Agroecology and the design of climate change-resilient farming systems

Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on...

Full description

Saved in:
Bibliographic Details
Published inAgronomy for sustainable development Vol. 35; no. 3; pp. 869 - 890
Main Authors Altieri, Miguel A, Nicholls, Clara I, Henao, Alejandro, Lana, Marcos A
Format Journal Article
LanguageEnglish
Published Paris Springer Paris 01.07.2015
Springer Verlag/EDP Sciences/INRA
Subjects
Online AccessGet full text
ISSN1774-0746
1773-0155
DOI10.1007/s13593-015-0285-2

Cover

Abstract Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change.
AbstractList AbstractDiverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO2 and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change.
Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change.
Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change.
Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO 2 and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change.
Author Altieri, Miguel A
Lana, Marcos A
Henao, Alejandro
Nicholls, Clara I
Author_xml – sequence: 1
  fullname: Altieri, Miguel A
– sequence: 2
  fullname: Nicholls, Clara I
– sequence: 3
  fullname: Henao, Alejandro
– sequence: 4
  fullname: Lana, Marcos A
BackLink https://hal.science/hal-01309778$$DView record in HAL
BookMark eNp9kMFuGyEURVGVSo3TfEBXnWW7mPa9AczM0rKapJKlLlqvEWHejInGkACu5L8PziSbLLwBdLkHns6CXfjgibEvCD8QQP1MyGXHa0BZQ9PKuvnALlGpl0RevJxFDUosP7FFSg8A4pRcspvVGAPZMIXxWBnfV3lHVU_Jjb4KQ2UntzeZKrszfqQ6lovJkc_VYOLe-bFKx5Rpnz6zj4OZEl2_7ldse_Pr3_qu3vy5_b1ebWormibXaIUCIkmCBrJdr7AXhi9F17Yd9UD3csk7AFxKUQClQBkcekHG8KEVKPkV-z6_uzOTfoxluHjUwTh9t9roUwbIoVOq_Y-l-23uPsbwdKCU9d4lS9NkPIVD0tgCRxAdQqmquWpjSCnSoK3LJrvgczRu0gj6ZFnPlssnUp8s66aQ-I58m-oc08xMKt2iNeqHcIi-eDsLfZ2hwQRtxuiS3v5tiqqiq6zY8WdNcZi5
CitedBy_id crossref_primary_10_1080_1747423X_2018_1533044
crossref_primary_10_1108_EOR_10_2023_0001
crossref_primary_10_1590_1678_9865202134e200120
crossref_primary_10_3390_microorganisms11061448
crossref_primary_10_1007_s10725_023_01094_x
crossref_primary_10_3389_fpls_2024_1352169
crossref_primary_10_1038_s41893_024_01474_9
crossref_primary_10_3389_fsufs_2020_00032
crossref_primary_10_1080_21683565_2023_2273835
crossref_primary_10_1016_j_agrformet_2019_107857
crossref_primary_10_1080_17565529_2019_1664376
crossref_primary_10_3390_ani11092548
crossref_primary_10_1080_03031853_2021_1917429
crossref_primary_10_3390_land14030636
crossref_primary_10_1007_s13157_017_0967_4
crossref_primary_10_12688_wellcomeopenres_11190_2
crossref_primary_10_1080_21683565_2018_1514677
crossref_primary_10_12688_wellcomeopenres_11190_1
crossref_primary_10_1080_21683565_2022_2039837
crossref_primary_10_1111_gcb_14878
crossref_primary_10_3390_agronomy13082113
crossref_primary_10_3390_su14148507
crossref_primary_10_1016_j_atech_2025_100848
crossref_primary_10_1016_j_ijdrr_2024_104722
crossref_primary_10_17660_ActaHortic_2019_1261_27
crossref_primary_10_1093_treephys_tpaa144
crossref_primary_10_1007_s11027_016_9707_y
crossref_primary_10_1146_annurev_environ_112621_063931
crossref_primary_10_3390_agronomy12102535
crossref_primary_10_1016_j_envsci_2021_10_018
crossref_primary_10_1016_j_jenvman_2025_124144
crossref_primary_10_3390_su14063185
crossref_primary_10_35784_pe_2022_1_17
crossref_primary_10_5304_jafscd_2020_092_009
crossref_primary_10_1080_14735903_2021_1963598
crossref_primary_10_3390_agriculture11020132
crossref_primary_10_59978_ar03010001
crossref_primary_10_1109_ACCESS_2024_3455244
crossref_primary_10_2166_wcc_2024_705
crossref_primary_10_1016_j_agsy_2018_11_002
crossref_primary_10_1016_j_revpalbo_2023_105039
crossref_primary_10_1111_gcb_15513
crossref_primary_10_5304_jafscd_2024_133_032
crossref_primary_10_5897_AJAR2021_15710
crossref_primary_10_3389_fsufs_2021_750765
crossref_primary_10_1016_j_eja_2019_125922
crossref_primary_10_1080_00330124_2022_2134150
crossref_primary_10_3390_agronomy14091995
crossref_primary_10_3390_su13052425
crossref_primary_10_1038_s41597_024_03805_z
crossref_primary_10_1007_s11625_021_01057_z
crossref_primary_10_1007_s11248_024_00414_9
crossref_primary_10_1016_j_envsci_2021_10_022
crossref_primary_10_1016_j_agsy_2021_103357
crossref_primary_10_3390_su14105815
crossref_primary_10_1016_j_jclepro_2023_139701
crossref_primary_10_2139_ssrn_4165297
crossref_primary_10_1016_j_scienta_2024_113448
crossref_primary_10_3390_agriculture13101896
crossref_primary_10_1111_1467_8489_12309
crossref_primary_10_2478_boku_2023_0004
crossref_primary_10_3362_2046_1887_2017_004
crossref_primary_10_1016_j_geoderma_2022_115851
crossref_primary_10_1080_23311932_2025_2480261
crossref_primary_10_1111_gcbb_12916
crossref_primary_10_3390_agronomy12102435
crossref_primary_10_1016_j_baae_2022_10_002
crossref_primary_10_1016_j_geoforum_2021_11_001
crossref_primary_10_3390_soilsystems7040106
crossref_primary_10_1080_1747423X_2023_2248980
crossref_primary_10_3390_su13179764
crossref_primary_10_3390_su9010055
crossref_primary_10_1016_j_scitotenv_2019_04_212
crossref_primary_10_1088_1748_9326_ad300c
crossref_primary_10_3390_su9060990
crossref_primary_10_1016_j_agsy_2021_103225
crossref_primary_10_1002_ael2_20034
crossref_primary_10_12952_journal_elementa_000142
crossref_primary_10_3917_pour_247_0035
crossref_primary_10_1002_ecs2_4046
crossref_primary_10_1007_s13593_020_00617_4
crossref_primary_10_1021_acs_chemrev_2c00130
crossref_primary_10_1080_14735903_2023_2193028
crossref_primary_10_1016_j_envsci_2025_104030
crossref_primary_10_1016_j_still_2020_104818
crossref_primary_10_1080_03066150_2020_1782891
crossref_primary_10_1007_s10668_022_02844_z
crossref_primary_10_1016_j_eja_2017_09_009
crossref_primary_10_1007_s10460_024_10630_y
crossref_primary_10_1007_s43621_025_00901_x
crossref_primary_10_1016_j_agsy_2024_104196
crossref_primary_10_1016_j_jrurstud_2023_103163
crossref_primary_10_2139_ssrn_4194831
crossref_primary_10_3389_fsufs_2022_1003637
crossref_primary_10_1002_jid_3660
crossref_primary_10_1186_s12284_024_00710_2
crossref_primary_10_1080_03066150_2016_1146705
crossref_primary_10_59983_s2024020105
crossref_primary_10_5194_bg_21_5639_2024
crossref_primary_10_1515_opag_2018_0058
crossref_primary_10_1007_s00521_020_05303_w
crossref_primary_10_1016_j_ecolecon_2025_108568
crossref_primary_10_1080_03066150_2022_2138353
crossref_primary_10_1080_03066150_2020_1847090
crossref_primary_10_3390_f12020233
crossref_primary_10_1108_IJCCSM_08_2022_0110
crossref_primary_10_3389_fsufs_2020_00109
crossref_primary_10_1080_00305316_2022_2164373
crossref_primary_10_1016_j_agsy_2023_103810
crossref_primary_10_1080_23311932_2023_2266197
crossref_primary_10_1051_bioconf_20202100033
crossref_primary_10_5377_ribcc_v9i17_16359
crossref_primary_10_1016_j_cosust_2020_11_005
crossref_primary_10_1371_journal_pone_0209093
crossref_primary_10_1016_j_still_2020_104804
crossref_primary_10_2134_jeq2017_08_0309
crossref_primary_10_1007_s10668_024_05316_8
crossref_primary_10_1177_00307270231197700
crossref_primary_10_1007_s13593_017_0473_3
crossref_primary_10_1016_j_eja_2024_127257
crossref_primary_10_3389_fevo_2022_943265
crossref_primary_10_1016_j_ancene_2019_100192
crossref_primary_10_1017_S1751731116001051
crossref_primary_10_1007_s40003_020_00516_w
crossref_primary_10_1016_j_cois_2017_07_006
crossref_primary_10_4001_003_028_0150
crossref_primary_10_35759_JABs_150_8
crossref_primary_10_1016_j_cois_2017_07_008
crossref_primary_10_1016_j_sajb_2024_11_022
crossref_primary_10_1016_j_agsy_2019_102653
crossref_primary_10_1016_j_eja_2024_127386
crossref_primary_10_1016_j_jrurstud_2024_103438
crossref_primary_10_1016_j_resconrec_2021_105502
crossref_primary_10_1111_1365_2664_13722
crossref_primary_10_1080_11263504_2024_2313215
crossref_primary_10_3390_su14105844
crossref_primary_10_36253_jaeid_14672
crossref_primary_10_1016_j_fcr_2024_109695
crossref_primary_10_1038_s41598_019_51416_1
crossref_primary_10_1080_1389224X_2025_2477450
crossref_primary_10_1080_14735903_2020_1747199
crossref_primary_10_1111_cjag_12360
crossref_primary_10_1093_biosci_biad025
crossref_primary_10_1007_s10098_020_01911_1
crossref_primary_10_1002_sd_2951
crossref_primary_10_3390_su10093299
crossref_primary_10_3390_land10040385
crossref_primary_10_3390_su14159552
crossref_primary_10_3390_su131911122
crossref_primary_10_12688_emeraldopenres_12850_1
crossref_primary_10_1016_j_eja_2020_126102
crossref_primary_10_1080_21683565_2022_2140378
crossref_primary_10_1051_nss_2024035
crossref_primary_10_1016_j_still_2016_03_002
crossref_primary_10_3934_agrfood_2016_2_157
crossref_primary_10_1080_21683565_2023_2230931
crossref_primary_10_2166_wcc_2024_631
crossref_primary_10_5304_jafscd_2024_133_006
crossref_primary_10_1016_j_agsy_2024_104182
crossref_primary_10_1016_j_crsust_2024_100248
crossref_primary_10_3390_insects14010065
crossref_primary_10_1080_1343943X_2020_1725392
crossref_primary_10_1080_19475705_2023_2270129
crossref_primary_10_1016_j_animal_2023_100759
crossref_primary_10_1051_cagri_2024019
crossref_primary_10_1007_s13593_023_00910_y
crossref_primary_10_1038_s41467_018_04087_x
crossref_primary_10_3390_agronomy13061651
crossref_primary_10_1080_21683565_2021_1881862
crossref_primary_10_1515_opag_2022_0391
crossref_primary_10_1007_s10745_023_00403_2
crossref_primary_10_1007_s13593_022_00781_9
crossref_primary_10_1016_j_geoderma_2023_116598
crossref_primary_10_1371_journal_pclm_0000064
crossref_primary_10_1016_j_agsy_2020_102809
crossref_primary_10_31285_AGRO_27_1204
crossref_primary_10_3389_fvets_2021_628686
crossref_primary_10_1007_s11027_020_09923_4
crossref_primary_10_1016_j_agee_2020_107053
crossref_primary_10_1007_s10113_024_02280_x
crossref_primary_10_3390_plants13010124
crossref_primary_10_1016_j_jenvman_2021_112892
crossref_primary_10_1007_s13593_015_0335_9
crossref_primary_10_1016_j_agsy_2023_103612
crossref_primary_10_3390_land12020364
crossref_primary_10_1016_j_cropro_2019_105012
crossref_primary_10_1111_sum_12702
crossref_primary_10_3389_fagro_2025_1536997
crossref_primary_10_1007_s10669_022_09889_5
crossref_primary_10_1371_journal_pclm_0000051
crossref_primary_10_1007_s10705_018_9933_7
crossref_primary_10_1016_j_hpj_2023_09_009
crossref_primary_10_1016_j_jclepro_2020_125456
crossref_primary_10_3390_app15020644
crossref_primary_10_1111_eea_13276
crossref_primary_10_1017_S0014479723000017
crossref_primary_10_1088_1755_1315_1010_1_012151
crossref_primary_10_1016_j_jafr_2022_100405
crossref_primary_10_3390_su13095089
crossref_primary_10_54167_tch_v16i3_1097
crossref_primary_10_1016_j_agee_2017_03_018
crossref_primary_10_1080_21683565_2024_2448201
crossref_primary_10_1111_sum_12932
crossref_primary_10_1016_j_geoforum_2022_03_012
crossref_primary_10_1080_21683565_2016_1266069
crossref_primary_10_12944_CARJ_12_2_11
crossref_primary_10_3390_su15053975
crossref_primary_10_1016_j_agee_2017_06_002
crossref_primary_10_1080_01448765_2021_1891968
crossref_primary_10_1016_j_dsr2_2025_105464
crossref_primary_10_1016_j_agsy_2020_102904
crossref_primary_10_1016_j_ecoser_2023_101531
crossref_primary_10_7717_peerj_18569
crossref_primary_10_1080_21683565_2020_1812788
crossref_primary_10_1007_s11356_021_13089_0
crossref_primary_10_1002_cli2_70007
crossref_primary_10_1051_e3sconf_202127308075
crossref_primary_10_1007_s10668_024_05728_6
crossref_primary_10_1016_j_biocontrol_2024_105637
crossref_primary_10_1080_03650340_2022_2116013
crossref_primary_10_1590_1413_70542023470001r23
crossref_primary_10_3390_insects10080247
crossref_primary_10_3390_cli12050058
crossref_primary_10_3389_fsufs_2020_562663
crossref_primary_10_1007_s10113_021_01788_w
crossref_primary_10_1016_j_agwat_2021_107216
crossref_primary_10_1186_s40068_025_00395_6
crossref_primary_10_3389_fsufs_2024_1336632
crossref_primary_10_1016_j_foodpol_2023_102451
crossref_primary_10_1016_j_agsy_2023_103713
crossref_primary_10_1007_s10661_024_13188_8
crossref_primary_10_1016_j_agsy_2020_102913
crossref_primary_10_3390_land11060824
crossref_primary_10_1590_1678_4499_20200421
crossref_primary_10_1590_1806_9479_2022_265073
crossref_primary_10_3390_f10060475
crossref_primary_10_1016_j_apsoil_2024_105752
crossref_primary_10_3389_fevo_2019_00080
crossref_primary_10_1007_s10113_021_01764_4
crossref_primary_10_1016_j_pestbp_2019_11_005
crossref_primary_10_69821_REMUVAC_v1i1_12
crossref_primary_10_1002_sae2_70055
crossref_primary_10_1080_21683565_2020_1813861
crossref_primary_10_1002_sae2_12097
crossref_primary_10_1007_s13280_018_1021_3
crossref_primary_10_3389_fsufs_2024_1358515
crossref_primary_10_3390_agronomy7020035
crossref_primary_10_1175_WCAS_D_21_0023_1
crossref_primary_10_1016_j_gfs_2022_100614
crossref_primary_10_3354_cr01738
crossref_primary_10_1007_s10668_023_03168_2
crossref_primary_10_3390_agronomy14122804
crossref_primary_10_1002_ppp3_10339
crossref_primary_10_1007_s11295_020_1416_8
crossref_primary_10_1016_j_ecofro_2024_11_003
crossref_primary_10_3389_fsufs_2020_543914
crossref_primary_10_1007_s42690_021_00681_7
crossref_primary_10_1007_s13593_015_0347_5
crossref_primary_10_3389_fsufs_2024_1404315
crossref_primary_10_1111_ajae_12177
crossref_primary_10_3389_fenvs_2024_1347915
crossref_primary_10_1016_j_landusepol_2020_105031
crossref_primary_10_3390_genes12040534
crossref_primary_10_3390_su15097412
crossref_primary_10_35633_inmateh_74_86
crossref_primary_10_1016_j_oneear_2024_07_007
crossref_primary_10_1038_s43247_023_00746_0
crossref_primary_10_3389_fsufs_2021_699694
crossref_primary_10_1080_00049182_2024_2350813
crossref_primary_10_1007_s11270_024_07525_3
crossref_primary_10_1080_21683565_2023_2171172
crossref_primary_10_3390_agronomy13092406
crossref_primary_10_1016_j_agsy_2021_103251
crossref_primary_10_1080_23311932_2023_2292871
crossref_primary_10_4236_as_2023_149088
crossref_primary_10_1002_sae2_70039
crossref_primary_10_1016_j_agrformet_2022_109065
crossref_primary_10_1088_1755_1315_1072_1_012012
crossref_primary_10_3390_su14052648
crossref_primary_10_3390_en12163123
crossref_primary_10_3390_f8070242
crossref_primary_10_1016_j_agsy_2024_103935
crossref_primary_10_1016_j_agsy_2018_01_028
crossref_primary_10_1016_j_soisec_2024_100142
crossref_primary_10_1007_s10113_022_01916_0
crossref_primary_10_1007_s13165_017_0177_7
crossref_primary_10_3390_plants13212988
crossref_primary_10_3389_fsufs_2024_1336810
crossref_primary_10_55965_setp_4_08_uady_a1
crossref_primary_10_1016_j_agsy_2024_103934
crossref_primary_10_14324_111_444_ucloe_000065
crossref_primary_10_3390_agronomy9030150
crossref_primary_10_1016_j_techfore_2020_120229
crossref_primary_10_1016_j_jenvman_2023_119882
crossref_primary_10_1038_s41598_020_72384_x
crossref_primary_10_1007_s10340_019_01083_y
crossref_primary_10_1016_j_wace_2019_100237
crossref_primary_10_1111_gfs_12536
crossref_primary_10_1007_s10460_020_10164_z
crossref_primary_10_1093_erae_jbab042
crossref_primary_10_1016_j_agee_2021_107385
crossref_primary_10_1038_nclimate3007
crossref_primary_10_3389_fagro_2025_1534370
crossref_primary_10_3390_su14020897
crossref_primary_10_3390_rs16132338
crossref_primary_10_4000_12er4
crossref_primary_10_1016_j_tplants_2022_04_002
crossref_primary_10_1007_s13412_024_00888_3
crossref_primary_10_1016_j_biocon_2024_110915
crossref_primary_10_1007_s13593_022_00806_3
crossref_primary_10_3390_su13126852
crossref_primary_10_3389_fsrma_2024_1423078
crossref_primary_10_1002_agj2_20573
crossref_primary_10_1007_s13593_021_00741_9
crossref_primary_10_1016_j_jclepro_2023_140141
crossref_primary_10_3390_f13060878
crossref_primary_10_1080_03066150_2024_2399138
crossref_primary_10_1007_s11104_019_04173_z
crossref_primary_10_3390_agronomy12071631
crossref_primary_10_1080_21683565_2025_2472770
crossref_primary_10_1175_WCAS_D_16_0113_1
crossref_primary_10_1016_j_cub_2024_04_062
crossref_primary_10_1007_s13593_024_00968_2
crossref_primary_10_1007_s10531_024_02999_3
crossref_primary_10_1186_s40066_018_0209_x
crossref_primary_10_1080_21683565_2022_2076184
crossref_primary_10_1111_gfs_12675
crossref_primary_10_3390_su9030405
crossref_primary_10_1016_j_scitotenv_2020_140509
crossref_primary_10_4081_ija_2016_730
crossref_primary_10_1007_s12571_017_0721_z
crossref_primary_10_1088_1755_1315_1266_1_012024
crossref_primary_10_55908_sdgs_v11i8_1444
crossref_primary_10_4000_interventionseconomiques_14479
crossref_primary_10_1038_s41598_019_45300_1
crossref_primary_10_1007_s10113_025_02379_9
crossref_primary_10_26848_rbgf_v17_2_p1375_1395
crossref_primary_10_3167_ares_2016_070104
crossref_primary_10_1071_AN22225
crossref_primary_10_1007_s13593_020_00634_3
crossref_primary_10_1080_01426397_2024_2329602
crossref_primary_10_3390_nu10111799
crossref_primary_10_3390_app14124966
crossref_primary_10_1080_27658511_2024_2345433
crossref_primary_10_1080_23311886_2024_2417815
crossref_primary_10_3389_fsufs_2021_684181
crossref_primary_10_1017_S1742170519000322
crossref_primary_10_3727_216929722X16354101932348
crossref_primary_10_15406_hij_2019_03_00132
crossref_primary_10_1007_s41742_020_00288_9
crossref_primary_10_1016_j_landusepol_2019_104251
crossref_primary_10_3390_land12071324
crossref_primary_10_1016_j_still_2017_01_005
crossref_primary_10_1016_j_tplants_2019_12_024
crossref_primary_10_3280_ECAG2018_003006
crossref_primary_10_1016_j_baae_2019_06_006
crossref_primary_10_1016_j_envdev_2020_100506
crossref_primary_10_1080_21683565_2018_1509410
crossref_primary_10_1016_j_cosust_2022_101222
crossref_primary_10_1002_ecm_1553
crossref_primary_10_1016_j_crsust_2021_100093
crossref_primary_10_1007_s10745_022_00357_x
crossref_primary_10_1016_j_agee_2023_108816
crossref_primary_10_1002_adsu_202000037
crossref_primary_10_1007_s13593_022_00833_0
crossref_primary_10_3390_su10113837
crossref_primary_10_1007_s12571_017_0742_7
crossref_primary_10_3390_su12062480
crossref_primary_10_1155_ijfo_2415147
crossref_primary_10_1016_j_heliyon_2024_e40570
crossref_primary_10_3390_su12145851
crossref_primary_10_1071_MA23002
crossref_primary_10_1080_21683565_2025_2466428
crossref_primary_10_38124_ijisrt_IJISRT24MAY1714
crossref_primary_10_1016_j_compag_2022_107182
crossref_primary_10_1007_s11250_020_02241_6
crossref_primary_10_3390_f14040845
crossref_primary_10_3390_agronomy11112102
crossref_primary_10_1093_pubmed_fdae130
crossref_primary_10_1016_j_crsust_2021_100089
crossref_primary_10_1126_sciadv_ado5541
crossref_primary_10_3389_frsc_2022_867691
crossref_primary_10_1016_j_jenvman_2024_122461
crossref_primary_10_3390_biology11030368
crossref_primary_10_3390_agronomy13020320
crossref_primary_10_1038_s41598_024_58903_0
crossref_primary_10_7554_eLife_54489
crossref_primary_10_1016_j_agsy_2019_02_001
crossref_primary_10_1111_gcbb_70016
crossref_primary_10_56093_ijas_v90i8_105882
crossref_primary_10_1016_j_agee_2023_108601
crossref_primary_10_5304_jafscd_2023_131_002
crossref_primary_10_1016_j_envres_2023_116030
crossref_primary_10_1038_s41598_024_62426_z
crossref_primary_10_1080_21683565_2018_1489933
crossref_primary_10_1016_j_eja_2019_02_005
crossref_primary_10_1007_s13593_019_0562_6
crossref_primary_10_1017_sus_2018_9
crossref_primary_10_1007_s10460_022_10338_x
crossref_primary_10_1016_j_ecolind_2020_106781
crossref_primary_10_1016_j_jenvman_2020_111223
crossref_primary_10_1016_j_jenvman_2023_119903
crossref_primary_10_1016_j_ecoleng_2024_107486
crossref_primary_10_33333_rp_vol51n2_04
crossref_primary_10_3390_v16040603
crossref_primary_10_3390_su12020605
crossref_primary_10_1016_j_apgeog_2024_103431
crossref_primary_10_3390_agronomy13081962
crossref_primary_10_1007_s43621_022_00096_5
crossref_primary_10_1111_cuag_12100
crossref_primary_10_1080_23251042_2023_2267828
crossref_primary_10_1155_2023_5439171
crossref_primary_10_56109_aup_sna_v13i1_80
crossref_primary_10_1080_27685241_2022_2083987
crossref_primary_10_1111_ajae_12229
crossref_primary_10_1111_gfs_12639
crossref_primary_10_1007_s11629_017_4768_2
crossref_primary_10_1007_s11625_017_0440_6
crossref_primary_10_1016_j_foodpol_2023_102501
crossref_primary_10_1525_elementa_2021_00026
crossref_primary_10_1016_j_crsust_2021_100068
crossref_primary_10_1080_23311886_2021_2024674
crossref_primary_10_3390_su142113954
crossref_primary_10_3390_resources13100132
crossref_primary_10_1007_s12038_020_00107_5
crossref_primary_10_1515_opag_2020_0047
crossref_primary_10_3389_fsufs_2020_554414
crossref_primary_10_55965_setp_4_08_uady
crossref_primary_10_3390_cli11100202
crossref_primary_10_1007_s10460_019_09975_6
crossref_primary_10_1016_j_scitotenv_2019_01_313
crossref_primary_10_1016_j_eiar_2016_07_008
crossref_primary_10_1007_s43545_022_00584_5
crossref_primary_10_12944_CWE_18_1_32
crossref_primary_10_1051_cagri_2018010
crossref_primary_10_1080_23311932_2025_2454342
crossref_primary_10_12688_openreseurope_15431_1
crossref_primary_10_1007_s10584_025_03890_y
crossref_primary_10_1016_j_jrurstud_2019_02_010
crossref_primary_10_1038_s41893_020_0542_5
crossref_primary_10_1080_16549716_2021_1909267
crossref_primary_10_1111_1365_2664_13039
crossref_primary_10_1016_j_gfs_2022_100645
crossref_primary_10_1080_01448765_2019_1689531
crossref_primary_10_29312_remexca_v12i7_2890
crossref_primary_10_1177_00307270231178889
crossref_primary_10_3390_su9030349
crossref_primary_10_3390_agriculture14030381
crossref_primary_10_1016_j_ecolind_2017_12_040
crossref_primary_10_1088_1755_1315_1297_1_012072
crossref_primary_10_1016_j_agee_2023_108753
crossref_primary_10_3389_fsufs_2023_1260291
crossref_primary_10_1007_s40710_020_00466_z
crossref_primary_10_1016_j_tjnut_2022_10_016
crossref_primary_10_1016_j_jclepro_2021_129831
crossref_primary_10_1080_21683565_2017_1359807
crossref_primary_10_3389_fsufs_2022_810840
crossref_primary_10_3390_w14101645
crossref_primary_10_1007_s10681_019_2447_9
crossref_primary_10_3390_land11122267
crossref_primary_10_1007_s10113_023_02131_1
crossref_primary_10_24072_pci_ecology_100528
crossref_primary_10_1016_j_ecolecon_2022_107465
crossref_primary_10_1080_21683565_2020_1822980
crossref_primary_10_1177_20530196221140145
crossref_primary_10_1016_j_biocon_2024_110536
crossref_primary_10_1007_s40974_017_0074_7
crossref_primary_10_1016_j_gloenvcha_2020_102075
crossref_primary_10_1080_03650340_2020_1830070
crossref_primary_10_1016_j_ecolind_2022_109468
crossref_primary_10_1080_00167428_2024_2335395
crossref_primary_10_3390_agriculture11050464
crossref_primary_10_1007_s13593_021_00719_7
crossref_primary_10_1016_j_catena_2025_108848
crossref_primary_10_3390_insects7040070
crossref_primary_10_3390_land12040915
crossref_primary_10_1111_gcb_16124
crossref_primary_10_3390_plants11121545
crossref_primary_10_1016_j_envsci_2024_103872
crossref_primary_10_3390_resources13120170
crossref_primary_10_1007_s11250_023_03655_8
crossref_primary_10_1016_j_ecolind_2023_110640
crossref_primary_10_1016_j_envsci_2019_10_017
crossref_primary_10_1080_21683565_2025_2476176
crossref_primary_10_3390_su15076103
crossref_primary_10_1016_j_foreco_2024_122249
crossref_primary_10_1088_1748_9326_ac7e5f
crossref_primary_10_1038_s41598_019_48747_4
crossref_primary_10_1080_03031853_2022_2028642
crossref_primary_10_3390_su10051680
crossref_primary_10_1016_j_crm_2023_100522
crossref_primary_10_3390_su16219417
crossref_primary_10_1038_s41598_024_65397_3
crossref_primary_10_1007_s10113_022_01896_1
crossref_primary_10_4236_ajcc_2024_134036
crossref_primary_10_1080_03650340_2019_1616287
crossref_primary_10_1080_21683565_2022_2107596
crossref_primary_10_1016_j_accre_2025_01_009
crossref_primary_10_12952_journal_elementa_000092
crossref_primary_10_1007_s10705_017_9903_5
crossref_primary_10_1016_j_eja_2017_08_002
crossref_primary_10_1016_j_agee_2022_108269
crossref_primary_10_1080_21683565_2017_1345033
crossref_primary_10_1007_s10457_019_00430_3
crossref_primary_10_1016_j_heliyon_2024_e40600
crossref_primary_10_3389_fsufs_2020_539611
crossref_primary_10_1002_sd_1923
crossref_primary_10_3389_fsufs_2025_1527898
crossref_primary_10_1016_j_chnaes_2023_05_007
crossref_primary_10_1007_s13165_024_00479_0
crossref_primary_10_3390_en10010029
crossref_primary_10_1002_saj2_20314
crossref_primary_10_1016_j_landusepol_2020_104553
crossref_primary_10_1007_s11625_020_00837_3
crossref_primary_10_5937_ekoPolj2002345R
crossref_primary_10_1016_j_socscimed_2020_113550
crossref_primary_10_1080_17565529_2023_2178253
crossref_primary_10_1525_elementa_2021_00090
crossref_primary_10_1002_eap_2109
crossref_primary_10_3390_biology10010023
crossref_primary_10_3389_fpls_2022_898769
crossref_primary_10_3389_fsufs_2019_00084
crossref_primary_10_1017_S1742170519000176
crossref_primary_10_1525_elementa_2023_00011
crossref_primary_10_1111_btp_13255
crossref_primary_10_3389_fevo_2021_579230
crossref_primary_10_3389_fenvs_2022_949185
crossref_primary_10_1142_S2345737619400037
crossref_primary_10_1002_bes2_1871
crossref_primary_10_1017_S2047102522000450
crossref_primary_10_2478_euco_2023_0002
crossref_primary_10_1016_j_eja_2021_126395
crossref_primary_10_1016_j_soisec_2023_100119
crossref_primary_10_1016_j_agee_2016_09_020
crossref_primary_10_1525_elementa_337
crossref_primary_10_1051_e3sconf_202122600037
crossref_primary_10_1002_pan3_70006
crossref_primary_10_3390_ani11102813
crossref_primary_10_1016_j_indmarman_2022_04_021
crossref_primary_10_1080_21683565_2018_1499578
crossref_primary_10_17660_ActaHortic_2018_1196_6
crossref_primary_10_1007_s11104_024_06542_9
crossref_primary_10_1111_1365_2745_12791
crossref_primary_10_1016_j_jrurstud_2022_12_005
crossref_primary_10_1007_s12374_022_09370_5
crossref_primary_10_2134_agronj2016_05_0267
crossref_primary_10_1080_03066150_2020_1725488
crossref_primary_10_1007_s13593_017_0455_5
crossref_primary_10_1080_03066150_2020_1823838
crossref_primary_10_1080_21683565_2024_2346794
crossref_primary_10_1111_1365_2435_13957
crossref_primary_10_1007_s12298_023_01305_9
crossref_primary_10_1016_j_ecolmodel_2024_110727
crossref_primary_10_3390_atmos13122060
crossref_primary_10_1016_j_geogeo_2022_100129
crossref_primary_10_1525_elementa_2022_00136
crossref_primary_10_24054_cyta_v8i1_2876
crossref_primary_10_1186_s40068_022_00274_4
crossref_primary_10_3390_agriculture13010159
crossref_primary_10_1038_s43247_024_01405_8
crossref_primary_10_1080_21683565_2020_1726550
crossref_primary_10_3390_ecologies4030035
crossref_primary_10_1016_S2542_5196_23_00125_0
crossref_primary_10_1007_s10460_022_10295_5
crossref_primary_10_18619_2072_9146_2023_3_41_49
crossref_primary_10_3389_fgene_2022_818727
crossref_primary_10_1016_j_resourpol_2023_104181
crossref_primary_10_3389_fenvs_2017_00023
crossref_primary_10_1016_j_heliyon_2024_e40522
crossref_primary_10_1111_jiec_12856
crossref_primary_10_1590_s0104_71832020000300014
crossref_primary_10_33002_aa010101
crossref_primary_10_1016_j_jrurstud_2021_10_017
crossref_primary_10_24326_as_2024_5346
crossref_primary_10_1080_21683565_2019_1629373
crossref_primary_10_1007_s10460_021_10267_1
crossref_primary_10_3897_natureconservation_18_11523
crossref_primary_10_3390_su11092547
crossref_primary_10_1051_e3sconf_202459503015
crossref_primary_10_1080_21683565_2020_1811828
crossref_primary_10_1080_21683565_2025_2475464
crossref_primary_10_1111_nph_17306
crossref_primary_10_3390_su12031093
crossref_primary_10_1002_agj2_70019
crossref_primary_10_1007_s11625_024_01601_7
crossref_primary_10_3389_fsufs_2024_1423861
crossref_primary_10_1080_21683565_2017_1331179
crossref_primary_10_3389_fsufs_2023_1128430
crossref_primary_10_2478_foecol_2021_0015
crossref_primary_10_1016_j_jenvman_2024_122655
crossref_primary_10_1017_S1742170518000029
crossref_primary_10_3390_cli8120139
crossref_primary_10_1016_j_envres_2024_118784
crossref_primary_10_1525_elementa_2023_00054
crossref_primary_10_54502_msuceva_v1n1a16
crossref_primary_10_1007_s10980_021_01248_0
crossref_primary_10_1016_j_agee_2019_106797
crossref_primary_10_1007_s11625_019_00703_x
crossref_primary_10_4236_nr_2018_93005
crossref_primary_10_1016_j_ecolind_2020_106435
crossref_primary_10_3389_fsufs_2021_647335
crossref_primary_10_3354_meps13266
crossref_primary_10_1007_s10668_020_00905_9
crossref_primary_10_3390_su13148075
crossref_primary_10_1080_21683565_2018_1509166
crossref_primary_10_1080_21683565_2019_1711288
crossref_primary_10_1088_1755_1315_1069_1_012006
crossref_primary_10_61186_jcb_16_3_13
crossref_primary_10_1002_gch2_202200225
crossref_primary_10_1051_cagri_2020035
crossref_primary_10_1016_j_cosust_2015_09_003
crossref_primary_10_3390_environments8050040
crossref_primary_10_1016_j_agee_2024_109412
crossref_primary_10_3389_fpls_2022_934359
crossref_primary_10_1016_j_still_2020_104639
crossref_primary_10_1017_S1742170518000017
crossref_primary_10_1038_s41477_018_0309_4
crossref_primary_10_3389_fsufs_2023_1267630
crossref_primary_10_1016_j_cliser_2023_100431
crossref_primary_10_1038_s41598_021_81270_z
crossref_primary_10_1016_j_actao_2020_103561
crossref_primary_10_1007_s13593_021_00703_1
crossref_primary_10_1016_j_eja_2021_126239
crossref_primary_10_1017_S1742170519000462
crossref_primary_10_1080_17565529_2019_1630349
crossref_primary_10_3390_su12187524
crossref_primary_10_1080_21683565_2016_1215368
crossref_primary_10_3390_horticulturae10060656
crossref_primary_10_3389_ffgc_2024_1379741
crossref_primary_10_1007_s13593_021_00716_w
crossref_primary_10_1080_26395916_2020_1808705
crossref_primary_10_1007_s40974_020_00158_2
crossref_primary_10_1057_s41301_018_0176_3
crossref_primary_10_3390_insects12121114
crossref_primary_10_3389_fsufs_2024_1446965
crossref_primary_10_1016_j_worlddev_2021_105546
crossref_primary_10_1093_aob_mcaa014
crossref_primary_10_3390_su12093765
crossref_primary_10_17660_ActaHortic_2022_1355_2
crossref_primary_10_2478_cag_2024_0002
crossref_primary_10_5897_JSSEM2018_0714
crossref_primary_10_16993_rl_78
crossref_primary_10_3389_fsufs_2020_564197
crossref_primary_10_3389_fsufs_2024_1456620
crossref_primary_10_1177_02780771231176364
crossref_primary_10_1016_j_rmb_2017_09_001
crossref_primary_10_1007_s10668_019_00466_6
crossref_primary_10_1016_j_oneear_2019_10_017
crossref_primary_10_1016_j_ecolmodel_2024_110650
crossref_primary_10_1016_j_landusepol_2024_107400
crossref_primary_10_1016_j_agsy_2018_04_009
crossref_primary_10_1080_21683565_2018_1476428
crossref_primary_10_1080_21683565_2024_2370316
crossref_primary_10_1007_s42106_022_00197_1
crossref_primary_10_1016_j_envexpbot_2023_105633
crossref_primary_10_4000_ere_6188
Cites_doi 10.1016/j.agrformet.2006.12.009
10.1080/03066150.2011.582947
10.2307/1295991
10.1016/j.agwat.2003.07.001
10.3354/cr011019
10.1038/41681
10.1073/pnas.0701890104
10.1016/j.agee.2008.04.016
10.1016/S0167-8809(97)00150-3
10.2489/jswc.64.2.55A
10.1023/A:1016124032231
10.1016/S0736-4539(06)80004-8
10.1016/S0959-3780(02)00090-0
10.1016/j.envdev.2012.11.001
10.2134/agronj2010.0303
10.1016/S0167-8809(99)00028-6
10.1073/pnas.1314437111
10.1080/14735903.2012.691221
10.2134/agronj1999.00021962009100020016x
10.1016/S0167-8809(03)00125-7
10.1088/1748-9326/2/1/014002
10.1016/j.foreco.2010.09.027
10.1002/wcc.102
10.1007/s10584-005-5949-5
10.1080/03066150.2010.538584
10.1191/030913200701540465
10.1016/j.crvi.2011.03.003
10.1073/pnas.0804951106
10.1146/annurev.phyto.37.1.399
10.1017/CBO9780511623523
10.1016/j.gfs.2012.11.009
10.1104/pp.112.208298
10.1038/35021046
10.1002/ldr.3400050406
10.1126/science.1204531
10.1016/0168-1923(91)90088-8
10.1126/science.1064088
10.1525/bio.2011.61.3.4
10.2307/1309927
10.1016/S0167-8809(02)00085-3
10.1126/science.174.4010.653
10.1016/j.gloenvcha.2006.04.002
10.1111/j.1365-2486.2007.01399.x
10.2134/jpa1992.0107
10.1023/A:1010078923050
10.1016/0378-4290(86)90015-8
10.1080/10440046.2011.588998
10.1007/BF03213684
10.2307/1310108
10.1051/agro/2009054
10.1016/S0167-8809(02)00006-3
10.1201/9780203496374
10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2
10.1515/9781503622067
10.5751/ES-00667-090210
10.1201/9781482277937
10.4324/9781849770132
10.5751/ES-04910-170325
10.1079/9781780641645.0000
10.1017/S0889189300001235
10.5751/ES-04666-170118
ContentType Journal Article
Copyright INRA and Springer-Verlag France 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: INRA and Springer-Verlag France 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1007/s13593-015-0285-2
DatabaseName AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1773-0155
EndPage 890
ExternalDocumentID oai_HAL_hal_01309778v1
10_1007_s13593_015_0285_2
US201600101619
GroupedDBID -EM
06D
0R~
0VY
203
23M
29~
2KG
2KM
2LR
2VQ
30V
4.4
406
408
4P2
5GY
67N
6J9
8UJ
96X
AAAVM
AABCJ
AAFGU
AAFNC
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAOTM
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZMS
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABJNI
ABJOX
ABKAS
ABKCH
ABMQK
ABPLI
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUBZ
ABULA
ABXPI
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKMHD
AKQUC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BGNMA
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FBQ
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
ITM
IWAJR
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
ML.
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
PT4
R9I
RED
RSV
S1Z
S27
S3A
S3B
SBL
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
T13
TSG
TUS
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7U
Z7V
Z7W
Z7Y
Z81
Z83
ZMTXR
ZOVNA
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACPIV
ACUHS
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
H13
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c422t-1c470ee5e4efec9d71d4a3649889ed0eb5639001654c427707a1fd4eaa3f84153
IEDL.DBID AGYKE
ISSN 1774-0746
IngestDate Fri Sep 12 12:46:00 EDT 2025
Fri Sep 05 06:51:00 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Fri Sep 19 05:07:54 EDT 2025
Fri Feb 21 02:32:12 EST 2025
Wed Dec 27 19:17:59 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Climate change
Agroecology
Adaptive capacity
Resilience
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-1c470ee5e4efec9d71d4a3649889ed0eb5639001654c427707a1fd4eaa3f84153
Notes http://dx.doi.org/10.1007/s13593-015-0285-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hal.science/hal-01309778
PQID 1803104910
PQPubID 24069
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_01309778v1
proquest_miscellaneous_1803104910
crossref_citationtrail_10_1007_s13593_015_0285_2
crossref_primary_10_1007_s13593_015_0285_2
springer_journals_10_1007_s13593_015_0285_2
fao_agris_US201600101619
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationSubtitle Official journal of the Institut National de la Recherche Agronomique (INRA)
PublicationTitle Agronomy for sustainable development
PublicationTitleAbbrev Agron. Sustain. Dev
PublicationYear 2015
Publisher Springer Paris
Springer Verlag/EDP Sciences/INRA
Publisher_xml – name: Springer Paris
– name: Springer Verlag/EDP Sciences/INRA
References Rosenzweig, Hillel (CR80) 2008
Kurukulasuriya, Rosenthal (CR49) 2003
Barrow (CR16) 1999
Altieri, Lana, Bittencourt, Kieling, Comin, Lovato (CR13) 2011; 35
Reij (CR75) 1991
Folke (CR31) 2006; 16
Mijatovic, Van Oudenhovenb, Pablo Eyzaguirreb, Hodgkins (CR61) 2013; 11
Vigouroux (CR91) 2011; 334
Porter, Parry, Carter (CR74) 1991; 57
Swiderska (CR84) 2011
Loreau, Naeem, Inchausti, Bengtsson, Grime, Hector, Hooper, Huston, Raffaelli, Schmid, Tilman, Wardle (CR56) 2001; 294
Flores (CR30) 1989; 5
Adger (CR3) 2000; 24
Critchley (CR21) 1989; 16
Fuhrer (CR35) 2003; 97
Erickson, Chandler, Browder (CR29) 1989
Rogé, Friedman, Astier, Altieri (CR79) 2014
Bunch (CR18) 1990
Döll (CR27) 2002; 54
CR45
CR41
Altieri (CR5) 1999; 1
Astier, García-Barrios, Galván-Miyoshi, González-Esquivel, Masera (CR15) 2012; 17
Koohafkan, Altieri (CR48) 2010
Lin (CR52) 2011; 61
Murgueitio, Calle, Uribea, Calle, Solorio (CR63) 2011; 261
(CR78) 2012
Lobell, Gourdji (CR54) 2012; 160
Ward, Masters (CR92) 2007; 13
Critchley, Reij, Willcocks (CR22) 2004; 5
Magdoff, Weil, Magdoff, Weil (CR58) 2004
Lin (CR51) 2007; 144
Adams, Hurd, Lenhart, Leary (CR2) 1998; 11
Holt-Giménez (CR42) 2002; 93
Howden, Soussana, Tubiello, Chhetri, Dunlop, Meinke (CR44) 2007; 104
Thrupp (CR86) 1988
Altieri (CR4) 1999; 74
(CR65) 1972
Cabell, Oelofse (CR19) 2012; 17
Hatfield, Boote, Kimball, Ziska, Izaurralde, Ort, Thomson, Wolfe (CR37) 2011; 103
Philpott, Lin, Jha, Brines (CR71) 2009; 128
Nicholls, Altieri (CR67) 2013
Diaz-Zorita, Buschiazzo, Peineman (CR26) 1999; 91
Petersen, Tardin, Marochi (CR70) 1999
Wilken (CR94) 1987
Toledo, Barrera-Bassols (CR87) 2008
Vandermeer (CR89) 1989
Kahn, Ampong-Nyarko, Hassanali, Kimani (CR47) 1998; 388
Zougmoré, Mando, Stroosnijder (CR97) 2004; 65
Henao (CR39) 2013; 8
Altieri (CR6) 2002; 93
Lobell, Schlenker, Costa-Roberts (CR55) 2011; 333
Stigter, Dawei, Onyewotu, Xurong (CR82) 2005; 70
Ponti, Gutierrez, Ruti, Dell’Aquila (CR73) 2014; 111
Lobell, Field (CR53) 2007; 2
Thornton (CR85) 2003; 13
Coakley, Scherm, Chakraborty (CR20) 1999; 37
Machado (CR57) 2009; 64
Hillel, Rosenzweig (CR40) 2009
Pimentel, Levitan (CR72) 1986; 36
Tompkins, Adger (CR88) 2004; 9
Francis (CR32) 1986
Heinemann, Massaro, Coray, Agapito-Tenfen, Wen (CR38) 2013
West, Griffith (CR93) 1992; 5
Zhu, Fen, Wang, Li, Chen, Hu, Mundt (CR95) 2000; 406
Natarajan, Willey (CR64) 1996; 13
CR8
Altieri, Nicholls (CR10) 2004
Vandermeer, van Noordwijk, Anderson, Ong, Perfecto (CR90) 1998; 67
Denevan (CR24) 1995; 11
Easterling, Aggarwal, Batima, Brander, Erda, Howden, Kirilenko, Morton, Soussana, Schmidhuber, Tubiello, Parry (CR28) 2007
Altieri, Toledo (CR12) 2011; 38
Armillas (CR14) 1971; 174
Buckles, Triomphe, Sain (CR17) 1998
Altieri (CR7) 2004; 2
Mapfumo, Adjei-Nsiah, Mtambanengweb, Chikowo (CR59) 2013; 5
Matthews, Rivington, Muhammed, Newton, Hallett (CR60) 2013; 2
Moyer (CR62) 2010
Perfecto, Vandermeer, Wright (CR69) 2009
Nicholls, Rios, Altieri (CR68) 2013
Sutherst, Constable, Finlay, Harrington, Luck, Zalucki (CR83) 2011; 2
Adams, Ellingboe, Rossman (CR1) 1971; 21
Franco, Borras, Vervest, Isakson, Levidow (CR34) 2014
Dewalt (CR25) 1994; 5
Francis, Jones, Crookston, Wittler, Goodman (CR33) 1986; 1
Reij, Scoones, Toulmin (CR76) 1996
CR23
Altieri, Koohafkan (CR9) 2013
Garg, Chandel (CR36) 2010; 30
Landis, Gardiner, van der Werf, Swinton (CR50) 2008; 105
Rosset, Machín-Sosa, Roque-Jaime, Avila-Lozano (CR81) 2011; 38
Altieri, Nicholls (CR11) 2013
Ziska, Dukes (CR96) 2014
Jones, Thornton (CR46) 2003; 13
Netting (CR66) 1993
Horwith (CR43) 1985; 35
Robinson, Wallace (CR77) 1996; 25
P Petersen (285_CR70) 1999
RA Robinson (285_CR77) 1996; 25
DA Landis (285_CR50) 2008; 105
WM Denevan (285_CR24) 1995; 11
JA Heinemann (285_CR38) 2013
BB Lin (285_CR51) 2007; 144
M Astier (285_CR15) 2012; 17
RMC Netting (285_CR66) 1993
WE Easterling (285_CR28) 2007
M Flores (285_CR30) 1989; 5
JF Cabell (285_CR19) 2012; 17
EL Tompkins (285_CR88) 2004; 9
R Zougmoré (285_CR97) 2004; 65
DB Lobell (285_CR54) 2012; 160
CI Nicholls (285_CR68) 2013
NL Ward (285_CR92) 2007; 13
CL Erickson (285_CR29) 1989
P Kurukulasuriya (285_CR49) 2003
MA Altieri (285_CR9) 2013
P Döll (285_CR27) 2002; 54
MA Altieri (285_CR12) 2011; 38
WRS Critchley (285_CR22) 2004; 5
DB Lobell (285_CR55) 2011; 333
D Pimentel (285_CR72) 1986; 36
BR Dewalt (285_CR25) 1994; 5
JH Porter (285_CR74) 1991; 57
CI Nicholls (285_CR67) 2013
J Moyer (285_CR62) 2010
P Armillas (285_CR14) 1971; 174
R Bunch (285_CR18) 1990
L Ponti (285_CR73) 2014; 111
CA Francis (285_CR33) 1986; 1
J Franco (285_CR34) 2014
MA Altieri (285_CR5) 1999; 1
E Holt-Giménez (285_CR42) 2002; 93
D Hillel (285_CR40) 2009
B Horwith (285_CR43) 1985; 35
MA Altieri (285_CR7) 2004; 2
LH Ziska (285_CR96) 2014
M Natarajan (285_CR64) 1996; 13
SM Philpott (285_CR71) 2009; 128
S Howden (285_CR44) 2007; 104
J Vigouroux (285_CR91) 2011; 334
JL Hatfield (285_CR37) 2011; 103
P Mapfumo (285_CR59) 2013; 5
D Mijatovic (285_CR61) 2013; 11
E Murgueitio (285_CR63) 2011; 261
VM Toledo (285_CR87) 2008
285_CR8
GC Wilken (285_CR94) 1987
CJ Barrow (285_CR16) 1999
DB Lobell (285_CR53) 2007; 2
LA Thrupp (285_CR86) 1988
PG Jones (285_CR46) 2003; 13
C Reij (285_CR76) 1996
C Stigter (285_CR82) 2005; 70
P Rogé (285_CR79) 2014
285_CR41
SM Coakley (285_CR20) 1999; 37
SJ Henao (285_CR39) 2013; 8
285_CR23
F Magdoff (285_CR58) 2004
J Vandermeer (285_CR89) 1989
K Swiderska (285_CR84) 2011
B Matthews (285_CR60) 2013; 2
PM Rosset (285_CR81) 2011; 38
MW Adams (285_CR1) 1971; 21
C Folke (285_CR31) 2006; 16
RW Sutherst (285_CR83) 2011; 2
P Koohafkan (285_CR48) 2010
Y Zhu (285_CR95) 2000; 406
MA Altieri (285_CR13) 2011; 35
B Lin (285_CR52) 2011; 61
MA Altieri (285_CR11) 2013
TD West (285_CR93) 1992; 5
ZR Kahn (285_CR47) 1998; 388
MA Altieri (285_CR10) 2004
C Reij (285_CR75) 1991
CA Francis (285_CR32) 1986
J Vandermeer (285_CR90) 1998; 67
M Diaz-Zorita (285_CR26) 1999; 91
WM Adger (285_CR3) 2000; 24
MA Altieri (285_CR6) 2002; 93
285_CR45
M Loreau (285_CR56) 2001; 294
RM Adams (285_CR2) 1998; 11
WRS Critchley (285_CR21) 1989; 16
S Machado (285_CR57) 2009; 64
MA Altieri (285_CR4) 1999; 74
I Perfecto (285_CR69) 2009
N Garg (285_CR36) 2010; 30
C Rosenzweig (285_CR80) 2008
D Buckles (285_CR17) 1998
Rodale Institute (285_CR78) 2012
J Fuhrer (285_CR35) 2003; 97
National Research Council, Committee on Genetic Vulnerability of Major Crops (285_CR65) 1972
PK Thornton (285_CR85) 2003; 13
References_xml – ident: CR45
– start-page: 230
  year: 1989
  end-page: 243
  ident: CR29
  article-title: Raised fields and sustainable agriculture in Lake Titicaca Basin of Peru
  publication-title: Fragile lands of Latin America
– volume: 144
  start-page: 85
  year: 2007
  end-page: 94
  ident: CR51
  article-title: Agroforestry management as adaptive strategy against potential microclimate extremes in coffee agriculture
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.12.009
– year: 2014
  ident: CR79
  publication-title: Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta Region of Oaxaca
– volume: 5
  start-page: 23
  year: 1994
  end-page: 51
  ident: CR25
  article-title: Using indigenous knowledge to improve agriculture and natural resource management
  publication-title: Hum Organ
– volume: 38
  start-page: 587
  year: 2011
  end-page: 612
  ident: CR12
  article-title: The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignity and empowering peasants
  publication-title: J Peasant Stud
  doi: 10.1080/03066150.2011.582947
– volume: 21
  start-page: 1067
  year: 1971
  end-page: 1070
  ident: CR1
  article-title: Biological uniformity and disease epidemics
  publication-title: Bioscience
  doi: 10.2307/1295991
– volume: 65
  start-page: 102
  year: 2004
  end-page: 120
  ident: CR97
  article-title: Effect of soil and water conservation and nutrient management on the soil-plant water balance in semi-arid Burkina Faso
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2003.07.001
– volume: 11
  start-page: 19
  year: 1998
  end-page: 30
  ident: CR2
  article-title: Effects of global climate change on agriculture: an interpretative review
  publication-title: Clim Res
  doi: 10.3354/cr011019
– volume: 17
  start-page: 18
  issue: 1
  year: 2012
  ident: CR19
  article-title: An indicator framework for assessing agroecosystem resilience
  publication-title: Ecol Soc
– volume: 388
  start-page: 631
  year: 1998
  end-page: 632
  ident: CR47
  article-title: Intercropping increases parasitism of pests
  publication-title: Nature
  doi: 10.1038/41681
– volume: 104
  start-page: 19691
  issue: 50
  year: 2007
  end-page: 19694
  ident: CR44
  article-title: Adapting agriculture to climate change
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0701890104
– ident: CR8
– volume: 128
  start-page: 12
  year: 2009
  end-page: 20
  ident: CR71
  article-title: A multiscale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2008.04.016
– volume: 67
  start-page: 1
  year: 1998
  end-page: 22
  ident: CR90
  article-title: Global change and multi-species agroecosystems: concepts and issues
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(97)00150-3
– volume: 16
  start-page: 10
  issue: 2
  year: 1989
  end-page: 12
  ident: CR21
  article-title: Building on a tradition of rainwater harvesting
  publication-title: Appropr Technol
– volume: 64
  start-page: 55
  year: 2009
  end-page: 58
  ident: CR57
  article-title: Does intercropping have a role in modern agriculture?
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.64.2.55A
– volume: 54
  start-page: 269
  year: 2002
  end-page: 293
  ident: CR27
  article-title: Impact of climate change and variability on irrigation requirements: a global perspective
  publication-title: Climate Change
  doi: 10.1023/A:1016124032231
– year: 1986
  ident: CR32
  publication-title: Multiple cropping systems
– year: 1991
  ident: CR75
  publication-title: Indigenous soil and water conservation in Africa
– volume: 17
  start-page: 25
  issue: 3
  year: 2012
  ident: CR15
  article-title: Assesing the sustainability of small-farmer natural resource management systems. A critical analysis of the MESMIS program (1995–2010)
  publication-title: Ecol Soc
– volume: 11
  start-page: 21
  year: 1995
  end-page: 43
  ident: CR24
  article-title: Prehistoric agricultural methods as models for sustainability
  publication-title: Adv Plant Pathol
  doi: 10.1016/S0736-4539(06)80004-8
– volume: 13
  start-page: 51
  year: 2003
  end-page: 59
  ident: CR46
  article-title: The potential impacts of climate change on maize production in Africa and Latin America in 2055
  publication-title: Glob Environ Chang
  doi: 10.1016/S0959-3780(02)00090-0
– year: 1987
  ident: CR94
  publication-title: Good farmers: traditional agricultural resource management in Mexico and Central America
– volume: 5
  start-page: 6
  year: 2013
  end-page: 22
  ident: CR59
  article-title: Giller KE (2013) Participatory action research (PAR) as an entry point for supporting climate change adaptation by smallholder farmers in Africa
  publication-title: Environ Dev
  doi: 10.1016/j.envdev.2012.11.001
– volume: 103
  start-page: 351
  issue: 2
  year: 2011
  end-page: 370
  ident: CR37
  article-title: Climate impacts on agriculture: implications for crop production
  publication-title: Agron J
  doi: 10.2134/agronj2010.0303
– year: 2010
  ident: CR62
  publication-title: Organic no-till farming
– year: 2014
  ident: CR96
  publication-title: Invasive species and global climate change, CABI invasives series
– volume: 74
  start-page: 19
  year: 1999
  end-page: 31
  ident: CR4
  article-title: The ecological role of biodiversity in agroecosystems
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(99)00028-6
– volume: 111
  start-page: 5598
  issue: 15
  year: 2014
  end-page: 5603
  ident: CR73
  article-title: Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1314437111
– year: 1988
  ident: CR86
  publication-title: Cultivating diversity: agrobiodiversity and food security
– year: 1990
  ident: CR18
  publication-title: Low-input soil restoration in Honduras: the Cantarranas farmer-to-farmer extension project. Sustainable Agriculture Gatekeeper Series SA23
– volume: 11
  start-page: 2013
  issue: 2
  year: 2013
  ident: CR61
  article-title: The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework
  publication-title: Int J Agric Sustain
  doi: 10.1080/14735903.2012.691221
– year: 2013
  ident: CR38
  article-title: Sustainability and innovation in staple crop production in the US Midwest
  publication-title: Int J Agric Sustain
– volume: 91
  start-page: 276
  year: 1999
  end-page: 279
  ident: CR26
  article-title: Soil organic matter and wheat productivity in the semiarid Argentine Pampas
  publication-title: Agron J
  doi: 10.2134/agronj1999.00021962009100020016x
– volume: 97
  start-page: 1
  issue: 1–3
  year: 2003
  end-page: 20
  ident: CR35
  article-title: Agroecosystern responses to combinations of elevated CO , ozone, and global climate change
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(03)00125-7
– volume: 2
  start-page: 1
  year: 2007
  end-page: 7
  ident: CR53
  article-title: Global scale climate–crop yield relationships and the impacts of recent warming
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/2/1/014002
– ident: CR41
– volume: 261
  start-page: 1654
  year: 2011
  end-page: 1663
  ident: CR63
  article-title: Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2010.09.027
– year: 2009
  ident: CR69
  publication-title: Nature’s matrix: linking agriculture, conservation and food sovereignty
– start-page: 207
  year: 2013
  ident: CR68
  publication-title: Agroecologia y resiliencia socioecologica: adaptandose al cambio climatico
– year: 2012
  ident: CR78
  publication-title: The farming systems trial: celebrating 30 years
– year: 2009
  ident: CR40
  publication-title: Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation
– year: 2008
  ident: CR87
  publication-title: La Memoria Biocultural: la importancia ecologica de las sabidurıas tradicionales
– volume: 2
  start-page: 220
  issue: 2
  year: 2011
  end-page: 237
  ident: CR83
  article-title: Adapting to crop pest and pathogen risks under a changing climate
  publication-title: Wiley Interdiscip Rev Clim Chang
  doi: 10.1002/wcc.102
– volume: 70
  start-page: 255
  year: 2005
  end-page: 271
  ident: CR82
  article-title: Using traditional methods and indigenous technologies for coping with climate variability
  publication-title: Clim Chang
  doi: 10.1007/s10584-005-5949-5
– year: 1993
  ident: CR66
  publication-title: Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture
– year: 1999
  ident: CR70
  publication-title: Participatory development of notillage systems without herbicides for family farming; the experience of the Center-South region of Paraná. In: Environment, development and sustainability
– year: 2014
  ident: CR34
  publication-title: Towards understanding the politics of flex crops and commodities: implications for research and policy advocacy
– volume: 38
  start-page: 161
  issue: 1
  year: 2011
  end-page: 191
  ident: CR81
  article-title: The Campesino-to-Campesino agroecology movement of ANAP in Cuba
  publication-title: J Peasant Stud
  doi: 10.1080/03066150.2010.538584
– volume: 24
  start-page: 347
  year: 2000
  end-page: 364
  ident: CR3
  article-title: Social and ecological resilience: are they related
  publication-title: Prog Hum Geogr
  doi: 10.1191/030913200701540465
– volume: 334
  start-page: 450
  year: 2011
  end-page: 457
  ident: CR91
  article-title: Biodiversity, evolution and adaptation of cultivated crops
  publication-title: Comptes Rendus Biol
  doi: 10.1016/j.crvi.2011.03.003
– volume: 1
  start-page: 159
  year: 1986
  end-page: 164
  ident: CR33
  article-title: Strip cropping corn and grain legumes: a review
  publication-title: Am J Altern Agric
– volume: 105
  start-page: 20552
  year: 2008
  end-page: 20557
  ident: CR50
  article-title: Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes
  publication-title: PNAS
  doi: 10.1073/pnas.0804951106
– volume: 37
  start-page: 399
  year: 1999
  end-page: 426
  ident: CR20
  article-title: Climate change and plant disease management
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.phyto.37.1.399
– start-page: 237
  year: 1989
  ident: CR89
  publication-title: The ecology of intercropping
  doi: 10.1017/CBO9780511623523
– volume: 2
  start-page: 24
  year: 2013
  end-page: 28
  ident: CR60
  article-title: Adapting crops and cropping systems to future climates to ensure food security: the role of crop modelling
  publication-title: Glob Food Secur
  doi: 10.1016/j.gfs.2012.11.009
– volume: 160
  start-page: 1686
  year: 2012
  end-page: 1697
  ident: CR54
  article-title: The influence of climate change on global crop productivity
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.208298
– volume: 406
  start-page: 718
  year: 2000
  end-page: 772
  ident: CR95
  article-title: Genetic diversity and disease control in rice
  publication-title: Nature
  doi: 10.1038/35021046
– volume: 5
  start-page: 293
  year: 2004
  end-page: 314
  ident: CR22
  article-title: Indigenous soil and eater conservation: a review of the state of knowledge and prospects for building on traditions
  publication-title: Land Degrad Rehabil
  doi: 10.1002/ldr.3400050406
– volume: 333
  start-page: 616
  year: 2011
  end-page: 620
  ident: CR55
  article-title: Climate trends and global crop production since 1980
  publication-title: Science
  doi: 10.1126/science.1204531
– year: 1999
  ident: CR16
  publication-title: Alternative irrigation: the promise of runoff agriculture
– year: 1998
  ident: CR17
  publication-title: Cover crops in hillside agriculture: farmer innovation with Mucuna
– volume: 8
  start-page: 85
  issue: 1
  year: 2013
  end-page: 91
  ident: CR39
  article-title: Propuesta metodológica de medición de la resiliencia agroecológica en sistemas socio-ecológicos: un estudio de caso en Los Andes Colombianos
  publication-title: Agroecología
– volume: 13
  start-page: 51
  year: 2003
  end-page: 59
  ident: CR85
  article-title: The potential impacts of climate change in tropical agriculture: the case of maize in Africa and Latin America in 2055
  publication-title: Glob Environ Chang
  doi: 10.1016/S0959-3780(02)00090-0
– volume: 57
  start-page: 221
  issue: 1–3
  year: 1991
  end-page: 240
  ident: CR74
  article-title: The potential effects of climatic change on agricultural insect pests
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(91)90088-8
– volume: 9
  start-page: 10
  issue: 2
  year: 2004
  ident: CR88
  article-title: Does adaptive management of natural resources enhance resilience to climate change
  publication-title: Ecol Soc
– volume: 294
  start-page: 804
  year: 2001
  end-page: 808
  ident: CR56
  article-title: Biodiversity and ecosystem functioning: current knowledge and future challenges
  publication-title: Science
  doi: 10.1126/science.1064088
– volume: 61
  start-page: 183
  year: 2011
  end-page: 193
  ident: CR52
  article-title: Resilience in agriculture through crop diversification: adaptive management for environmental change
  publication-title: Bioscience
  doi: 10.1525/bio.2011.61.3.4
– start-page: 273
  year: 2007
  end-page: 313
  ident: CR28
  article-title: Food, fiber and forest products
  publication-title: Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– volume: 35
  start-page: 286
  year: 1985
  end-page: 291
  ident: CR43
  article-title: A role for intercropping in modern agriculture
  publication-title: Bioscience
  doi: 10.2307/1309927
– volume: 93
  start-page: 1
  year: 2002
  end-page: 24
  ident: CR6
  article-title: Agroecology: the science of natural resource management for poor farmers in marginal environments
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(02)00085-3
– volume: 5
  start-page: 8
  year: 1989
  end-page: 9
  ident: CR30
  article-title: Velvetbeans: an alternative to improve small farmers’ agriculture
  publication-title: ILEIA Newsl
– volume: 174
  start-page: 653
  year: 1971
  end-page: 656
  ident: CR14
  article-title: Gardens on swamps
  publication-title: Science
  doi: 10.1126/science.174.4010.653
– volume: 16
  start-page: 253
  year: 2006
  end-page: 267
  ident: CR31
  article-title: Resilience: the emergence of a perspective for social ecological systems analyses
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2006.04.002
– volume: 13
  start-page: 1605
  issue: 8
  year: 2007
  end-page: 1615
  ident: CR92
  article-title: Linking climate change and species invasion: an illustration using insect herbivores
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2007.01399.x
– volume: 5
  start-page: 107
  year: 1992
  end-page: 110
  ident: CR93
  article-title: Effect of strip-intercropping corn and soybean on yield and profit
  publication-title: J Prod Agric
  doi: 10.2134/jpa1992.0107
– volume: 1
  start-page: 197
  year: 1999
  end-page: 217
  ident: CR5
  article-title: Applying agroecology to enhance productivity of peasant farming systems in Latin America
  publication-title: Environ Dev Sustain
  doi: 10.1023/A:1010078923050
– year: 1996
  ident: CR76
  publication-title: Sustaining the soil: indigenous soil and water conservation in Africa
– start-page: 91
  year: 2013
  ident: CR67
  publication-title: Agroecologia y cambio climatico: metodologias para evaluar la resiliencia socio-ecologica en comunidades rurales
– year: 2004
  ident: CR10
  publication-title: Biodiversity and pest management in agroecosystems
– volume: 13
  start-page: 117
  year: 1996
  end-page: 131
  ident: CR64
  article-title: The effects of water stress on yields advantages of intercropping systems
  publication-title: Field Crop Res
  doi: 10.1016/0378-4290(86)90015-8
– volume: 35
  start-page: 855
  year: 2011
  end-page: 869
  ident: CR13
  article-title: Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil
  publication-title: J Sustain Agric
  doi: 10.1080/10440046.2011.588998
– ident: CR23
– year: 2003
  ident: CR49
  publication-title: Climate change and agriculture a review of impacts and adaptations. Climate Change Series Paper (91)
– year: 2008
  ident: CR80
  publication-title: Climate change and the global harvest: impacts of El Nino and other oscillations on agroecosystems
– volume: 25
  start-page: 216
  year: 1996
  end-page: 217
  ident: CR77
  article-title: Return to resistance: breeding crops to reduce pesticide dependence
  publication-title: Australas Plant Pathol
  doi: 10.1007/BF03213684
– volume: 36
  start-page: 514
  year: 1986
  end-page: 515
  ident: CR72
  article-title: Pesticides: amounts applied and amounts reaching pests
  publication-title: Bioscience
  doi: 10.2307/1310108
– volume: 30
  start-page: 581
  year: 2010
  end-page: 599
  ident: CR36
  article-title: Arbuscularmycorrhizal networks: process and functions
  publication-title: Agron Sustain Dev
  doi: 10.1051/agro/2009054
– volume: 93
  start-page: 87
  year: 2002
  end-page: 105
  ident: CR42
  article-title: Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(02)00006-3
– year: 2013
  ident: CR11
  article-title: The adaptation and mitigation potential of traditional agriculture in a changing climate
  publication-title: Clim Chang
– start-page: 44
  year: 2004
  end-page: 65
  ident: CR58
  article-title: Soil organic matter management strategies
  publication-title: Soil Organic matter in sustainable agriculture
  doi: 10.1201/9780203496374
– year: 1972
  ident: CR65
  publication-title: Genetic vulnerability of major crops
– year: 2013
  ident: CR9
  publication-title: Strengthening resilience of farming systems: a key prerequisite for sustainable agricultural production. In: Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate
– year: 2010
  ident: CR48
  publication-title: Globally important agricultural heritage systems: a legacy for the future
– year: 2011
  ident: CR84
  publication-title: The role of traditional knowledge and crop varieties in adaptation to climate change and food security in SW China, Bolivian Andes and coastal Kenya
– volume: 2
  start-page: 35
  year: 2004
  end-page: 42
  ident: CR7
  article-title: Linking ecologists and traditional farmers in the search for sustainable agriculture
  publication-title: Front Ecol Environ
  doi: 10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2
– start-page: 207
  volume-title: Agroecologia y resiliencia socioecologica: adaptandose al cambio climatico
  year: 2013
  ident: 285_CR68
– volume: 16
  start-page: 10
  issue: 2
  year: 1989
  ident: 285_CR21
  publication-title: Appropr Technol
– volume: 5
  start-page: 8
  year: 1989
  ident: 285_CR30
  publication-title: ILEIA Newsl
– ident: 285_CR45
– volume: 2
  start-page: 1
  year: 2007
  ident: 285_CR53
  publication-title: Environ Res Lett
  doi: 10.1088/1748-9326/2/1/014002
– volume: 97
  start-page: 1
  issue: 1–3
  year: 2003
  ident: 285_CR35
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(03)00125-7
– volume-title: Globally important agricultural heritage systems: a legacy for the future
  year: 2010
  ident: 285_CR48
– volume-title: Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture
  year: 1993
  ident: 285_CR66
  doi: 10.1515/9781503622067
– volume-title: Cultivating diversity: agrobiodiversity and food security
  year: 1988
  ident: 285_CR86
– volume: 9
  start-page: 10
  issue: 2
  year: 2004
  ident: 285_CR88
  publication-title: Ecol Soc
  doi: 10.5751/ES-00667-090210
– volume: 5
  start-page: 293
  year: 2004
  ident: 285_CR22
  publication-title: Land Degrad Rehabil
  doi: 10.1002/ldr.3400050406
– volume: 11
  start-page: 2013
  issue: 2
  year: 2013
  ident: 285_CR61
  publication-title: Int J Agric Sustain
  doi: 10.1080/14735903.2012.691221
– start-page: 230
  volume-title: Fragile lands of Latin America
  year: 1989
  ident: 285_CR29
– volume: 36
  start-page: 514
  year: 1986
  ident: 285_CR72
  publication-title: Bioscience
  doi: 10.2307/1310108
– volume-title: The role of traditional knowledge and crop varieties in adaptation to climate change and food security in SW China, Bolivian Andes and coastal Kenya
  year: 2011
  ident: 285_CR84
– volume: 67
  start-page: 1
  year: 1998
  ident: 285_CR90
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(97)00150-3
– volume: 105
  start-page: 20552
  year: 2008
  ident: 285_CR50
  publication-title: PNAS
  doi: 10.1073/pnas.0804951106
– volume: 334
  start-page: 450
  year: 2011
  ident: 285_CR91
  publication-title: Comptes Rendus Biol
  doi: 10.1016/j.crvi.2011.03.003
– volume-title: La Memoria Biocultural: la importancia ecologica de las sabidurıas tradicionales
  year: 2008
  ident: 285_CR87
– volume-title: Alternative irrigation: the promise of runoff agriculture
  year: 1999
  ident: 285_CR16
– volume-title: Good farmers: traditional agricultural resource management in Mexico and Central America
  year: 1987
  ident: 285_CR94
– volume-title: Multiple cropping systems
  year: 1986
  ident: 285_CR32
– volume: 1
  start-page: 197
  year: 1999
  ident: 285_CR5
  publication-title: Environ Dev Sustain
  doi: 10.1023/A:1010078923050
– volume: 21
  start-page: 1067
  year: 1971
  ident: 285_CR1
  publication-title: Bioscience
  doi: 10.2307/1295991
– volume: 24
  start-page: 347
  year: 2000
  ident: 285_CR3
  publication-title: Prog Hum Geogr
  doi: 10.1191/030913200701540465
– volume-title: Sustaining the soil: indigenous soil and water conservation in Africa
  year: 1996
  ident: 285_CR76
– start-page: 273
  volume-title: Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
  year: 2007
  ident: 285_CR28
– volume-title: Organic no-till farming
  year: 2010
  ident: 285_CR62
– year: 2013
  ident: 285_CR38
  publication-title: Int J Agric Sustain
– start-page: 237
  volume-title: The ecology of intercropping
  year: 1989
  ident: 285_CR89
  doi: 10.1017/CBO9780511623523
– volume: 61
  start-page: 183
  year: 2011
  ident: 285_CR52
  publication-title: Bioscience
  doi: 10.1525/bio.2011.61.3.4
– volume: 25
  start-page: 216
  year: 1996
  ident: 285_CR77
  publication-title: Australas Plant Pathol
  doi: 10.1007/BF03213684
– volume: 74
  start-page: 19
  year: 1999
  ident: 285_CR4
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(99)00028-6
– volume: 57
  start-page: 221
  issue: 1–3
  year: 1991
  ident: 285_CR74
  publication-title: Agric For Meteorol
  doi: 10.1016/0168-1923(91)90088-8
– volume: 13
  start-page: 117
  year: 1996
  ident: 285_CR64
  publication-title: Field Crop Res
  doi: 10.1016/0378-4290(86)90015-8
– volume-title: Genetic vulnerability of major crops
  year: 1972
  ident: 285_CR65
– volume: 111
  start-page: 5598
  issue: 15
  year: 2014
  ident: 285_CR73
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1314437111
– volume: 5
  start-page: 23
  year: 1994
  ident: 285_CR25
  publication-title: Hum Organ
– volume-title: Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta Region of Oaxaca
  year: 2014
  ident: 285_CR79
– volume-title: Low-input soil restoration in Honduras: the Cantarranas farmer-to-farmer extension project. Sustainable Agriculture Gatekeeper Series SA23
  year: 1990
  ident: 285_CR18
– volume-title: Climate change and agriculture a review of impacts and adaptations. Climate Change Series Paper (91)
  year: 2003
  ident: 285_CR49
– volume: 5
  start-page: 107
  year: 1992
  ident: 285_CR93
  publication-title: J Prod Agric
  doi: 10.2134/jpa1992.0107
– volume: 104
  start-page: 19691
  issue: 50
  year: 2007
  ident: 285_CR44
  publication-title: Proc Natl Acad Sci
  doi: 10.1073/pnas.0701890104
– volume: 2
  start-page: 220
  issue: 2
  year: 2011
  ident: 285_CR83
  publication-title: Wiley Interdiscip Rev Clim Chang
  doi: 10.1002/wcc.102
– volume-title: Biodiversity and pest management in agroecosystems
  year: 2004
  ident: 285_CR10
  doi: 10.1201/9781482277937
– volume-title: Nature’s matrix: linking agriculture, conservation and food sovereignty
  year: 2009
  ident: 285_CR69
  doi: 10.4324/9781849770132
– volume: 93
  start-page: 87
  year: 2002
  ident: 285_CR42
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(02)00006-3
– volume: 174
  start-page: 653
  year: 1971
  ident: 285_CR14
  publication-title: Science
  doi: 10.1126/science.174.4010.653
– volume: 144
  start-page: 85
  year: 2007
  ident: 285_CR51
  publication-title: Agric For Meteorol
  doi: 10.1016/j.agrformet.2006.12.009
– volume: 65
  start-page: 102
  year: 2004
  ident: 285_CR97
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2003.07.001
– volume: 54
  start-page: 269
  year: 2002
  ident: 285_CR27
  publication-title: Climate Change
  doi: 10.1023/A:1016124032231
– volume: 37
  start-page: 399
  year: 1999
  ident: 285_CR20
  publication-title: Annu Rev Phytopathol
  doi: 10.1146/annurev.phyto.37.1.399
– volume: 38
  start-page: 587
  year: 2011
  ident: 285_CR12
  publication-title: J Peasant Stud
  doi: 10.1080/03066150.2011.582947
– ident: 285_CR8
– volume: 103
  start-page: 351
  issue: 2
  year: 2011
  ident: 285_CR37
  publication-title: Agron J
  doi: 10.2134/agronj2010.0303
– volume: 2
  start-page: 24
  year: 2013
  ident: 285_CR60
  publication-title: Glob Food Secur
  doi: 10.1016/j.gfs.2012.11.009
– volume: 93
  start-page: 1
  year: 2002
  ident: 285_CR6
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/S0167-8809(02)00085-3
– ident: 285_CR41
– volume: 16
  start-page: 253
  year: 2006
  ident: 285_CR31
  publication-title: Glob Environ Chang
  doi: 10.1016/j.gloenvcha.2006.04.002
– volume: 261
  start-page: 1654
  year: 2011
  ident: 285_CR63
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2010.09.027
– volume: 17
  start-page: 25
  issue: 3
  year: 2012
  ident: 285_CR15
  publication-title: Ecol Soc
  doi: 10.5751/ES-04910-170325
– volume: 91
  start-page: 276
  year: 1999
  ident: 285_CR26
  publication-title: Agron J
  doi: 10.2134/agronj1999.00021962009100020016x
– volume-title: Cover crops in hillside agriculture: farmer innovation with Mucuna
  year: 1998
  ident: 285_CR17
– volume: 333
  start-page: 616
  year: 2011
  ident: 285_CR55
  publication-title: Science
  doi: 10.1126/science.1204531
– volume: 294
  start-page: 804
  year: 2001
  ident: 285_CR56
  publication-title: Science
  doi: 10.1126/science.1064088
– volume-title: Invasive species and global climate change, CABI invasives series
  year: 2014
  ident: 285_CR96
  doi: 10.1079/9781780641645.0000
– volume: 13
  start-page: 1605
  issue: 8
  year: 2007
  ident: 285_CR92
  publication-title: Glob Chang Biol
  doi: 10.1111/j.1365-2486.2007.01399.x
– start-page: 91
  volume-title: Agroecologia y cambio climatico: metodologias para evaluar la resiliencia socio-ecologica en comunidades rurales
  year: 2013
  ident: 285_CR67
– volume: 1
  start-page: 159
  year: 1986
  ident: 285_CR33
  publication-title: Am J Altern Agric
  doi: 10.1017/S0889189300001235
– volume: 35
  start-page: 286
  year: 1985
  ident: 285_CR43
  publication-title: Bioscience
  doi: 10.2307/1309927
– volume-title: Indigenous soil and water conservation in Africa
  year: 1991
  ident: 285_CR75
– volume-title: Climate change and the global harvest: impacts of El Nino and other oscillations on agroecosystems
  year: 2008
  ident: 285_CR80
– volume-title: Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation
  year: 2009
  ident: 285_CR40
– volume: 11
  start-page: 21
  year: 1995
  ident: 285_CR24
  publication-title: Adv Plant Pathol
  doi: 10.1016/S0736-4539(06)80004-8
– volume: 38
  start-page: 161
  issue: 1
  year: 2011
  ident: 285_CR81
  publication-title: J Peasant Stud
  doi: 10.1080/03066150.2010.538584
– volume: 5
  start-page: 6
  year: 2013
  ident: 285_CR59
  publication-title: Environ Dev
  doi: 10.1016/j.envdev.2012.11.001
– start-page: 44
  volume-title: Soil Organic matter in sustainable agriculture
  year: 2004
  ident: 285_CR58
  doi: 10.1201/9780203496374
– volume-title: Towards understanding the politics of flex crops and commodities: implications for research and policy advocacy
  year: 2014
  ident: 285_CR34
– volume: 30
  start-page: 581
  year: 2010
  ident: 285_CR36
  publication-title: Agron Sustain Dev
  doi: 10.1051/agro/2009054
– volume: 8
  start-page: 85
  issue: 1
  year: 2013
  ident: 285_CR39
  publication-title: Agroecología
– volume: 35
  start-page: 855
  year: 2011
  ident: 285_CR13
  publication-title: J Sustain Agric
  doi: 10.1080/10440046.2011.588998
– volume: 64
  start-page: 55
  year: 2009
  ident: 285_CR57
  publication-title: J Soil Water Conserv
  doi: 10.2489/jswc.64.2.55A
– volume: 13
  start-page: 51
  year: 2003
  ident: 285_CR46
  publication-title: Glob Environ Chang
  doi: 10.1016/S0959-3780(02)00090-0
– volume: 11
  start-page: 19
  year: 1998
  ident: 285_CR2
  publication-title: Clim Res
  doi: 10.3354/cr011019
– volume-title: Strengthening resilience of farming systems: a key prerequisite for sustainable agricultural production. In: Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate
  year: 2013
  ident: 285_CR9
– volume-title: The farming systems trial: celebrating 30 years
  year: 2012
  ident: 285_CR78
– ident: 285_CR23
– volume: 2
  start-page: 35
  year: 2004
  ident: 285_CR7
  publication-title: Front Ecol Environ
  doi: 10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2
– volume: 160
  start-page: 1686
  year: 2012
  ident: 285_CR54
  publication-title: Plant Physiol
  doi: 10.1104/pp.112.208298
– year: 2013
  ident: 285_CR11
  publication-title: Clim Chang
– volume: 13
  start-page: 51
  year: 2003
  ident: 285_CR85
  publication-title: Glob Environ Chang
  doi: 10.1016/S0959-3780(02)00090-0
– volume: 17
  start-page: 18
  issue: 1
  year: 2012
  ident: 285_CR19
  publication-title: Ecol Soc
  doi: 10.5751/ES-04666-170118
– volume: 406
  start-page: 718
  year: 2000
  ident: 285_CR95
  publication-title: Nature
  doi: 10.1038/35021046
– volume: 128
  start-page: 12
  year: 2009
  ident: 285_CR71
  publication-title: Agric Ecosyst Environ
  doi: 10.1016/j.agee.2008.04.016
– volume: 388
  start-page: 631
  year: 1998
  ident: 285_CR47
  publication-title: Nature
– volume-title: Participatory development of notillage systems without herbicides for family farming; the experience of the Center-South region of Paraná. In: Environment, development and sustainability
  year: 1999
  ident: 285_CR70
– volume: 70
  start-page: 255
  year: 2005
  ident: 285_CR82
  publication-title: Clim Chang
  doi: 10.1007/s10584-005-5949-5
SSID ssj0041774
Score 2.6150079
SecondaryResourceType review_article
Snippet Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of...
AbstractDiverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the...
SourceID hal
proquest
crossref
springer
fao
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 869
SubjectTerms Agriculture
agroecosystems
agroforestry
animals
biodiversity
Biomedical and Life Sciences
carbon dioxide
climate
climate change
crop yield
cropping systems
disasters
drought
farmers
farms
food availability
food production
gases
genetic variation
germplasm
greenhouses
harvesting
hurricanes
insect pests
landscapes
Life Sciences
organic matter
organic soils
pathogens
population dynamics
Review Article
rural communities
soil management
Soil Science & Conservation
surface temperature
surveys
Sustainable Development
traditional farming
water conservation
weeds
Title Agroecology and the design of climate change-resilient farming systems
URI https://link.springer.com/article/10.1007/s13593-015-0285-2
https://www.proquest.com/docview/1803104910
https://hal.science/hal-01309778
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4EDb9TwqAziBHJlJ46THCPUZcXrQlcqJ8uPSVuxyqJmt1L59czk0UIFSL0kSmRHzsx4_Fkz85mx1-CNr6SMwvnKCV35ILyRIKIyQaXSmRiodvjzFzNf6A9H-dFYx91N2e5TSLL31FfFbllOuWaKKorLXKDf3clxf4Kzcad-_-3jweSAtSp68mW6CTpOYwpm_u0jfyxHW41b4fWEUiJ_w5vXQqT9yjO7xw6nMQ8JJ9_3N2u_H35eo3O84U_dZ3dHJMrrwXQesFvQPmR36uOzkY0DHrEZPq2g57W-4K6NHNEij33OB181PCxPEe8CH4qHBW7cT5dUXskbRxk2x3ygie4es8Xs4PDdXIwHL4ig03QtVNCFBMhBQwOhioWK2mVGV2VZQZTgc8Q1si-Ewg5FIQunmqjBuaxBheTZE7bdrlrYZbzIfMA9ZAkyR_CYmSqaYFQ0mQGP0LNImJzkb8PISk6HYyztFZ8yiciiiCyJyKYJe3PZ5cdAyfG_xruoVOtQeJ1dfE2JUK-n1VNVwl6hpi8_QTzb8_qTpXcUzsXRlecqYS8nQ7A48Sia4lpYbTqrSmJV1Qi3EvZ2Uq4dPUD37xE9vVHrZ-x22lsHJQg_Z9vrsw28QBi09nuj2e-xrUVa_wIha_nh
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIAD4qmm5WEQJ5AlO3Gc5Liqulpg2wtdqTfLj0mptEpQs0Xqv--MN2kBARKXRIlsy5rx47Nmvs-MvQdvfCNlFM43TujGB-GNBBGVCSqXzsRA3OGjY7NY6c-n5enI4x6mbPcpJJlW6luyW1FSrpkiRnFdClx371GUkU5cq3w2Lb9aVUl6mV6CLtOYQpl_auKXzehu63p8fqOEyJ_Q5m8B0rTvzB-zRyNg5LOth5-wO9A9ZQ9nZxejaAY8Y3P86iHJT19x10WOoI7HlJrB-5aH9TnCUuBbjq_A8_X5mliQvHWUCHPGt2rOw3O2mh-eHCzEeD-CCDrPN0IFXUmAEjS0EJpYqahdYXRT1w1ECb5E-CETXwkrVJWsnGqjBueKtsaNu3jBdrq-g13Gq8IHPOrVIEvEeIVpoglGRVMY8IgQq4zJyVA2jOLhdIfF2t7KHpNtLdrWkm1tnrEPN1W-b5Uz_lV4F61vHRpvsKuvOeneJfU71WTsHbrkpgmSw17Mlpb-UdQVe1f_UBl7O3nM4vygoIfroL8crKpJ_FQjKsrYx8mVdpyow997tPdfpd-w-4uTo6Vdfjr-ss8e5GmIUU7vS7azubiEV4hcNv51GqnXG4bfHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE4UJ5qoAWDOIHc2onjJMdV6bLQUiHBSuVk_EqpWCVVk0WCX89MHi1UgIS4JEpkW_aMH581M98Q8ixYZQvOPTO2MEwW1jGreGBeKCdibpR3GDv89lDNF_LNUXo05DltRm_30STZxzQgS1PV7pz6cuci8C1J0e9MYHRxnjLYg9ckppCYkLXpq4_7e-NmLEXWETHji2FqjdGw-btGfjmarpamhudndI_8CXteMpd2p9BsnXwa-987n3zZXrV2232_RO34HwO8RW4OCJVO-yl1m1wJ1R1yY3p8NrB0hLtkBl916Piuv1FTeQookvrOF4TWJXXLE8DBgfZBxQwu9CdLDLukpUHPm2Pa00c398hitvdhd86GhAzMyThumXAy4yGkQYYyuMJnwkuTKFnkeRE8DzYFvMO7ACmokGU8M6L0MhiTlDkgheQ-mVR1FTYIzRLr4G6ZB54CqExU4ZVTwqtEBQuQNIsIH3Wh3cBWjkkzlvqCZxlFpEFEGkWk44g8P69y2lN1_K3wBihYGxBeoxfvYyTa6-j2RBGRp6D18yaQf3s-PdD4D8280Lv8q4jIk3FSaFiQaGUxVahXjRY5sq1KgGEReTEqWg87Q_PnHj34p9KPybV3L2f64PXh_kNyPe4mCvoQb5JJe7YKW4CUWvtoWA0_ALDzBNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agroecology+and+the+design+of+climate+change-resilient+farming+systems&rft.jtitle=Agronomy+for+sustainable+development&rft.au=Altieri%2C+Miguel+A.&rft.au=Nicholls%2C+Clara+I.&rft.au=Henao%2C+Alejandro&rft.au=Lana%2C+Marcos+A.&rft.date=2015-07-01&rft.pub=Springer+Paris&rft.issn=1774-0746&rft.eissn=1773-0155&rft.volume=35&rft.issue=3&rft.spage=869&rft.epage=890&rft_id=info:doi/10.1007%2Fs13593-015-0285-2&rft.externalDocID=10_1007_s13593_015_0285_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1774-0746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1774-0746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1774-0746&client=summon