Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 18; p. e2210756120 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
02.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2210756120 |
Cover
Abstract | In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (
Oryx dammah
), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. |
---|---|
AbstractList | Conservation genetic management is becoming increasingly important for safeguarding and restoring wildlife populations. Understanding how the intensity of intervention influences genomic components of fitness is therefore essential for supporting species viability. We investigate the impact of contrasting management strategies on the genomic landscape of inbreeding and mutation load in captive populations of the scimitar-horned oryx. We reveal how several decades of management have prevented the formation of long runs of homozygosity and masked the expression of deleterious mutations. Our findings highlight the dynamics between inbreeding, mutation load, and population size and have direct implications for future management of threatened species.
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (
Oryx dammah
), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( Oryx dammah ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world. |
Author | Stoffel, Martin A. Ogden, Rob Dicks, Kara Ball, Alex D. Humble, Emily Pusey, Ricardo Remeithi, Mohammed Al Senn, Helen Gooley, Rebecca M. Koepfli, Klaus-Peter Chuven, Justin Pukazhenthi, Budhan |
Author_xml | – sequence: 1 givenname: Emily orcidid: 0000-0001-6841-1269 surname: Humble fullname: Humble, Emily organization: Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom – sequence: 2 givenname: Martin A. orcidid: 0000-0003-4030-3543 surname: Stoffel fullname: Stoffel, Martin A. organization: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom – sequence: 3 givenname: Kara orcidid: 0000-0002-3764-4315 surname: Dicks fullname: Dicks, Kara organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom – sequence: 4 givenname: Alex D. surname: Ball fullname: Ball, Alex D. organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom – sequence: 5 givenname: Rebecca M. surname: Gooley fullname: Gooley, Rebecca M. organization: Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008 – sequence: 6 givenname: Justin surname: Chuven fullname: Chuven, Justin organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates, US Fish and Wildlife Service, CO 80612 – sequence: 7 givenname: Ricardo surname: Pusey fullname: Pusey, Ricardo organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates – sequence: 8 givenname: Mohammed Al surname: Remeithi fullname: Remeithi, Mohammed Al organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates – sequence: 9 givenname: Klaus-Peter orcidid: 0000-0001-7281-0676 surname: Koepfli fullname: Koepfli, Klaus-Peter organization: Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008 – sequence: 10 givenname: Budhan surname: Pukazhenthi fullname: Pukazhenthi, Budhan organization: Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008 – sequence: 11 givenname: Helen surname: Senn fullname: Senn, Helen organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom – sequence: 12 givenname: Rob orcidid: 0000-0002-2831-0428 surname: Ogden fullname: Ogden, Rob organization: Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37098062$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UctuFDEQtFAQ2QTO3NBIXLhM0vZ4xusTQisSkCJxgSOy2o_ZOJqxF9sTsX-PV5vwiMSpW-qqUnXVGTkJMThCXlO4oCC6y13AfMFY3fuBMnhGVhQkbQcu4YSsAJho15zxU3KW8x0AyH4NL8hpJ0CuYWAr8n0TQ3bpHouPoZkx4NbNLpQml4TFbfeNn3doSm580Mk568O2wWCbeSlHzhTR1mOTjZ99wdTexhScbWLa_3xJno84ZffqYZ6Tb1cfv24-tTdfrj9vPty0hjNWWs470FKKoev4iADDqDtOtXFUaGmAaW65Fdatez5oQNproTXiaNw4IEXbnZP3R93domdnTX0g4aR2yc-Y9iqiV_9egr9V23ivKNABpJBV4d2DQoo_FpeLmn02bpowuLhkxWpcIICLrkLfPoHexSWF-l9FUd5D38mD4Ju_Lf328hh9BfRHgEkx5-RGZfwx0urQT9WaOlSsDhWrPxVX3uUT3qP0_xi_APk-q4w |
CitedBy_id | crossref_primary_10_1093_gbe_evae090 crossref_primary_10_1111_mec_17605 crossref_primary_10_1146_annurev_animal_111523_102403 crossref_primary_10_1111_mec_17729 crossref_primary_10_1002_vms3_70004 crossref_primary_10_1111_mec_17641 crossref_primary_10_1111_mec_17631 crossref_primary_10_1111_eva_70055 crossref_primary_10_3390_genes14101977 crossref_primary_10_1016_j_pld_2024_04_001 crossref_primary_10_1038_s41437_024_00728_8 crossref_primary_10_1111_1755_0998_13837 crossref_primary_10_1038_s41576_023_00671_0 crossref_primary_10_1016_j_gecco_2024_e02932 crossref_primary_10_1038_s41437_024_00685_2 crossref_primary_10_1111_tpj_17064 |
Cites_doi | 10.1038/ng.2896 10.1002/(SICI)1098-2361(1997)16:5<377::AID-ZOO1>3.0.CO;2-7 10.1073/pnas.0403809101 10.1371/journal.pone.0013996 10.1111/eva.12714 10.1098/rspb.2012.2058 10.1002/evl3.209 10.2307/2410240 10.1111/mec.13154 10.1101/2022.06.19.496717 10.1038/s41467-021-25289-w 10.1126/sciadv.aau0757 10.1016/j.tree.2018.08.011 10.1111/ele.13754 10.1186/s12859-014-0356-4 10.1186/s40850-017-0026-x 10.1093/oso/9780198783398.001.0001 10.1111/conl.12285 10.1073/pnas.2104642118 10.1016/j.cub.2018.08.066 10.1038/s41467-021-22386-8 10.3389/fevo.2019.00470 10.1016/j.gde.2016.09.006 10.1038/s41559-019-0968-1 10.1093/genetics/48.10.1303 10.1126/science.aaa3952 10.2307/2410812 10.1111/mec.13139 10.1038/33136 10.1046/j.1523-1739.1996.10051312.x 10.1038/ng.3186 10.1038/s41467-021-23222-9 10.1016/j.ajhg.2008.08.007 10.1002/0471250953.bi1110s43 10.1002/evl3.229 10.1017/S0030605310001766 10.1093/genetics/72.2.335 10.1146/annurev.es.18.110187.001321 10.1371/journal.pgen.1008205 10.1086/285812 10.1016/j.biocon.2020.108784 10.1016/j.ajhg.2015.07.012 10.1038/s41467-020-14803-1 10.1534/genetics.116.198861 10.1111/1755-0998.13181 10.1016/j.cub.2019.01.072 10.1093/molbev/mst125 10.1111/j.1523-1739.1988.tb00169.x 10.1093/molbev/msaa169 10.1111/j.1365-294X.2005.02553.x 10.1093/bioinformatics/btp352 10.1371/journal.pbio.1001258 10.1002/jwmg.21777 10.1534/genetics.118.301336 10.1111/eva.13216 10.1016/S0169-5347(02)02489-8 10.1111/j.1523-1739.1987.tb00023.x 10.1038/sj.hdy.6885530 10.1016/j.biocon.2019.108318 10.1093/biosci/biz091 10.1111/j.1469-1795.2011.00448.x 10.14806/ej.17.1.200 10.4161/fly.19695 10.1111/mec.14933 10.1093/bioinformatics/btr509 10.1186/s13059-016-0974-4 10.3389/fgene.2019.01170 10.1073/pnas.2015096118 10.1073/pnas.2110614119 10.1111/j.1365-294X.2006.03148.x 10.1534/genetics.112.148825 10.1093/genetics/153.3.1475 10.1534/genetics.111.135541 10.3389/fevo.2017.00120 10.1016/j.biocon.2019.108244 10.1086/519795 10.1073/pnas.2023018118 10.1111/j.1469-1795.1999.tb00071.x 10.1016/j.cub.2018.11.055 10.1111/oik.01340 10.1073/pnas.1518046113 10.1002/9781118409572.ch14 10.1038/hdy.2015.17 10.1093/genetics/160.3.1191 10.1046/j.1523-1739.2003.01236.x 10.1111/1755-0998.13559 10.2307/5542 10.1111/eva.12976 10.1126/science.1228899 10.1016/j.tree.2016.09.005 10.1146/annurev.ecolsys.37.091305.110145 10.1111/mec.16051 10.1016/j.xgen.2021.100002 10.1016/j.ajhg.2012.06.014 10.1016/j.tree.2014.10.009 10.1093/bioinformatics/btr330 10.1534/genetics.113.154138 10.1111/j.1752-4571.2011.00192.x 10.1093/genetics/155.2.945 10.2307/2411285 10.1017/S0016672399004152 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences May 2, 2023 Copyright © 2023 the Author(s). Published by PNAS. 2023 |
Copyright_xml | – notice: Copyright National Academy of Sciences May 2, 2023 – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.2210756120 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
ExternalDocumentID | PMC10160979 37098062 10_1073_pnas_2210756120 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE AAYXX ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CITATION CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c422t-4430b9976334fa006fb341bce17b9c02b4d4d7de8546b0a15b7bbaafcef6a1ad3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:22 EDT 2025 Fri Sep 05 08:17:18 EDT 2025 Mon Jun 30 09:48:15 EDT 2025 Mon Jul 21 06:05:17 EDT 2025 Tue Jul 01 01:03:36 EDT 2025 Thu Apr 24 23:04:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | runs of homozygosity (ROH) effective population size deleterious mutations reintroduction ex situ populations |
Language | English |
License | This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c422t-4430b9976334fa006fb341bce17b9c02b4d4d7de8546b0a15b7bbaafcef6a1ad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Edited by Andrew Clark, Cornell University, Ithaca, NY; received June 24, 2022; accepted March 23, 2023 |
ORCID | 0000-0002-2831-0428 0000-0001-6841-1269 0000-0001-7281-0676 0000-0003-4030-3543 0000-0002-3764-4315 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC10160979 |
PMID | 37098062 |
PQID | 2814505399 |
PQPubID | 42026 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10160979 proquest_miscellaneous_2806070473 proquest_journals_2814505399 pubmed_primary_37098062 crossref_citationtrail_10_1073_pnas_2210756120 crossref_primary_10_1073_pnas_2210756120 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-02 |
PublicationDateYYYYMMDD | 2023-05-02 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2023 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_61_2 e_1_3_4_84_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_65_2 e_1_3_4_46_2 e_1_3_4_88_2 Ballou J. (e_1_3_4_7_2) 1995 e_1_3_4_102_2 e_1_3_4_72_2 e_1_3_4_95_2 e_1_3_4_106_2 e_1_3_4_30_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 e_1_3_4_99_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_62_2 e_1_3_4_85_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_66_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_101_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_105_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_109_2 e_1_3_4_12_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_35_2 e_1_3_4_39_2 Gilbert T. (e_1_3_4_44_2) 2022 e_1_3_4_1_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_21_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_100_2 e_1_3_4_93_2 e_1_3_4_104_2 e_1_3_4_74_2 e_1_3_4_51_2 e_1_3_4_108_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_97_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_78_2 e_1_3_4_17_2 Clutton-Brock T. H. (e_1_3_4_77_2) 2004 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_103_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_107_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_56_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_90_2 – ident: e_1_3_4_71_2 doi: 10.1038/ng.2896 – ident: e_1_3_4_82_2 doi: 10.1002/(SICI)1098-2361(1997)16:5<377::AID-ZOO1>3.0.CO;2-7 – ident: e_1_3_4_6_2 doi: 10.1073/pnas.0403809101 – ident: e_1_3_4_55_2 doi: 10.1371/journal.pone.0013996 – ident: e_1_3_4_80_2 doi: 10.1111/eva.12714 – ident: e_1_3_4_83_2 doi: 10.1098/rspb.2012.2058 – ident: e_1_3_4_18_2 doi: 10.1002/evl3.209 – ident: e_1_3_4_4_2 doi: 10.2307/2410240 – ident: e_1_3_4_51_2 doi: 10.1111/mec.13154 – ident: e_1_3_4_107_2 doi: 10.1101/2022.06.19.496717 – ident: e_1_3_4_58_2 doi: 10.1038/s41467-021-25289-w – ident: e_1_3_4_23_2 doi: 10.1126/sciadv.aau0757 – ident: e_1_3_4_87_2 doi: 10.1016/j.tree.2018.08.011 – volume-title: Soay Sheep: Dynamics and Selection in an Island Population year: 2004 ident: e_1_3_4_77_2 – ident: e_1_3_4_79_2 doi: 10.1111/ele.13754 – ident: e_1_3_4_98_2 doi: 10.1186/s12859-014-0356-4 – ident: e_1_3_4_8_2 doi: 10.1186/s40850-017-0026-x – ident: e_1_3_4_84_2 doi: 10.1093/oso/9780198783398.001.0001 – ident: e_1_3_4_1_2 doi: 10.1111/conl.12285 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.2104642118 – ident: e_1_3_4_39_2 – ident: e_1_3_4_22_2 doi: 10.1016/j.cub.2018.08.066 – ident: e_1_3_4_25_2 doi: 10.1038/s41467-021-22386-8 – ident: e_1_3_4_86_2 doi: 10.3389/fevo.2019.00470 – ident: e_1_3_4_52_2 doi: 10.1016/j.gde.2016.09.006 – ident: e_1_3_4_33_2 doi: 10.1038/s41559-019-0968-1 – ident: e_1_3_4_88_2 – ident: e_1_3_4_2_2 doi: 10.1093/genetics/48.10.1303 – ident: e_1_3_4_21_2 doi: 10.1126/science.aaa3952 – ident: e_1_3_4_30_2 doi: 10.2307/2410812 – ident: e_1_3_4_63_2 doi: 10.1111/mec.13139 – ident: e_1_3_4_31_2 doi: 10.1038/33136 – ident: e_1_3_4_28_2 doi: 10.1046/j.1523-1739.1996.10051312.x – volume-title: Analytical Methods and Strategies in Small Population Conservation year: 1995 ident: e_1_3_4_7_2 – ident: e_1_3_4_106_2 doi: 10.1038/ng.3186 – ident: e_1_3_4_72_2 doi: 10.1038/s41467-021-23222-9 – ident: e_1_3_4_54_2 doi: 10.1016/j.ajhg.2008.08.007 – ident: e_1_3_4_93_2 doi: 10.1002/0471250953.bi1110s43 – ident: e_1_3_4_35_2 doi: 10.1002/evl3.229 – ident: e_1_3_4_12_2 doi: 10.1017/S0030605310001766 – ident: e_1_3_4_50_2 doi: 10.1093/genetics/72.2.335 – ident: e_1_3_4_59_2 doi: 10.1146/annurev.es.18.110187.001321 – ident: e_1_3_4_85_2 doi: 10.1371/journal.pgen.1008205 – ident: e_1_3_4_5_2 doi: 10.1086/285812 – ident: e_1_3_4_16_2 doi: 10.1016/j.biocon.2020.108784 – ident: e_1_3_4_48_2 doi: 10.1016/j.ajhg.2015.07.012 – ident: e_1_3_4_34_2 doi: 10.1038/s41467-020-14803-1 – ident: e_1_3_4_53_2 doi: 10.1534/genetics.116.198861 – ident: e_1_3_4_45_2 doi: 10.1111/1755-0998.13181 – ident: e_1_3_4_64_2 doi: 10.1016/j.cub.2019.01.072 – ident: e_1_3_4_47_2 doi: 10.1093/molbev/mst125 – ident: e_1_3_4_76_2 doi: 10.1111/j.1523-1739.1988.tb00169.x – ident: e_1_3_4_103_2 doi: 10.1093/molbev/msaa169 – ident: e_1_3_4_100_2 doi: 10.1111/j.1365-294X.2005.02553.x – ident: e_1_3_4_91_2 doi: 10.1093/bioinformatics/btp352 – ident: e_1_3_4_78_2 doi: 10.1371/journal.pbio.1001258 – ident: e_1_3_4_11_2 doi: 10.1002/jwmg.21777 – ident: e_1_3_4_97_2 doi: 10.1534/genetics.118.301336 – ident: e_1_3_4_36_2 doi: 10.1111/eva.13216 – ident: e_1_3_4_29_2 doi: 10.1016/S0169-5347(02)02489-8 – ident: e_1_3_4_3_2 doi: 10.1111/j.1523-1739.1987.tb00023.x – ident: e_1_3_4_74_2 doi: 10.1038/sj.hdy.6885530 – ident: e_1_3_4_42_2 doi: 10.1016/j.biocon.2019.108318 – ident: e_1_3_4_9_2 doi: 10.1093/biosci/biz091 – ident: e_1_3_4_61_2 doi: 10.1111/j.1469-1795.2011.00448.x – ident: e_1_3_4_89_2 doi: 10.14806/ej.17.1.200 – ident: e_1_3_4_104_2 doi: 10.4161/fly.19695 – ident: e_1_3_4_69_2 doi: 10.1111/mec.14933 – ident: e_1_3_4_94_2 doi: 10.1093/bioinformatics/btr509 – ident: e_1_3_4_108_2 doi: 10.1101/2022.06.19.496717 – ident: e_1_3_4_105_2 doi: 10.1186/s13059-016-0974-4 – ident: e_1_3_4_102_2 doi: 10.3389/fgene.2019.01170 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.2015096118 – ident: e_1_3_4_38_2 doi: 10.1073/pnas.2110614119 – ident: e_1_3_4_40_2 doi: 10.1111/j.1365-294X.2006.03148.x – ident: e_1_3_4_46_2 doi: 10.1534/genetics.112.148825 – ident: e_1_3_4_67_2 doi: 10.1093/genetics/153.3.1475 – ident: e_1_3_4_109_2 doi: 10.1101/2022.06.19.496717 – ident: e_1_3_4_68_2 doi: 10.1534/genetics.111.135541 – ident: e_1_3_4_14_2 doi: 10.3389/fevo.2017.00120 – ident: e_1_3_4_15_2 doi: 10.1016/j.biocon.2019.108244 – ident: e_1_3_4_101_2 doi: 10.1086/519795 – ident: e_1_3_4_37_2 doi: 10.1073/pnas.2023018118 – ident: e_1_3_4_65_2 doi: 10.1111/j.1469-1795.1999.tb00071.x – ident: e_1_3_4_24_2 doi: 10.1016/j.cub.2018.11.055 – ident: e_1_3_4_81_2 doi: 10.1111/oik.01340 – ident: e_1_3_4_73_2 doi: 10.1073/pnas.1518046113 – volume-title: International Studbook for the Scimitar-Horned Oryx year: 2022 ident: e_1_3_4_44_2 – ident: e_1_3_4_43_2 doi: 10.1002/9781118409572.ch14 – ident: e_1_3_4_57_2 doi: 10.1038/hdy.2015.17 – ident: e_1_3_4_60_2 doi: 10.1093/genetics/160.3.1191 – ident: e_1_3_4_32_2 doi: 10.1046/j.1523-1739.2003.01236.x – ident: e_1_3_4_92_2 doi: 10.1111/1755-0998.13559 – ident: e_1_3_4_27_2 doi: 10.2307/5542 – ident: e_1_3_4_10_2 doi: 10.1111/eva.12976 – ident: e_1_3_4_13_2 doi: 10.1126/science.1228899 – ident: e_1_3_4_75_2 doi: 10.1016/j.tree.2016.09.005 – ident: e_1_3_4_66_2 doi: 10.1146/annurev.ecolsys.37.091305.110145 – ident: e_1_3_4_17_2 doi: 10.1111/mec.16051 – ident: e_1_3_4_26_2 doi: 10.1016/j.xgen.2021.100002 – ident: e_1_3_4_56_2 doi: 10.1016/j.ajhg.2012.06.014 – ident: e_1_3_4_62_2 doi: 10.1016/j.tree.2014.10.009 – ident: e_1_3_4_95_2 doi: 10.1093/bioinformatics/btr330 – ident: e_1_3_4_96_2 doi: 10.1534/genetics.113.154138 – ident: e_1_3_4_41_2 doi: 10.1111/j.1752-4571.2011.00192.x – ident: e_1_3_4_99_2 doi: 10.1093/genetics/155.2.945 – ident: e_1_3_4_70_2 doi: 10.2307/2411285 – ident: e_1_3_4_49_2 doi: 10.1017/S0016672399004152 |
SSID | ssj0009580 |
Score | 2.5397897 |
Snippet | In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding.... Conservation genetic management is becoming increasingly important for safeguarding and restoring wildlife populations. Understanding how the intensity of... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e2210756120 |
SubjectTerms | Alleles Animals Antelopes - genetics At risk populations Biological Sciences Breeding Genomes Genotype Genotypes Habitat loss Homozygosity Homozygote Inbreeding Mutation Nucleotide sequence Oryx dammah Overexploitation Polymorphism, Single Nucleotide Population genetics Population viability Populations Reintroduction Wildlife habitats Wildlife management |
Title | Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37098062 https://www.proquest.com/docview/2814505399 https://www.proquest.com/docview/2806070473 https://pubmed.ncbi.nlm.nih.gov/PMC10160979 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBjM-wgYzEYahKSWMnTo4TdJrQKDu0Ui8osuNYq9gS1KbSxj_Bv8xzbCdpGRNwiaLYcSy_X57fe34fCL1VLJcqJsQfFzLyqUqBD5JY-UGecFEoIlmgo5E_T-PTOf20iBaDwc-e19KmFqP8x61xJf9DVXgGdNVRsv9A2XZQeAD3QF-4AoXh-lc01tU2nVHV-qE2Z_trk3L2xsZAapcr0Hybbao5LLjaWB_Dy4rr3Es6LPJqWfOVf1GtgO8Oq9XNdV9sPW-3ubVzKpg6K-JxF5NiGcV66A_Pp12FY4CMMF7LE21NaY06daWUcRIwyQw6u-rHZf5tbWPVOosBN0ckOibHOipbc0VonAM75fauyfX5dAiYoSa6elQY1gySjR9TU1y05d1h0AdpcuumAFxMVzIu-XoUgobLdEHQoNv_3Jn_9Et2Mj87y2aTxeweuh8yEMac-afN4pyYmCY7PZcripH3O8Nvizm_6S67Lrg9mWb2CD20ygg-NsjaR4OifIz23ULhI5uT_N0T9LUPNdxBDTuoYQs13EENA9SwgxrWUINGvAM1rKH2FM1PJrMPp76tzOHnNAxrn1ISiBQkWUKo4sC4lQBpSOTFmIk0D0JBJZVMFklEYxHwcSSYEJyrvFAxH3NJnqG9siqLFwhTRSKAiaSUKypzmQaRkBJGlaD5Eik8NHILmeU2bb2unnKZNe4TjGR65bNu5T101L7w3WRs-XPXQ0eZzP7W0JyMKagFILh76E3bDExXn6Txsqg2uk8Qw15JGfHQc0PI9luEBSk0hx5KtkjcdtAJ3bdbyuVFk9i9SfeYsvTl3fM6QA-6P-sQ7dWrTfEKRONavG7g-gs5u8EF |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+management+strategy+impacts+inbreeding+and+mutation+load+in+scimitar-horned+oryx&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Humble%2C+Emily&rft.au=Stoffel%2C+Martin+A&rft.au=Dicks%2C+Kara&rft.au=Ball%2C+Alex+D&rft.date=2023-05-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=18&rft_id=info:doi/10.1073%2Fpnas.2210756120&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |