Spatial-Spectral Classification of Hyperspectral Images Using Discriminative Dictionary Designed by Learning Vector Quantization

In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficien...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 52; no. 8; pp. 4808 - 4822
Main Authors Wang, Zhaowen, Nasrabadi, Nasser M., Huang, Thomas S.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.08.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2013.2285049

Cover

Abstract In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficient due to the large size of typical HSI images but also ineffective in capturing class-discriminative information crucial for classification. We address the dictionary design problem with the inspiration from the learning vector quantization technique and propose a hinge loss function that is directly related to the classification task as the objective function for dictionary learning. The resulting online learning procedure systematically "pulls" and "pushes" dictionary atoms so that they become better adapted to distinguish between different classes. In addition, the spatial context for a test pixel within its local neighborhood is modeled using a Bayesian graph model and is incorporated with the sparse representation of a single test pixel in a unified probabilistic framework, which enables further refinement of our dictionary to capture the spatial class dependence that complements the spectral information. Experiments on different HSI images demonstrate that the dictionaries optimized using our method can achieve higher classification accuracy with substantially reduced dictionary size than using the whole training set. The proposed method also outperforms existing dictionary learning methods and attains the state-of-the-art results in both the spectral-only and spatial-spectral settings.
AbstractList In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional hyperspectral imagery (HSI). In SRC, a dictionary is conventionally constructed using all of the training pixels, which is not only inefficient due to the large size of typical HSI images but also ineffective in capturing class-discriminative information crucial for classification. We address the dictionary design problem with the inspiration from the learning vector quantization technique and propose a hinge loss function that is directly related to the classification task as the objective function for dictionary learning. The resulting online learning procedure systematically "pulls" and "pushes" dictionary atoms so that they become better adapted to distinguish between different classes. In addition, the spatial context for a test pixel within its local neighborhood is modeled using a Bayesian graph model and is incorporated with the sparse representation of a single test pixel in a unified probabilistic framework, which enables further refinement of our dictionary to capture the spatial class dependence that complements the spectral information. Experiments on different HSI images demonstrate that the dictionaries optimized using our method can achieve higher classification accuracy with substantially reduced dictionary size than using the whole training set. The proposed method also outperforms existing dictionary learning methods and attains the state-of-the-art results in both the spectral-only and spatial-spectral settings.
Author Nasrabadi, Nasser M.
Wang, Zhaowen
Huang, Thomas S.
Author_xml – sequence: 1
  givenname: Zhaowen
  surname: Wang
  fullname: Wang, Zhaowen
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
– sequence: 2
  givenname: Nasser M.
  surname: Nasrabadi
  fullname: Nasrabadi, Nasser M.
  organization: U.S. Army Res. Lab., Adelphi, MD, USA
– sequence: 3
  givenname: Thomas S.
  surname: Huang
  fullname: Huang, Thomas S.
  organization: Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana-Champaign, Urbana, IL, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28721472$$DView record in Pascal Francis
BookMark eNp9kUtrGzEUhUVJoI7THxC6EZRCN-Pq6jWjZXGaBxhKazdbIcuSURhrptK44K7y06uJnS6y6Epc6TtH995zgc5iFx1CV0BmAER9Xt3-WM4oATajtBGEqzdoAkI0FZGcn6EJASUr2ij6Fl3k_EgIcAH1BD0tezME01bL3tkhmRbPW5Nz8MGW-y7izuO7Q-9Sfnm_35mty_hnDnGLr0O2KexCLPBvV0o7ikw64GuXwza6DV4f8MKZFEf8oXh0CX_fmziEP88fXKJzb9rs3p3OKVrdfF3N76rFt9v7-ZdFZTmlQ0WtUMxYcJJYpljDYeNBra3yQC0IwhSslSmFUkquDdkQ6TeEOGDWS2HZFH062vap-7V3edC70rprWxNdt88aZCPqWjaUFvTDK_Sx26dYmtMggHIAVnqZoo8nymRrWp9MtCHrvmyjjK9pU1Pg9ehWHzmbupyT89qG4Xnyss3QaiB6DFCPAeoxQH0KsCjhlfLF_H-a90dNcM7946XkDatr9hd-1qna
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TGRS_2022_3195924
crossref_primary_10_1109_JSTARS_2018_2851368
crossref_primary_10_1016_j_sigpro_2015_09_004
crossref_primary_10_3390_rs12223701
crossref_primary_10_1016_j_patcog_2016_04_009
crossref_primary_10_1364_AO_54_008625
crossref_primary_10_1117_1_OE_59_9_090902
crossref_primary_10_3934_mbe_2020195
crossref_primary_10_1109_TGRS_2020_3042274
crossref_primary_10_1109_TCYB_2016_2533430
crossref_primary_10_1117_1_JRS_15_026513
crossref_primary_10_1088_1742_6596_1235_1_012027
crossref_primary_10_1109_TGRS_2017_2765364
crossref_primary_10_1007_s11042_015_3098_z
crossref_primary_10_1080_01431161_2017_1375613
crossref_primary_10_1016_j_neucom_2016_05_101
crossref_primary_10_1109_TGRS_2024_3483312
crossref_primary_10_1109_TGRS_2024_3483871
crossref_primary_10_1109_TGRS_2017_2704590
crossref_primary_10_3390_rs9030203
crossref_primary_10_3390_s17092087
crossref_primary_10_1016_j_sigpro_2016_10_022
crossref_primary_10_2478_amcs_2018_0015
crossref_primary_10_1109_JSTSP_2015_2423260
crossref_primary_10_1109_TGRS_2023_3272588
crossref_primary_10_1016_j_knosys_2025_112996
crossref_primary_10_1109_TGRS_2018_2862899
crossref_primary_10_1109_TGRS_2015_2392755
crossref_primary_10_1016_j_sigpro_2017_11_001
crossref_primary_10_1109_TGRS_2021_3051204
crossref_primary_10_3103_S8756699017010058
crossref_primary_10_3103_S8756699018010120
crossref_primary_10_3390_rs12233967
crossref_primary_10_3390_rs8080636
crossref_primary_10_1109_JSTARS_2016_2569162
crossref_primary_10_1109_TNNLS_2018_2874432
crossref_primary_10_1109_TGRS_2018_2869723
crossref_primary_10_1109_JSTARS_2015_2477364
crossref_primary_10_1109_TGRS_2017_2761893
crossref_primary_10_3390_rs8120985
crossref_primary_10_1016_j_infrared_2017_08_021
crossref_primary_10_1080_01431161_2018_1465614
crossref_primary_10_1007_s11042_018_6885_5
crossref_primary_10_1109_JSTARS_2020_3018719
crossref_primary_10_1016_j_agwat_2023_108228
crossref_primary_10_1364_JOSAA_34_001011
crossref_primary_10_1109_TGRS_2016_2560529
crossref_primary_10_1109_LGRS_2015_2419713
crossref_primary_10_1016_j_neucom_2015_03_061
crossref_primary_10_1088_1755_1315_248_1_012027
crossref_primary_10_1117_1_JRS_14_032605
crossref_primary_10_1007_s11760_015_0753_9
crossref_primary_10_1109_TGRS_2016_2599163
crossref_primary_10_1080_10106049_2020_1852615
crossref_primary_10_1007_s41060_018_0115_0
crossref_primary_10_1016_j_isprsjprs_2018_02_006
crossref_primary_10_3390_rs11070759
crossref_primary_10_1016_j_patcog_2021_108224
crossref_primary_10_1117_1_JRS_13_034522
crossref_primary_10_1109_TGRS_2015_2478379
crossref_primary_10_21307_ijssis_2017_224
crossref_primary_10_1109_TGRS_2022_3211209
crossref_primary_10_1016_j_patrec_2015_09_010
crossref_primary_10_1109_LGRS_2018_2890421
crossref_primary_10_3390_rs9040386
Cites_doi 10.1109/TPAMI.2008.79
10.1109/36.763284
10.1109/IJCNN.1990.137622
10.1016/j.patcog.2010.01.016
10.1109/TGRS.2011.2163822
10.1002/cpa.20124
10.1109/TGRS.2004.831865
10.1109/TGRS.2010.2048116
10.1109/CVPR.2008.4587408
10.1109/CVPR.2010.5539958
10.1109/TGRS.2005.846154
10.1016/j.rse.2007.07.028
10.1109/TSP.2006.881199
10.1214/12-AOS1034
10.1109/LGRS.2005.857031
10.1002/0471723800
10.1007/978-4-431-66933-3
10.1109/CVPR.2010.5539989
10.1007/978-3-540-28650-9_7
10.1007/3-540-29711-1
10.1109/TGRS.2011.2129595
10.1109/CVPR.2011.5995354
10.1109/ICASSP.2012.6288305
10.1109/TGRS.2012.2230268
10.1109/ICASSP.1999.760624
10.1109/LGRS.2010.2047711
10.1109/WHISPERS.2012.6874290
10.1145/1553374.1553463
10.1109/TGRS.2004.842478
10.1109/TPAMI.2011.156
10.1109/TSP.2010.2044837
10.1109/ICASSP.2010.5494903
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
DOI 10.1109/TGRS.2013.2285049
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
Electronics & Communications Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 4822
ExternalDocumentID 3264820221
28721472
10_1109_TGRS_2013_2285049
6648377
Genre orig-research
GrantInformation_xml – fundername: Army Research Laboratory; U.S. Army Research Laboratory
  funderid: 10.13039/100006754
– fundername: Army Research Office; U.S. Army Research Office
  grantid: W911NF-09-1-0383
  funderid: 10.13039/100000183
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYOK
AAYXX
CITATION
RIG
IQODW
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
7SP
F28
ID FETCH-LOGICAL-c422t-2c593ac1e60c393841df19bc9f12c150391b9af129996ba0d06fd00e13cf65c3
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Sun Sep 28 07:02:35 EDT 2025
Mon Jun 30 08:31:52 EDT 2025
Wed Apr 02 07:17:46 EDT 2025
Thu Apr 24 23:11:21 EDT 2025
Tue Jul 01 01:33:53 EDT 2025
Wed Aug 27 08:30:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords hyperspectral imagery (HSI)
dictionary learning
spatial dependence
Classification
learning vector quantization (LVQ)
sparse representation
experimental studies
models
accuracy
remote sensing
classification
imagery
refinement
discrimination
Pixel
dictionaries
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-2c593ac1e60c393841df19bc9f12c150391b9af129996ba0d06fd00e13cf65c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1512411359
PQPubID 85465
PageCount 15
ParticipantIDs pascalfrancis_primary_28721472
proquest_miscellaneous_1685776822
crossref_citationtrail_10_1109_TGRS_2013_2285049
proquest_journals_1512411359
crossref_primary_10_1109_TGRS_2013_2285049
ieee_primary_6648377
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
bottou (ref36) 2004; lnai 3176
ref15
bradley (ref22) 0
ref31
ref30
ref33
ref11
ref32
ref1
ref39
ref16
ref19
aharon (ref12) 2006; 54
jensen (ref2) 2009
dantzig (ref40) 2003
richards (ref3) 2006
yang (ref18) 0
ref24
haris (ref10) 0
ref26
ref25
li (ref38) 1995
ref20
ref42
rodriguez (ref17) 2007
ref21
ref28
ref27
mairal (ref23) 0
yang (ref37) 0
ref29
ref8
ref7
ref9
ref4
ref6
ref5
lee (ref14) 0
landgrebe (ref41) 1992
References_xml – ident: ref6
  doi: 10.1109/TPAMI.2008.79
– start-page: 1033
  year: 0
  ident: ref23
  article-title: Supervised dictionary learning
  publication-title: Proc 22nd Annu Conf Neural Inf Process Syst
– year: 1992
  ident: ref41
  publication-title: AVIRIS NW Indiana's Indian Pines 1992 data set
– start-page: 2360
  year: 0
  ident: ref37
  article-title: Bilevel sparse coding for coupled feature spaces
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref39
  doi: 10.1109/36.763284
– ident: ref25
  doi: 10.1109/IJCNN.1990.137622
– year: 2009
  ident: ref2
  publication-title: Remote Sensing of the Environment An Earth Resource Perspective
– start-page: 1
  year: 0
  ident: ref18
  article-title: Learning the sparse representation for classification
  publication-title: Proc IEEE ICME
– ident: ref29
  doi: 10.1016/j.patcog.2010.01.016
– ident: ref8
  doi: 10.1109/TGRS.2011.2163822
– ident: ref33
  doi: 10.1002/cpa.20124
– ident: ref4
  doi: 10.1109/TGRS.2004.831865
– ident: ref28
  doi: 10.1109/TGRS.2010.2048116
– ident: ref20
  doi: 10.1109/CVPR.2008.4587408
– ident: ref19
  doi: 10.1109/CVPR.2010.5539958
– ident: ref5
  doi: 10.1109/TGRS.2005.846154
– start-page: 113
  year: 0
  ident: ref22
  article-title: Differentiable sparse coding
  publication-title: Proc NIPS
– start-page: 801
  year: 0
  ident: ref14
  article-title: Efficient sparse coding algorithms
  publication-title: Proc NIPS
– ident: ref42
  doi: 10.1016/j.rse.2007.07.028
– year: 2003
  ident: ref40
  publication-title: Linear Programming 2 Theory and Extensions
– volume: 54
  start-page: 4311
  year: 2006
  ident: ref12
  article-title: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.881199
– ident: ref35
  doi: 10.1214/12-AOS1034
– ident: ref30
  doi: 10.1109/LGRS.2005.857031
– ident: ref1
  doi: 10.1002/0471723800
– year: 1995
  ident: ref38
  publication-title: Markov Random Field Modeling in Computer Vision Secaucus
  doi: 10.1007/978-4-431-66933-3
– ident: ref16
  doi: 10.1109/CVPR.2010.5539989
– volume: lnai 3176
  start-page: 146
  year: 2004
  ident: ref36
  article-title: Stochastic learning
  publication-title: Advanced Lectures on Machine Learning
  doi: 10.1007/978-3-540-28650-9_7
– year: 2006
  ident: ref3
  publication-title: Remote Sensing Digital Image Analysis An Introduction
  doi: 10.1007/3-540-29711-1
– ident: ref7
  doi: 10.1109/TGRS.2011.2129595
– ident: ref21
  doi: 10.1109/CVPR.2011.5995354
– ident: ref13
  doi: 10.1109/ICASSP.2012.6288305
– ident: ref31
  doi: 10.1109/TGRS.2012.2230268
– ident: ref11
  doi: 10.1109/ICASSP.1999.760624
– ident: ref32
  doi: 10.1109/LGRS.2010.2047711
– ident: ref26
  doi: 10.1109/WHISPERS.2012.6874290
– ident: ref15
  doi: 10.1145/1553374.1553463
– start-page: 4785
  year: 0
  ident: ref10
  article-title: Sparse representation over learned and discriminatively learned dictionaries for speaker verification
  publication-title: Proc IEEE ICASSP
– ident: ref27
  doi: 10.1109/TGRS.2004.842478
– ident: ref24
  doi: 10.1109/TPAMI.2011.156
– ident: ref34
  doi: 10.1109/TSP.2010.2044837
– year: 2007
  ident: ref17
  publication-title: Sparse representations for image classification learning discriminative and reconstructive non-parametric dictionaries
– ident: ref9
  doi: 10.1109/ICASSP.2010.5494903
SSID ssj0014517
Score 2.4426405
Snippet In this paper, a novel discriminative dictionary learning method is proposed for sparse-representation-based classification (SRC) to label highly dimensional...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4808
SubjectTerms Applied geophysics
Bayes methods
Classification
Complement
Dictionaries
dictionary learning
Distance learning
Earth sciences
Earth, ocean, space
Exact sciences and technology
hyperspectral imagery (HSI)
Hyperspectral imaging
Internal geophysics
Learning
learning vector quantization (LVQ)
Linear programming
Mathematical models
Objective function
Pixels
Probabilistic logic
sparse representation
spatial dependence
Spectra
Training
Vector quantization
Title Spatial-Spectral Classification of Hyperspectral Images Using Discriminative Dictionary Designed by Learning Vector Quantization
URI https://ieeexplore.ieee.org/document/6648377
https://www.proquest.com/docview/1512411359
https://www.proquest.com/docview/1685776822
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9tk5C2hwEbE4UyGYkntHT-ils_IsooSEOCdWhvUew40wS0U9s8jCf-dO4cNxpsQrzFspM4Oft8H7-7A3iFfFE6smvg6e8yrYPLrDI6046rIIOxrcHt9JOZnOuPF_nFBhx1sTAhhAg-CwO6jL78au4bMpUdG0P5z4ebsDkc2jZWq_MY6Fyk0GiToRIhkwdTcHs8ff_ljEBcaiDlKOeUNvPWGRSLqhAkslziX6nbchZ3OHM8bk4ewul6oi3K5NugWbmB__lXDsf__ZJHsJvkTvamXSiPYSPM9mDnVjbCPXgQ0aB-uQ-_qFAxLsyMqtOTKYTF2pmEKoqEZPOaTVCBbeM0qf_DD-RLSxYBCGx8RbyIMDbES7EZYyfKxQ0bR7xIqJi7YSmz6yX7Gh0H7HODRE5RoU9gevJu-naSpVINmddSrjLpc6tKL4LhXlk10qKqhXXe1kJ6lDmVFc6W2CD9ypW84qauOA9C-drkXh3A1mw-C0-BVbIe1V44XymrTWWc8KpUuiRRNAStesDXtCt8SmNO1TS-F1Gd4bYgchdE7iKRuwevu1uu2xwe_xq8T-TqBiZK9eDwjwXS9aPGSaWeZA_66xVTJDawLEic0kKoHB_7suvGDUxemXIW5g2OMaN8iEqflM_uf_Vz2MYJ6hZ12Iet1aIJL1ASWrnDuAV-A65eBiA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQ9UGiL2NIWI3FCZOtXvOsjopQtdCsBC-otih0HIWC36m4O7ak_vTOONyoPIW6x7CROxh7P45sZgOfIF6Ujuwae_i7TOrjMKqMz7bgKMhjbGtzGJ2b0Wb87zU9X4GUXCxNCiOCz0KfL6MuvZr4hU9m-MZT_fHALbueoVQzaaK3OZ6BzkYKjTYZqhEw-TMHt_uTtx08E41J9KYc5p8SZN06hWFaFQJHlHP9L3Ra0-IM3xwPncB3Gy6m2OJPv_Wbh-v7ytyyO__stD-B-kjzZq3apPISVMN2AtRv5CDfgTsSD-vkmXFGpYlyaGdWnJ2MIi9UzCVcUSclmNRuhCttGalL_0U_kTHMWIQjs4BtxI0LZEDfFZoyeKM8v2EFEjISKuQuWcrt-ZV-i64B9aJDMKS50CyaHbyavR1kq1pB5LeUikz63qvQiGO6VVUMtqlpY520tpEepU1nhbIkN0rBcyStu6orzIJSvTe7VI1idzqbhMbBK1sPaC-crZbWpjBNelUqXJIyGoFUP-JJ2hU-JzKmexo8iKjTcFkTugshdJHL34EV3y1mbxeNfgzeJXN3ARKke7P2yQLp-1Dmp2JPswc5yxRSJEcwLEqi0ECrHxz7runELk1-mnIZZg2PMMB-g2ifl9t9f_RTujibj4-L46OT9E7iHk9UtBnEHVhfnTdhFuWjh9uJ2uAaOOwlx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial-Spectral+Classification+of+Hyperspectral+Images+Using+Discriminative+Dictionary+Designed+by+Learning+Vector+Quantization&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=ZHAOWEN+WANG&rft.au=NASRABADI%2C+Nasser+M&rft.au=HUANG%2C+Thomas+S&rft.date=2014-08-01&rft.pub=Institute+of+Electrical+and+Electronics+Engineers&rft.issn=0196-2892&rft.volume=52&rft.issue=8&rft.spage=4808&rft.epage=4822&rft_id=info:doi/10.1109%2FTGRS.2013.2285049&rft.externalDBID=n%2Fa&rft.externalDocID=28721472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon