Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx

In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 18; p. e2210756120
Main Authors Humble, Emily, Stoffel, Martin A., Dicks, Kara, Ball, Alex D., Gooley, Rebecca M., Chuven, Justin, Pusey, Ricardo, Remeithi, Mohammed Al, Koepfli, Klaus-Peter, Pukazhenthi, Budhan, Senn, Helen, Ogden, Rob
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 02.05.2023
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2210756120

Cover

Abstract In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( Oryx dammah ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
AbstractList Conservation genetic management is becoming increasingly important for safeguarding and restoring wildlife populations. Understanding how the intensity of intervention influences genomic components of fitness is therefore essential for supporting species viability. We investigate the impact of contrasting management strategies on the genomic landscape of inbreeding and mutation load in captive populations of the scimitar-horned oryx. We reveal how several decades of management have prevented the formation of long runs of homozygosity and masked the expression of deleterious mutations. Our findings highlight the dynamics between inbreeding, mutation load, and population size and have direct implications for future management of threatened species. In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( Oryx dammah ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( Oryx dammah ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx ( ), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding. Genetic management has therefore become a vital tool for ensuring population viability. However, little is known about how the type and intensity of intervention shape the genomic landscape of inbreeding and mutation load. We address this using whole-genome sequence data of the scimitar-horned oryx (Oryx dammah), an iconic antelope that has been subject to contrasting management strategies since it was declared extinct in the wild. We show that unmanaged populations are enriched for long runs of homozygosity (ROH) and have significantly higher inbreeding coefficients than managed populations. Additionally, despite the total number of deleterious alleles being similar across management strategies, the burden of homozygous deleterious genotypes was consistently higher in unmanaged groups. These findings emphasize the risks associated with deleterious mutations through multiple generations of inbreeding. As wildlife management strategies continue to diversify, our study reinforces the importance of maintaining genome-wide variation in vulnerable populations and has direct implications for one of the largest reintroduction attempts in the world.
Author Stoffel, Martin A.
Ogden, Rob
Dicks, Kara
Ball, Alex D.
Humble, Emily
Pusey, Ricardo
Remeithi, Mohammed Al
Senn, Helen
Gooley, Rebecca M.
Koepfli, Klaus-Peter
Chuven, Justin
Pukazhenthi, Budhan
Author_xml – sequence: 1
  givenname: Emily
  orcidid: 0000-0001-6841-1269
  surname: Humble
  fullname: Humble, Emily
  organization: Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
– sequence: 2
  givenname: Martin A.
  orcidid: 0000-0003-4030-3543
  surname: Stoffel
  fullname: Stoffel, Martin A.
  organization: Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
– sequence: 3
  givenname: Kara
  orcidid: 0000-0002-3764-4315
  surname: Dicks
  fullname: Dicks, Kara
  organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom
– sequence: 4
  givenname: Alex D.
  surname: Ball
  fullname: Ball, Alex D.
  organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom
– sequence: 5
  givenname: Rebecca M.
  surname: Gooley
  fullname: Gooley, Rebecca M.
  organization: Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008
– sequence: 6
  givenname: Justin
  surname: Chuven
  fullname: Chuven, Justin
  organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates, US Fish and Wildlife Service, CO 80612
– sequence: 7
  givenname: Ricardo
  surname: Pusey
  fullname: Pusey, Ricardo
  organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates
– sequence: 8
  givenname: Mohammed Al
  surname: Remeithi
  fullname: Remeithi, Mohammed Al
  organization: Terrestrial & Marine Biodiversity Sector, Environment Agency - Abu Dhabi, United Arab Emirates
– sequence: 9
  givenname: Klaus-Peter
  orcidid: 0000-0001-7281-0676
  surname: Koepfli
  fullname: Koepfli, Klaus-Peter
  organization: Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008
– sequence: 10
  givenname: Budhan
  surname: Pukazhenthi
  fullname: Pukazhenthi, Budhan
  organization: Smithsonian’s National Zoo and Conservation Biology Institute, Center for Species Survival, Front Royal, VA 22630 and Washington, DC 20008
– sequence: 11
  givenname: Helen
  surname: Senn
  fullname: Senn, Helen
  organization: RZSS WildGenes, Conservation Department, Royal Zoological Society of Scotland, Edinburgh EH12 6TS, United Kingdom
– sequence: 12
  givenname: Rob
  orcidid: 0000-0002-2831-0428
  surname: Ogden
  fullname: Ogden, Rob
  organization: Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37098062$$D View this record in MEDLINE/PubMed
BookMark eNp1UctuFDEQtFAQ2QTO3NBIXLhM0vZ4xusTQisSkCJxgSOy2o_ZOJqxF9sTsX-PV5vwiMSpW-qqUnXVGTkJMThCXlO4oCC6y13AfMFY3fuBMnhGVhQkbQcu4YSsAJho15zxU3KW8x0AyH4NL8hpJ0CuYWAr8n0TQ3bpHouPoZkx4NbNLpQml4TFbfeNn3doSm580Mk568O2wWCbeSlHzhTR1mOTjZ99wdTexhScbWLa_3xJno84ZffqYZ6Tb1cfv24-tTdfrj9vPty0hjNWWs470FKKoev4iADDqDtOtXFUaGmAaW65Fdatez5oQNproTXiaNw4IEXbnZP3R93domdnTX0g4aR2yc-Y9iqiV_9egr9V23ivKNABpJBV4d2DQoo_FpeLmn02bpowuLhkxWpcIICLrkLfPoHexSWF-l9FUd5D38mD4Ju_Lf328hh9BfRHgEkx5-RGZfwx0urQT9WaOlSsDhWrPxVX3uUT3qP0_xi_APk-q4w
CitedBy_id crossref_primary_10_1093_gbe_evae090
crossref_primary_10_1111_mec_17605
crossref_primary_10_1146_annurev_animal_111523_102403
crossref_primary_10_1111_mec_17729
crossref_primary_10_1002_vms3_70004
crossref_primary_10_1111_mec_17641
crossref_primary_10_1111_mec_17631
crossref_primary_10_1111_eva_70055
crossref_primary_10_3390_genes14101977
crossref_primary_10_1016_j_pld_2024_04_001
crossref_primary_10_1038_s41437_024_00728_8
crossref_primary_10_1111_1755_0998_13837
crossref_primary_10_1038_s41576_023_00671_0
crossref_primary_10_1016_j_gecco_2024_e02932
crossref_primary_10_1038_s41437_024_00685_2
crossref_primary_10_1111_tpj_17064
Cites_doi 10.1038/ng.2896
10.1002/(SICI)1098-2361(1997)16:5<377::AID-ZOO1>3.0.CO;2-7
10.1073/pnas.0403809101
10.1371/journal.pone.0013996
10.1111/eva.12714
10.1098/rspb.2012.2058
10.1002/evl3.209
10.2307/2410240
10.1111/mec.13154
10.1101/2022.06.19.496717
10.1038/s41467-021-25289-w
10.1126/sciadv.aau0757
10.1016/j.tree.2018.08.011
10.1111/ele.13754
10.1186/s12859-014-0356-4
10.1186/s40850-017-0026-x
10.1093/oso/9780198783398.001.0001
10.1111/conl.12285
10.1073/pnas.2104642118
10.1016/j.cub.2018.08.066
10.1038/s41467-021-22386-8
10.3389/fevo.2019.00470
10.1016/j.gde.2016.09.006
10.1038/s41559-019-0968-1
10.1093/genetics/48.10.1303
10.1126/science.aaa3952
10.2307/2410812
10.1111/mec.13139
10.1038/33136
10.1046/j.1523-1739.1996.10051312.x
10.1038/ng.3186
10.1038/s41467-021-23222-9
10.1016/j.ajhg.2008.08.007
10.1002/0471250953.bi1110s43
10.1002/evl3.229
10.1017/S0030605310001766
10.1093/genetics/72.2.335
10.1146/annurev.es.18.110187.001321
10.1371/journal.pgen.1008205
10.1086/285812
10.1016/j.biocon.2020.108784
10.1016/j.ajhg.2015.07.012
10.1038/s41467-020-14803-1
10.1534/genetics.116.198861
10.1111/1755-0998.13181
10.1016/j.cub.2019.01.072
10.1093/molbev/mst125
10.1111/j.1523-1739.1988.tb00169.x
10.1093/molbev/msaa169
10.1111/j.1365-294X.2005.02553.x
10.1093/bioinformatics/btp352
10.1371/journal.pbio.1001258
10.1002/jwmg.21777
10.1534/genetics.118.301336
10.1111/eva.13216
10.1016/S0169-5347(02)02489-8
10.1111/j.1523-1739.1987.tb00023.x
10.1038/sj.hdy.6885530
10.1016/j.biocon.2019.108318
10.1093/biosci/biz091
10.1111/j.1469-1795.2011.00448.x
10.14806/ej.17.1.200
10.4161/fly.19695
10.1111/mec.14933
10.1093/bioinformatics/btr509
10.1186/s13059-016-0974-4
10.3389/fgene.2019.01170
10.1073/pnas.2015096118
10.1073/pnas.2110614119
10.1111/j.1365-294X.2006.03148.x
10.1534/genetics.112.148825
10.1093/genetics/153.3.1475
10.1534/genetics.111.135541
10.3389/fevo.2017.00120
10.1016/j.biocon.2019.108244
10.1086/519795
10.1073/pnas.2023018118
10.1111/j.1469-1795.1999.tb00071.x
10.1016/j.cub.2018.11.055
10.1111/oik.01340
10.1073/pnas.1518046113
10.1002/9781118409572.ch14
10.1038/hdy.2015.17
10.1093/genetics/160.3.1191
10.1046/j.1523-1739.2003.01236.x
10.1111/1755-0998.13559
10.2307/5542
10.1111/eva.12976
10.1126/science.1228899
10.1016/j.tree.2016.09.005
10.1146/annurev.ecolsys.37.091305.110145
10.1111/mec.16051
10.1016/j.xgen.2021.100002
10.1016/j.ajhg.2012.06.014
10.1016/j.tree.2014.10.009
10.1093/bioinformatics/btr330
10.1534/genetics.113.154138
10.1111/j.1752-4571.2011.00192.x
10.1093/genetics/155.2.945
10.2307/2411285
10.1017/S0016672399004152
ContentType Journal Article
Copyright Copyright National Academy of Sciences May 2, 2023
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright National Academy of Sciences May 2, 2023
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.2210756120
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID PMC10160979
37098062
10_1073_pnas_2210756120
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
AAYXX
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CITATION
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c422t-4430b9976334fa006fb341bce17b9c02b4d4d7de8546b0a15b7bbaafcef6a1ad3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:22 EDT 2025
Fri Sep 05 08:17:18 EDT 2025
Mon Jun 30 09:48:15 EDT 2025
Mon Jul 21 06:05:17 EDT 2025
Tue Jul 01 01:03:36 EDT 2025
Thu Apr 24 23:04:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords runs of homozygosity (ROH)
effective population size
deleterious mutations
reintroduction
ex situ populations
Language English
License This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c422t-4430b9976334fa006fb341bce17b9c02b4d4d7de8546b0a15b7bbaafcef6a1ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Edited by Andrew Clark, Cornell University, Ithaca, NY; received June 24, 2022; accepted March 23, 2023
ORCID 0000-0002-2831-0428
0000-0001-6841-1269
0000-0001-7281-0676
0000-0003-4030-3543
0000-0002-3764-4315
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC10160979
PMID 37098062
PQID 2814505399
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10160979
proquest_miscellaneous_2806070473
proquest_journals_2814505399
pubmed_primary_37098062
crossref_citationtrail_10_1073_pnas_2210756120
crossref_primary_10_1073_pnas_2210756120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-02
PublicationDateYYYYMMDD 2023-05-02
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-02
  day: 02
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_61_2
e_1_3_4_84_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_65_2
e_1_3_4_46_2
e_1_3_4_88_2
Ballou J. (e_1_3_4_7_2) 1995
e_1_3_4_102_2
e_1_3_4_72_2
e_1_3_4_95_2
e_1_3_4_106_2
e_1_3_4_30_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
e_1_3_4_99_2
e_1_3_4_19_2
e_1_3_4_2_2
e_1_3_4_62_2
e_1_3_4_85_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_66_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_101_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_105_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_109_2
e_1_3_4_12_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_35_2
e_1_3_4_39_2
Gilbert T. (e_1_3_4_44_2) 2022
e_1_3_4_1_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_63_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_21_2
e_1_3_4_48_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_100_2
e_1_3_4_93_2
e_1_3_4_104_2
e_1_3_4_74_2
e_1_3_4_51_2
e_1_3_4_108_2
e_1_3_4_70_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_97_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_78_2
e_1_3_4_17_2
Clutton-Brock T. H. (e_1_3_4_77_2) 2004
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_103_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_107_2
e_1_3_4_79_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_75_2
e_1_3_4_98_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_56_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_90_2
– ident: e_1_3_4_71_2
  doi: 10.1038/ng.2896
– ident: e_1_3_4_82_2
  doi: 10.1002/(SICI)1098-2361(1997)16:5<377::AID-ZOO1>3.0.CO;2-7
– ident: e_1_3_4_6_2
  doi: 10.1073/pnas.0403809101
– ident: e_1_3_4_55_2
  doi: 10.1371/journal.pone.0013996
– ident: e_1_3_4_80_2
  doi: 10.1111/eva.12714
– ident: e_1_3_4_83_2
  doi: 10.1098/rspb.2012.2058
– ident: e_1_3_4_18_2
  doi: 10.1002/evl3.209
– ident: e_1_3_4_4_2
  doi: 10.2307/2410240
– ident: e_1_3_4_51_2
  doi: 10.1111/mec.13154
– ident: e_1_3_4_107_2
  doi: 10.1101/2022.06.19.496717
– ident: e_1_3_4_58_2
  doi: 10.1038/s41467-021-25289-w
– ident: e_1_3_4_23_2
  doi: 10.1126/sciadv.aau0757
– ident: e_1_3_4_87_2
  doi: 10.1016/j.tree.2018.08.011
– volume-title: Soay Sheep: Dynamics and Selection in an Island Population
  year: 2004
  ident: e_1_3_4_77_2
– ident: e_1_3_4_79_2
  doi: 10.1111/ele.13754
– ident: e_1_3_4_98_2
  doi: 10.1186/s12859-014-0356-4
– ident: e_1_3_4_8_2
  doi: 10.1186/s40850-017-0026-x
– ident: e_1_3_4_84_2
  doi: 10.1093/oso/9780198783398.001.0001
– ident: e_1_3_4_1_2
  doi: 10.1111/conl.12285
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.2104642118
– ident: e_1_3_4_39_2
– ident: e_1_3_4_22_2
  doi: 10.1016/j.cub.2018.08.066
– ident: e_1_3_4_25_2
  doi: 10.1038/s41467-021-22386-8
– ident: e_1_3_4_86_2
  doi: 10.3389/fevo.2019.00470
– ident: e_1_3_4_52_2
  doi: 10.1016/j.gde.2016.09.006
– ident: e_1_3_4_33_2
  doi: 10.1038/s41559-019-0968-1
– ident: e_1_3_4_88_2
– ident: e_1_3_4_2_2
  doi: 10.1093/genetics/48.10.1303
– ident: e_1_3_4_21_2
  doi: 10.1126/science.aaa3952
– ident: e_1_3_4_30_2
  doi: 10.2307/2410812
– ident: e_1_3_4_63_2
  doi: 10.1111/mec.13139
– ident: e_1_3_4_31_2
  doi: 10.1038/33136
– ident: e_1_3_4_28_2
  doi: 10.1046/j.1523-1739.1996.10051312.x
– volume-title: Analytical Methods and Strategies in Small Population Conservation
  year: 1995
  ident: e_1_3_4_7_2
– ident: e_1_3_4_106_2
  doi: 10.1038/ng.3186
– ident: e_1_3_4_72_2
  doi: 10.1038/s41467-021-23222-9
– ident: e_1_3_4_54_2
  doi: 10.1016/j.ajhg.2008.08.007
– ident: e_1_3_4_93_2
  doi: 10.1002/0471250953.bi1110s43
– ident: e_1_3_4_35_2
  doi: 10.1002/evl3.229
– ident: e_1_3_4_12_2
  doi: 10.1017/S0030605310001766
– ident: e_1_3_4_50_2
  doi: 10.1093/genetics/72.2.335
– ident: e_1_3_4_59_2
  doi: 10.1146/annurev.es.18.110187.001321
– ident: e_1_3_4_85_2
  doi: 10.1371/journal.pgen.1008205
– ident: e_1_3_4_5_2
  doi: 10.1086/285812
– ident: e_1_3_4_16_2
  doi: 10.1016/j.biocon.2020.108784
– ident: e_1_3_4_48_2
  doi: 10.1016/j.ajhg.2015.07.012
– ident: e_1_3_4_34_2
  doi: 10.1038/s41467-020-14803-1
– ident: e_1_3_4_53_2
  doi: 10.1534/genetics.116.198861
– ident: e_1_3_4_45_2
  doi: 10.1111/1755-0998.13181
– ident: e_1_3_4_64_2
  doi: 10.1016/j.cub.2019.01.072
– ident: e_1_3_4_47_2
  doi: 10.1093/molbev/mst125
– ident: e_1_3_4_76_2
  doi: 10.1111/j.1523-1739.1988.tb00169.x
– ident: e_1_3_4_103_2
  doi: 10.1093/molbev/msaa169
– ident: e_1_3_4_100_2
  doi: 10.1111/j.1365-294X.2005.02553.x
– ident: e_1_3_4_91_2
  doi: 10.1093/bioinformatics/btp352
– ident: e_1_3_4_78_2
  doi: 10.1371/journal.pbio.1001258
– ident: e_1_3_4_11_2
  doi: 10.1002/jwmg.21777
– ident: e_1_3_4_97_2
  doi: 10.1534/genetics.118.301336
– ident: e_1_3_4_36_2
  doi: 10.1111/eva.13216
– ident: e_1_3_4_29_2
  doi: 10.1016/S0169-5347(02)02489-8
– ident: e_1_3_4_3_2
  doi: 10.1111/j.1523-1739.1987.tb00023.x
– ident: e_1_3_4_74_2
  doi: 10.1038/sj.hdy.6885530
– ident: e_1_3_4_42_2
  doi: 10.1016/j.biocon.2019.108318
– ident: e_1_3_4_9_2
  doi: 10.1093/biosci/biz091
– ident: e_1_3_4_61_2
  doi: 10.1111/j.1469-1795.2011.00448.x
– ident: e_1_3_4_89_2
  doi: 10.14806/ej.17.1.200
– ident: e_1_3_4_104_2
  doi: 10.4161/fly.19695
– ident: e_1_3_4_69_2
  doi: 10.1111/mec.14933
– ident: e_1_3_4_94_2
  doi: 10.1093/bioinformatics/btr509
– ident: e_1_3_4_108_2
  doi: 10.1101/2022.06.19.496717
– ident: e_1_3_4_105_2
  doi: 10.1186/s13059-016-0974-4
– ident: e_1_3_4_102_2
  doi: 10.3389/fgene.2019.01170
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.2015096118
– ident: e_1_3_4_38_2
  doi: 10.1073/pnas.2110614119
– ident: e_1_3_4_40_2
  doi: 10.1111/j.1365-294X.2006.03148.x
– ident: e_1_3_4_46_2
  doi: 10.1534/genetics.112.148825
– ident: e_1_3_4_67_2
  doi: 10.1093/genetics/153.3.1475
– ident: e_1_3_4_109_2
  doi: 10.1101/2022.06.19.496717
– ident: e_1_3_4_68_2
  doi: 10.1534/genetics.111.135541
– ident: e_1_3_4_14_2
  doi: 10.3389/fevo.2017.00120
– ident: e_1_3_4_15_2
  doi: 10.1016/j.biocon.2019.108244
– ident: e_1_3_4_101_2
  doi: 10.1086/519795
– ident: e_1_3_4_37_2
  doi: 10.1073/pnas.2023018118
– ident: e_1_3_4_65_2
  doi: 10.1111/j.1469-1795.1999.tb00071.x
– ident: e_1_3_4_24_2
  doi: 10.1016/j.cub.2018.11.055
– ident: e_1_3_4_81_2
  doi: 10.1111/oik.01340
– ident: e_1_3_4_73_2
  doi: 10.1073/pnas.1518046113
– volume-title: International Studbook for the Scimitar-Horned Oryx
  year: 2022
  ident: e_1_3_4_44_2
– ident: e_1_3_4_43_2
  doi: 10.1002/9781118409572.ch14
– ident: e_1_3_4_57_2
  doi: 10.1038/hdy.2015.17
– ident: e_1_3_4_60_2
  doi: 10.1093/genetics/160.3.1191
– ident: e_1_3_4_32_2
  doi: 10.1046/j.1523-1739.2003.01236.x
– ident: e_1_3_4_92_2
  doi: 10.1111/1755-0998.13559
– ident: e_1_3_4_27_2
  doi: 10.2307/5542
– ident: e_1_3_4_10_2
  doi: 10.1111/eva.12976
– ident: e_1_3_4_13_2
  doi: 10.1126/science.1228899
– ident: e_1_3_4_75_2
  doi: 10.1016/j.tree.2016.09.005
– ident: e_1_3_4_66_2
  doi: 10.1146/annurev.ecolsys.37.091305.110145
– ident: e_1_3_4_17_2
  doi: 10.1111/mec.16051
– ident: e_1_3_4_26_2
  doi: 10.1016/j.xgen.2021.100002
– ident: e_1_3_4_56_2
  doi: 10.1016/j.ajhg.2012.06.014
– ident: e_1_3_4_62_2
  doi: 10.1016/j.tree.2014.10.009
– ident: e_1_3_4_95_2
  doi: 10.1093/bioinformatics/btr330
– ident: e_1_3_4_96_2
  doi: 10.1534/genetics.113.154138
– ident: e_1_3_4_41_2
  doi: 10.1111/j.1752-4571.2011.00192.x
– ident: e_1_3_4_99_2
  doi: 10.1093/genetics/155.2.945
– ident: e_1_3_4_70_2
  doi: 10.2307/2411285
– ident: e_1_3_4_49_2
  doi: 10.1017/S0016672399004152
SSID ssj0009580
Score 2.5397897
Snippet In an age of habitat loss and overexploitation, small populations, both captive and wild, are increasingly facing the effects of isolation and inbreeding....
Conservation genetic management is becoming increasingly important for safeguarding and restoring wildlife populations. Understanding how the intensity of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage e2210756120
SubjectTerms Alleles
Animals
Antelopes - genetics
At risk populations
Biological Sciences
Breeding
Genomes
Genotype
Genotypes
Habitat loss
Homozygosity
Homozygote
Inbreeding
Mutation
Nucleotide sequence
Oryx dammah
Overexploitation
Polymorphism, Single Nucleotide
Population genetics
Population viability
Populations
Reintroduction
Wildlife habitats
Wildlife management
Title Conservation management strategy impacts inbreeding and mutation load in scimitar-horned oryx
URI https://www.ncbi.nlm.nih.gov/pubmed/37098062
https://www.proquest.com/docview/2814505399
https://www.proquest.com/docview/2806070473
https://pubmed.ncbi.nlm.nih.gov/PMC10160979
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKuHBBjM-wgYzEYahKSWMnTo4TdJrQKDu0Ui8osuNYq9gS1KbSxj_Bv8xzbCdpGRNwiaLYcSy_X57fe34fCL1VLJcqJsQfFzLyqUqBD5JY-UGecFEoIlmgo5E_T-PTOf20iBaDwc-e19KmFqP8x61xJf9DVXgGdNVRsv9A2XZQeAD3QF-4AoXh-lc01tU2nVHV-qE2Z_trk3L2xsZAapcr0Hybbao5LLjaWB_Dy4rr3Es6LPJqWfOVf1GtgO8Oq9XNdV9sPW-3ubVzKpg6K-JxF5NiGcV66A_Pp12FY4CMMF7LE21NaY06daWUcRIwyQw6u-rHZf5tbWPVOosBN0ckOibHOipbc0VonAM75fauyfX5dAiYoSa6elQY1gySjR9TU1y05d1h0AdpcuumAFxMVzIu-XoUgobLdEHQoNv_3Jn_9Et2Mj87y2aTxeweuh8yEMac-afN4pyYmCY7PZcripH3O8Nvizm_6S67Lrg9mWb2CD20ygg-NsjaR4OifIz23ULhI5uT_N0T9LUPNdxBDTuoYQs13EENA9SwgxrWUINGvAM1rKH2FM1PJrMPp76tzOHnNAxrn1ISiBQkWUKo4sC4lQBpSOTFmIk0D0JBJZVMFklEYxHwcSSYEJyrvFAxH3NJnqG9siqLFwhTRSKAiaSUKypzmQaRkBJGlaD5Eik8NHILmeU2bb2unnKZNe4TjGR65bNu5T101L7w3WRs-XPXQ0eZzP7W0JyMKagFILh76E3bDExXn6Txsqg2uk8Qw15JGfHQc0PI9luEBSk0hx5KtkjcdtAJ3bdbyuVFk9i9SfeYsvTl3fM6QA-6P-sQ7dWrTfEKRONavG7g-gs5u8EF
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conservation+management+strategy+impacts+inbreeding+and+mutation+load+in+scimitar-horned+oryx&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Humble%2C+Emily&rft.au=Stoffel%2C+Martin+A&rft.au=Dicks%2C+Kara&rft.au=Ball%2C+Alex+D&rft.date=2023-05-02&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=18&rft_id=info:doi/10.1073%2Fpnas.2210756120&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon