Deep unfolding of a proximal interior point method for image restoration
Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and ti...
Saved in:
Published in | Inverse problems Vol. 36; no. 3; pp. 34005 - 34031 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0266-5611 1361-6420 |
DOI | 10.1088/1361-6420/ab460a |
Cover
Abstract | Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient architectures, at the expense of explainability, since it is often used as a black-box, without any fine control over its output. Deep unfolding provides a convenient approach to combine variational-based and deep learning approaches. Starting from a variational formulation for image restoration, we develop iRestNet, a neural network architecture obtained by unfolding a proximal interior point algorithm. Hard constraints, encoding desirable properties for the restored image, are incorporated into the network thanks to a logarithmic barrier, while the barrier parameter, the stepsize, and the penalization weight are learned by the network. We derive explicit expressions for the gradient of the proximity operator for various choices of constraints, which allows training iRestNet with gradient descent and backpropagation. In addition, we provide theoretical results regarding the stability of the network for a common inverse problem example. Numerical experiments on image deblurring problems show that the proposed approach compares favorably with both state-of-the-art variational and machine learning methods in terms of image quality. |
---|---|
AbstractList | Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient architectures, at the expense of explainability, since it is often used as a black-box, without any fine control over its output. Deep unfolding provides a convenient approach to combine variational-based and deep learning approaches. Starting from a variational formulation for image restoration, we develop iRestNet, a neural network architecture obtained by unfolding a proximal interior point algorithm. Hard constraints, encoding desirable properties for the restored image, are incorporated into the network thanks to a logarithmic barrier, while the barrier parameter, the stepsize, and the penalization weight are learned by the network. We derive explicit expressions for the gradient of the proximity operator for various choices of constraints, which allows training iRestNet with gradient descent and backpropagation. In addition, we provide theoretical results regarding the stability of the network for a common inverse problem example. Numerical experiments on image deblurring problems show that the proposed approach compares favorably with both state-of-the-art variational and machine learning methods in terms of image quality. |
Author | Chouzenoux, E Bertocchi, C Pesquet, J-C Corbineau, M-C Prato, M |
Author_xml | – sequence: 1 givenname: C orcidid: 0000-0003-4456-7896 surname: Bertocchi fullname: Bertocchi, C email: carla.bertocchi@unimore.it organization: Università di Modena e Reggio Emilia , Modena, Italy – sequence: 2 givenname: E orcidid: 0000-0003-3631-6093 surname: Chouzenoux fullname: Chouzenoux, E email: emilie.chouzenoux@centralesupelec.fr organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France – sequence: 3 givenname: M-C orcidid: 0000-0002-3446-5178 surname: Corbineau fullname: Corbineau, M-C email: marie-caroline.corbineau@centralesupelec.fr organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France – sequence: 4 givenname: J-C orcidid: 0000-0002-5943-8061 surname: Pesquet fullname: Pesquet, J-C email: jean-christophe.pesquet@centralesupelec.fr organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France – sequence: 5 givenname: M orcidid: 0000-0002-7327-3347 surname: Prato fullname: Prato, M email: marco.prato@unimore.it organization: Università di Modena e Reggio Emilia , Modena, Italy |
BackLink | https://hal.science/hal-01943475$$DView record in HAL |
BookMark | eNp9kM9LwzAYhoNMcJvePeYqWPclTdPtOOaPCQMveg6x_bJldElJM9H_3tSKB0FPCW_e5-PLMyEj5x0ScsnghsF8PmO5ZJkUHGb6VUjQJ2T8E43IGLiUWSEZOyOTrtsDMDZn5ZisbxFbenTGN7V1W-oN1bQN_t0edEOtixisD7T16UoPGHe-piYF6XmLNGAXfdDRendOTo1uOrz4Pqfk5f7uebXONk8Pj6vlJqsE5zFjGrgpoM5ZjsgNL2UuSgkLkBIN1BxZiXm1wBqkFmBSWdamNGVRoRAgTT4lV8PcnW5UG9Ie4UN5bdV6uVF9Bmwh0sziTaQuDN0q-K4LaH4ABqq3pnpFqlekBmsJkb-QysavD8agbfMfeD2A1rdq74_BJQt_1z8BA1aAeA |
CODEN | INPEEY |
CitedBy_id | crossref_primary_10_3390_computers14010014 crossref_primary_10_3390_math11214480 crossref_primary_10_1137_20M1387961 crossref_primary_10_1093_mnras_stab956 crossref_primary_10_1088_1361_6501_ad3c5c crossref_primary_10_1137_23M1584496 crossref_primary_10_1016_j_compbiomed_2023_107605 crossref_primary_10_1137_23M1609166 crossref_primary_10_1109_ACCESS_2021_3129602 crossref_primary_10_1109_LSP_2022_3153229 crossref_primary_10_1109_TCI_2025_3545358 crossref_primary_10_1016_j_ifacol_2022_04_149 crossref_primary_10_3390_a16060270 crossref_primary_10_1109_ACCESS_2021_3072952 crossref_primary_10_1140_epjp_s13360_022_02869_3 crossref_primary_10_3390_rs15020445 crossref_primary_10_1109_TIP_2022_3224322 crossref_primary_10_1007_s10589_021_00291_6 crossref_primary_10_1016_j_sigpro_2023_109369 crossref_primary_10_1088_2040_8986_ad08dc crossref_primary_10_1063_5_0049911 crossref_primary_10_1109_TSP_2022_3180546 crossref_primary_10_1088_1742_6596_2303_1_012033 crossref_primary_10_1109_TIM_2022_3154803 crossref_primary_10_1109_TSP_2023_3272286 crossref_primary_10_1109_TIP_2021_3136623 crossref_primary_10_3390_a17120587 crossref_primary_10_1016_j_aej_2021_04_001 crossref_primary_10_1049_cth2_12207 crossref_primary_10_1080_01431161_2022_2066961 crossref_primary_10_1109_TCI_2023_3279053 crossref_primary_10_1109_TSP_2022_3179807 crossref_primary_10_1109_TIP_2021_3078058 crossref_primary_10_3390_photonics8090376 crossref_primary_10_1063_5_0189267 crossref_primary_10_1155_2022_9981355 crossref_primary_10_1109_TPAMI_2021_3088914 crossref_primary_10_1109_JSTSP_2020_3037516 crossref_primary_10_1109_TWC_2023_3271521 crossref_primary_10_1109_LSP_2022_3189275 crossref_primary_10_1137_19M1272780 crossref_primary_10_1088_1361_6420_acc2b6 crossref_primary_10_1007_s00521_021_06318_7 crossref_primary_10_1007_s11263_021_01510_7 crossref_primary_10_1109_TIP_2021_3090531 crossref_primary_10_1093_pnasnexus_pgae164 crossref_primary_10_1016_j_neucom_2021_03_010 crossref_primary_10_1142_S0219530524400037 crossref_primary_10_1016_j_matcom_2023_04_034 crossref_primary_10_1109_LGRS_2023_3241642 crossref_primary_10_1109_TCI_2022_3152700 crossref_primary_10_1109_TSP_2021_3069677 crossref_primary_10_1109_TVT_2023_3301241 crossref_primary_10_3390_e23121673 crossref_primary_10_1088_1361_6420_ac60bf crossref_primary_10_1109_JSTSP_2021_3054506 crossref_primary_10_1109_OJCOMS_2023_3270455 |
Cites_doi | 10.1007/978-0-387-87821-8 10.1109/CVPR.2017.19 10.1007/978-3-642-59179-2_22 10.1109/ICASSP.2018.8462173 10.1002/047134608X.W8294 10.1007/978-3-642-38267-3_11 10.1137/1.9780898717570 10.1007/BF02243828 10.1109/83.931102 10.1214/aoms/1177729698 10.1109/MSP.2017.2739299 10.1007/s00245-005-0842-1 10.1137/140968045 10.1109/CVPR.2013.142 10.1109/SAM.2018.8448691 10.1109/TIP.2015.2448352 10.1590/S0101-82052003000100003 10.1007/s00365-006-0663-2 10.1109/CVPR.2016.90 10.1561/2200000016 10.1088/0266-5611/23/4/008 10.1109/TPAMI.2016.2596743 10.1007/978-1-4419-9569-8_10 10.1109/TIP.2003.819861 10.1016/j.neunet.2014.09.003 10.1109/ICCV.2011.6126502 10.1109/CVPR.2018.00196 10.1109/CVPR.2014.349 10.1109/ICCV.2011.6126278 10.5121/ijma.2017.9104 10.1109/TIP.2017.2662206 10.1109/CVPR.2017.737 10.1007/978-3-319-48311-5 10.1109/MSP.2014.2377273 10.1137/050626090 10.1088/0266-5611/31/9/095008 10.1109/TMI.2015.2401131 10.1007/s10851-009-0149-y 10.1016/j.cam.2009.02.020 10.1109/LSP.2016.2548245 10.1109/TPAMI.2015.2481418 10.1023/A:1022693618829 10.1109/TPAMI.2017.2677439 10.1007/978-3-642-15549-9_12 10.1109/ICCV.2017.198 10.1109/CVPR.2009.5206815 10.1017/S0962492900002300 10.1007/978-1-4939-1124-0_13 10.1109/TIP.2017.2713099 |
ContentType | Journal Article |
Copyright | 2020 IOP Publishing Ltd Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2020 IOP Publishing Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1088/1361-6420/ab460a |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics Computer Science |
DocumentTitleAlternate | Deep unfolding of a proximal interior point method for image restoration |
EISSN | 1361-6420 |
ExternalDocumentID | oai_HAL_hal_01943475v4 10_1088_1361_6420_ab460a ipab460a |
GrantInformation_xml | – fundername: Electronic Components and Systems for European Leadership grantid: 783190 funderid: https://doi.org/10.13039/501100011688 |
GroupedDBID | -~X .DC 1JI 4.4 5B3 5GY 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHFT ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT KZ1 LAP LMP M45 N5L N9A P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TN5 UCJ W28 XPP ZMT ~02 AAYXX ADACN ADEQX CITATION 02O 1WK 1XC 29J 5ZI 9BW AAGCF AALHV ACARI ACWPO AEINN AERVB AETNG AFFNX AGQPQ AHSEE AI. ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 RKQ S3P T37 VH1 VOOES ZY4 |
ID | FETCH-LOGICAL-c422t-1a02f50d313ee2f276347609066ef0d2e17e3c9ed06a40f02f6df7f75ce4406f3 |
IEDL.DBID | IOP |
ISSN | 0266-5611 |
IngestDate | Fri Sep 12 12:48:59 EDT 2025 Tue Jul 01 00:41:26 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 Wed Aug 21 03:33:25 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | deep unfolding proximal algorithms image restoration Neural networks regularization Interior point method Interior point methods neural network |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c422t-1a02f50d313ee2f276347609066ef0d2e17e3c9ed06a40f02f6df7f75ce4406f3 |
Notes | IP-102042.R2 |
ORCID | 0000-0002-3446-5178 0000-0002-5943-8061 0000-0003-4456-7896 0000-0002-7327-3347 0000-0003-3631-6093 |
OpenAccessLink | https://hal.science/hal-01943475 |
PageCount | 27 |
ParticipantIDs | crossref_primary_10_1088_1361_6420_ab460a hal_primary_oai_HAL_hal_01943475v4 crossref_citationtrail_10_1088_1361_6420_ab460a iop_journals_10_1088_1361_6420_ab460a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Inverse problems |
PublicationTitleAbbrev | IP |
PublicationTitleAlternate | Inverse Problems |
PublicationYear | 2020 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | 44 45 Kingma D P (65) 2014 47 48 49 Chouzenoux E (46) 2019 Lagendijk R L (1) 2005 Dugas C (55) 2001 Hershey J R (17) 2014 50 53 10 54 11 12 56 13 57 14 16 Li K (30) 2016 18 Andrychowicz M (29) 2016 Sun J (25) 2016 Szegedy C (15) 2013 Czarnecki M-O (51) 2016; 23 Zhang K (62) 2017; 2 2 3 4 5 6 7 Goodfellow I (67) 2016 8 Paszke A (58) 2017 60 63 64 66 23 24 68 69 26 27 28 Mardani M (20) 2017 70 Combettes P L (59) 2018 32 33 Mallat S (61) 1999 Wang S (19) 2016 34 35 36 37 Bonettini S (40) 2015; 31 38 39 Diamond S (21) 2017 Xu L (9) 2014 Amos B (31) 2017 Chaux C (52) 2007; 23 Gregor K (22) 2010 41 42 43 |
References_xml | – ident: 53 doi: 10.1007/978-0-387-87821-8 – ident: 12 doi: 10.1109/CVPR.2017.19 – start-page: 10 year: 2016 ident: 25 publication-title: Proc. of Advances in Neural Information Processing Systems – ident: 32 doi: 10.1007/978-3-642-59179-2_22 – ident: 47 doi: 10.1109/ICASSP.2018.8462173 – year: 2016 ident: 67 publication-title: Deep Learning – year: 1999 ident: 61 publication-title: A Wavelet Tour of Signal Processing – ident: 4 doi: 10.1002/047134608X.W8294 – ident: 34 doi: 10.1007/978-3-642-38267-3_11 – ident: 56 doi: 10.1137/1.9780898717570 – year: 2017 ident: 21 – ident: 5 doi: 10.1007/BF02243828 – volume: 23 start-page: 531 issn: 0944-6532 year: 2016 ident: 51 publication-title: J. Convex Anal. – ident: 35 doi: 10.1109/83.931102 – ident: 54 doi: 10.1214/aoms/1177729698 – ident: 14 doi: 10.1109/MSP.2017.2739299 – ident: 37 doi: 10.1007/s00245-005-0842-1 – ident: 6 doi: 10.1137/140968045 – ident: 10 doi: 10.1109/CVPR.2013.142 – year: 2013 ident: 15 – ident: 48 doi: 10.1109/SAM.2018.8448691 – start-page: 136 year: 2017 ident: 31 publication-title: Proc. of the Int. Conf. on Machine Learning – ident: 27 doi: 10.1109/TIP.2015.2448352 – start-page: 865 year: 2016 ident: 19 publication-title: Proc. of Advances in Neural Information Processing Systems – ident: 39 doi: 10.1590/S0101-82052003000100003 – ident: 7 doi: 10.1007/s00365-006-0663-2 – ident: 63 doi: 10.1109/CVPR.2016.90 – start-page: 472 year: 2001 ident: 55 publication-title: Proc. of Advances in Neural Information Processing Systems – ident: 41 doi: 10.1561/2200000016 – start-page: 1790 year: 2014 ident: 9 publication-title: Proc. of Advances in Neural Information Processing Systems – volume: 23 start-page: 1495 issn: 0266-5611 year: 2007 ident: 52 publication-title: Inverse Problems doi: 10.1088/0266-5611/23/4/008 – year: 2016 ident: 30 – ident: 28 doi: 10.1109/TPAMI.2016.2596743 – ident: 45 doi: 10.1007/978-1-4419-9569-8_10 – volume: 2 year: 2017 ident: 62 publication-title: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition – ident: 66 doi: 10.1109/TIP.2003.819861 – year: 2014 ident: 65 – ident: 60 doi: 10.1016/j.neunet.2014.09.003 – ident: 36 doi: 10.1109/ICCV.2011.6126502 – ident: 24 doi: 10.1109/CVPR.2018.00196 – start-page: 3981 year: 2016 ident: 29 publication-title: Proc. of Advances in Neural Information Processing Systems – ident: 26 doi: 10.1109/CVPR.2014.349 – ident: 68 doi: 10.1109/ICCV.2011.6126278 – ident: 57 doi: 10.5121/ijma.2017.9104 – ident: 8 doi: 10.1109/TIP.2017.2662206 – ident: 69 doi: 10.1109/CVPR.2017.737 – ident: 38 doi: 10.1007/978-3-319-48311-5 – ident: 42 doi: 10.1109/MSP.2014.2377273 – ident: 44 doi: 10.1137/050626090 – year: 2014 ident: 17 – volume: 31 start-page: 1 issn: 0266-5611 year: 2015 ident: 40 publication-title: Inverse Problems doi: 10.1088/0266-5611/31/9/095008 – year: 2017 ident: 20 – year: 2019 ident: 46 publication-title: HAL preprint hal-02120005 – ident: 16 doi: 10.1109/TMI.2015.2401131 – ident: 3 doi: 10.1007/s10851-009-0149-y – ident: 43 doi: 10.1016/j.cam.2009.02.020 – year: 2005 ident: 1 publication-title: The Handbook of Image and Video Processing – ident: 23 doi: 10.1109/LSP.2016.2548245 – ident: 11 doi: 10.1109/TPAMI.2015.2481418 – start-page: 399 year: 2010 ident: 22 publication-title: Proc. of the International Conf. on Int. Conf. on Machine Learning – ident: 50 doi: 10.1023/A:1022693618829 – ident: 18 doi: 10.1109/TPAMI.2017.2677439 – ident: 2 doi: 10.1007/978-3-642-15549-9_12 – year: 2017 ident: 58 publication-title: NIPS Autodiff Workshop: the Future of Gradient-Based Machine Learning Software and Techniques – ident: 70 doi: 10.1109/ICCV.2017.198 – year: 2018 ident: 59 – ident: 64 doi: 10.1109/CVPR.2009.5206815 – ident: 49 doi: 10.1017/S0962492900002300 – ident: 33 doi: 10.1007/978-1-4939-1124-0_13 – ident: 13 doi: 10.1109/TIP.2017.2713099 |
SSID | ssj0011817 |
Score | 2.5854716 |
Snippet | Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level... |
SourceID | hal crossref iop |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 34005 |
SubjectTerms | Computer Science deep unfolding Image Processing image restoration interior point method Machine Learning Mathematics neural network Optimization and Control proximal algorithms regularization |
Title | Deep unfolding of a proximal interior point method for image restoration |
URI | https://iopscience.iop.org/article/10.1088/1361-6420/ab460a https://hal.science/hal-01943475 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG_mvOjBb-P8SmP04IGt0FIgnhZ1IcapB5fsYEIKtLqogzDmwb_eV2BkGjXGW4HHo32vtD947e8hdMyFoJqG3ZBKhgbTe3u8iBDDk3qfph2JuKDM799wf8Cuhvawgc7qvTBJWg39bSiWRMGlCasFcW7HBOUGwGbSESHjBMDRItWZlPTuvdu7OoQAU5dT_mDhBoAEs4pRfqfh05y08KRXRC7A0-cmmt4qephVsVxf8tye5mE7ev_C3vjPNqyhlQqA4m4puo4acryBludoCeGoX3O5TjaRfyFliqfQEYs4FU4UFljXbvQKejTdRDZKMpwmUMRlQmoMSBjD5UeJsyJzTeH-LTToXd6f-0aVf8GImGXlhimIpWwSU5NKaSkLhiLmcOIBSpGKxJY0HUkjT8aEC0YUCPNYOcqxI8kAJyi6jZrjZCx3EKbCpgKgn6UoZbHjeK7NKfdcGGCckNqshTozDwRRRU6uc2S8BEWQ3HUDbbFAWywoLdZCp_UdaUnM8YvsETi1FtOM2n73OtDnAOEyaJX9BlU4AW8F1Ss8-VHZ7h_l9tCSpb_Ni_Vq-6iZZ1N5AAAmDw-LjvoBuPPkBA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVokRAc2BE7FoIDh7ROvCXHCqjK0tIDlbgFJ7GhApqotBz4esZJqAABQuLmJBNrPN5eMuM3CB0IpailYXe00ZHD7NmeICbECbQ9p8ljleSU-e2OaPXY-Q2_KfOc5mdh0qxc-mtQLIiCCxOWAXF-3YXKHYDNpK4iJoiqZ4mpoGlOubQz8-yqO3EjwPYli58swgGg4JZ-yu9q-bQvVe5tVGQFNPiw2TQX0O27mkWMyUNtPIpq8esXBsd_tGMRzZdAFDcK8SU0pQfLaO4DPSFctSecrs8rqHWidYbHMCBzfxVODVbYath_gnos7cSwnw5xlkIRF4mpMSBiDI_vNB7mGWzyYbCKes3T6-OWU-ZhcGLmeSPHVcQznCTUpVp7xoMliUlBAkAr2pDE067UNA50QoRixICwSIw0kseaAV4wdA1VB-lAryNMFacKIKBnKGWJlIHPBRWBDwuNjChnG6j-3gthXJKU21wZj2HuLPf90FottFYLC6ttoKPJG1lB0PGL7D507ETMMmu3GpehvQdIl0Gr-AuocAg9FpZT-fnHyjb_KLeHZronzfDyrHOxhWY9-7meh7Bto-poONY7gGlG0W4-bt8ANz3pbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Unfolding+of+a+Proximal+Interior+Point+Method+for+Image+Restoration&rft.jtitle=Inverse+problems&rft.au=Bertocchi%2C+Carla&rft.au=Chouzenoux%2C+Emilie&rft.au=Corbineau%2C+Marie-Caroline&rft.au=Pesquet%2C+Jean-Christophe&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088%2F1361-6420%2Fab460a&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01943475v4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon |