ijplas_2022_103370 crossref_primary_10_1016_j_engfracmech_2024_110151 crossref_primary_10_1016_j_actamat_2023_118877 crossref_primary_10_1103_PhysRevMaterials_6_023601 crossref_primary_10_1016_j_ijplas_2023_103657 crossref_primary_10_1016_j_matdes_2025_113785 crossref_primary_10_1016_j_msea_2021_142364 |
Cites_doi | 10.1016/j.scriptamat.2005.03.043 10.1557/jmr.2019.262 10.1016/0001-6160(67)90211-8 10.1016/0039-6028(72)90254-3 10.1007/BF02666659 10.1016/j.actamat.2015.07.049 10.1557/JMR.2002.0002 10.1021/nl201764b 10.1103/PhysRevB.64.224105 10.1557/jmr.2015.184 10.1016/j.pmatsci.2018.05.004 10.1016/j.ijsolstr.2005.04.034 10.1016/j.actamat.2015.12.034 10.1007/s11340-016-0169-7 10.1016/j.scriptamat.2010.01.048 10.1063/1.2108110 10.1016/j.actamat.2006.01.023 10.1557/jmr.2011.156 10.1063/1.1806275 10.1016/j.ultramic.2016.09.004 10.1016/j.actamat.2011.11.054 10.1002/adma.201302240 10.1016/0956-7151(94)90322-0 10.1063/1.2793185 10.1126/science.1178226 10.1007/s10853-015-9687-4 10.1038/212916a0 10.1016/j.scriptamat.2014.11.004 10.1557/jmr.2018.287 10.1016/0921-5093(96)10253-7 10.1073/pnas.0400066101 10.1088/0508-3443/4/4/302 10.1016/j.actamat.2012.09.051 10.1016/j.solener.2005.10.010 10.1080/21663831.2018.1520749 10.1016/j.matdes.2018.05.008 10.1016/j.actamat.2010.03.003 10.1038/ncomms4580 10.1063/1.4868124 10.1080/14786435.2012.685773 10.1063/1.4811743 10.1080/14786436708229748 10.1016/j.tsf.2017.06.067 10.1016/j.surfcoat.2016.01.051 10.1016/j.scriptamat.2012.02.030 10.3390/mi8090277 10.1016/j.actamat.2014.05.062 10.1016/j.pmatsci.2005.08.003 10.1016/0001-6160(73)90057-6 10.1016/j.actamat.2017.10.004 10.1080/21663831.2020.1818323 10.1016/j.mechmat.2004.02.002 10.1016/j.msea.2010.08.043 10.1016/j.actamat.2009.01.014 10.1557/s43578-020-00045-w 10.1016/j.msea.2017.03.037 10.1103/PhysRevB.93.024109 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.actamat.2021.117079 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2453 |
ExternalDocumentID | 10_1016_j_actamat_2021_117079 S1359645421004596 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNEU ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MAGPM N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSM SSQ SSZ T5K TN5 XPP ZMT ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FGOYB R2- SEW SSH T9H ZY4 |
ID | FETCH-LOGICAL-c422t-582ea7071257465d20107e108d17f5ba6f20db75f0ac8c5d91cd9770e869cee53 |
IEDL.DBID | AIKHN |
ISSN | 1359-6454 |
IngestDate | Tue Jul 01 01:30:11 EDT 2025 Thu Apr 24 22:58:39 EDT 2025 Fri Feb 23 02:40:30 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thin films Transmission electron microscopy Nanomechanical testing Ductility Deformation mechanisms |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-582ea7071257465d20107e108d17f5ba6f20db75f0ac8c5d91cd9770e869cee53 |
ORCID | 0000-0002-9562-1429 0000-0002-2723-5227 0000-0002-3226-0304 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1359645421004596 |
ParticipantIDs | crossref_primary_10_1016_j_actamat_2021_117079 crossref_citationtrail_10_1016_j_actamat_2021_117079 elsevier_sciencedirect_doi_10_1016_j_actamat_2021_117079 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-15 |
PublicationDateYYYYMMDD | 2021-08-15 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Acta materialia |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Huang, Suo, Lacour, Wagner (bib0001) 2004; 85 Lohmiller, Kobler, Spolenak, Gruber (bib0020) 2013; 102 Pineau, Amine Benzerga, Pardoen (bib0008) 2016; 107 Meyers, Mishra, Benson (bib0032) 2006; 51 Combe, Mompiou, Legros (bib0042) 2016; 93 Balluffi, Komem, Schober (bib0044) 1972; 31 May, Höppel, Göken (bib0037) 2005; 53 Hosseinian, Gupta, Pierron, Legros (bib0048) 2018; 143 Valiev, Alexandrov, Zhu, Lowe (bib0034) 2002; 17 Mompiou, Caillard, Legros (bib0018) 2009; 57 Idrissi, Kobler, Amin-Ahmadi, Coulombier, Galceran, Raskin, Godet, Kübel, Pardoen, Schryvers (bib0023) 2014; 104 Merle (bib0055) 2019; 34 Keller, Phelps, Read (bib0006) 1996; 214 Li, Suo (bib0007) 2006; 43 Nix (bib0046) 1989; 20 Thomas, Gemming (bib0045) 2014 Béfahy, Yunus, Pardoen, Bertrand, Troosters (bib0012) 2007; 91 Colla, Wang, Idrissi, Schryvers, Raskin, Pardoen (bib0024) 2012; 60 Mompiou, Legros, Boé, Coulombier, Raskin, Pardoen (bib0019) 2013; 61 Chung, Lee, Beers, Stafford (bib0010) 2011; 11 Liebig, Göken, Richter, Mackovic, Przybilla, Spiecker, Pierron, Merle (bib0027) 2016; 171 Rajabzadeh, Mompiou, Lartigue-Korinek, Combe, Legros, Molodov (bib0040) 2014; 77 Mompiou, Legros, Caillard, model (bib0058) 2010; 58 Preiß, Merle, Göken (bib0014) 2017; 691 Haque, Saif (bib0022) 2004; 101 Xiang, Li, Suo, Vlassak (bib0026) 2005; 87 Preiß, Lyu, Liebig, Richter, Gannott, Gruber, Göken, Bitzek, Merle (bib0009) 2019; 34 S. Shafqat, J.P.M. Hoefnagels, A. Savov, S. Joshi, R. Dekker, M.G.D. Geers, Ultra-stretchable interconnects for high-density stretchable electronics, Micromachines 8 (2017) 277. https://doi.org/10.3390/mi8090277. Pineau, Benzerga, Pardoen (bib0059) 2016; 107 Javed, Merle, Preiß, Hivet, Benedetto, Göken (bib0030) 2016; 289 Maier, Durst, Mueller, Backes, Höppel, Göken (bib0036) 2011; 26 J. Lohmiller, N.C. Woo, R. Spolenak, Microstructure–property relationship in highly ductile Au–Cu thin films for flexible electronics, Materials Science and Engineering: A. 527 (2010) 7731–7740. https://doi.org/10.1016/j.msea.2010.08.043. Rupert, Gianola, Gan, Hemker (bib0016) 2009; 326 Gleskova, Cheng, Wagner, Sturm, Suo (bib0002) 2006; 80 Langdon (bib0049) 1994; 42 Li, Huang, Xi, Lacour, Wagner, Suo (bib0013) 2005; 37 Ennos (bib0047) 1953; 4 Preiß, Merle, Xiao, Gannott, Liebig, Wheeler, Göken (bib0028) 2021 Gianola, Van Petegem, Legros, Brandstetter, Van Swygenhoven, Hemker (bib0015) 2006; 54 Wei, Li, Zhu, Liu, Lei, Wang, Wu, Mi, Liu, Wang, Gao (bib0033) 2014; 5 Preiß, Gannott, Göken, Merle (bib0061) 2018; 6 Coulombier, Boé, Brugger, Raskin, Pardoen (bib0060) 2010; 62 Pardoen, Coulombier, Boe, Safi, Brugger, Ryelandt, Carbonnelle, Gravier, Raskin (bib0029) 2010; 633–634 Cordill, Glushko, Kleinbichler, Putz, Többens, Kirchlechner (bib0005) 2017; 644 Hart (bib0056) 1967; 15 Feldner, Merle, Göken (bib0038) 2018; 153 Ashby, Verrall (bib0054) 1973; 21 Merle, Cassel, Göken (bib0035) 2015; 30 Hammock, Chortos, Tee, Tok, Bao (bib0003) 2013; 25 Feldner, Merle, Göken (bib0039) 2021; 9 Merle, Schweitzer, Göken (bib0031) 2012; 92 Gifkins, Snowden (bib0052) 1966; 212 Karanjgaokar, Chasiotis (bib0021) 2016; 51 Frost, Ashby (bib0050) 1982 Bollmann (bib0057) 1967; 16 Hull, Bacon (bib0043) 2011 Mompiou, Legros (bib0017) 2015; 99 Han, Thomas, Srolovitz (bib0041) 2018; 98 Ghazi, Kysar (bib0051) 2016; 56 Van Swygenhoven, Derlet (bib0053) 2001; 64 Sim, Hwangbo, Kim, Lee, Vlassak (bib0004) 2012; 66 Rupert (10.1016/j.actamat.2021.117079_bib0016) 2009; 326 Javed (10.1016/j.actamat.2021.117079_bib0030) 2016; 289 Hammock (10.1016/j.actamat.2021.117079_bib0003) 2013; 25 Keller (10.1016/j.actamat.2021.117079_bib0006) 1996; 214 Ennos (10.1016/j.actamat.2021.117079_bib0047) 1953; 4 Karanjgaokar (10.1016/j.actamat.2021.117079_bib0021) 2016; 51 Li (10.1016/j.actamat.2021.117079_bib0001) 2004; 85 Han (10.1016/j.actamat.2021.117079_bib0041) 2018; 98 Ghazi (10.1016/j.actamat.2021.117079_bib0051) 2016; 56 Li (10.1016/j.actamat.2021.117079_bib0007) 2006; 43 Nix (10.1016/j.actamat.2021.117079_bib0046) 1989; 20 Preiß (10.1016/j.actamat.2021.117079_bib0009) 2019; 34 Coulombier (10.1016/j.actamat.2021.117079_bib0060) 2010; 62 Hull (10.1016/j.actamat.2021.117079_bib0043) 2011 Frost (10.1016/j.actamat.2021.117079_bib0050) 1982 Gleskova (10.1016/j.actamat.2021.117079_bib0002) 2006; 80 Feldner (10.1016/j.actamat.2021.117079_bib0039) 2021; 9 Preiß (10.1016/j.actamat.2021.117079_bib0014) 2017; 691 Maier (10.1016/j.actamat.2021.117079_bib0036) 2011; 26 10.1016/j.actamat.2021.117079_bib0025 Colla (10.1016/j.actamat.2021.117079_bib0024) 2012; 60 Pineau (10.1016/j.actamat.2021.117079_bib0008) 2016; 107 Bollmann (10.1016/j.actamat.2021.117079_bib0057) 1967; 16 Hosseinian (10.1016/j.actamat.2021.117079_bib0048) 2018; 143 Béfahy (10.1016/j.actamat.2021.117079_bib0012) 2007; 91 Idrissi (10.1016/j.actamat.2021.117079_bib0023) 2014; 104 Gifkins (10.1016/j.actamat.2021.117079_bib0052) 1966; 212 Preiß (10.1016/j.actamat.2021.117079_bib0028) 2021 Mompiou (10.1016/j.actamat.2021.117079_bib0058) 2010; 58 Wei (10.1016/j.actamat.2021.117079_bib0033) 2014; 5 Langdon (10.1016/j.actamat.2021.117079_bib0049) 1994; 42 Xiang (10.1016/j.actamat.2021.117079_bib0026) 2005; 87 10.1016/j.actamat.2021.117079_bib0011 Valiev (10.1016/j.actamat.2021.117079_bib0034) 2002; 17 Cordill (10.1016/j.actamat.2021.117079_bib0005) 2017; 644 Merle (10.1016/j.actamat.2021.117079_bib0031) 2012; 92 Feldner (10.1016/j.actamat.2021.117079_bib0038) 2018; 153 Meyers (10.1016/j.actamat.2021.117079_bib0032) 2006; 51 Mompiou (10.1016/j.actamat.2021.117079_bib0019) 2013; 61 Van Swygenhoven (10.1016/j.actamat.2021.117079_bib0053) 2001; 64 Li (10.1016/j.actamat.2021.117079_bib0013) 2005; 37 Merle (10.1016/j.actamat.2021.117079_bib0035) 2015; 30 Mompiou (10.1016/j.actamat.2021.117079_bib0018) 2009; 57 Haque (10.1016/j.actamat.2021.117079_bib0022) 2004; 101 Preiß (10.1016/j.actamat.2021.117079_bib0061) 2018; 6 Liebig (10.1016/j.actamat.2021.117079_bib0027) 2016; 171 Thomas (10.1016/j.actamat.2021.117079_bib0045) 2014 Rajabzadeh (10.1016/j.actamat.2021.117079_bib0040) 2014; 77 Gianola (10.1016/j.actamat.2021.117079_bib0015) 2006; 54 Combe (10.1016/j.actamat.2021.117079_bib0042) 2016; 93 Hart (10.1016/j.actamat.2021.117079_bib0056) 1967; 15 Lohmiller (10.1016/j.actamat.2021.117079_bib0020) 2013; 102 Mompiou (10.1016/j.actamat.2021.117079_bib0017) 2015; 99 May (10.1016/j.actamat.2021.117079_bib0037) 2005; 53 Pardoen (10.1016/j.actamat.2021.117079_bib0029) 2010; 633–634 Balluffi (10.1016/j.actamat.2021.117079_bib0044) 1972; 31 Pineau (10.1016/j.actamat.2021.117079_bib0059) 2016; 107 Sim (10.1016/j.actamat.2021.117079_bib0004) 2012; 66 Ashby (10.1016/j.actamat.2021.117079_bib0054) 1973; 21 Chung (10.1016/j.actamat.2021.117079_bib0010) 2011; 11 Merle (10.1016/j.actamat.2021.117079_bib0055) 2019; 34 |
References_xml | – volume: 15 start-page: 351 year: 1967 end-page: 355 ident: bib0056 article-title: Theory of the tensile test publication-title: Acta Metallurgica. – volume: 214 start-page: 42 year: 1996 end-page: 52 ident: bib0006 article-title: Tensile and fracture behavior of free-standing copper films publication-title: Mater. Sci. Eng. – volume: 30 start-page: 2161 year: 2015 end-page: 2169 ident: bib0035 article-title: Time-dependent deformation behavior of freestanding and SiNx-supported gold thin films investigated by bulge tests publication-title: J. Mater. Res. – volume: 11 start-page: 3361 year: 2011 end-page: 3365 ident: bib0010 article-title: Stiffness, strength, and ductility of nanoscale thin films and membranes: a combined wrinkling–cracking methodology publication-title: Nano Lett. – volume: 60 start-page: 1795 year: 2012 end-page: 1806 ident: bib0024 article-title: High strength-ductility of thin nanocrystalline palladium films with nanoscale twins: On-chip testing and grain aggregate model publication-title: Acta Mater. – volume: 289 start-page: 69 year: 2016 end-page: 74 ident: bib0030 article-title: Mechanical characterization of metallic thin films by bulge and scratch testing publication-title: Surf. Coat. Technol. – volume: 691 start-page: 218 year: 2017 end-page: 225 ident: bib0014 article-title: Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM publication-title: Mater. Sci. Eng. – volume: 25 start-page: 5997 year: 2013 end-page: 6038 ident: bib0003 article-title: 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress publication-title: Adv. Mater. – volume: 21 start-page: 149 year: 1973 end-page: 163 ident: bib0054 article-title: Diffusion-accommodated flow and superplasticity publication-title: Acta Metall. – volume: 31 start-page: 68 year: 1972 end-page: 103 ident: bib0044 article-title: Electron microscope studies of grain boundary dislocation behavior publication-title: Surf. Sci. – volume: 104 year: 2014 ident: bib0023 article-title: Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing publication-title: Appl. Phys. Lett. – volume: 644 start-page: 166 year: 2017 end-page: 172 ident: bib0005 article-title: Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates publication-title: Thin Solid Films – volume: 4 start-page: 101 year: 1953 end-page: 106 ident: bib0047 article-title: The origin of specimen contamination in the electron microscope publication-title: Br. J. Appl. Phys. – volume: 26 start-page: 1421 year: 2011 end-page: 1430 ident: bib0036 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al publication-title: J. Mater. Res. – volume: 212 start-page: 916 year: 1966 end-page: 917 ident: bib0052 article-title: Mechanism for “viscous” grain-boundary sliding publication-title: Nature – volume: 16 start-page: 363 year: 1967 end-page: 381 ident: bib0057 article-title: On the geometry of grain and phase boundaries publication-title: Philosoph. Mag. – volume: 87 year: 2005 ident: bib0026 article-title: High ductility of a metal film adherent on a polymer substrate publication-title: Appl. Phys. Lett. – year: 2014 ident: bib0045 article-title: Analytical Transmission Electron Microscopy: An Introduction for Operators – volume: 6 start-page: 607 year: 2018 end-page: 612 ident: bib0061 article-title: Scaling of the fracture toughness of freestanding metallic thin films with the yield strength publication-title: Mater. Res. Lett. – volume: 34 start-page: 69 year: 2019 end-page: 77 ident: bib0055 article-title: Creep behavior of gold thin films investigated by bulge testing at room and elevated temperature publication-title: J. Mater. Res. – volume: 77 start-page: 223 year: 2014 end-page: 235 ident: bib0040 article-title: The role of disconnections in deformation-coupled grain boundary migration publication-title: Acta Mater. – volume: 51 start-page: 427 year: 2006 end-page: 556 ident: bib0032 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater Sci. – volume: 20 start-page: 2217 year: 1989 ident: bib0046 article-title: Mechanical properties of thin films publication-title: Metall. Mater. Trans. A – reference: J. Lohmiller, N.C. Woo, R. Spolenak, Microstructure–property relationship in highly ductile Au–Cu thin films for flexible electronics, Materials Science and Engineering: A. 527 (2010) 7731–7740. https://doi.org/10.1016/j.msea.2010.08.043. – volume: 9 start-page: 41 year: 2021 end-page: 49 ident: bib0039 article-title: Breakdown of the superplastic deformation behavior of heterogeneous nanomaterials at small length scales publication-title: Mater. Res. Lett. – volume: 66 start-page: 915 year: 2012 end-page: 918 ident: bib0004 article-title: Fatigue of polymer-supported Ag thin films publication-title: Scr. Mater. – volume: 153 start-page: 71 year: 2018 end-page: 79 ident: bib0038 article-title: Superplastic deformation behavior of Zn-22% Al alloy investigated by nanoindentation at elevated temperatures publication-title: Mater. Design – volume: 57 start-page: 2198 year: 2009 end-page: 2209 ident: bib0018 article-title: Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals publication-title: Acta Materialia. – volume: 102 year: 2013 ident: bib0020 article-title: The effect of solute segregation on strain localization in nanocrystalline thin films: dislocation glide vs. grain-boundary mediated plasticity publication-title: Appl. Phys. Lett. – volume: 53 start-page: 189 year: 2005 end-page: 194 ident: bib0037 article-title: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation publication-title: Scr. Mater. – volume: 37 start-page: 261 year: 2005 end-page: 273 ident: bib0013 article-title: Delocalizing strain in a thin metal film on a polymer substrate publication-title: Mech. Mater. – volume: 54 start-page: 2253 year: 2006 end-page: 2263 ident: bib0015 article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films publication-title: Acta Mater. – volume: 5 start-page: 3580 year: 2014 ident: bib0033 article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. – volume: 107 start-page: 508 year: 2016 end-page: 544 ident: bib0008 article-title: Failure of metals III: fracture and fatigue of nanostructured metallic materials publication-title: Acta Mater. – volume: 93 year: 2016 ident: bib0042 article-title: Disconnections kinks and competing modes in shear-coupled grain boundary migration publication-title: Phys. Rev. B. – volume: 34 start-page: 3483 year: 2019 end-page: 3494 ident: bib0009 article-title: Microstructural dependence of the fracture toughness of metallic thin films: a bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films publication-title: J. Mater. Res. – volume: 17 start-page: 5 year: 2002 end-page: 8 ident: bib0034 article-title: Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation publication-title: J. Mater. Res. – year: 1982 ident: bib0050 article-title: Deformation-Mechanism Maps – volume: 143 start-page: 77 year: 2018 end-page: 87 ident: bib0048 article-title: Size effects on intergranular crack growth mechanisms in ultrathin nanocrystalline gold free-standing films publication-title: Acta Mater. – volume: 91 year: 2007 ident: bib0012 article-title: Stretchable helical gold conductor on silicone rubber microwire publication-title: Appl. Phys. Lett. – volume: 633–634 start-page: 615 year: 2010 end-page: 635 ident: bib0029 article-title: Ductility of thin metallic films publication-title: Mater. Sci. Forum – volume: 43 start-page: 2351 year: 2006 end-page: 2363 ident: bib0007 article-title: Deformability of thin metal films on elastomer substrates publication-title: Int. J. Solids Struct. – volume: 326 start-page: 1686 year: 2009 end-page: 1690 ident: bib0016 article-title: Experimental Observations of Stress-Driven Grain Boundary Migration publication-title: Science – volume: 80 start-page: 687 year: 2006 end-page: 693 ident: bib0002 article-title: Mechanics of thin-film transistors and solar cells on flexible substrates publication-title: Sol. Energy – volume: 64 year: 2001 ident: bib0053 article-title: Grain-boundary sliding in nanocrystalline FCC metals publication-title: Phys. Rev. B. – volume: 92 start-page: 3172 year: 2012 end-page: 3187 ident: bib0031 article-title: Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations publication-title: Philos. Mag. – volume: 56 start-page: 1351 year: 2016 end-page: 1362 ident: bib0051 article-title: Experimental investigation of plastic strain recovery and creep in nanocrystalline copper thin films publication-title: Exp. Mech. – volume: 62 start-page: 742 year: 2010 end-page: 745 ident: bib0060 article-title: Imperfection-sensitive ductility of aluminium thin films publication-title: Scr. Mater. – volume: 85 start-page: 3435 year: 2004 end-page: 3437 ident: bib0001 article-title: Stretchability of thin metal films on elastomer substrates publication-title: Appl. Phys. Lett. – volume: 99 start-page: 5 year: 2015 end-page: 8 ident: bib0017 article-title: Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films publication-title: Scr. Mater. – volume: 98 start-page: 386 year: 2018 end-page: 476 ident: bib0041 article-title: Grain-boundary kinetics: A unified approach publication-title: Prog. Mater Sci. – volume: 107 start-page: 424 year: 2016 end-page: 483 ident: bib0059 article-title: Failure of metals I: brittle and ductile fracture publication-title: Acta Mater. – volume: 171 start-page: 82 year: 2016 end-page: 88 ident: bib0027 article-title: A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching publication-title: Ultramicroscopy – volume: 58 start-page: 3676 year: 2010 end-page: 3689 ident: bib0058 article-title: A new geometrical model to quantify grain boundary-based plasticity publication-title: Acta Mater. – volume: 61 start-page: 205 year: 2013 end-page: 216 ident: bib0019 article-title: Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study publication-title: Acta Mater. – volume: 51 start-page: 3701 year: 2016 end-page: 3714 ident: bib0021 article-title: Creep behavior of nanocrystalline Au films as a function of temperature publication-title: J. Mater. Sci. – reference: S. Shafqat, J.P.M. Hoefnagels, A. Savov, S. Joshi, R. Dekker, M.G.D. Geers, Ultra-stretchable interconnects for high-density stretchable electronics, Micromachines 8 (2017) 277. https://doi.org/10.3390/mi8090277. – year: 2021 ident: bib0028 article-title: Applicability of focused Ion beam (FIB) milling with gallium, neon, and xenon to the fracture toughness characterization of gold thin films publication-title: J. Mater. Res. – volume: 101 start-page: 6335 year: 2004 end-page: 6340 ident: bib0022 article-title: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study publication-title: Proc. Natl Acad. Sci. – volume: 42 start-page: 2437 year: 1994 end-page: 2443 ident: bib0049 article-title: A unified approach to grain boundary sliding in creep and superplasticity publication-title: Acta Metall. Mater. – year: 2011 ident: bib0043 article-title: Introduction to Dislocations – volume: 53 start-page: 189 year: 2005 ident: 10.1016/j.actamat.2021.117079_bib0037 article-title: Strain rate sensitivity of ultrafine-grained aluminium processed by severe plastic deformation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2005.03.043 – volume: 34 start-page: 3483 year: 2019 ident: 10.1016/j.actamat.2021.117079_bib0009 article-title: Microstructural dependence of the fracture toughness of metallic thin films: a bulge test and atomistic simulation study on single-crystalline and polycrystalline silver films publication-title: J. Mater. Res. doi: 10.1557/jmr.2019.262 – volume: 15 start-page: 351 year: 1967 ident: 10.1016/j.actamat.2021.117079_bib0056 article-title: Theory of the tensile test publication-title: Acta Metallurgica. doi: 10.1016/0001-6160(67)90211-8 – volume: 31 start-page: 68 year: 1972 ident: 10.1016/j.actamat.2021.117079_bib0044 article-title: Electron microscope studies of grain boundary dislocation behavior publication-title: Surf. Sci. doi: 10.1016/0039-6028(72)90254-3 – volume: 20 start-page: 2217 year: 1989 ident: 10.1016/j.actamat.2021.117079_bib0046 article-title: Mechanical properties of thin films publication-title: Metall. Mater. Trans. A doi: 10.1007/BF02666659 – volume: 107 start-page: 508 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0008 article-title: Failure of metals III: fracture and fatigue of nanostructured metallic materials publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.07.049 – volume: 17 start-page: 5 year: 2002 ident: 10.1016/j.actamat.2021.117079_bib0034 article-title: Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation publication-title: J. Mater. Res. doi: 10.1557/JMR.2002.0002 – volume: 11 start-page: 3361 year: 2011 ident: 10.1016/j.actamat.2021.117079_bib0010 article-title: Stiffness, strength, and ductility of nanoscale thin films and membranes: a combined wrinkling–cracking methodology publication-title: Nano Lett. doi: 10.1021/nl201764b – volume: 633–634 start-page: 615 year: 2010 ident: 10.1016/j.actamat.2021.117079_bib0029 article-title: Ductility of thin metallic films publication-title: Mater. Sci. Forum – volume: 64 year: 2001 ident: 10.1016/j.actamat.2021.117079_bib0053 article-title: Grain-boundary sliding in nanocrystalline FCC metals publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.64.224105 – volume: 30 start-page: 2161 year: 2015 ident: 10.1016/j.actamat.2021.117079_bib0035 article-title: Time-dependent deformation behavior of freestanding and SiNx-supported gold thin films investigated by bulge tests publication-title: J. Mater. Res. doi: 10.1557/jmr.2015.184 – volume: 98 start-page: 386 year: 2018 ident: 10.1016/j.actamat.2021.117079_bib0041 article-title: Grain-boundary kinetics: A unified approach publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2018.05.004 – volume: 43 start-page: 2351 year: 2006 ident: 10.1016/j.actamat.2021.117079_bib0007 article-title: Deformability of thin metal films on elastomer substrates publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.04.034 – volume: 107 start-page: 424 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0059 article-title: Failure of metals I: brittle and ductile fracture publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.12.034 – volume: 56 start-page: 1351 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0051 article-title: Experimental investigation of plastic strain recovery and creep in nanocrystalline copper thin films publication-title: Exp. Mech. doi: 10.1007/s11340-016-0169-7 – year: 1982 ident: 10.1016/j.actamat.2021.117079_bib0050 – volume: 62 start-page: 742 year: 2010 ident: 10.1016/j.actamat.2021.117079_bib0060 article-title: Imperfection-sensitive ductility of aluminium thin films publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2010.01.048 – volume: 87 year: 2005 ident: 10.1016/j.actamat.2021.117079_bib0026 article-title: High ductility of a metal film adherent on a polymer substrate publication-title: Appl. Phys. Lett. doi: 10.1063/1.2108110 – volume: 54 start-page: 2253 year: 2006 ident: 10.1016/j.actamat.2021.117079_bib0015 article-title: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films publication-title: Acta Mater. doi: 10.1016/j.actamat.2006.01.023 – volume: 26 start-page: 1421 year: 2011 ident: 10.1016/j.actamat.2021.117079_bib0036 article-title: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al publication-title: J. Mater. Res. doi: 10.1557/jmr.2011.156 – volume: 85 start-page: 3435 year: 2004 ident: 10.1016/j.actamat.2021.117079_bib0001 article-title: Stretchability of thin metal films on elastomer substrates publication-title: Appl. Phys. Lett. doi: 10.1063/1.1806275 – volume: 171 start-page: 82 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0027 article-title: A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2016.09.004 – volume: 60 start-page: 1795 year: 2012 ident: 10.1016/j.actamat.2021.117079_bib0024 article-title: High strength-ductility of thin nanocrystalline palladium films with nanoscale twins: On-chip testing and grain aggregate model publication-title: Acta Mater. doi: 10.1016/j.actamat.2011.11.054 – volume: 25 start-page: 5997 year: 2013 ident: 10.1016/j.actamat.2021.117079_bib0003 article-title: 25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progress publication-title: Adv. Mater. doi: 10.1002/adma.201302240 – volume: 42 start-page: 2437 year: 1994 ident: 10.1016/j.actamat.2021.117079_bib0049 article-title: A unified approach to grain boundary sliding in creep and superplasticity publication-title: Acta Metall. Mater. doi: 10.1016/0956-7151(94)90322-0 – volume: 91 year: 2007 ident: 10.1016/j.actamat.2021.117079_bib0012 article-title: Stretchable helical gold conductor on silicone rubber microwire publication-title: Appl. Phys. Lett. doi: 10.1063/1.2793185 – volume: 326 start-page: 1686 year: 2009 ident: 10.1016/j.actamat.2021.117079_bib0016 article-title: Experimental Observations of Stress-Driven Grain Boundary Migration publication-title: Science doi: 10.1126/science.1178226 – volume: 51 start-page: 3701 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0021 article-title: Creep behavior of nanocrystalline Au films as a function of temperature publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9687-4 – volume: 212 start-page: 916 year: 1966 ident: 10.1016/j.actamat.2021.117079_bib0052 article-title: Mechanism for “viscous” grain-boundary sliding publication-title: Nature doi: 10.1038/212916a0 – volume: 99 start-page: 5 year: 2015 ident: 10.1016/j.actamat.2021.117079_bib0017 article-title: Quantitative grain growth and rotation probed by in-situ TEM straining and orientation mapping in small grained Al thin films publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2014.11.004 – volume: 34 start-page: 69 year: 2019 ident: 10.1016/j.actamat.2021.117079_bib0055 article-title: Creep behavior of gold thin films investigated by bulge testing at room and elevated temperature publication-title: J. Mater. Res. doi: 10.1557/jmr.2018.287 – volume: 214 start-page: 42 year: 1996 ident: 10.1016/j.actamat.2021.117079_bib0006 article-title: Tensile and fracture behavior of free-standing copper films publication-title: Mater. Sci. Eng. doi: 10.1016/0921-5093(96)10253-7 – volume: 101 start-page: 6335 year: 2004 ident: 10.1016/j.actamat.2021.117079_bib0022 article-title: Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.0400066101 – volume: 4 start-page: 101 year: 1953 ident: 10.1016/j.actamat.2021.117079_bib0047 article-title: The origin of specimen contamination in the electron microscope publication-title: Br. J. Appl. Phys. doi: 10.1088/0508-3443/4/4/302 – volume: 61 start-page: 205 year: 2013 ident: 10.1016/j.actamat.2021.117079_bib0019 article-title: Inter- and intragranular plasticity mechanisms in ultrafine-grained Al thin films: An in situ TEM study publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.09.051 – volume: 80 start-page: 687 year: 2006 ident: 10.1016/j.actamat.2021.117079_bib0002 article-title: Mechanics of thin-film transistors and solar cells on flexible substrates publication-title: Sol. Energy doi: 10.1016/j.solener.2005.10.010 – volume: 6 start-page: 607 year: 2018 ident: 10.1016/j.actamat.2021.117079_bib0061 article-title: Scaling of the fracture toughness of freestanding metallic thin films with the yield strength publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2018.1520749 – volume: 153 start-page: 71 year: 2018 ident: 10.1016/j.actamat.2021.117079_bib0038 article-title: Superplastic deformation behavior of Zn-22% Al alloy investigated by nanoindentation at elevated temperatures publication-title: Mater. Design doi: 10.1016/j.matdes.2018.05.008 – volume: 58 start-page: 3676 year: 2010 ident: 10.1016/j.actamat.2021.117079_bib0058 article-title: A new geometrical model to quantify grain boundary-based plasticity publication-title: Acta Mater. doi: 10.1016/j.actamat.2010.03.003 – volume: 5 start-page: 3580 year: 2014 ident: 10.1016/j.actamat.2021.117079_bib0033 article-title: Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins publication-title: Nat. Commun. doi: 10.1038/ncomms4580 – volume: 104 year: 2014 ident: 10.1016/j.actamat.2021.117079_bib0023 article-title: Plasticity mechanisms in ultrafine grained freestanding aluminum thin films revealed by in-situ transmission electron microscopy nanomechanical testing publication-title: Appl. Phys. Lett. doi: 10.1063/1.4868124 – volume: 92 start-page: 3172 year: 2012 ident: 10.1016/j.actamat.2021.117079_bib0031 article-title: Thickness and grain size dependence of the strength of copper thin films as investigated with bulge tests and nanoindentations publication-title: Philos. Mag. doi: 10.1080/14786435.2012.685773 – volume: 102 year: 2013 ident: 10.1016/j.actamat.2021.117079_bib0020 article-title: The effect of solute segregation on strain localization in nanocrystalline thin films: dislocation glide vs. grain-boundary mediated plasticity publication-title: Appl. Phys. Lett. doi: 10.1063/1.4811743 – volume: 16 start-page: 363 year: 1967 ident: 10.1016/j.actamat.2021.117079_bib0057 article-title: On the geometry of grain and phase boundaries publication-title: Philosoph. Mag. doi: 10.1080/14786436708229748 – volume: 644 start-page: 166 year: 2017 ident: 10.1016/j.actamat.2021.117079_bib0005 article-title: Microstructural influence on the cyclic electro-mechanical behaviour of ductile films on polymer substrates publication-title: Thin Solid Films doi: 10.1016/j.tsf.2017.06.067 – volume: 289 start-page: 69 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0030 article-title: Mechanical characterization of metallic thin films by bulge and scratch testing publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2016.01.051 – volume: 66 start-page: 915 year: 2012 ident: 10.1016/j.actamat.2021.117079_bib0004 article-title: Fatigue of polymer-supported Ag thin films publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2012.02.030 – ident: 10.1016/j.actamat.2021.117079_bib0011 doi: 10.3390/mi8090277 – volume: 77 start-page: 223 year: 2014 ident: 10.1016/j.actamat.2021.117079_bib0040 article-title: The role of disconnections in deformation-coupled grain boundary migration publication-title: Acta Mater. doi: 10.1016/j.actamat.2014.05.062 – volume: 51 start-page: 427 year: 2006 ident: 10.1016/j.actamat.2021.117079_bib0032 article-title: Mechanical properties of nanocrystalline materials publication-title: Prog. Mater Sci. doi: 10.1016/j.pmatsci.2005.08.003 – volume: 21 start-page: 149 year: 1973 ident: 10.1016/j.actamat.2021.117079_bib0054 article-title: Diffusion-accommodated flow and superplasticity publication-title: Acta Metall. doi: 10.1016/0001-6160(73)90057-6 – volume: 143 start-page: 77 year: 2018 ident: 10.1016/j.actamat.2021.117079_bib0048 article-title: Size effects on intergranular crack growth mechanisms in ultrathin nanocrystalline gold free-standing films publication-title: Acta Mater. doi: 10.1016/j.actamat.2017.10.004 – year: 2014 ident: 10.1016/j.actamat.2021.117079_bib0045 – volume: 9 start-page: 41 year: 2021 ident: 10.1016/j.actamat.2021.117079_bib0039 article-title: Breakdown of the superplastic deformation behavior of heterogeneous nanomaterials at small length scales publication-title: Mater. Res. Lett. doi: 10.1080/21663831.2020.1818323 – volume: 37 start-page: 261 year: 2005 ident: 10.1016/j.actamat.2021.117079_bib0013 article-title: Delocalizing strain in a thin metal film on a polymer substrate publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2004.02.002 – ident: 10.1016/j.actamat.2021.117079_bib0025 doi: 10.1016/j.msea.2010.08.043 – volume: 57 start-page: 2198 year: 2009 ident: 10.1016/j.actamat.2021.117079_bib0018 article-title: Grain boundary shear–migration coupling—I. In situ TEM straining experiments in Al polycrystals publication-title: Acta Materialia. doi: 10.1016/j.actamat.2009.01.014 – year: 2021 ident: 10.1016/j.actamat.2021.117079_bib0028 article-title: Applicability of focused Ion beam (FIB) milling with gallium, neon, and xenon to the fracture toughness characterization of gold thin films publication-title: J. Mater. Res. doi: 10.1557/s43578-020-00045-w – volume: 691 start-page: 218 year: 2017 ident: 10.1016/j.actamat.2021.117079_bib0014 article-title: Understanding the extremely low fracture toughness of freestanding gold thin films by in-situ bulge testing in an AFM publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2017.03.037 – year: 2011 ident: 10.1016/j.actamat.2021.117079_bib0043 – volume: 93 year: 2016 ident: 10.1016/j.actamat.2021.117079_bib0042 article-title: Disconnections kinks and competing modes in shear-coupled grain boundary migration publication-title: Phys. Rev. B. doi: 10.1103/PhysRevB.93.024109 |
SSID | ssj0012740 |
Score | 2.4942007 |
Snippet | The limited ductility of metallic thin films (< 1%) poses a challenge to MEMS and flexible electronics applications. Here, we report on freestanding gold... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 117079 |
SubjectTerms | Deformation mechanisms Ductility Nanomechanical testing Thin films Transmission electron microscopy |
Title | Grain boundary mediated plasticity: A blessing for the ductility of metallic thin films? |
URI | https://dx.doi.org/10.1016/j.actamat.2021.117079 |
Volume | 215 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEJ7UetGD8Rnro9mDV8ouZYH1YhqjVo1e1KQ3wj4wNZU2iode_O3OFFo1MZp4gyVDlmGZ-Yad-QbgiOdZLrSSnolz7oVWaPykMGq1WgYyM1xbR_XON7dR_yG8GshBA07ntTCUVlnb_sqmz6x1PeLX2vQnw6F_J7pSER9VQKRneLgEywF6-6QJy73L6_7tYjMBA6-qWFgqjwQ-C3n8J5x1mSE2xEgxELSDySmp6ycX9cXtnK_DWo0XWa-a0gY0XLEJq19YBLdgcEFtHpieNUh6mbJZMQgCSTZBZExJ0-X0mPWYHlHGa_HIEKYyhH2MmF4pM3bKxjkKIQofDQ1ewXvlw9Hz68k2PJyf3Z_2vbphgmfCICg9mQQuwydA0BKHkbS00x07wRMr4lzqLMoDbnUsc56ZxEirhLGI_7hLIoXOUnZ3oFmMC7cLjDvNuyaOtBTdMFSRkioxOGQRb8nYqRaEcx2lpmYTp6YWo3SeNvaU1qpNSbVppdoWdBZik4pO4y-BZP4C0m_rIkWT_7vo3v9F92GFzujfsZAH0Cxf3twhgo9St2Gp8y7a9RL7AFSE2O0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZgOwAHxFO8yYFrWdI1bcMFTYixsbELQ9qtah5Fm8aYoBz277HXjoeEQOJWJXKVuqn9pf5sA5zxLM2EVtIzUca9wAqNnxSeWq2WvkwN19ZRvvNdL2w9BLcDOViCq0UuDNEqS9tf2PS5tS5HaqU2a9PhsHYv6lJRPSqfip7h5TJUA2pqXYFqo91p9T6CCXjwKpKFpfJI4DORpzbCVecpYkM8KfqCIpicSF0_uagvbqe5AeslXmSNYkmbsOQmW7D2pYrgNgxuqM0D0_MGSS8zNk8GQSDJpoiMiTSdzy5Yg-kxMV4njwxhKkPYx6jSKzFjZ-w5QyFE4eOhwRm8VzYcP71e7sBD87p_1fLKhgmeCXw_92TsuxSfAEFLFITSUqQ7coLHVkSZ1GmY-dzqSGY8NbGRVgljEf9xF4cKnaWs70Jl8jxxe8C407xuolBLUQ8CFSqpYoNDFvGWjJzah2Cho8SU1cSpqcU4WdDGRkmp2oRUmxSq3YfzD7FpUU7jL4F48QKSb_siQZP_u-jB_0VPYaXVv-sm3XavcwirNEP_kYU8gkr-8uaOEYjk-qTcaO90Y9rT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Grain+boundary+mediated+plasticity%3A+A+blessing+for+the+ductility+of+metallic+thin+films%3F&rft.jtitle=Acta+materialia&rft.au=Liebig%2C+Jan+P.&rft.au=Ma%C4%8Dkovi%C4%87%2C+Mirza&rft.au=Spiecker%2C+Erdmann&rft.au=G%C3%B6ken%2C+Mathias&rft.date=2021-08-15&rft.issn=1359-6454&rft.volume=215&rft.spage=117079&rft_id=info:doi/10.1016%2Fj.actamat.2021.117079&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_actamat_2021_117079 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-6454&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-6454&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-6454&client=summon |