Agroecology and the design of climate change-resilient farming systems
Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on...
Saved in:
Published in | Agronomy for sustainable development Vol. 35; no. 3; pp. 869 - 890 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Paris
Springer Paris
01.07.2015
Springer Verlag/EDP Sciences/INRA |
Subjects | |
Online Access | Get full text |
ISSN | 1774-0746 1773-0155 |
DOI | 10.1007/s13593-015-0285-2 |
Cover
Abstract | Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change. |
---|---|
AbstractList | AbstractDiverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO2 and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change. Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change. Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO₂ and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change. Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of CO 2 and associated “greenhouse” gases could lead to a 1.4 to 5.8 °C increase in global surface temperatures, with subsequent consequences on precipitation frequency and amounts. Temperature and water availability remain key factors in determining crop growth and productivity; predicted changes in these factors will lead to reduced crop yields. Climate-induced changes in insect pest, pathogen and weed population dynamics and invasiveness could compound such effects. Undoubtedly, climate- and weather-induced instability will affect levels of and access to food supply, altering social and economic stability and regional competiveness. Adaptation is considered a key factor that will shape the future severity of climate change impacts on food production. Changes that will not radically modify the monoculture nature of dominant agroecosystems may moderate negative impacts temporarily. The biggest and most durable benefits will likely result from more radical agroecological measures that will strengthen the resilience of farmers and rural communities, such as diversification of agroecosytems in the form of polycultures, agroforestry systems, and crop-livestock mixed systems accompanied by organic soil management, water conservation and harvesting, and general enhancement of agrobiodiversity. Traditional farming systems are repositories of a wealth of principles and measures that can help modern agricultural systems become more resilient to climatic extremes. Many of these agroecological strategies that reduce vulnerabilities to climate variability include crop diversification, maintaining local genetic diversity, animal integration, soil organic management, water conservation and harvesting, etc. Understanding the agroecological features that underlie the resilience of traditional agroecosystems is an urgent matter, as they can serve as the foundation for the design of adapted agricultural systems. Observations of agricultural performance after extreme climatic events (hurricanes and droughts) in the last two decades have revealed that resiliency to climate disasters is closely linked to farms with increased levels of biodiversity. Field surveys and results reported in the literature suggest that agroecosystems are more resilient when inserted in a complex landscape matrix, featuring adapted local germplasm deployed in diversified cropping systems managed with organic matter rich soils and water conservation-harvesting techniques. The identification of systems that have withstood climatic events recently or in the past and understanding the agroecological features of such systems that allowed them to resist and/or recover from extreme events is of increased urgency, as the derived resiliency principles and practices that underlie successful farms can be disseminated to thousands of farmers via Campesino a Campesino networks to scale up agroecological practices that enhance the resiliency of agroecosystems. The effective diffusion of agroecological technologies will largely determine how well and how fast farmers adapt to climate change. |
Author | Altieri, Miguel A Lana, Marcos A Henao, Alejandro Nicholls, Clara I |
Author_xml | – sequence: 1 fullname: Altieri, Miguel A – sequence: 2 fullname: Nicholls, Clara I – sequence: 3 fullname: Henao, Alejandro – sequence: 4 fullname: Lana, Marcos A |
BackLink | https://hal.science/hal-01309778$$DView record in HAL |
BookMark | eNp9kMFuGyEURVGVSo3TfEBXnWW7mPa9AczM0rKapJKlLlqvEWHejInGkACu5L8PziSbLLwBdLkHns6CXfjgibEvCD8QQP1MyGXHa0BZQ9PKuvnALlGpl0RevJxFDUosP7FFSg8A4pRcspvVGAPZMIXxWBnfV3lHVU_Jjb4KQ2UntzeZKrszfqQ6lovJkc_VYOLe-bFKx5Rpnz6zj4OZEl2_7ldse_Pr3_qu3vy5_b1ebWormibXaIUCIkmCBrJdr7AXhi9F17Yd9UD3csk7AFxKUQClQBkcekHG8KEVKPkV-z6_uzOTfoxluHjUwTh9t9roUwbIoVOq_Y-l-23uPsbwdKCU9d4lS9NkPIVD0tgCRxAdQqmquWpjSCnSoK3LJrvgczRu0gj6ZFnPlssnUp8s66aQ-I58m-oc08xMKt2iNeqHcIi-eDsLfZ2hwQRtxuiS3v5tiqqiq6zY8WdNcZi5 |
CitedBy_id | crossref_primary_10_1080_1747423X_2018_1533044 crossref_primary_10_1108_EOR_10_2023_0001 crossref_primary_10_1590_1678_9865202134e200120 crossref_primary_10_3390_microorganisms11061448 crossref_primary_10_1007_s10725_023_01094_x crossref_primary_10_3389_fpls_2024_1352169 crossref_primary_10_1038_s41893_024_01474_9 crossref_primary_10_3389_fsufs_2020_00032 crossref_primary_10_1080_21683565_2023_2273835 crossref_primary_10_1016_j_agrformet_2019_107857 crossref_primary_10_1080_17565529_2019_1664376 crossref_primary_10_3390_ani11092548 crossref_primary_10_1080_03031853_2021_1917429 crossref_primary_10_3390_land14030636 crossref_primary_10_1007_s13157_017_0967_4 crossref_primary_10_12688_wellcomeopenres_11190_2 crossref_primary_10_1080_21683565_2018_1514677 crossref_primary_10_12688_wellcomeopenres_11190_1 crossref_primary_10_1080_21683565_2022_2039837 crossref_primary_10_1111_gcb_14878 crossref_primary_10_3390_agronomy13082113 crossref_primary_10_3390_su14148507 crossref_primary_10_1016_j_atech_2025_100848 crossref_primary_10_1016_j_ijdrr_2024_104722 crossref_primary_10_17660_ActaHortic_2019_1261_27 crossref_primary_10_1093_treephys_tpaa144 crossref_primary_10_1007_s11027_016_9707_y crossref_primary_10_1146_annurev_environ_112621_063931 crossref_primary_10_3390_agronomy12102535 crossref_primary_10_1016_j_envsci_2021_10_018 crossref_primary_10_1016_j_jenvman_2025_124144 crossref_primary_10_3390_su14063185 crossref_primary_10_35784_pe_2022_1_17 crossref_primary_10_5304_jafscd_2020_092_009 crossref_primary_10_1080_14735903_2021_1963598 crossref_primary_10_3390_agriculture11020132 crossref_primary_10_59978_ar03010001 crossref_primary_10_1109_ACCESS_2024_3455244 crossref_primary_10_2166_wcc_2024_705 crossref_primary_10_1016_j_agsy_2018_11_002 crossref_primary_10_1016_j_revpalbo_2023_105039 crossref_primary_10_1111_gcb_15513 crossref_primary_10_5304_jafscd_2024_133_032 crossref_primary_10_5897_AJAR2021_15710 crossref_primary_10_3389_fsufs_2021_750765 crossref_primary_10_1016_j_eja_2019_125922 crossref_primary_10_1080_00330124_2022_2134150 crossref_primary_10_3390_agronomy14091995 crossref_primary_10_3390_su13052425 crossref_primary_10_1038_s41597_024_03805_z crossref_primary_10_1007_s11625_021_01057_z crossref_primary_10_1007_s11248_024_00414_9 crossref_primary_10_1016_j_envsci_2021_10_022 crossref_primary_10_1016_j_agsy_2021_103357 crossref_primary_10_3390_su14105815 crossref_primary_10_1016_j_jclepro_2023_139701 crossref_primary_10_2139_ssrn_4165297 crossref_primary_10_1016_j_scienta_2024_113448 crossref_primary_10_3390_agriculture13101896 crossref_primary_10_1111_1467_8489_12309 crossref_primary_10_2478_boku_2023_0004 crossref_primary_10_3362_2046_1887_2017_004 crossref_primary_10_1016_j_geoderma_2022_115851 crossref_primary_10_1080_23311932_2025_2480261 crossref_primary_10_1111_gcbb_12916 crossref_primary_10_3390_agronomy12102435 crossref_primary_10_1016_j_baae_2022_10_002 crossref_primary_10_1016_j_geoforum_2021_11_001 crossref_primary_10_3390_soilsystems7040106 crossref_primary_10_1080_1747423X_2023_2248980 crossref_primary_10_3390_su13179764 crossref_primary_10_3390_su9010055 crossref_primary_10_1016_j_scitotenv_2019_04_212 crossref_primary_10_1088_1748_9326_ad300c crossref_primary_10_3390_su9060990 crossref_primary_10_1016_j_agsy_2021_103225 crossref_primary_10_1002_ael2_20034 crossref_primary_10_12952_journal_elementa_000142 crossref_primary_10_3917_pour_247_0035 crossref_primary_10_1002_ecs2_4046 crossref_primary_10_1007_s13593_020_00617_4 crossref_primary_10_1021_acs_chemrev_2c00130 crossref_primary_10_1080_14735903_2023_2193028 crossref_primary_10_1016_j_envsci_2025_104030 crossref_primary_10_1016_j_still_2020_104818 crossref_primary_10_1080_03066150_2020_1782891 crossref_primary_10_1007_s10668_022_02844_z crossref_primary_10_1016_j_eja_2017_09_009 crossref_primary_10_1007_s10460_024_10630_y crossref_primary_10_1007_s43621_025_00901_x crossref_primary_10_1016_j_agsy_2024_104196 crossref_primary_10_1016_j_jrurstud_2023_103163 crossref_primary_10_2139_ssrn_4194831 crossref_primary_10_3389_fsufs_2022_1003637 crossref_primary_10_1002_jid_3660 crossref_primary_10_1186_s12284_024_00710_2 crossref_primary_10_1080_03066150_2016_1146705 crossref_primary_10_59983_s2024020105 crossref_primary_10_5194_bg_21_5639_2024 crossref_primary_10_1515_opag_2018_0058 crossref_primary_10_1007_s00521_020_05303_w crossref_primary_10_1016_j_ecolecon_2025_108568 crossref_primary_10_1080_03066150_2022_2138353 crossref_primary_10_1080_03066150_2020_1847090 crossref_primary_10_3390_f12020233 crossref_primary_10_1108_IJCCSM_08_2022_0110 crossref_primary_10_3389_fsufs_2020_00109 crossref_primary_10_1080_00305316_2022_2164373 crossref_primary_10_1016_j_agsy_2023_103810 crossref_primary_10_1080_23311932_2023_2266197 crossref_primary_10_1051_bioconf_20202100033 crossref_primary_10_5377_ribcc_v9i17_16359 crossref_primary_10_1016_j_cosust_2020_11_005 crossref_primary_10_1371_journal_pone_0209093 crossref_primary_10_1016_j_still_2020_104804 crossref_primary_10_2134_jeq2017_08_0309 crossref_primary_10_1007_s10668_024_05316_8 crossref_primary_10_1177_00307270231197700 crossref_primary_10_1007_s13593_017_0473_3 crossref_primary_10_1016_j_eja_2024_127257 crossref_primary_10_3389_fevo_2022_943265 crossref_primary_10_1016_j_ancene_2019_100192 crossref_primary_10_1017_S1751731116001051 crossref_primary_10_1007_s40003_020_00516_w crossref_primary_10_1016_j_cois_2017_07_006 crossref_primary_10_4001_003_028_0150 crossref_primary_10_35759_JABs_150_8 crossref_primary_10_1016_j_cois_2017_07_008 crossref_primary_10_1016_j_sajb_2024_11_022 crossref_primary_10_1016_j_agsy_2019_102653 crossref_primary_10_1016_j_eja_2024_127386 crossref_primary_10_1016_j_jrurstud_2024_103438 crossref_primary_10_1016_j_resconrec_2021_105502 crossref_primary_10_1111_1365_2664_13722 crossref_primary_10_1080_11263504_2024_2313215 crossref_primary_10_3390_su14105844 crossref_primary_10_36253_jaeid_14672 crossref_primary_10_1016_j_fcr_2024_109695 crossref_primary_10_1038_s41598_019_51416_1 crossref_primary_10_1080_1389224X_2025_2477450 crossref_primary_10_1080_14735903_2020_1747199 crossref_primary_10_1111_cjag_12360 crossref_primary_10_1093_biosci_biad025 crossref_primary_10_1007_s10098_020_01911_1 crossref_primary_10_1002_sd_2951 crossref_primary_10_3390_su10093299 crossref_primary_10_3390_land10040385 crossref_primary_10_3390_su14159552 crossref_primary_10_3390_su131911122 crossref_primary_10_12688_emeraldopenres_12850_1 crossref_primary_10_1016_j_eja_2020_126102 crossref_primary_10_1080_21683565_2022_2140378 crossref_primary_10_1051_nss_2024035 crossref_primary_10_1016_j_still_2016_03_002 crossref_primary_10_3934_agrfood_2016_2_157 crossref_primary_10_1080_21683565_2023_2230931 crossref_primary_10_2166_wcc_2024_631 crossref_primary_10_5304_jafscd_2024_133_006 crossref_primary_10_1016_j_agsy_2024_104182 crossref_primary_10_1016_j_crsust_2024_100248 crossref_primary_10_3390_insects14010065 crossref_primary_10_1080_1343943X_2020_1725392 crossref_primary_10_1080_19475705_2023_2270129 crossref_primary_10_1016_j_animal_2023_100759 crossref_primary_10_1051_cagri_2024019 crossref_primary_10_1007_s13593_023_00910_y crossref_primary_10_1038_s41467_018_04087_x crossref_primary_10_3390_agronomy13061651 crossref_primary_10_1080_21683565_2021_1881862 crossref_primary_10_1515_opag_2022_0391 crossref_primary_10_1007_s10745_023_00403_2 crossref_primary_10_1007_s13593_022_00781_9 crossref_primary_10_1016_j_geoderma_2023_116598 crossref_primary_10_1371_journal_pclm_0000064 crossref_primary_10_1016_j_agsy_2020_102809 crossref_primary_10_31285_AGRO_27_1204 crossref_primary_10_3389_fvets_2021_628686 crossref_primary_10_1007_s11027_020_09923_4 crossref_primary_10_1016_j_agee_2020_107053 crossref_primary_10_1007_s10113_024_02280_x crossref_primary_10_3390_plants13010124 crossref_primary_10_1016_j_jenvman_2021_112892 crossref_primary_10_1007_s13593_015_0335_9 crossref_primary_10_1016_j_agsy_2023_103612 crossref_primary_10_3390_land12020364 crossref_primary_10_1016_j_cropro_2019_105012 crossref_primary_10_1111_sum_12702 crossref_primary_10_3389_fagro_2025_1536997 crossref_primary_10_1007_s10669_022_09889_5 crossref_primary_10_1371_journal_pclm_0000051 crossref_primary_10_1007_s10705_018_9933_7 crossref_primary_10_1016_j_hpj_2023_09_009 crossref_primary_10_1016_j_jclepro_2020_125456 crossref_primary_10_3390_app15020644 crossref_primary_10_1111_eea_13276 crossref_primary_10_1017_S0014479723000017 crossref_primary_10_1088_1755_1315_1010_1_012151 crossref_primary_10_1016_j_jafr_2022_100405 crossref_primary_10_3390_su13095089 crossref_primary_10_54167_tch_v16i3_1097 crossref_primary_10_1016_j_agee_2017_03_018 crossref_primary_10_1080_21683565_2024_2448201 crossref_primary_10_1111_sum_12932 crossref_primary_10_1016_j_geoforum_2022_03_012 crossref_primary_10_1080_21683565_2016_1266069 crossref_primary_10_12944_CARJ_12_2_11 crossref_primary_10_3390_su15053975 crossref_primary_10_1016_j_agee_2017_06_002 crossref_primary_10_1080_01448765_2021_1891968 crossref_primary_10_1016_j_dsr2_2025_105464 crossref_primary_10_1016_j_agsy_2020_102904 crossref_primary_10_1016_j_ecoser_2023_101531 crossref_primary_10_7717_peerj_18569 crossref_primary_10_1080_21683565_2020_1812788 crossref_primary_10_1007_s11356_021_13089_0 crossref_primary_10_1002_cli2_70007 crossref_primary_10_1051_e3sconf_202127308075 crossref_primary_10_1007_s10668_024_05728_6 crossref_primary_10_1016_j_biocontrol_2024_105637 crossref_primary_10_1080_03650340_2022_2116013 crossref_primary_10_1590_1413_70542023470001r23 crossref_primary_10_3390_insects10080247 crossref_primary_10_3390_cli12050058 crossref_primary_10_3389_fsufs_2020_562663 crossref_primary_10_1007_s10113_021_01788_w crossref_primary_10_1016_j_agwat_2021_107216 crossref_primary_10_1186_s40068_025_00395_6 crossref_primary_10_3389_fsufs_2024_1336632 crossref_primary_10_1016_j_foodpol_2023_102451 crossref_primary_10_1016_j_agsy_2023_103713 crossref_primary_10_1007_s10661_024_13188_8 crossref_primary_10_1016_j_agsy_2020_102913 crossref_primary_10_3390_land11060824 crossref_primary_10_1590_1678_4499_20200421 crossref_primary_10_1590_1806_9479_2022_265073 crossref_primary_10_3390_f10060475 crossref_primary_10_1016_j_apsoil_2024_105752 crossref_primary_10_3389_fevo_2019_00080 crossref_primary_10_1007_s10113_021_01764_4 crossref_primary_10_1016_j_pestbp_2019_11_005 crossref_primary_10_69821_REMUVAC_v1i1_12 crossref_primary_10_1002_sae2_70055 crossref_primary_10_1080_21683565_2020_1813861 crossref_primary_10_1002_sae2_12097 crossref_primary_10_1007_s13280_018_1021_3 crossref_primary_10_3389_fsufs_2024_1358515 crossref_primary_10_3390_agronomy7020035 crossref_primary_10_1175_WCAS_D_21_0023_1 crossref_primary_10_1016_j_gfs_2022_100614 crossref_primary_10_3354_cr01738 crossref_primary_10_1007_s10668_023_03168_2 crossref_primary_10_3390_agronomy14122804 crossref_primary_10_1002_ppp3_10339 crossref_primary_10_1007_s11295_020_1416_8 crossref_primary_10_1016_j_ecofro_2024_11_003 crossref_primary_10_3389_fsufs_2020_543914 crossref_primary_10_1007_s42690_021_00681_7 crossref_primary_10_1007_s13593_015_0347_5 crossref_primary_10_3389_fsufs_2024_1404315 crossref_primary_10_1111_ajae_12177 crossref_primary_10_3389_fenvs_2024_1347915 crossref_primary_10_1016_j_landusepol_2020_105031 crossref_primary_10_3390_genes12040534 crossref_primary_10_3390_su15097412 crossref_primary_10_35633_inmateh_74_86 crossref_primary_10_1016_j_oneear_2024_07_007 crossref_primary_10_1038_s43247_023_00746_0 crossref_primary_10_3389_fsufs_2021_699694 crossref_primary_10_1080_00049182_2024_2350813 crossref_primary_10_1007_s11270_024_07525_3 crossref_primary_10_1080_21683565_2023_2171172 crossref_primary_10_3390_agronomy13092406 crossref_primary_10_1016_j_agsy_2021_103251 crossref_primary_10_1080_23311932_2023_2292871 crossref_primary_10_4236_as_2023_149088 crossref_primary_10_1002_sae2_70039 crossref_primary_10_1016_j_agrformet_2022_109065 crossref_primary_10_1088_1755_1315_1072_1_012012 crossref_primary_10_3390_su14052648 crossref_primary_10_3390_en12163123 crossref_primary_10_3390_f8070242 crossref_primary_10_1016_j_agsy_2024_103935 crossref_primary_10_1016_j_agsy_2018_01_028 crossref_primary_10_1016_j_soisec_2024_100142 crossref_primary_10_1007_s10113_022_01916_0 crossref_primary_10_1007_s13165_017_0177_7 crossref_primary_10_3390_plants13212988 crossref_primary_10_3389_fsufs_2024_1336810 crossref_primary_10_55965_setp_4_08_uady_a1 crossref_primary_10_1016_j_agsy_2024_103934 crossref_primary_10_14324_111_444_ucloe_000065 crossref_primary_10_3390_agronomy9030150 crossref_primary_10_1016_j_techfore_2020_120229 crossref_primary_10_1016_j_jenvman_2023_119882 crossref_primary_10_1038_s41598_020_72384_x crossref_primary_10_1007_s10340_019_01083_y crossref_primary_10_1016_j_wace_2019_100237 crossref_primary_10_1111_gfs_12536 crossref_primary_10_1007_s10460_020_10164_z crossref_primary_10_1093_erae_jbab042 crossref_primary_10_1016_j_agee_2021_107385 crossref_primary_10_1038_nclimate3007 crossref_primary_10_3389_fagro_2025_1534370 crossref_primary_10_3390_su14020897 crossref_primary_10_3390_rs16132338 crossref_primary_10_4000_12er4 crossref_primary_10_1016_j_tplants_2022_04_002 crossref_primary_10_1007_s13412_024_00888_3 crossref_primary_10_1016_j_biocon_2024_110915 crossref_primary_10_1007_s13593_022_00806_3 crossref_primary_10_3390_su13126852 crossref_primary_10_3389_fsrma_2024_1423078 crossref_primary_10_1002_agj2_20573 crossref_primary_10_1007_s13593_021_00741_9 crossref_primary_10_1016_j_jclepro_2023_140141 crossref_primary_10_3390_f13060878 crossref_primary_10_1080_03066150_2024_2399138 crossref_primary_10_1007_s11104_019_04173_z crossref_primary_10_3390_agronomy12071631 crossref_primary_10_1080_21683565_2025_2472770 crossref_primary_10_1175_WCAS_D_16_0113_1 crossref_primary_10_1016_j_cub_2024_04_062 crossref_primary_10_1007_s13593_024_00968_2 crossref_primary_10_1007_s10531_024_02999_3 crossref_primary_10_1186_s40066_018_0209_x crossref_primary_10_1080_21683565_2022_2076184 crossref_primary_10_1111_gfs_12675 crossref_primary_10_3390_su9030405 crossref_primary_10_1016_j_scitotenv_2020_140509 crossref_primary_10_4081_ija_2016_730 crossref_primary_10_1007_s12571_017_0721_z crossref_primary_10_1088_1755_1315_1266_1_012024 crossref_primary_10_55908_sdgs_v11i8_1444 crossref_primary_10_4000_interventionseconomiques_14479 crossref_primary_10_1038_s41598_019_45300_1 crossref_primary_10_1007_s10113_025_02379_9 crossref_primary_10_26848_rbgf_v17_2_p1375_1395 crossref_primary_10_3167_ares_2016_070104 crossref_primary_10_1071_AN22225 crossref_primary_10_1007_s13593_020_00634_3 crossref_primary_10_1080_01426397_2024_2329602 crossref_primary_10_3390_nu10111799 crossref_primary_10_3390_app14124966 crossref_primary_10_1080_27658511_2024_2345433 crossref_primary_10_1080_23311886_2024_2417815 crossref_primary_10_3389_fsufs_2021_684181 crossref_primary_10_1017_S1742170519000322 crossref_primary_10_3727_216929722X16354101932348 crossref_primary_10_15406_hij_2019_03_00132 crossref_primary_10_1007_s41742_020_00288_9 crossref_primary_10_1016_j_landusepol_2019_104251 crossref_primary_10_3390_land12071324 crossref_primary_10_1016_j_still_2017_01_005 crossref_primary_10_1016_j_tplants_2019_12_024 crossref_primary_10_3280_ECAG2018_003006 crossref_primary_10_1016_j_baae_2019_06_006 crossref_primary_10_1016_j_envdev_2020_100506 crossref_primary_10_1080_21683565_2018_1509410 crossref_primary_10_1016_j_cosust_2022_101222 crossref_primary_10_1002_ecm_1553 crossref_primary_10_1016_j_crsust_2021_100093 crossref_primary_10_1007_s10745_022_00357_x crossref_primary_10_1016_j_agee_2023_108816 crossref_primary_10_1002_adsu_202000037 crossref_primary_10_1007_s13593_022_00833_0 crossref_primary_10_3390_su10113837 crossref_primary_10_1007_s12571_017_0742_7 crossref_primary_10_3390_su12062480 crossref_primary_10_1155_ijfo_2415147 crossref_primary_10_1016_j_heliyon_2024_e40570 crossref_primary_10_3390_su12145851 crossref_primary_10_1071_MA23002 crossref_primary_10_1080_21683565_2025_2466428 crossref_primary_10_38124_ijisrt_IJISRT24MAY1714 crossref_primary_10_1016_j_compag_2022_107182 crossref_primary_10_1007_s11250_020_02241_6 crossref_primary_10_3390_f14040845 crossref_primary_10_3390_agronomy11112102 crossref_primary_10_1093_pubmed_fdae130 crossref_primary_10_1016_j_crsust_2021_100089 crossref_primary_10_1126_sciadv_ado5541 crossref_primary_10_3389_frsc_2022_867691 crossref_primary_10_1016_j_jenvman_2024_122461 crossref_primary_10_3390_biology11030368 crossref_primary_10_3390_agronomy13020320 crossref_primary_10_1038_s41598_024_58903_0 crossref_primary_10_7554_eLife_54489 crossref_primary_10_1016_j_agsy_2019_02_001 crossref_primary_10_1111_gcbb_70016 crossref_primary_10_56093_ijas_v90i8_105882 crossref_primary_10_1016_j_agee_2023_108601 crossref_primary_10_5304_jafscd_2023_131_002 crossref_primary_10_1016_j_envres_2023_116030 crossref_primary_10_1038_s41598_024_62426_z crossref_primary_10_1080_21683565_2018_1489933 crossref_primary_10_1016_j_eja_2019_02_005 crossref_primary_10_1007_s13593_019_0562_6 crossref_primary_10_1017_sus_2018_9 crossref_primary_10_1007_s10460_022_10338_x crossref_primary_10_1016_j_ecolind_2020_106781 crossref_primary_10_1016_j_jenvman_2020_111223 crossref_primary_10_1016_j_jenvman_2023_119903 crossref_primary_10_1016_j_ecoleng_2024_107486 crossref_primary_10_33333_rp_vol51n2_04 crossref_primary_10_3390_v16040603 crossref_primary_10_3390_su12020605 crossref_primary_10_1016_j_apgeog_2024_103431 crossref_primary_10_3390_agronomy13081962 crossref_primary_10_1007_s43621_022_00096_5 crossref_primary_10_1111_cuag_12100 crossref_primary_10_1080_23251042_2023_2267828 crossref_primary_10_1155_2023_5439171 crossref_primary_10_56109_aup_sna_v13i1_80 crossref_primary_10_1080_27685241_2022_2083987 crossref_primary_10_1111_ajae_12229 crossref_primary_10_1111_gfs_12639 crossref_primary_10_1007_s11629_017_4768_2 crossref_primary_10_1007_s11625_017_0440_6 crossref_primary_10_1016_j_foodpol_2023_102501 crossref_primary_10_1525_elementa_2021_00026 crossref_primary_10_1016_j_crsust_2021_100068 crossref_primary_10_1080_23311886_2021_2024674 crossref_primary_10_3390_su142113954 crossref_primary_10_3390_resources13100132 crossref_primary_10_1007_s12038_020_00107_5 crossref_primary_10_1515_opag_2020_0047 crossref_primary_10_3389_fsufs_2020_554414 crossref_primary_10_55965_setp_4_08_uady crossref_primary_10_3390_cli11100202 crossref_primary_10_1007_s10460_019_09975_6 crossref_primary_10_1016_j_scitotenv_2019_01_313 crossref_primary_10_1016_j_eiar_2016_07_008 crossref_primary_10_1007_s43545_022_00584_5 crossref_primary_10_12944_CWE_18_1_32 crossref_primary_10_1051_cagri_2018010 crossref_primary_10_1080_23311932_2025_2454342 crossref_primary_10_12688_openreseurope_15431_1 crossref_primary_10_1007_s10584_025_03890_y crossref_primary_10_1016_j_jrurstud_2019_02_010 crossref_primary_10_1038_s41893_020_0542_5 crossref_primary_10_1080_16549716_2021_1909267 crossref_primary_10_1111_1365_2664_13039 crossref_primary_10_1016_j_gfs_2022_100645 crossref_primary_10_1080_01448765_2019_1689531 crossref_primary_10_29312_remexca_v12i7_2890 crossref_primary_10_1177_00307270231178889 crossref_primary_10_3390_su9030349 crossref_primary_10_3390_agriculture14030381 crossref_primary_10_1016_j_ecolind_2017_12_040 crossref_primary_10_1088_1755_1315_1297_1_012072 crossref_primary_10_1016_j_agee_2023_108753 crossref_primary_10_3389_fsufs_2023_1260291 crossref_primary_10_1007_s40710_020_00466_z crossref_primary_10_1016_j_tjnut_2022_10_016 crossref_primary_10_1016_j_jclepro_2021_129831 crossref_primary_10_1080_21683565_2017_1359807 crossref_primary_10_3389_fsufs_2022_810840 crossref_primary_10_3390_w14101645 crossref_primary_10_1007_s10681_019_2447_9 crossref_primary_10_3390_land11122267 crossref_primary_10_1007_s10113_023_02131_1 crossref_primary_10_24072_pci_ecology_100528 crossref_primary_10_1016_j_ecolecon_2022_107465 crossref_primary_10_1080_21683565_2020_1822980 crossref_primary_10_1177_20530196221140145 crossref_primary_10_1016_j_biocon_2024_110536 crossref_primary_10_1007_s40974_017_0074_7 crossref_primary_10_1016_j_gloenvcha_2020_102075 crossref_primary_10_1080_03650340_2020_1830070 crossref_primary_10_1016_j_ecolind_2022_109468 crossref_primary_10_1080_00167428_2024_2335395 crossref_primary_10_3390_agriculture11050464 crossref_primary_10_1007_s13593_021_00719_7 crossref_primary_10_1016_j_catena_2025_108848 crossref_primary_10_3390_insects7040070 crossref_primary_10_3390_land12040915 crossref_primary_10_1111_gcb_16124 crossref_primary_10_3390_plants11121545 crossref_primary_10_1016_j_envsci_2024_103872 crossref_primary_10_3390_resources13120170 crossref_primary_10_1007_s11250_023_03655_8 crossref_primary_10_1016_j_ecolind_2023_110640 crossref_primary_10_1016_j_envsci_2019_10_017 crossref_primary_10_1080_21683565_2025_2476176 crossref_primary_10_3390_su15076103 crossref_primary_10_1016_j_foreco_2024_122249 crossref_primary_10_1088_1748_9326_ac7e5f crossref_primary_10_1038_s41598_019_48747_4 crossref_primary_10_1080_03031853_2022_2028642 crossref_primary_10_3390_su10051680 crossref_primary_10_1016_j_crm_2023_100522 crossref_primary_10_3390_su16219417 crossref_primary_10_1038_s41598_024_65397_3 crossref_primary_10_1007_s10113_022_01896_1 crossref_primary_10_4236_ajcc_2024_134036 crossref_primary_10_1080_03650340_2019_1616287 crossref_primary_10_1080_21683565_2022_2107596 crossref_primary_10_1016_j_accre_2025_01_009 crossref_primary_10_12952_journal_elementa_000092 crossref_primary_10_1007_s10705_017_9903_5 crossref_primary_10_1016_j_eja_2017_08_002 crossref_primary_10_1016_j_agee_2022_108269 crossref_primary_10_1080_21683565_2017_1345033 crossref_primary_10_1007_s10457_019_00430_3 crossref_primary_10_1016_j_heliyon_2024_e40600 crossref_primary_10_3389_fsufs_2020_539611 crossref_primary_10_1002_sd_1923 crossref_primary_10_3389_fsufs_2025_1527898 crossref_primary_10_1016_j_chnaes_2023_05_007 crossref_primary_10_1007_s13165_024_00479_0 crossref_primary_10_3390_en10010029 crossref_primary_10_1002_saj2_20314 crossref_primary_10_1016_j_landusepol_2020_104553 crossref_primary_10_1007_s11625_020_00837_3 crossref_primary_10_5937_ekoPolj2002345R crossref_primary_10_1016_j_socscimed_2020_113550 crossref_primary_10_1080_17565529_2023_2178253 crossref_primary_10_1525_elementa_2021_00090 crossref_primary_10_1002_eap_2109 crossref_primary_10_3390_biology10010023 crossref_primary_10_3389_fpls_2022_898769 crossref_primary_10_3389_fsufs_2019_00084 crossref_primary_10_1017_S1742170519000176 crossref_primary_10_1525_elementa_2023_00011 crossref_primary_10_1111_btp_13255 crossref_primary_10_3389_fevo_2021_579230 crossref_primary_10_3389_fenvs_2022_949185 crossref_primary_10_1142_S2345737619400037 crossref_primary_10_1002_bes2_1871 crossref_primary_10_1017_S2047102522000450 crossref_primary_10_2478_euco_2023_0002 crossref_primary_10_1016_j_eja_2021_126395 crossref_primary_10_1016_j_soisec_2023_100119 crossref_primary_10_1016_j_agee_2016_09_020 crossref_primary_10_1525_elementa_337 crossref_primary_10_1051_e3sconf_202122600037 crossref_primary_10_1002_pan3_70006 crossref_primary_10_3390_ani11102813 crossref_primary_10_1016_j_indmarman_2022_04_021 crossref_primary_10_1080_21683565_2018_1499578 crossref_primary_10_17660_ActaHortic_2018_1196_6 crossref_primary_10_1007_s11104_024_06542_9 crossref_primary_10_1111_1365_2745_12791 crossref_primary_10_1016_j_jrurstud_2022_12_005 crossref_primary_10_1007_s12374_022_09370_5 crossref_primary_10_2134_agronj2016_05_0267 crossref_primary_10_1080_03066150_2020_1725488 crossref_primary_10_1007_s13593_017_0455_5 crossref_primary_10_1080_03066150_2020_1823838 crossref_primary_10_1080_21683565_2024_2346794 crossref_primary_10_1111_1365_2435_13957 crossref_primary_10_1007_s12298_023_01305_9 crossref_primary_10_1016_j_ecolmodel_2024_110727 crossref_primary_10_3390_atmos13122060 crossref_primary_10_1016_j_geogeo_2022_100129 crossref_primary_10_1525_elementa_2022_00136 crossref_primary_10_24054_cyta_v8i1_2876 crossref_primary_10_1186_s40068_022_00274_4 crossref_primary_10_3390_agriculture13010159 crossref_primary_10_1038_s43247_024_01405_8 crossref_primary_10_1080_21683565_2020_1726550 crossref_primary_10_3390_ecologies4030035 crossref_primary_10_1016_S2542_5196_23_00125_0 crossref_primary_10_1007_s10460_022_10295_5 crossref_primary_10_18619_2072_9146_2023_3_41_49 crossref_primary_10_3389_fgene_2022_818727 crossref_primary_10_1016_j_resourpol_2023_104181 crossref_primary_10_3389_fenvs_2017_00023 crossref_primary_10_1016_j_heliyon_2024_e40522 crossref_primary_10_1111_jiec_12856 crossref_primary_10_1590_s0104_71832020000300014 crossref_primary_10_33002_aa010101 crossref_primary_10_1016_j_jrurstud_2021_10_017 crossref_primary_10_24326_as_2024_5346 crossref_primary_10_1080_21683565_2019_1629373 crossref_primary_10_1007_s10460_021_10267_1 crossref_primary_10_3897_natureconservation_18_11523 crossref_primary_10_3390_su11092547 crossref_primary_10_1051_e3sconf_202459503015 crossref_primary_10_1080_21683565_2020_1811828 crossref_primary_10_1080_21683565_2025_2475464 crossref_primary_10_1111_nph_17306 crossref_primary_10_3390_su12031093 crossref_primary_10_1002_agj2_70019 crossref_primary_10_1007_s11625_024_01601_7 crossref_primary_10_3389_fsufs_2024_1423861 crossref_primary_10_1080_21683565_2017_1331179 crossref_primary_10_3389_fsufs_2023_1128430 crossref_primary_10_2478_foecol_2021_0015 crossref_primary_10_1016_j_jenvman_2024_122655 crossref_primary_10_1017_S1742170518000029 crossref_primary_10_3390_cli8120139 crossref_primary_10_1016_j_envres_2024_118784 crossref_primary_10_1525_elementa_2023_00054 crossref_primary_10_54502_msuceva_v1n1a16 crossref_primary_10_1007_s10980_021_01248_0 crossref_primary_10_1016_j_agee_2019_106797 crossref_primary_10_1007_s11625_019_00703_x crossref_primary_10_4236_nr_2018_93005 crossref_primary_10_1016_j_ecolind_2020_106435 crossref_primary_10_3389_fsufs_2021_647335 crossref_primary_10_3354_meps13266 crossref_primary_10_1007_s10668_020_00905_9 crossref_primary_10_3390_su13148075 crossref_primary_10_1080_21683565_2018_1509166 crossref_primary_10_1080_21683565_2019_1711288 crossref_primary_10_1088_1755_1315_1069_1_012006 crossref_primary_10_61186_jcb_16_3_13 crossref_primary_10_1002_gch2_202200225 crossref_primary_10_1051_cagri_2020035 crossref_primary_10_1016_j_cosust_2015_09_003 crossref_primary_10_3390_environments8050040 crossref_primary_10_1016_j_agee_2024_109412 crossref_primary_10_3389_fpls_2022_934359 crossref_primary_10_1016_j_still_2020_104639 crossref_primary_10_1017_S1742170518000017 crossref_primary_10_1038_s41477_018_0309_4 crossref_primary_10_3389_fsufs_2023_1267630 crossref_primary_10_1016_j_cliser_2023_100431 crossref_primary_10_1038_s41598_021_81270_z crossref_primary_10_1016_j_actao_2020_103561 crossref_primary_10_1007_s13593_021_00703_1 crossref_primary_10_1016_j_eja_2021_126239 crossref_primary_10_1017_S1742170519000462 crossref_primary_10_1080_17565529_2019_1630349 crossref_primary_10_3390_su12187524 crossref_primary_10_1080_21683565_2016_1215368 crossref_primary_10_3390_horticulturae10060656 crossref_primary_10_3389_ffgc_2024_1379741 crossref_primary_10_1007_s13593_021_00716_w crossref_primary_10_1080_26395916_2020_1808705 crossref_primary_10_1007_s40974_020_00158_2 crossref_primary_10_1057_s41301_018_0176_3 crossref_primary_10_3390_insects12121114 crossref_primary_10_3389_fsufs_2024_1446965 crossref_primary_10_1016_j_worlddev_2021_105546 crossref_primary_10_1093_aob_mcaa014 crossref_primary_10_3390_su12093765 crossref_primary_10_17660_ActaHortic_2022_1355_2 crossref_primary_10_2478_cag_2024_0002 crossref_primary_10_5897_JSSEM2018_0714 crossref_primary_10_16993_rl_78 crossref_primary_10_3389_fsufs_2020_564197 crossref_primary_10_3389_fsufs_2024_1456620 crossref_primary_10_1177_02780771231176364 crossref_primary_10_1016_j_rmb_2017_09_001 crossref_primary_10_1007_s10668_019_00466_6 crossref_primary_10_1016_j_oneear_2019_10_017 crossref_primary_10_1016_j_ecolmodel_2024_110650 crossref_primary_10_1016_j_landusepol_2024_107400 crossref_primary_10_1016_j_agsy_2018_04_009 crossref_primary_10_1080_21683565_2018_1476428 crossref_primary_10_1080_21683565_2024_2370316 crossref_primary_10_1007_s42106_022_00197_1 crossref_primary_10_1016_j_envexpbot_2023_105633 crossref_primary_10_4000_ere_6188 |
Cites_doi | 10.1016/j.agrformet.2006.12.009 10.1080/03066150.2011.582947 10.2307/1295991 10.1016/j.agwat.2003.07.001 10.3354/cr011019 10.1038/41681 10.1073/pnas.0701890104 10.1016/j.agee.2008.04.016 10.1016/S0167-8809(97)00150-3 10.2489/jswc.64.2.55A 10.1023/A:1016124032231 10.1016/S0736-4539(06)80004-8 10.1016/S0959-3780(02)00090-0 10.1016/j.envdev.2012.11.001 10.2134/agronj2010.0303 10.1016/S0167-8809(99)00028-6 10.1073/pnas.1314437111 10.1080/14735903.2012.691221 10.2134/agronj1999.00021962009100020016x 10.1016/S0167-8809(03)00125-7 10.1088/1748-9326/2/1/014002 10.1016/j.foreco.2010.09.027 10.1002/wcc.102 10.1007/s10584-005-5949-5 10.1080/03066150.2010.538584 10.1191/030913200701540465 10.1016/j.crvi.2011.03.003 10.1073/pnas.0804951106 10.1146/annurev.phyto.37.1.399 10.1017/CBO9780511623523 10.1016/j.gfs.2012.11.009 10.1104/pp.112.208298 10.1038/35021046 10.1002/ldr.3400050406 10.1126/science.1204531 10.1016/0168-1923(91)90088-8 10.1126/science.1064088 10.1525/bio.2011.61.3.4 10.2307/1309927 10.1016/S0167-8809(02)00085-3 10.1126/science.174.4010.653 10.1016/j.gloenvcha.2006.04.002 10.1111/j.1365-2486.2007.01399.x 10.2134/jpa1992.0107 10.1023/A:1010078923050 10.1016/0378-4290(86)90015-8 10.1080/10440046.2011.588998 10.1007/BF03213684 10.2307/1310108 10.1051/agro/2009054 10.1016/S0167-8809(02)00006-3 10.1201/9780203496374 10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2 10.1515/9781503622067 10.5751/ES-00667-090210 10.1201/9781482277937 10.4324/9781849770132 10.5751/ES-04910-170325 10.1079/9781780641645.0000 10.1017/S0889189300001235 10.5751/ES-04666-170118 |
ContentType | Journal Article |
Copyright | INRA and Springer-Verlag France 2015 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: INRA and Springer-Verlag France 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ AAYXX CITATION 7S9 L.6 1XC VOOES |
DOI | 10.1007/s13593-015-0285-2 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1773-0155 |
EndPage | 890 |
ExternalDocumentID | oai_HAL_hal_01309778v1 10_1007_s13593_015_0285_2 US201600101619 |
GroupedDBID | -EM 06D 0R~ 0VY 203 23M 29~ 2KG 2KM 2LR 2VQ 30V 4.4 406 408 4P2 5GY 67N 6J9 8UJ 96X AAAVM AABCJ AAFGU AAFNC AAHNG AAIAL AAJKR AANXM AANZL AAOTM AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZMS ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABJNI ABJOX ABKAS ABKCH ABMQK ABPLI ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUBZ ABULA ABXPI ACBMV ACBRV ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACREN ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKMHD AKQUC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AZFZN BGNMA CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FBQ FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IKXTQ ITM IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y ML. NPVJJ NQJWS NU0 O9- O93 O9I O9J PT4 R9I RED RSV S1Z S27 S3A S3B SBL SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE T13 TSG TUS U2A U9L UG4 UOJIU UTJUX UZXMN VFIZW Z5O Z7U Z7V Z7W Z7Y Z81 Z83 ZMTXR ZOVNA AACDK AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACPIV ACUHS ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS H13 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7S9 L.6 1XC VOOES |
ID | FETCH-LOGICAL-c422t-1c470ee5e4efec9d71d4a3649889ed0eb5639001654c427707a1fd4eaa3f84153 |
IEDL.DBID | AGYKE |
ISSN | 1774-0746 |
IngestDate | Fri Sep 12 12:46:00 EDT 2025 Fri Sep 05 06:51:00 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Fri Sep 19 05:07:54 EDT 2025 Fri Feb 21 02:32:12 EST 2025 Wed Dec 27 19:17:59 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Climate change Agroecology Adaptive capacity Resilience |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-1c470ee5e4efec9d71d4a3649889ed0eb5639001654c427707a1fd4eaa3f84153 |
Notes | http://dx.doi.org/10.1007/s13593-015-0285-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://hal.science/hal-01309778 |
PQID | 1803104910 |
PQPubID | 24069 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_hal_01309778v1 proquest_miscellaneous_1803104910 crossref_citationtrail_10_1007_s13593_015_0285_2 crossref_primary_10_1007_s13593_015_0285_2 springer_journals_10_1007_s13593_015_0285_2 fao_agris_US201600101619 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-01 |
PublicationDateYYYYMMDD | 2015-07-01 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Paris |
PublicationPlace_xml | – name: Paris |
PublicationSubtitle | Official journal of the Institut National de la Recherche Agronomique (INRA) |
PublicationTitle | Agronomy for sustainable development |
PublicationTitleAbbrev | Agron. Sustain. Dev |
PublicationYear | 2015 |
Publisher | Springer Paris Springer Verlag/EDP Sciences/INRA |
Publisher_xml | – name: Springer Paris – name: Springer Verlag/EDP Sciences/INRA |
References | Rosenzweig, Hillel (CR80) 2008 Kurukulasuriya, Rosenthal (CR49) 2003 Barrow (CR16) 1999 Altieri, Lana, Bittencourt, Kieling, Comin, Lovato (CR13) 2011; 35 Reij (CR75) 1991 Folke (CR31) 2006; 16 Mijatovic, Van Oudenhovenb, Pablo Eyzaguirreb, Hodgkins (CR61) 2013; 11 Vigouroux (CR91) 2011; 334 Porter, Parry, Carter (CR74) 1991; 57 Swiderska (CR84) 2011 Loreau, Naeem, Inchausti, Bengtsson, Grime, Hector, Hooper, Huston, Raffaelli, Schmid, Tilman, Wardle (CR56) 2001; 294 Flores (CR30) 1989; 5 Adger (CR3) 2000; 24 Critchley (CR21) 1989; 16 Fuhrer (CR35) 2003; 97 Erickson, Chandler, Browder (CR29) 1989 Rogé, Friedman, Astier, Altieri (CR79) 2014 Bunch (CR18) 1990 Döll (CR27) 2002; 54 CR45 CR41 Altieri (CR5) 1999; 1 Astier, García-Barrios, Galván-Miyoshi, González-Esquivel, Masera (CR15) 2012; 17 Koohafkan, Altieri (CR48) 2010 Lin (CR52) 2011; 61 Murgueitio, Calle, Uribea, Calle, Solorio (CR63) 2011; 261 (CR78) 2012 Lobell, Gourdji (CR54) 2012; 160 Ward, Masters (CR92) 2007; 13 Critchley, Reij, Willcocks (CR22) 2004; 5 Magdoff, Weil, Magdoff, Weil (CR58) 2004 Lin (CR51) 2007; 144 Adams, Hurd, Lenhart, Leary (CR2) 1998; 11 Holt-Giménez (CR42) 2002; 93 Howden, Soussana, Tubiello, Chhetri, Dunlop, Meinke (CR44) 2007; 104 Thrupp (CR86) 1988 Altieri (CR4) 1999; 74 (CR65) 1972 Cabell, Oelofse (CR19) 2012; 17 Hatfield, Boote, Kimball, Ziska, Izaurralde, Ort, Thomson, Wolfe (CR37) 2011; 103 Philpott, Lin, Jha, Brines (CR71) 2009; 128 Nicholls, Altieri (CR67) 2013 Diaz-Zorita, Buschiazzo, Peineman (CR26) 1999; 91 Petersen, Tardin, Marochi (CR70) 1999 Wilken (CR94) 1987 Toledo, Barrera-Bassols (CR87) 2008 Vandermeer (CR89) 1989 Kahn, Ampong-Nyarko, Hassanali, Kimani (CR47) 1998; 388 Zougmoré, Mando, Stroosnijder (CR97) 2004; 65 Henao (CR39) 2013; 8 Altieri (CR6) 2002; 93 Lobell, Schlenker, Costa-Roberts (CR55) 2011; 333 Stigter, Dawei, Onyewotu, Xurong (CR82) 2005; 70 Ponti, Gutierrez, Ruti, Dell’Aquila (CR73) 2014; 111 Lobell, Field (CR53) 2007; 2 Thornton (CR85) 2003; 13 Coakley, Scherm, Chakraborty (CR20) 1999; 37 Machado (CR57) 2009; 64 Hillel, Rosenzweig (CR40) 2009 Pimentel, Levitan (CR72) 1986; 36 Tompkins, Adger (CR88) 2004; 9 Francis (CR32) 1986 Heinemann, Massaro, Coray, Agapito-Tenfen, Wen (CR38) 2013 West, Griffith (CR93) 1992; 5 Zhu, Fen, Wang, Li, Chen, Hu, Mundt (CR95) 2000; 406 Natarajan, Willey (CR64) 1996; 13 CR8 Altieri, Nicholls (CR10) 2004 Vandermeer, van Noordwijk, Anderson, Ong, Perfecto (CR90) 1998; 67 Denevan (CR24) 1995; 11 Easterling, Aggarwal, Batima, Brander, Erda, Howden, Kirilenko, Morton, Soussana, Schmidhuber, Tubiello, Parry (CR28) 2007 Altieri, Toledo (CR12) 2011; 38 Armillas (CR14) 1971; 174 Buckles, Triomphe, Sain (CR17) 1998 Altieri (CR7) 2004; 2 Mapfumo, Adjei-Nsiah, Mtambanengweb, Chikowo (CR59) 2013; 5 Matthews, Rivington, Muhammed, Newton, Hallett (CR60) 2013; 2 Moyer (CR62) 2010 Perfecto, Vandermeer, Wright (CR69) 2009 Nicholls, Rios, Altieri (CR68) 2013 Sutherst, Constable, Finlay, Harrington, Luck, Zalucki (CR83) 2011; 2 Adams, Ellingboe, Rossman (CR1) 1971; 21 Franco, Borras, Vervest, Isakson, Levidow (CR34) 2014 Dewalt (CR25) 1994; 5 Francis, Jones, Crookston, Wittler, Goodman (CR33) 1986; 1 Reij, Scoones, Toulmin (CR76) 1996 CR23 Altieri, Koohafkan (CR9) 2013 Garg, Chandel (CR36) 2010; 30 Landis, Gardiner, van der Werf, Swinton (CR50) 2008; 105 Rosset, Machín-Sosa, Roque-Jaime, Avila-Lozano (CR81) 2011; 38 Altieri, Nicholls (CR11) 2013 Ziska, Dukes (CR96) 2014 Jones, Thornton (CR46) 2003; 13 Netting (CR66) 1993 Horwith (CR43) 1985; 35 Robinson, Wallace (CR77) 1996; 25 P Petersen (285_CR70) 1999 RA Robinson (285_CR77) 1996; 25 DA Landis (285_CR50) 2008; 105 WM Denevan (285_CR24) 1995; 11 JA Heinemann (285_CR38) 2013 BB Lin (285_CR51) 2007; 144 M Astier (285_CR15) 2012; 17 RMC Netting (285_CR66) 1993 WE Easterling (285_CR28) 2007 M Flores (285_CR30) 1989; 5 JF Cabell (285_CR19) 2012; 17 EL Tompkins (285_CR88) 2004; 9 R Zougmoré (285_CR97) 2004; 65 DB Lobell (285_CR54) 2012; 160 CI Nicholls (285_CR68) 2013 NL Ward (285_CR92) 2007; 13 CL Erickson (285_CR29) 1989 P Kurukulasuriya (285_CR49) 2003 MA Altieri (285_CR9) 2013 P Döll (285_CR27) 2002; 54 MA Altieri (285_CR12) 2011; 38 WRS Critchley (285_CR22) 2004; 5 DB Lobell (285_CR55) 2011; 333 D Pimentel (285_CR72) 1986; 36 BR Dewalt (285_CR25) 1994; 5 JH Porter (285_CR74) 1991; 57 CI Nicholls (285_CR67) 2013 J Moyer (285_CR62) 2010 P Armillas (285_CR14) 1971; 174 R Bunch (285_CR18) 1990 L Ponti (285_CR73) 2014; 111 CA Francis (285_CR33) 1986; 1 J Franco (285_CR34) 2014 MA Altieri (285_CR5) 1999; 1 E Holt-Giménez (285_CR42) 2002; 93 D Hillel (285_CR40) 2009 B Horwith (285_CR43) 1985; 35 MA Altieri (285_CR7) 2004; 2 LH Ziska (285_CR96) 2014 M Natarajan (285_CR64) 1996; 13 SM Philpott (285_CR71) 2009; 128 S Howden (285_CR44) 2007; 104 J Vigouroux (285_CR91) 2011; 334 JL Hatfield (285_CR37) 2011; 103 P Mapfumo (285_CR59) 2013; 5 D Mijatovic (285_CR61) 2013; 11 E Murgueitio (285_CR63) 2011; 261 VM Toledo (285_CR87) 2008 285_CR8 GC Wilken (285_CR94) 1987 CJ Barrow (285_CR16) 1999 DB Lobell (285_CR53) 2007; 2 LA Thrupp (285_CR86) 1988 PG Jones (285_CR46) 2003; 13 C Reij (285_CR76) 1996 C Stigter (285_CR82) 2005; 70 P Rogé (285_CR79) 2014 285_CR41 SM Coakley (285_CR20) 1999; 37 SJ Henao (285_CR39) 2013; 8 285_CR23 F Magdoff (285_CR58) 2004 J Vandermeer (285_CR89) 1989 K Swiderska (285_CR84) 2011 B Matthews (285_CR60) 2013; 2 PM Rosset (285_CR81) 2011; 38 MW Adams (285_CR1) 1971; 21 C Folke (285_CR31) 2006; 16 RW Sutherst (285_CR83) 2011; 2 P Koohafkan (285_CR48) 2010 Y Zhu (285_CR95) 2000; 406 MA Altieri (285_CR13) 2011; 35 B Lin (285_CR52) 2011; 61 MA Altieri (285_CR11) 2013 TD West (285_CR93) 1992; 5 ZR Kahn (285_CR47) 1998; 388 MA Altieri (285_CR10) 2004 C Reij (285_CR75) 1991 CA Francis (285_CR32) 1986 J Vandermeer (285_CR90) 1998; 67 M Diaz-Zorita (285_CR26) 1999; 91 WM Adger (285_CR3) 2000; 24 MA Altieri (285_CR6) 2002; 93 285_CR45 M Loreau (285_CR56) 2001; 294 RM Adams (285_CR2) 1998; 11 WRS Critchley (285_CR21) 1989; 16 S Machado (285_CR57) 2009; 64 MA Altieri (285_CR4) 1999; 74 I Perfecto (285_CR69) 2009 N Garg (285_CR36) 2010; 30 C Rosenzweig (285_CR80) 2008 D Buckles (285_CR17) 1998 Rodale Institute (285_CR78) 2012 J Fuhrer (285_CR35) 2003; 97 National Research Council, Committee on Genetic Vulnerability of Major Crops (285_CR65) 1972 PK Thornton (285_CR85) 2003; 13 |
References_xml | – ident: CR45 – start-page: 230 year: 1989 end-page: 243 ident: CR29 article-title: Raised fields and sustainable agriculture in Lake Titicaca Basin of Peru publication-title: Fragile lands of Latin America – volume: 144 start-page: 85 year: 2007 end-page: 94 ident: CR51 article-title: Agroforestry management as adaptive strategy against potential microclimate extremes in coffee agriculture publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.12.009 – year: 2014 ident: CR79 publication-title: Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta Region of Oaxaca – volume: 5 start-page: 23 year: 1994 end-page: 51 ident: CR25 article-title: Using indigenous knowledge to improve agriculture and natural resource management publication-title: Hum Organ – volume: 38 start-page: 587 year: 2011 end-page: 612 ident: CR12 article-title: The agroecological revolution in Latin America: rescuing nature, ensuring food sovereignity and empowering peasants publication-title: J Peasant Stud doi: 10.1080/03066150.2011.582947 – volume: 21 start-page: 1067 year: 1971 end-page: 1070 ident: CR1 article-title: Biological uniformity and disease epidemics publication-title: Bioscience doi: 10.2307/1295991 – volume: 65 start-page: 102 year: 2004 end-page: 120 ident: CR97 article-title: Effect of soil and water conservation and nutrient management on the soil-plant water balance in semi-arid Burkina Faso publication-title: Agric Water Manag doi: 10.1016/j.agwat.2003.07.001 – volume: 11 start-page: 19 year: 1998 end-page: 30 ident: CR2 article-title: Effects of global climate change on agriculture: an interpretative review publication-title: Clim Res doi: 10.3354/cr011019 – volume: 17 start-page: 18 issue: 1 year: 2012 ident: CR19 article-title: An indicator framework for assessing agroecosystem resilience publication-title: Ecol Soc – volume: 388 start-page: 631 year: 1998 end-page: 632 ident: CR47 article-title: Intercropping increases parasitism of pests publication-title: Nature doi: 10.1038/41681 – volume: 104 start-page: 19691 issue: 50 year: 2007 end-page: 19694 ident: CR44 article-title: Adapting agriculture to climate change publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0701890104 – ident: CR8 – volume: 128 start-page: 12 year: 2009 end-page: 20 ident: CR71 article-title: A multiscale assessment of hurricane impacts on agricultural landscapes based on land use and topographic features publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2008.04.016 – volume: 67 start-page: 1 year: 1998 end-page: 22 ident: CR90 article-title: Global change and multi-species agroecosystems: concepts and issues publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(97)00150-3 – volume: 16 start-page: 10 issue: 2 year: 1989 end-page: 12 ident: CR21 article-title: Building on a tradition of rainwater harvesting publication-title: Appropr Technol – volume: 64 start-page: 55 year: 2009 end-page: 58 ident: CR57 article-title: Does intercropping have a role in modern agriculture? publication-title: J Soil Water Conserv doi: 10.2489/jswc.64.2.55A – volume: 54 start-page: 269 year: 2002 end-page: 293 ident: CR27 article-title: Impact of climate change and variability on irrigation requirements: a global perspective publication-title: Climate Change doi: 10.1023/A:1016124032231 – year: 1986 ident: CR32 publication-title: Multiple cropping systems – year: 1991 ident: CR75 publication-title: Indigenous soil and water conservation in Africa – volume: 17 start-page: 25 issue: 3 year: 2012 ident: CR15 article-title: Assesing the sustainability of small-farmer natural resource management systems. A critical analysis of the MESMIS program (1995–2010) publication-title: Ecol Soc – volume: 11 start-page: 21 year: 1995 end-page: 43 ident: CR24 article-title: Prehistoric agricultural methods as models for sustainability publication-title: Adv Plant Pathol doi: 10.1016/S0736-4539(06)80004-8 – volume: 13 start-page: 51 year: 2003 end-page: 59 ident: CR46 article-title: The potential impacts of climate change on maize production in Africa and Latin America in 2055 publication-title: Glob Environ Chang doi: 10.1016/S0959-3780(02)00090-0 – year: 1987 ident: CR94 publication-title: Good farmers: traditional agricultural resource management in Mexico and Central America – volume: 5 start-page: 6 year: 2013 end-page: 22 ident: CR59 article-title: Giller KE (2013) Participatory action research (PAR) as an entry point for supporting climate change adaptation by smallholder farmers in Africa publication-title: Environ Dev doi: 10.1016/j.envdev.2012.11.001 – volume: 103 start-page: 351 issue: 2 year: 2011 end-page: 370 ident: CR37 article-title: Climate impacts on agriculture: implications for crop production publication-title: Agron J doi: 10.2134/agronj2010.0303 – year: 2010 ident: CR62 publication-title: Organic no-till farming – year: 2014 ident: CR96 publication-title: Invasive species and global climate change, CABI invasives series – volume: 74 start-page: 19 year: 1999 end-page: 31 ident: CR4 article-title: The ecological role of biodiversity in agroecosystems publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(99)00028-6 – volume: 111 start-page: 5598 issue: 15 year: 2014 end-page: 5603 ident: CR73 article-title: Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1314437111 – year: 1988 ident: CR86 publication-title: Cultivating diversity: agrobiodiversity and food security – year: 1990 ident: CR18 publication-title: Low-input soil restoration in Honduras: the Cantarranas farmer-to-farmer extension project. Sustainable Agriculture Gatekeeper Series SA23 – volume: 11 start-page: 2013 issue: 2 year: 2013 ident: CR61 article-title: The role of agricultural biodiversity in strengthening resilience to climate change: towards an analytical framework publication-title: Int J Agric Sustain doi: 10.1080/14735903.2012.691221 – year: 2013 ident: CR38 article-title: Sustainability and innovation in staple crop production in the US Midwest publication-title: Int J Agric Sustain – volume: 91 start-page: 276 year: 1999 end-page: 279 ident: CR26 article-title: Soil organic matter and wheat productivity in the semiarid Argentine Pampas publication-title: Agron J doi: 10.2134/agronj1999.00021962009100020016x – volume: 97 start-page: 1 issue: 1–3 year: 2003 end-page: 20 ident: CR35 article-title: Agroecosystern responses to combinations of elevated CO , ozone, and global climate change publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(03)00125-7 – volume: 2 start-page: 1 year: 2007 end-page: 7 ident: CR53 article-title: Global scale climate–crop yield relationships and the impacts of recent warming publication-title: Environ Res Lett doi: 10.1088/1748-9326/2/1/014002 – ident: CR41 – volume: 261 start-page: 1654 year: 2011 end-page: 1663 ident: CR63 article-title: Native trees and shrubs for the productive rehabilitation of tropical cattle ranching lands publication-title: For Ecol Manag doi: 10.1016/j.foreco.2010.09.027 – year: 2009 ident: CR69 publication-title: Nature’s matrix: linking agriculture, conservation and food sovereignty – start-page: 207 year: 2013 ident: CR68 publication-title: Agroecologia y resiliencia socioecologica: adaptandose al cambio climatico – year: 2012 ident: CR78 publication-title: The farming systems trial: celebrating 30 years – year: 2009 ident: CR40 publication-title: Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation – year: 2008 ident: CR87 publication-title: La Memoria Biocultural: la importancia ecologica de las sabidurıas tradicionales – volume: 2 start-page: 220 issue: 2 year: 2011 end-page: 237 ident: CR83 article-title: Adapting to crop pest and pathogen risks under a changing climate publication-title: Wiley Interdiscip Rev Clim Chang doi: 10.1002/wcc.102 – volume: 70 start-page: 255 year: 2005 end-page: 271 ident: CR82 article-title: Using traditional methods and indigenous technologies for coping with climate variability publication-title: Clim Chang doi: 10.1007/s10584-005-5949-5 – year: 1993 ident: CR66 publication-title: Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture – year: 1999 ident: CR70 publication-title: Participatory development of notillage systems without herbicides for family farming; the experience of the Center-South region of Paraná. In: Environment, development and sustainability – year: 2014 ident: CR34 publication-title: Towards understanding the politics of flex crops and commodities: implications for research and policy advocacy – volume: 38 start-page: 161 issue: 1 year: 2011 end-page: 191 ident: CR81 article-title: The Campesino-to-Campesino agroecology movement of ANAP in Cuba publication-title: J Peasant Stud doi: 10.1080/03066150.2010.538584 – volume: 24 start-page: 347 year: 2000 end-page: 364 ident: CR3 article-title: Social and ecological resilience: are they related publication-title: Prog Hum Geogr doi: 10.1191/030913200701540465 – volume: 334 start-page: 450 year: 2011 end-page: 457 ident: CR91 article-title: Biodiversity, evolution and adaptation of cultivated crops publication-title: Comptes Rendus Biol doi: 10.1016/j.crvi.2011.03.003 – volume: 1 start-page: 159 year: 1986 end-page: 164 ident: CR33 article-title: Strip cropping corn and grain legumes: a review publication-title: Am J Altern Agric – volume: 105 start-page: 20552 year: 2008 end-page: 20557 ident: CR50 article-title: Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes publication-title: PNAS doi: 10.1073/pnas.0804951106 – volume: 37 start-page: 399 year: 1999 end-page: 426 ident: CR20 article-title: Climate change and plant disease management publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.phyto.37.1.399 – start-page: 237 year: 1989 ident: CR89 publication-title: The ecology of intercropping doi: 10.1017/CBO9780511623523 – volume: 2 start-page: 24 year: 2013 end-page: 28 ident: CR60 article-title: Adapting crops and cropping systems to future climates to ensure food security: the role of crop modelling publication-title: Glob Food Secur doi: 10.1016/j.gfs.2012.11.009 – volume: 160 start-page: 1686 year: 2012 end-page: 1697 ident: CR54 article-title: The influence of climate change on global crop productivity publication-title: Plant Physiol doi: 10.1104/pp.112.208298 – volume: 406 start-page: 718 year: 2000 end-page: 772 ident: CR95 article-title: Genetic diversity and disease control in rice publication-title: Nature doi: 10.1038/35021046 – volume: 5 start-page: 293 year: 2004 end-page: 314 ident: CR22 article-title: Indigenous soil and eater conservation: a review of the state of knowledge and prospects for building on traditions publication-title: Land Degrad Rehabil doi: 10.1002/ldr.3400050406 – volume: 333 start-page: 616 year: 2011 end-page: 620 ident: CR55 article-title: Climate trends and global crop production since 1980 publication-title: Science doi: 10.1126/science.1204531 – year: 1999 ident: CR16 publication-title: Alternative irrigation: the promise of runoff agriculture – year: 1998 ident: CR17 publication-title: Cover crops in hillside agriculture: farmer innovation with Mucuna – volume: 8 start-page: 85 issue: 1 year: 2013 end-page: 91 ident: CR39 article-title: Propuesta metodológica de medición de la resiliencia agroecológica en sistemas socio-ecológicos: un estudio de caso en Los Andes Colombianos publication-title: Agroecología – volume: 13 start-page: 51 year: 2003 end-page: 59 ident: CR85 article-title: The potential impacts of climate change in tropical agriculture: the case of maize in Africa and Latin America in 2055 publication-title: Glob Environ Chang doi: 10.1016/S0959-3780(02)00090-0 – volume: 57 start-page: 221 issue: 1–3 year: 1991 end-page: 240 ident: CR74 article-title: The potential effects of climatic change on agricultural insect pests publication-title: Agric For Meteorol doi: 10.1016/0168-1923(91)90088-8 – volume: 9 start-page: 10 issue: 2 year: 2004 ident: CR88 article-title: Does adaptive management of natural resources enhance resilience to climate change publication-title: Ecol Soc – volume: 294 start-page: 804 year: 2001 end-page: 808 ident: CR56 article-title: Biodiversity and ecosystem functioning: current knowledge and future challenges publication-title: Science doi: 10.1126/science.1064088 – volume: 61 start-page: 183 year: 2011 end-page: 193 ident: CR52 article-title: Resilience in agriculture through crop diversification: adaptive management for environmental change publication-title: Bioscience doi: 10.1525/bio.2011.61.3.4 – start-page: 273 year: 2007 end-page: 313 ident: CR28 article-title: Food, fiber and forest products publication-title: Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – volume: 35 start-page: 286 year: 1985 end-page: 291 ident: CR43 article-title: A role for intercropping in modern agriculture publication-title: Bioscience doi: 10.2307/1309927 – volume: 93 start-page: 1 year: 2002 end-page: 24 ident: CR6 article-title: Agroecology: the science of natural resource management for poor farmers in marginal environments publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(02)00085-3 – volume: 5 start-page: 8 year: 1989 end-page: 9 ident: CR30 article-title: Velvetbeans: an alternative to improve small farmers’ agriculture publication-title: ILEIA Newsl – volume: 174 start-page: 653 year: 1971 end-page: 656 ident: CR14 article-title: Gardens on swamps publication-title: Science doi: 10.1126/science.174.4010.653 – volume: 16 start-page: 253 year: 2006 end-page: 267 ident: CR31 article-title: Resilience: the emergence of a perspective for social ecological systems analyses publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2006.04.002 – volume: 13 start-page: 1605 issue: 8 year: 2007 end-page: 1615 ident: CR92 article-title: Linking climate change and species invasion: an illustration using insect herbivores publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2007.01399.x – volume: 5 start-page: 107 year: 1992 end-page: 110 ident: CR93 article-title: Effect of strip-intercropping corn and soybean on yield and profit publication-title: J Prod Agric doi: 10.2134/jpa1992.0107 – volume: 1 start-page: 197 year: 1999 end-page: 217 ident: CR5 article-title: Applying agroecology to enhance productivity of peasant farming systems in Latin America publication-title: Environ Dev Sustain doi: 10.1023/A:1010078923050 – year: 1996 ident: CR76 publication-title: Sustaining the soil: indigenous soil and water conservation in Africa – start-page: 91 year: 2013 ident: CR67 publication-title: Agroecologia y cambio climatico: metodologias para evaluar la resiliencia socio-ecologica en comunidades rurales – year: 2004 ident: CR10 publication-title: Biodiversity and pest management in agroecosystems – volume: 13 start-page: 117 year: 1996 end-page: 131 ident: CR64 article-title: The effects of water stress on yields advantages of intercropping systems publication-title: Field Crop Res doi: 10.1016/0378-4290(86)90015-8 – volume: 35 start-page: 855 year: 2011 end-page: 869 ident: CR13 article-title: Enhancing crop productivity via weed suppression in organic no-till cropping systems in Santa Catarina, Brazil publication-title: J Sustain Agric doi: 10.1080/10440046.2011.588998 – ident: CR23 – year: 2003 ident: CR49 publication-title: Climate change and agriculture a review of impacts and adaptations. Climate Change Series Paper (91) – year: 2008 ident: CR80 publication-title: Climate change and the global harvest: impacts of El Nino and other oscillations on agroecosystems – volume: 25 start-page: 216 year: 1996 end-page: 217 ident: CR77 article-title: Return to resistance: breeding crops to reduce pesticide dependence publication-title: Australas Plant Pathol doi: 10.1007/BF03213684 – volume: 36 start-page: 514 year: 1986 end-page: 515 ident: CR72 article-title: Pesticides: amounts applied and amounts reaching pests publication-title: Bioscience doi: 10.2307/1310108 – volume: 30 start-page: 581 year: 2010 end-page: 599 ident: CR36 article-title: Arbuscularmycorrhizal networks: process and functions publication-title: Agron Sustain Dev doi: 10.1051/agro/2009054 – volume: 93 start-page: 87 year: 2002 end-page: 105 ident: CR42 article-title: Measuring farmers’ agroecological resistance after Hurricane Mitch in Nicaragua: a case study in participatory, sustainable land management impact monitoring publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(02)00006-3 – year: 2013 ident: CR11 article-title: The adaptation and mitigation potential of traditional agriculture in a changing climate publication-title: Clim Chang – start-page: 44 year: 2004 end-page: 65 ident: CR58 article-title: Soil organic matter management strategies publication-title: Soil Organic matter in sustainable agriculture doi: 10.1201/9780203496374 – year: 1972 ident: CR65 publication-title: Genetic vulnerability of major crops – year: 2013 ident: CR9 publication-title: Strengthening resilience of farming systems: a key prerequisite for sustainable agricultural production. In: Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate – year: 2010 ident: CR48 publication-title: Globally important agricultural heritage systems: a legacy for the future – year: 2011 ident: CR84 publication-title: The role of traditional knowledge and crop varieties in adaptation to climate change and food security in SW China, Bolivian Andes and coastal Kenya – volume: 2 start-page: 35 year: 2004 end-page: 42 ident: CR7 article-title: Linking ecologists and traditional farmers in the search for sustainable agriculture publication-title: Front Ecol Environ doi: 10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2 – start-page: 207 volume-title: Agroecologia y resiliencia socioecologica: adaptandose al cambio climatico year: 2013 ident: 285_CR68 – volume: 16 start-page: 10 issue: 2 year: 1989 ident: 285_CR21 publication-title: Appropr Technol – volume: 5 start-page: 8 year: 1989 ident: 285_CR30 publication-title: ILEIA Newsl – ident: 285_CR45 – volume: 2 start-page: 1 year: 2007 ident: 285_CR53 publication-title: Environ Res Lett doi: 10.1088/1748-9326/2/1/014002 – volume: 97 start-page: 1 issue: 1–3 year: 2003 ident: 285_CR35 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(03)00125-7 – volume-title: Globally important agricultural heritage systems: a legacy for the future year: 2010 ident: 285_CR48 – volume-title: Smallholders, householders: farm families and the ecology of intensive, sustainable agriculture year: 1993 ident: 285_CR66 doi: 10.1515/9781503622067 – volume-title: Cultivating diversity: agrobiodiversity and food security year: 1988 ident: 285_CR86 – volume: 9 start-page: 10 issue: 2 year: 2004 ident: 285_CR88 publication-title: Ecol Soc doi: 10.5751/ES-00667-090210 – volume: 5 start-page: 293 year: 2004 ident: 285_CR22 publication-title: Land Degrad Rehabil doi: 10.1002/ldr.3400050406 – volume: 11 start-page: 2013 issue: 2 year: 2013 ident: 285_CR61 publication-title: Int J Agric Sustain doi: 10.1080/14735903.2012.691221 – start-page: 230 volume-title: Fragile lands of Latin America year: 1989 ident: 285_CR29 – volume: 36 start-page: 514 year: 1986 ident: 285_CR72 publication-title: Bioscience doi: 10.2307/1310108 – volume-title: The role of traditional knowledge and crop varieties in adaptation to climate change and food security in SW China, Bolivian Andes and coastal Kenya year: 2011 ident: 285_CR84 – volume: 67 start-page: 1 year: 1998 ident: 285_CR90 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(97)00150-3 – volume: 105 start-page: 20552 year: 2008 ident: 285_CR50 publication-title: PNAS doi: 10.1073/pnas.0804951106 – volume: 334 start-page: 450 year: 2011 ident: 285_CR91 publication-title: Comptes Rendus Biol doi: 10.1016/j.crvi.2011.03.003 – volume-title: La Memoria Biocultural: la importancia ecologica de las sabidurıas tradicionales year: 2008 ident: 285_CR87 – volume-title: Alternative irrigation: the promise of runoff agriculture year: 1999 ident: 285_CR16 – volume-title: Good farmers: traditional agricultural resource management in Mexico and Central America year: 1987 ident: 285_CR94 – volume-title: Multiple cropping systems year: 1986 ident: 285_CR32 – volume: 1 start-page: 197 year: 1999 ident: 285_CR5 publication-title: Environ Dev Sustain doi: 10.1023/A:1010078923050 – volume: 21 start-page: 1067 year: 1971 ident: 285_CR1 publication-title: Bioscience doi: 10.2307/1295991 – volume: 24 start-page: 347 year: 2000 ident: 285_CR3 publication-title: Prog Hum Geogr doi: 10.1191/030913200701540465 – volume-title: Sustaining the soil: indigenous soil and water conservation in Africa year: 1996 ident: 285_CR76 – start-page: 273 volume-title: Climate Change 2007: impacts, adaptation and vulnerability: contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change year: 2007 ident: 285_CR28 – volume-title: Organic no-till farming year: 2010 ident: 285_CR62 – year: 2013 ident: 285_CR38 publication-title: Int J Agric Sustain – start-page: 237 volume-title: The ecology of intercropping year: 1989 ident: 285_CR89 doi: 10.1017/CBO9780511623523 – volume: 61 start-page: 183 year: 2011 ident: 285_CR52 publication-title: Bioscience doi: 10.1525/bio.2011.61.3.4 – volume: 25 start-page: 216 year: 1996 ident: 285_CR77 publication-title: Australas Plant Pathol doi: 10.1007/BF03213684 – volume: 74 start-page: 19 year: 1999 ident: 285_CR4 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(99)00028-6 – volume: 57 start-page: 221 issue: 1–3 year: 1991 ident: 285_CR74 publication-title: Agric For Meteorol doi: 10.1016/0168-1923(91)90088-8 – volume: 13 start-page: 117 year: 1996 ident: 285_CR64 publication-title: Field Crop Res doi: 10.1016/0378-4290(86)90015-8 – volume-title: Genetic vulnerability of major crops year: 1972 ident: 285_CR65 – volume: 111 start-page: 5598 issue: 15 year: 2014 ident: 285_CR73 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1314437111 – volume: 5 start-page: 23 year: 1994 ident: 285_CR25 publication-title: Hum Organ – volume-title: Farmer strategies for dealing with climatic variability: a case study from the Mixteca Alta Region of Oaxaca year: 2014 ident: 285_CR79 – volume-title: Low-input soil restoration in Honduras: the Cantarranas farmer-to-farmer extension project. Sustainable Agriculture Gatekeeper Series SA23 year: 1990 ident: 285_CR18 – volume-title: Climate change and agriculture a review of impacts and adaptations. Climate Change Series Paper (91) year: 2003 ident: 285_CR49 – volume: 5 start-page: 107 year: 1992 ident: 285_CR93 publication-title: J Prod Agric doi: 10.2134/jpa1992.0107 – volume: 104 start-page: 19691 issue: 50 year: 2007 ident: 285_CR44 publication-title: Proc Natl Acad Sci doi: 10.1073/pnas.0701890104 – volume: 2 start-page: 220 issue: 2 year: 2011 ident: 285_CR83 publication-title: Wiley Interdiscip Rev Clim Chang doi: 10.1002/wcc.102 – volume-title: Biodiversity and pest management in agroecosystems year: 2004 ident: 285_CR10 doi: 10.1201/9781482277937 – volume-title: Nature’s matrix: linking agriculture, conservation and food sovereignty year: 2009 ident: 285_CR69 doi: 10.4324/9781849770132 – volume: 93 start-page: 87 year: 2002 ident: 285_CR42 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(02)00006-3 – volume: 174 start-page: 653 year: 1971 ident: 285_CR14 publication-title: Science doi: 10.1126/science.174.4010.653 – volume: 144 start-page: 85 year: 2007 ident: 285_CR51 publication-title: Agric For Meteorol doi: 10.1016/j.agrformet.2006.12.009 – volume: 65 start-page: 102 year: 2004 ident: 285_CR97 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2003.07.001 – volume: 54 start-page: 269 year: 2002 ident: 285_CR27 publication-title: Climate Change doi: 10.1023/A:1016124032231 – volume: 37 start-page: 399 year: 1999 ident: 285_CR20 publication-title: Annu Rev Phytopathol doi: 10.1146/annurev.phyto.37.1.399 – volume: 38 start-page: 587 year: 2011 ident: 285_CR12 publication-title: J Peasant Stud doi: 10.1080/03066150.2011.582947 – ident: 285_CR8 – volume: 103 start-page: 351 issue: 2 year: 2011 ident: 285_CR37 publication-title: Agron J doi: 10.2134/agronj2010.0303 – volume: 2 start-page: 24 year: 2013 ident: 285_CR60 publication-title: Glob Food Secur doi: 10.1016/j.gfs.2012.11.009 – volume: 93 start-page: 1 year: 2002 ident: 285_CR6 publication-title: Agric Ecosyst Environ doi: 10.1016/S0167-8809(02)00085-3 – ident: 285_CR41 – volume: 16 start-page: 253 year: 2006 ident: 285_CR31 publication-title: Glob Environ Chang doi: 10.1016/j.gloenvcha.2006.04.002 – volume: 261 start-page: 1654 year: 2011 ident: 285_CR63 publication-title: For Ecol Manag doi: 10.1016/j.foreco.2010.09.027 – volume: 17 start-page: 25 issue: 3 year: 2012 ident: 285_CR15 publication-title: Ecol Soc doi: 10.5751/ES-04910-170325 – volume: 91 start-page: 276 year: 1999 ident: 285_CR26 publication-title: Agron J doi: 10.2134/agronj1999.00021962009100020016x – volume-title: Cover crops in hillside agriculture: farmer innovation with Mucuna year: 1998 ident: 285_CR17 – volume: 333 start-page: 616 year: 2011 ident: 285_CR55 publication-title: Science doi: 10.1126/science.1204531 – volume: 294 start-page: 804 year: 2001 ident: 285_CR56 publication-title: Science doi: 10.1126/science.1064088 – volume-title: Invasive species and global climate change, CABI invasives series year: 2014 ident: 285_CR96 doi: 10.1079/9781780641645.0000 – volume: 13 start-page: 1605 issue: 8 year: 2007 ident: 285_CR92 publication-title: Glob Chang Biol doi: 10.1111/j.1365-2486.2007.01399.x – start-page: 91 volume-title: Agroecologia y cambio climatico: metodologias para evaluar la resiliencia socio-ecologica en comunidades rurales year: 2013 ident: 285_CR67 – volume: 1 start-page: 159 year: 1986 ident: 285_CR33 publication-title: Am J Altern Agric doi: 10.1017/S0889189300001235 – volume: 35 start-page: 286 year: 1985 ident: 285_CR43 publication-title: Bioscience doi: 10.2307/1309927 – volume-title: Indigenous soil and water conservation in Africa year: 1991 ident: 285_CR75 – volume-title: Climate change and the global harvest: impacts of El Nino and other oscillations on agroecosystems year: 2008 ident: 285_CR80 – volume-title: Handbook of climate change and agroecosystems: impacts, adaptation, and mitigation year: 2009 ident: 285_CR40 – volume: 11 start-page: 21 year: 1995 ident: 285_CR24 publication-title: Adv Plant Pathol doi: 10.1016/S0736-4539(06)80004-8 – volume: 38 start-page: 161 issue: 1 year: 2011 ident: 285_CR81 publication-title: J Peasant Stud doi: 10.1080/03066150.2010.538584 – volume: 5 start-page: 6 year: 2013 ident: 285_CR59 publication-title: Environ Dev doi: 10.1016/j.envdev.2012.11.001 – start-page: 44 volume-title: Soil Organic matter in sustainable agriculture year: 2004 ident: 285_CR58 doi: 10.1201/9780203496374 – volume-title: Towards understanding the politics of flex crops and commodities: implications for research and policy advocacy year: 2014 ident: 285_CR34 – volume: 30 start-page: 581 year: 2010 ident: 285_CR36 publication-title: Agron Sustain Dev doi: 10.1051/agro/2009054 – volume: 8 start-page: 85 issue: 1 year: 2013 ident: 285_CR39 publication-title: Agroecología – volume: 35 start-page: 855 year: 2011 ident: 285_CR13 publication-title: J Sustain Agric doi: 10.1080/10440046.2011.588998 – volume: 64 start-page: 55 year: 2009 ident: 285_CR57 publication-title: J Soil Water Conserv doi: 10.2489/jswc.64.2.55A – volume: 13 start-page: 51 year: 2003 ident: 285_CR46 publication-title: Glob Environ Chang doi: 10.1016/S0959-3780(02)00090-0 – volume: 11 start-page: 19 year: 1998 ident: 285_CR2 publication-title: Clim Res doi: 10.3354/cr011019 – volume-title: Strengthening resilience of farming systems: a key prerequisite for sustainable agricultural production. In: Wake up before it is too late: make agriculture truly sustainable now for food security in a changing climate year: 2013 ident: 285_CR9 – volume-title: The farming systems trial: celebrating 30 years year: 2012 ident: 285_CR78 – ident: 285_CR23 – volume: 2 start-page: 35 year: 2004 ident: 285_CR7 publication-title: Front Ecol Environ doi: 10.1890/1540-9295(2004)002[0035:LEATFI]2.0.CO;2 – volume: 160 start-page: 1686 year: 2012 ident: 285_CR54 publication-title: Plant Physiol doi: 10.1104/pp.112.208298 – year: 2013 ident: 285_CR11 publication-title: Clim Chang – volume: 13 start-page: 51 year: 2003 ident: 285_CR85 publication-title: Glob Environ Chang doi: 10.1016/S0959-3780(02)00090-0 – volume: 17 start-page: 18 issue: 1 year: 2012 ident: 285_CR19 publication-title: Ecol Soc doi: 10.5751/ES-04666-170118 – volume: 406 start-page: 718 year: 2000 ident: 285_CR95 publication-title: Nature doi: 10.1038/35021046 – volume: 128 start-page: 12 year: 2009 ident: 285_CR71 publication-title: Agric Ecosyst Environ doi: 10.1016/j.agee.2008.04.016 – volume: 388 start-page: 631 year: 1998 ident: 285_CR47 publication-title: Nature – volume-title: Participatory development of notillage systems without herbicides for family farming; the experience of the Center-South region of Paraná. In: Environment, development and sustainability year: 1999 ident: 285_CR70 – volume: 70 start-page: 255 year: 2005 ident: 285_CR82 publication-title: Clim Chang doi: 10.1007/s10584-005-5949-5 |
SSID | ssj0041774 |
Score | 2.6150079 |
SecondaryResourceType | review_article |
Snippet | Diverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the rise of... AbstractDiverse, severe, and location-specific impacts on agricultural production are anticipated with climate change. The last IPCC report indicates that the... |
SourceID | hal proquest crossref springer fao |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 869 |
SubjectTerms | Agriculture agroecosystems agroforestry animals biodiversity Biomedical and Life Sciences carbon dioxide climate climate change crop yield cropping systems disasters drought farmers farms food availability food production gases genetic variation germplasm greenhouses harvesting hurricanes insect pests landscapes Life Sciences organic matter organic soils pathogens population dynamics Review Article rural communities soil management Soil Science & Conservation surface temperature surveys Sustainable Development traditional farming water conservation weeds |
Title | Agroecology and the design of climate change-resilient farming systems |
URI | https://link.springer.com/article/10.1007/s13593-015-0285-2 https://www.proquest.com/docview/1803104910 https://hal.science/hal-01309778 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoe4EDb9TwqAziBHJlJ46THCPUZcXrQlcqJ8uPSVuxyqJmt1L59czk0UIFSL0kSmRHzsx4_Fkz85mx1-CNr6SMwvnKCV35ILyRIKIyQaXSmRiodvjzFzNf6A9H-dFYx91N2e5TSLL31FfFbllOuWaKKorLXKDf3clxf4Kzcad-_-3jweSAtSp68mW6CTpOYwpm_u0jfyxHW41b4fWEUiJ_w5vXQqT9yjO7xw6nMQ8JJ9_3N2u_H35eo3O84U_dZ3dHJMrrwXQesFvQPmR36uOzkY0DHrEZPq2g57W-4K6NHNEij33OB181PCxPEe8CH4qHBW7cT5dUXskbRxk2x3ygie4es8Xs4PDdXIwHL4ig03QtVNCFBMhBQwOhioWK2mVGV2VZQZTgc8Q1si-Ewg5FIQunmqjBuaxBheTZE7bdrlrYZbzIfMA9ZAkyR_CYmSqaYFQ0mQGP0LNImJzkb8PISk6HYyztFZ8yiciiiCyJyKYJe3PZ5cdAyfG_xruoVOtQeJ1dfE2JUK-n1VNVwl6hpi8_QTzb8_qTpXcUzsXRlecqYS8nQ7A48Sia4lpYbTqrSmJV1Qi3EvZ2Uq4dPUD37xE9vVHrZ-x22lsHJQg_Z9vrsw28QBi09nuj2e-xrUVa_wIha_nh |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagHIAD4qmm5WEQJ5AlO3Gc5Liqulpg2wtdqTfLj0mptEpQs0Xqv--MN2kBARKXRIlsy5rx47Nmvs-MvQdvfCNlFM43TujGB-GNBBGVCSqXzsRA3OGjY7NY6c-n5enI4x6mbPcpJJlW6luyW1FSrpkiRnFdClx371GUkU5cq3w2Lb9aVUl6mV6CLtOYQpl_auKXzehu63p8fqOEyJ_Q5m8B0rTvzB-zRyNg5LOth5-wO9A9ZQ9nZxejaAY8Y3P86iHJT19x10WOoI7HlJrB-5aH9TnCUuBbjq_A8_X5mliQvHWUCHPGt2rOw3O2mh-eHCzEeD-CCDrPN0IFXUmAEjS0EJpYqahdYXRT1w1ECb5E-CETXwkrVJWsnGqjBueKtsaNu3jBdrq-g13Gq8IHPOrVIEvEeIVpoglGRVMY8IgQq4zJyVA2jOLhdIfF2t7KHpNtLdrWkm1tnrEPN1W-b5Uz_lV4F61vHRpvsKuvOeneJfU71WTsHbrkpgmSw17Mlpb-UdQVe1f_UBl7O3nM4vygoIfroL8crKpJ_FQjKsrYx8mVdpyow997tPdfpd-w-4uTo6Vdfjr-ss8e5GmIUU7vS7azubiEV4hcNv51GqnXG4bfHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZgKyE4UJ5qoAWDOIHc2onjJMdV6bLQUiHBSuVk_EqpWCVVk0WCX89MHi1UgIS4JEpkW_aMH581M98Q8ixYZQvOPTO2MEwW1jGreGBeKCdibpR3GDv89lDNF_LNUXo05DltRm_30STZxzQgS1PV7pz6cuci8C1J0e9MYHRxnjLYg9ckppCYkLXpq4_7e-NmLEXWETHji2FqjdGw-btGfjmarpamhudndI_8CXteMpd2p9BsnXwa-987n3zZXrV2232_RO34HwO8RW4OCJVO-yl1m1wJ1R1yY3p8NrB0hLtkBl916Piuv1FTeQookvrOF4TWJXXLE8DBgfZBxQwu9CdLDLukpUHPm2Pa00c398hitvdhd86GhAzMyThumXAy4yGkQYYyuMJnwkuTKFnkeRE8DzYFvMO7ACmokGU8M6L0MhiTlDkgheQ-mVR1FTYIzRLr4G6ZB54CqExU4ZVTwqtEBQuQNIsIH3Wh3cBWjkkzlvqCZxlFpEFEGkWk44g8P69y2lN1_K3wBihYGxBeoxfvYyTa6-j2RBGRp6D18yaQf3s-PdD4D8280Lv8q4jIk3FSaFiQaGUxVahXjRY5sq1KgGEReTEqWg87Q_PnHj34p9KPybV3L2f64PXh_kNyPe4mCvoQb5JJe7YKW4CUWvtoWA0_ALDzBNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Agroecology+and+the+design+of+climate+change-resilient+farming+systems&rft.jtitle=Agronomy+for+sustainable+development&rft.au=Altieri%2C+Miguel+A.&rft.au=Nicholls%2C+Clara+I.&rft.au=Henao%2C+Alejandro&rft.au=Lana%2C+Marcos+A.&rft.date=2015-07-01&rft.pub=Springer+Paris&rft.issn=1774-0746&rft.eissn=1773-0155&rft.volume=35&rft.issue=3&rft.spage=869&rft.epage=890&rft_id=info:doi/10.1007%2Fs13593-015-0285-2&rft.externalDocID=10_1007_s13593_015_0285_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1774-0746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1774-0746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1774-0746&client=summon |