Spatial-Spectral Classification of Hyperspectral Images Using Discriminative Dictionary Designed by Learning Vector Quantization
In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficien...
Saved in:
Published in | IEEE transactions on geoscience and remote sensing Vol. 52; no. 8; pp. 4808 - 4822 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.08.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 0196-2892 1558-0644 |
DOI | 10.1109/TGRS.2013.2285049 |
Cover
Abstract | In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficient due to the large size of typical HSI images but also ineffective in capturing class-discriminative information crucial for classification. We address the dictionary design problem with the inspiration from the learning vector quantization technique and propose a hinge loss function that is directly related to the classification task as the objective function for dictionary learning. The resulting online learning procedure systematically "pulls" and "pushes" dictionary atoms so that they become better adapted to distinguish between different classes. In addition, the spatial context for a test pixel within its local neighborhood is modeled using a Bayesian graph model and is incorporated with the sparse representation of a single test pixel in a unified probabilistic framework, which enables further refinement of our dictionary to capture the spatial class dependence that complements the spectral information. Experiments on different HSI images demonstrate that the dictionaries optimized using our method can achieve higher classification accuracy with substantially reduced dictionary size than using the whole training set. The proposed method also outperforms existing dictionary learning methods and attains the state-of-the-art results in both the spectral-only and spatial-spectral settings. |
---|---|
AbstractList | In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficient due to the large size of typical HSI images but also ineffective in capturing class-discriminative information crucial for classification. We address the dictionary design problem with the inspiration from the learning vector quantization technique and propose a hinge loss function that is directly related to the classification task as the objective function for dictionary learning. The resulting online learning procedure systematically "pulls" and "pushes" dictionary atoms so that they become better adapted to distinguish between different classes. In addition, the spatial context for a test pixel within its local neighborhood is modeled using a Bayesian graph model and is incorporated with the sparse representation of a single test pixel in a unified probabilistic framework, which enables further refinement of our dictionary to capture the spatial class dependence that complements the spectral information. Experiments on different HSI images demonstrate that the dictionaries optimized using our method can achieve higher classification accuracy with substantially reduced dictionary size than using the whole training set. The proposed method also outperforms existing dictionary learning methods and attains the state-of-the-art results in both the spectral-only and spatial-spectral settings. |
Author | Nasrabadi, Nasser M. Wang, Zhaowen Huang, Thomas S. |
Author_xml | – sequence: 1 givenname: Zhaowen surname: Wang fullname: Wang, Zhaowen organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA – sequence: 2 givenname: Nasser M. surname: Nasrabadi fullname: Nasrabadi, Nasser M. organization: U.S. Army Res. Lab., Adelphi, MD, USA – sequence: 3 givenname: Thomas S. surname: Huang fullname: Huang, Thomas S. organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28721472$$DView record in Pascal Francis |
BookMark | eNp9kUtrGzEUhUVJoI7THxC6EZRCN-Pq6jWjZXGaBxhKazdbIcuSURhrptK44K7y06uJnS6y6Epc6TtH995zgc5iFx1CV0BmAER9Xt3-WM4oATajtBGEqzdoAkI0FZGcn6EJASUr2ij6Fl3k_EgIcAH1BD0tezME01bL3tkhmRbPW5Nz8MGW-y7izuO7Q-9Sfnm_35mty_hnDnGLr0O2KexCLPBvV0o7ikw64GuXwza6DV4f8MKZFEf8oXh0CX_fmziEP88fXKJzb9rs3p3OKVrdfF3N76rFt9v7-ZdFZTmlQ0WtUMxYcJJYpljDYeNBra3yQC0IwhSslSmFUkquDdkQ6TeEOGDWS2HZFH062vap-7V3edC70rprWxNdt88aZCPqWjaUFvTDK_Sx26dYmtMggHIAVnqZoo8nymRrWp9MtCHrvmyjjK9pU1Pg9ehWHzmbupyT89qG4Xnyss3QaiB6DFCPAeoxQH0KsCjhlfLF_H-a90dNcM7946XkDatr9hd-1qna |
CODEN | IGRSD2 |
CitedBy_id | crossref_primary_10_1109_TGRS_2022_3195924 crossref_primary_10_1109_JSTARS_2018_2851368 crossref_primary_10_1016_j_sigpro_2015_09_004 crossref_primary_10_3390_rs12223701 crossref_primary_10_1016_j_patcog_2016_04_009 crossref_primary_10_1364_AO_54_008625 crossref_primary_10_1117_1_OE_59_9_090902 crossref_primary_10_3934_mbe_2020195 crossref_primary_10_1109_TGRS_2020_3042274 crossref_primary_10_1109_TCYB_2016_2533430 crossref_primary_10_1117_1_JRS_15_026513 crossref_primary_10_1088_1742_6596_1235_1_012027 crossref_primary_10_1109_TGRS_2017_2765364 crossref_primary_10_1007_s11042_015_3098_z crossref_primary_10_1080_01431161_2017_1375613 crossref_primary_10_1016_j_neucom_2016_05_101 crossref_primary_10_1109_TGRS_2024_3483312 crossref_primary_10_1109_TGRS_2024_3483871 crossref_primary_10_1109_TGRS_2017_2704590 crossref_primary_10_3390_rs9030203 crossref_primary_10_3390_s17092087 crossref_primary_10_1016_j_sigpro_2016_10_022 crossref_primary_10_2478_amcs_2018_0015 crossref_primary_10_1109_JSTSP_2015_2423260 crossref_primary_10_1109_TGRS_2023_3272588 crossref_primary_10_1016_j_knosys_2025_112996 crossref_primary_10_1109_TGRS_2018_2862899 crossref_primary_10_1109_TGRS_2015_2392755 crossref_primary_10_1016_j_sigpro_2017_11_001 crossref_primary_10_1109_TGRS_2021_3051204 crossref_primary_10_3103_S8756699017010058 crossref_primary_10_3103_S8756699018010120 crossref_primary_10_3390_rs12233967 crossref_primary_10_3390_rs8080636 crossref_primary_10_1109_JSTARS_2016_2569162 crossref_primary_10_1109_TNNLS_2018_2874432 crossref_primary_10_1109_TGRS_2018_2869723 crossref_primary_10_1109_JSTARS_2015_2477364 crossref_primary_10_1109_TGRS_2017_2761893 crossref_primary_10_3390_rs8120985 crossref_primary_10_1016_j_infrared_2017_08_021 crossref_primary_10_1080_01431161_2018_1465614 crossref_primary_10_1007_s11042_018_6885_5 crossref_primary_10_1109_JSTARS_2020_3018719 crossref_primary_10_1016_j_agwat_2023_108228 crossref_primary_10_1364_JOSAA_34_001011 crossref_primary_10_1109_TGRS_2016_2560529 crossref_primary_10_1109_LGRS_2015_2419713 crossref_primary_10_1016_j_neucom_2015_03_061 crossref_primary_10_1088_1755_1315_248_1_012027 crossref_primary_10_1117_1_JRS_14_032605 crossref_primary_10_1007_s11760_015_0753_9 crossref_primary_10_1109_TGRS_2016_2599163 crossref_primary_10_1080_10106049_2020_1852615 crossref_primary_10_1007_s41060_018_0115_0 crossref_primary_10_1016_j_isprsjprs_2018_02_006 crossref_primary_10_3390_rs11070759 crossref_primary_10_1016_j_patcog_2021_108224 crossref_primary_10_1117_1_JRS_13_034522 crossref_primary_10_1109_TGRS_2015_2478379 crossref_primary_10_21307_ijssis_2017_224 crossref_primary_10_1109_TGRS_2022_3211209 crossref_primary_10_1016_j_patrec_2015_09_010 crossref_primary_10_1109_LGRS_2018_2890421 crossref_primary_10_3390_rs9040386 |
Cites_doi | 10.1109/TPAMI.2008.79 10.1109/36.763284 10.1109/IJCNN.1990.137622 10.1016/j.patcog.2010.01.016 10.1109/TGRS.2011.2163822 10.1002/cpa.20124 10.1109/TGRS.2004.831865 10.1109/TGRS.2010.2048116 10.1109/CVPR.2008.4587408 10.1109/CVPR.2010.5539958 10.1109/TGRS.2005.846154 10.1016/j.rse.2007.07.028 10.1109/TSP.2006.881199 10.1214/12-AOS1034 10.1109/LGRS.2005.857031 10.1002/0471723800 10.1007/978-4-431-66933-3 10.1109/CVPR.2010.5539989 10.1007/978-3-540-28650-9_7 10.1007/3-540-29711-1 10.1109/TGRS.2011.2129595 10.1109/CVPR.2011.5995354 10.1109/ICASSP.2012.6288305 10.1109/TGRS.2012.2230268 10.1109/ICASSP.1999.760624 10.1109/LGRS.2010.2047711 10.1109/WHISPERS.2012.6874290 10.1145/1553374.1553463 10.1109/TGRS.2004.842478 10.1109/TPAMI.2011.156 10.1109/TSP.2010.2044837 10.1109/ICASSP.2010.5494903 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
DOI | 10.1109/TGRS.2013.2285049 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management Electronics & Communications Abstracts ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-0644 |
EndPage | 4822 |
ExternalDocumentID | 3264820221 28721472 10_1109_TGRS_2013_2285049 6648377 |
Genre | orig-research |
GrantInformation_xml | – fundername: Army Research Laboratory; U.S. Army Research Laboratory funderid: 10.13039/100006754 – fundername: Army Research Office; U.S. Army Research Office grantid: W911NF-09-1-0383 funderid: 10.13039/100000183 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYOK AAYXX CITATION RIG IQODW 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M 7SP F28 |
ID | FETCH-LOGICAL-c422t-2c593ac1e60c393841df19bc9f12c150391b9af129996ba0d06fd00e13cf65c3 |
IEDL.DBID | RIE |
ISSN | 0196-2892 |
IngestDate | Sun Sep 28 07:02:35 EDT 2025 Mon Jun 30 08:31:52 EDT 2025 Wed Apr 02 07:17:46 EDT 2025 Thu Apr 24 23:11:21 EDT 2025 Tue Jul 01 01:33:53 EDT 2025 Wed Aug 27 08:30:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | hyperspectral imagery (HSI) dictionary learning spatial dependence Classification learning vector quantization (LVQ) sparse representation experimental studies models accuracy remote sensing classification imagery refinement discrimination Pixel dictionaries |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-2c593ac1e60c393841df19bc9f12c150391b9af129996ba0d06fd00e13cf65c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1512411359 |
PQPubID | 85465 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_28721472 proquest_miscellaneous_1685776822 crossref_citationtrail_10_1109_TGRS_2013_2285049 proquest_journals_1512411359 crossref_primary_10_1109_TGRS_2013_2285049 ieee_primary_6648377 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on geoscience and remote sensing |
PublicationTitleAbbrev | TGRS |
PublicationYear | 2014 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 bottou (ref36) 2004; lnai 3176 ref15 bradley (ref22) 0 ref31 ref30 ref33 ref11 ref32 ref1 ref39 ref16 ref19 aharon (ref12) 2006; 54 jensen (ref2) 2009 dantzig (ref40) 2003 richards (ref3) 2006 yang (ref18) 0 ref24 haris (ref10) 0 ref26 ref25 li (ref38) 1995 ref20 ref42 rodriguez (ref17) 2007 ref21 ref28 ref27 mairal (ref23) 0 yang (ref37) 0 ref29 ref8 ref7 ref9 ref4 ref6 ref5 lee (ref14) 0 landgrebe (ref41) 1992 |
References_xml | – ident: ref6 doi: 10.1109/TPAMI.2008.79 – start-page: 1033 year: 0 ident: ref23 article-title: Supervised dictionary learning publication-title: Proc 22nd Annu Conf Neural Inf Process Syst – year: 1992 ident: ref41 publication-title: AVIRIS NW Indiana's Indian Pines 1992 data set – start-page: 2360 year: 0 ident: ref37 article-title: Bilevel sparse coding for coupled feature spaces publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref39 doi: 10.1109/36.763284 – ident: ref25 doi: 10.1109/IJCNN.1990.137622 – year: 2009 ident: ref2 publication-title: Remote Sensing of the Environment An Earth Resource Perspective – start-page: 1 year: 0 ident: ref18 article-title: Learning the sparse representation for classification publication-title: Proc IEEE ICME – ident: ref29 doi: 10.1016/j.patcog.2010.01.016 – ident: ref8 doi: 10.1109/TGRS.2011.2163822 – ident: ref33 doi: 10.1002/cpa.20124 – ident: ref4 doi: 10.1109/TGRS.2004.831865 – ident: ref28 doi: 10.1109/TGRS.2010.2048116 – ident: ref20 doi: 10.1109/CVPR.2008.4587408 – ident: ref19 doi: 10.1109/CVPR.2010.5539958 – ident: ref5 doi: 10.1109/TGRS.2005.846154 – start-page: 113 year: 0 ident: ref22 article-title: Differentiable sparse coding publication-title: Proc NIPS – start-page: 801 year: 0 ident: ref14 article-title: Efficient sparse coding algorithms publication-title: Proc NIPS – ident: ref42 doi: 10.1016/j.rse.2007.07.028 – year: 2003 ident: ref40 publication-title: Linear Programming 2 Theory and Extensions – volume: 54 start-page: 4311 year: 2006 ident: ref12 article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.881199 – ident: ref35 doi: 10.1214/12-AOS1034 – ident: ref30 doi: 10.1109/LGRS.2005.857031 – ident: ref1 doi: 10.1002/0471723800 – year: 1995 ident: ref38 publication-title: Markov Random Field Modeling in Computer Vision Secaucus doi: 10.1007/978-4-431-66933-3 – ident: ref16 doi: 10.1109/CVPR.2010.5539989 – volume: lnai 3176 start-page: 146 year: 2004 ident: ref36 article-title: Stochastic learning publication-title: Advanced Lectures on Machine Learning doi: 10.1007/978-3-540-28650-9_7 – year: 2006 ident: ref3 publication-title: Remote Sensing Digital Image Analysis An Introduction doi: 10.1007/3-540-29711-1 – ident: ref7 doi: 10.1109/TGRS.2011.2129595 – ident: ref21 doi: 10.1109/CVPR.2011.5995354 – ident: ref13 doi: 10.1109/ICASSP.2012.6288305 – ident: ref31 doi: 10.1109/TGRS.2012.2230268 – ident: ref11 doi: 10.1109/ICASSP.1999.760624 – ident: ref32 doi: 10.1109/LGRS.2010.2047711 – ident: ref26 doi: 10.1109/WHISPERS.2012.6874290 – ident: ref15 doi: 10.1145/1553374.1553463 – start-page: 4785 year: 0 ident: ref10 article-title: Sparse representation over learned and discriminatively learned dictionaries for speaker verification publication-title: Proc IEEE ICASSP – ident: ref27 doi: 10.1109/TGRS.2004.842478 – ident: ref24 doi: 10.1109/TPAMI.2011.156 – ident: ref34 doi: 10.1109/TSP.2010.2044837 – year: 2007 ident: ref17 publication-title: Sparse representations for image classification learning discriminative and reconstructive non-parametric dictionaries – ident: ref9 doi: 10.1109/ICASSP.2010.5494903 |
SSID | ssj0014517 |
Score | 2.4426405 |
Snippet | In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4808 |
SubjectTerms | Applied geophysics Bayes methods Classification Complement Dictionaries dictionary learning Distance learning Earth sciences Earth, ocean, space Exact sciences and technology hyperspectral imagery (HSI) Hyperspectral imaging Internal geophysics Learning learning vector quantization (LVQ) Linear programming Mathematical models Objective function Pixels Probabilistic logic sparse representation spatial dependence Spectra Training Vector quantization |
Title | Spatial-Spectral Classification of Hyperspectral Images Using Discriminative Dictionary Designed by Learning Vector Quantization |
URI | https://ieeexplore.ieee.org/document/6648377 https://www.proquest.com/docview/1512411359 https://www.proquest.com/docview/1685776822 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tk5C2hwEbE4UyGYkntHT-ils_IsooSEOCdWhvUew40wS0U9s8jCf-dO4cNxpsQrzFspM4Oft8H7-7A3iFfFE6smvg6e8yrYPLrDI6046rIIOxrcHt9JOZnOuPF_nFBhx1sTAhhAg-CwO6jL78au4bMpUdG0P5z4ebsDkc2jZWq_MY6Fyk0GiToRIhkwdTcHs8ff_ljEBcaiDlKOeUNvPWGRSLqhAkslziX6nbchZ3OHM8bk4ewul6oi3K5NugWbmB__lXDsf__ZJHsJvkTvamXSiPYSPM9mDnVjbCPXgQ0aB-uQ-_qFAxLsyMqtOTKYTF2pmEKoqEZPOaTVCBbeM0qf_DD-RLSxYBCGx8RbyIMDbES7EZYyfKxQ0bR7xIqJi7YSmz6yX7Gh0H7HODRE5RoU9gevJu-naSpVINmddSrjLpc6tKL4LhXlk10qKqhXXe1kJ6lDmVFc6W2CD9ypW84qauOA9C-drkXh3A1mw-C0-BVbIe1V44XymrTWWc8KpUuiRRNAStesDXtCt8SmNO1TS-F1Gd4bYgchdE7iKRuwevu1uu2xwe_xq8T-TqBiZK9eDwjwXS9aPGSaWeZA_66xVTJDawLEic0kKoHB_7suvGDUxemXIW5g2OMaN8iEqflM_uf_Vz2MYJ6hZ12Iet1aIJL1ASWrnDuAV-A65eBiA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ9UGiL2NIWI3FCZOtXvOsjopQtdCsBC-otih0HIWC36m4O7ak_vTOONyoPIW6x7CROxh7P45sZgOfIF6Ujuwae_i7TOrjMKqMz7bgKMhjbGtzGJ2b0Wb87zU9X4GUXCxNCiOCz0KfL6MuvZr4hU9m-MZT_fHALbueoVQzaaK3OZ6BzkYKjTYZqhEw-TMHt_uTtx08E41J9KYc5p8SZN06hWFaFQJHlHP9L3Ra0-IM3xwPncB3Gy6m2OJPv_Wbh-v7ytyyO__stD-B-kjzZq3apPISVMN2AtRv5CDfgTsSD-vkmXFGpYlyaGdWnJ2MIi9UzCVcUSclmNRuhCttGalL_0U_kTHMWIQjs4BtxI0LZEDfFZoyeKM8v2EFEjISKuQuWcrt-ZV-i64B9aJDMKS50CyaHbyavR1kq1pB5LeUikz63qvQiGO6VVUMtqlpY520tpEepU1nhbIkN0rBcyStu6orzIJSvTe7VI1idzqbhMbBK1sPaC-crZbWpjBNelUqXJIyGoFUP-JJ2hU-JzKmexo8iKjTcFkTugshdJHL34EV3y1mbxeNfgzeJXN3ARKke7P2yQLp-1Dmp2JPswc5yxRSJEcwLEqi0ECrHxz7runELk1-mnIZZg2PMMB-g2ifl9t9f_RTujibj4-L46OT9E7iHk9UtBnEHVhfnTdhFuWjh9uJ2uAaOOwlx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Spectral+Classification+of+Hyperspectral+Images+Using+Discriminative+Dictionary+Designed+by+Learning+Vector+Quantization&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=ZHAOWEN+WANG&rft.au=NASRABADI%2C+Nasser+M&rft.au=HUANG%2C+Thomas+S&rft.date=2014-08-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=52&rft.issue=8&rft.spage=4808&rft.epage=4822&rft_id=info:doi/10.1109%2FTGRS.2013.2285049&rft.externalDBID=n%2Fa&rft.externalDocID=28721472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |