Deep unfolding of a proximal interior point method for image restoration

Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and ti...

Full description

Saved in:
Bibliographic Details
Published inInverse problems Vol. 36; no. 3; pp. 34005 - 34031
Main Authors Bertocchi, C, Chouzenoux, E, Corbineau, M-C, Pesquet, J-C, Prato, M
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.03.2020
Subjects
Online AccessGet full text
ISSN0266-5611
1361-6420
DOI10.1088/1361-6420/ab460a

Cover

Abstract Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient architectures, at the expense of explainability, since it is often used as a black-box, without any fine control over its output. Deep unfolding provides a convenient approach to combine variational-based and deep learning approaches. Starting from a variational formulation for image restoration, we develop iRestNet, a neural network architecture obtained by unfolding a proximal interior point algorithm. Hard constraints, encoding desirable properties for the restored image, are incorporated into the network thanks to a logarithmic barrier, while the barrier parameter, the stepsize, and the penalization weight are learned by the network. We derive explicit expressions for the gradient of the proximity operator for various choices of constraints, which allows training iRestNet with gradient descent and backpropagation. In addition, we provide theoretical results regarding the stability of the network for a common inverse problem example. Numerical experiments on image deblurring problems show that the proposed approach compares favorably with both state-of-the-art variational and machine learning methods in terms of image quality.
AbstractList Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level of performance of these methods significantly depends on a set of parameters, which can be estimated through computationally expensive and time-consuming methods. In contrast, deep learning offers very generic and efficient architectures, at the expense of explainability, since it is often used as a black-box, without any fine control over its output. Deep unfolding provides a convenient approach to combine variational-based and deep learning approaches. Starting from a variational formulation for image restoration, we develop iRestNet, a neural network architecture obtained by unfolding a proximal interior point algorithm. Hard constraints, encoding desirable properties for the restored image, are incorporated into the network thanks to a logarithmic barrier, while the barrier parameter, the stepsize, and the penalization weight are learned by the network. We derive explicit expressions for the gradient of the proximity operator for various choices of constraints, which allows training iRestNet with gradient descent and backpropagation. In addition, we provide theoretical results regarding the stability of the network for a common inverse problem example. Numerical experiments on image deblurring problems show that the proposed approach compares favorably with both state-of-the-art variational and machine learning methods in terms of image quality.
Author Chouzenoux, E
Bertocchi, C
Pesquet, J-C
Corbineau, M-C
Prato, M
Author_xml – sequence: 1
  givenname: C
  orcidid: 0000-0003-4456-7896
  surname: Bertocchi
  fullname: Bertocchi, C
  email: carla.bertocchi@unimore.it
  organization: Università di Modena e Reggio Emilia , Modena, Italy
– sequence: 2
  givenname: E
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, E
  email: emilie.chouzenoux@centralesupelec.fr
  organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France
– sequence: 3
  givenname: M-C
  orcidid: 0000-0002-3446-5178
  surname: Corbineau
  fullname: Corbineau, M-C
  email: marie-caroline.corbineau@centralesupelec.fr
  organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France
– sequence: 4
  givenname: J-C
  orcidid: 0000-0002-5943-8061
  surname: Pesquet
  fullname: Pesquet, J-C
  email: jean-christophe.pesquet@centralesupelec.fr
  organization: Université Paris-Saclay CVN, CentraleSupélec, INRIA Saclay, Gif-Sur-Yvette, France
– sequence: 5
  givenname: M
  orcidid: 0000-0002-7327-3347
  surname: Prato
  fullname: Prato, M
  email: marco.prato@unimore.it
  organization: Università di Modena e Reggio Emilia , Modena, Italy
BackLink https://hal.science/hal-01943475$$DView record in HAL
BookMark eNp9kM9LwzAYhoNMcJvePeYqWPclTdPtOOaPCQMveg6x_bJldElJM9H_3tSKB0FPCW_e5-PLMyEj5x0ScsnghsF8PmO5ZJkUHGb6VUjQJ2T8E43IGLiUWSEZOyOTrtsDMDZn5ZisbxFbenTGN7V1W-oN1bQN_t0edEOtixisD7T16UoPGHe-piYF6XmLNGAXfdDRendOTo1uOrz4Pqfk5f7uebXONk8Pj6vlJqsE5zFjGrgpoM5ZjsgNL2UuSgkLkBIN1BxZiXm1wBqkFmBSWdamNGVRoRAgTT4lV8PcnW5UG9Ie4UN5bdV6uVF9Bmwh0sziTaQuDN0q-K4LaH4ABqq3pnpFqlekBmsJkb-QysavD8agbfMfeD2A1rdq74_BJQt_1z8BA1aAeA
CODEN INPEEY
CitedBy_id crossref_primary_10_3390_computers14010014
crossref_primary_10_3390_math11214480
crossref_primary_10_1137_20M1387961
crossref_primary_10_1093_mnras_stab956
crossref_primary_10_1088_1361_6501_ad3c5c
crossref_primary_10_1137_23M1584496
crossref_primary_10_1016_j_compbiomed_2023_107605
crossref_primary_10_1137_23M1609166
crossref_primary_10_1109_ACCESS_2021_3129602
crossref_primary_10_1109_LSP_2022_3153229
crossref_primary_10_1109_TCI_2025_3545358
crossref_primary_10_1016_j_ifacol_2022_04_149
crossref_primary_10_3390_a16060270
crossref_primary_10_1109_ACCESS_2021_3072952
crossref_primary_10_1140_epjp_s13360_022_02869_3
crossref_primary_10_3390_rs15020445
crossref_primary_10_1109_TIP_2022_3224322
crossref_primary_10_1007_s10589_021_00291_6
crossref_primary_10_1016_j_sigpro_2023_109369
crossref_primary_10_1088_2040_8986_ad08dc
crossref_primary_10_1063_5_0049911
crossref_primary_10_1109_TSP_2022_3180546
crossref_primary_10_1088_1742_6596_2303_1_012033
crossref_primary_10_1109_TIM_2022_3154803
crossref_primary_10_1109_TSP_2023_3272286
crossref_primary_10_1109_TIP_2021_3136623
crossref_primary_10_3390_a17120587
crossref_primary_10_1016_j_aej_2021_04_001
crossref_primary_10_1049_cth2_12207
crossref_primary_10_1080_01431161_2022_2066961
crossref_primary_10_1109_TCI_2023_3279053
crossref_primary_10_1109_TSP_2022_3179807
crossref_primary_10_1109_TIP_2021_3078058
crossref_primary_10_3390_photonics8090376
crossref_primary_10_1063_5_0189267
crossref_primary_10_1155_2022_9981355
crossref_primary_10_1109_TPAMI_2021_3088914
crossref_primary_10_1109_JSTSP_2020_3037516
crossref_primary_10_1109_TWC_2023_3271521
crossref_primary_10_1109_LSP_2022_3189275
crossref_primary_10_1137_19M1272780
crossref_primary_10_1088_1361_6420_acc2b6
crossref_primary_10_1007_s00521_021_06318_7
crossref_primary_10_1007_s11263_021_01510_7
crossref_primary_10_1109_TIP_2021_3090531
crossref_primary_10_1093_pnasnexus_pgae164
crossref_primary_10_1016_j_neucom_2021_03_010
crossref_primary_10_1142_S0219530524400037
crossref_primary_10_1016_j_matcom_2023_04_034
crossref_primary_10_1109_LGRS_2023_3241642
crossref_primary_10_1109_TCI_2022_3152700
crossref_primary_10_1109_TSP_2021_3069677
crossref_primary_10_1109_TVT_2023_3301241
crossref_primary_10_3390_e23121673
crossref_primary_10_1088_1361_6420_ac60bf
crossref_primary_10_1109_JSTSP_2021_3054506
crossref_primary_10_1109_OJCOMS_2023_3270455
Cites_doi 10.1007/978-0-387-87821-8
10.1109/CVPR.2017.19
10.1007/978-3-642-59179-2_22
10.1109/ICASSP.2018.8462173
10.1002/047134608X.W8294
10.1007/978-3-642-38267-3_11
10.1137/1.9780898717570
10.1007/BF02243828
10.1109/83.931102
10.1214/aoms/1177729698
10.1109/MSP.2017.2739299
10.1007/s00245-005-0842-1
10.1137/140968045
10.1109/CVPR.2013.142
10.1109/SAM.2018.8448691
10.1109/TIP.2015.2448352
10.1590/S0101-82052003000100003
10.1007/s00365-006-0663-2
10.1109/CVPR.2016.90
10.1561/2200000016
10.1088/0266-5611/23/4/008
10.1109/TPAMI.2016.2596743
10.1007/978-1-4419-9569-8_10
10.1109/TIP.2003.819861
10.1016/j.neunet.2014.09.003
10.1109/ICCV.2011.6126502
10.1109/CVPR.2018.00196
10.1109/CVPR.2014.349
10.1109/ICCV.2011.6126278
10.5121/ijma.2017.9104
10.1109/TIP.2017.2662206
10.1109/CVPR.2017.737
10.1007/978-3-319-48311-5
10.1109/MSP.2014.2377273
10.1137/050626090
10.1088/0266-5611/31/9/095008
10.1109/TMI.2015.2401131
10.1007/s10851-009-0149-y
10.1016/j.cam.2009.02.020
10.1109/LSP.2016.2548245
10.1109/TPAMI.2015.2481418
10.1023/A:1022693618829
10.1109/TPAMI.2017.2677439
10.1007/978-3-642-15549-9_12
10.1109/ICCV.2017.198
10.1109/CVPR.2009.5206815
10.1017/S0962492900002300
10.1007/978-1-4939-1124-0_13
10.1109/TIP.2017.2713099
ContentType Journal Article
Copyright 2020 IOP Publishing Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 IOP Publishing Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1088/1361-6420/ab460a
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Computer Science
DocumentTitleAlternate Deep unfolding of a proximal interior point method for image restoration
EISSN 1361-6420
ExternalDocumentID oai_HAL_hal_01943475v4
10_1088_1361_6420_ab460a
ipab460a
GrantInformation_xml – fundername: Electronic Components and Systems for European Leadership
  grantid: 783190
  funderid: https://doi.org/10.13039/501100011688
GroupedDBID -~X
.DC
1JI
4.4
5B3
5GY
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHFT
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KZ1
LAP
LMP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TN5
UCJ
W28
XPP
ZMT
~02
AAYXX
ADACN
ADEQX
CITATION
02O
1WK
1XC
29J
5ZI
9BW
AAGCF
AALHV
ACARI
ACWPO
AEINN
AERVB
AETNG
AFFNX
AGQPQ
AHSEE
AI.
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RKQ
S3P
T37
VH1
VOOES
ZY4
ID FETCH-LOGICAL-c422t-1a02f50d313ee2f276347609066ef0d2e17e3c9ed06a40f02f6df7f75ce4406f3
IEDL.DBID IOP
ISSN 0266-5611
IngestDate Fri Sep 12 12:48:59 EDT 2025
Tue Jul 01 00:41:26 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
Wed Aug 21 03:33:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep unfolding
proximal algorithms
image restoration
Neural networks
regularization
Interior point method
Interior point methods
neural network
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c422t-1a02f50d313ee2f276347609066ef0d2e17e3c9ed06a40f02f6df7f75ce4406f3
Notes IP-102042.R2
ORCID 0000-0002-3446-5178
0000-0002-5943-8061
0000-0003-4456-7896
0000-0002-7327-3347
0000-0003-3631-6093
OpenAccessLink https://hal.science/hal-01943475
PageCount 27
ParticipantIDs crossref_primary_10_1088_1361_6420_ab460a
hal_primary_oai_HAL_hal_01943475v4
crossref_citationtrail_10_1088_1361_6420_ab460a
iop_journals_10_1088_1361_6420_ab460a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Inverse problems
PublicationTitleAbbrev IP
PublicationTitleAlternate Inverse Problems
PublicationYear 2020
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 44
45
Kingma D P (65) 2014
47
48
49
Chouzenoux E (46) 2019
Lagendijk R L (1) 2005
Dugas C (55) 2001
Hershey J R (17) 2014
50
53
10
54
11
12
56
13
57
14
16
Li K (30) 2016
18
Andrychowicz M (29) 2016
Sun J (25) 2016
Szegedy C (15) 2013
Czarnecki M-O (51) 2016; 23
Zhang K (62) 2017; 2
2
3
4
5
6
7
Goodfellow I (67) 2016
8
Paszke A (58) 2017
60
63
64
66
23
24
68
69
26
27
28
Mardani M (20) 2017
70
Combettes P L (59) 2018
32
33
Mallat S (61) 1999
Wang S (19) 2016
34
35
36
37
Bonettini S (40) 2015; 31
38
39
Diamond S (21) 2017
Xu L (9) 2014
Amos B (31) 2017
Chaux C (52) 2007; 23
Gregor K (22) 2010
41
42
43
References_xml – ident: 53
  doi: 10.1007/978-0-387-87821-8
– ident: 12
  doi: 10.1109/CVPR.2017.19
– start-page: 10
  year: 2016
  ident: 25
  publication-title: Proc. of Advances in Neural Information Processing Systems
– ident: 32
  doi: 10.1007/978-3-642-59179-2_22
– ident: 47
  doi: 10.1109/ICASSP.2018.8462173
– year: 2016
  ident: 67
  publication-title: Deep Learning
– year: 1999
  ident: 61
  publication-title: A Wavelet Tour of Signal Processing
– ident: 4
  doi: 10.1002/047134608X.W8294
– ident: 34
  doi: 10.1007/978-3-642-38267-3_11
– ident: 56
  doi: 10.1137/1.9780898717570
– year: 2017
  ident: 21
– ident: 5
  doi: 10.1007/BF02243828
– volume: 23
  start-page: 531
  issn: 0944-6532
  year: 2016
  ident: 51
  publication-title: J. Convex Anal.
– ident: 35
  doi: 10.1109/83.931102
– ident: 54
  doi: 10.1214/aoms/1177729698
– ident: 14
  doi: 10.1109/MSP.2017.2739299
– ident: 37
  doi: 10.1007/s00245-005-0842-1
– ident: 6
  doi: 10.1137/140968045
– ident: 10
  doi: 10.1109/CVPR.2013.142
– year: 2013
  ident: 15
– ident: 48
  doi: 10.1109/SAM.2018.8448691
– start-page: 136
  year: 2017
  ident: 31
  publication-title: Proc. of the Int. Conf. on Machine Learning
– ident: 27
  doi: 10.1109/TIP.2015.2448352
– start-page: 865
  year: 2016
  ident: 19
  publication-title: Proc. of Advances in Neural Information Processing Systems
– ident: 39
  doi: 10.1590/S0101-82052003000100003
– ident: 7
  doi: 10.1007/s00365-006-0663-2
– ident: 63
  doi: 10.1109/CVPR.2016.90
– start-page: 472
  year: 2001
  ident: 55
  publication-title: Proc. of Advances in Neural Information Processing Systems
– ident: 41
  doi: 10.1561/2200000016
– start-page: 1790
  year: 2014
  ident: 9
  publication-title: Proc. of Advances in Neural Information Processing Systems
– volume: 23
  start-page: 1495
  issn: 0266-5611
  year: 2007
  ident: 52
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/23/4/008
– year: 2016
  ident: 30
– ident: 28
  doi: 10.1109/TPAMI.2016.2596743
– ident: 45
  doi: 10.1007/978-1-4419-9569-8_10
– volume: 2
  year: 2017
  ident: 62
  publication-title: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition
– ident: 66
  doi: 10.1109/TIP.2003.819861
– year: 2014
  ident: 65
– ident: 60
  doi: 10.1016/j.neunet.2014.09.003
– ident: 36
  doi: 10.1109/ICCV.2011.6126502
– ident: 24
  doi: 10.1109/CVPR.2018.00196
– start-page: 3981
  year: 2016
  ident: 29
  publication-title: Proc. of Advances in Neural Information Processing Systems
– ident: 26
  doi: 10.1109/CVPR.2014.349
– ident: 68
  doi: 10.1109/ICCV.2011.6126278
– ident: 57
  doi: 10.5121/ijma.2017.9104
– ident: 8
  doi: 10.1109/TIP.2017.2662206
– ident: 69
  doi: 10.1109/CVPR.2017.737
– ident: 38
  doi: 10.1007/978-3-319-48311-5
– ident: 42
  doi: 10.1109/MSP.2014.2377273
– ident: 44
  doi: 10.1137/050626090
– year: 2014
  ident: 17
– volume: 31
  start-page: 1
  issn: 0266-5611
  year: 2015
  ident: 40
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/9/095008
– year: 2017
  ident: 20
– year: 2019
  ident: 46
  publication-title: HAL preprint hal-02120005
– ident: 16
  doi: 10.1109/TMI.2015.2401131
– ident: 3
  doi: 10.1007/s10851-009-0149-y
– ident: 43
  doi: 10.1016/j.cam.2009.02.020
– year: 2005
  ident: 1
  publication-title: The Handbook of Image and Video Processing
– ident: 23
  doi: 10.1109/LSP.2016.2548245
– ident: 11
  doi: 10.1109/TPAMI.2015.2481418
– start-page: 399
  year: 2010
  ident: 22
  publication-title: Proc. of the International Conf. on Int. Conf. on Machine Learning
– ident: 50
  doi: 10.1023/A:1022693618829
– ident: 18
  doi: 10.1109/TPAMI.2017.2677439
– ident: 2
  doi: 10.1007/978-3-642-15549-9_12
– year: 2017
  ident: 58
  publication-title: NIPS Autodiff Workshop: the Future of Gradient-Based Machine Learning Software and Techniques
– ident: 70
  doi: 10.1109/ICCV.2017.198
– year: 2018
  ident: 59
– ident: 64
  doi: 10.1109/CVPR.2009.5206815
– ident: 49
  doi: 10.1017/S0962492900002300
– ident: 33
  doi: 10.1007/978-1-4939-1124-0_13
– ident: 13
  doi: 10.1109/TIP.2017.2713099
SSID ssj0011817
Score 2.5854716
Snippet Variational methods are widely applied to ill-posed inverse problems for they have the ability to embed prior knowledge about the solution. However, the level...
SourceID hal
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 34005
SubjectTerms Computer Science
deep unfolding
Image Processing
image restoration
interior point method
Machine Learning
Mathematics
neural network
Optimization and Control
proximal algorithms
regularization
Title Deep unfolding of a proximal interior point method for image restoration
URI https://iopscience.iop.org/article/10.1088/1361-6420/ab460a
https://hal.science/hal-01943475
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG_mvOjBb-P8SmP04IGt0FIgnhZ1IcapB5fsYEIKtLqogzDmwb_eV2BkGjXGW4HHo32vtD947e8hdMyFoJqG3ZBKhgbTe3u8iBDDk3qfph2JuKDM799wf8Cuhvawgc7qvTBJWg39bSiWRMGlCasFcW7HBOUGwGbSESHjBMDRItWZlPTuvdu7OoQAU5dT_mDhBoAEs4pRfqfh05y08KRXRC7A0-cmmt4qephVsVxf8tye5mE7ev_C3vjPNqyhlQqA4m4puo4acryBludoCeGoX3O5TjaRfyFliqfQEYs4FU4UFljXbvQKejTdRDZKMpwmUMRlQmoMSBjD5UeJsyJzTeH-LTToXd6f-0aVf8GImGXlhimIpWwSU5NKaSkLhiLmcOIBSpGKxJY0HUkjT8aEC0YUCPNYOcqxI8kAJyi6jZrjZCx3EKbCpgKgn6UoZbHjeK7NKfdcGGCckNqshTozDwRRRU6uc2S8BEWQ3HUDbbFAWywoLdZCp_UdaUnM8YvsETi1FtOM2n73OtDnAOEyaJX9BlU4AW8F1Ss8-VHZ7h_l9tCSpb_Ni_Vq-6iZZ1N5AAAmDw-LjvoBuPPkBA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVokRAc2BE7FoIDh7ROvCXHCqjK0tIDlbgFJ7GhApqotBz4esZJqAABQuLmJBNrPN5eMuM3CB0IpailYXe00ZHD7NmeICbECbQ9p8ljleSU-e2OaPXY-Q2_KfOc5mdh0qxc-mtQLIiCCxOWAXF-3YXKHYDNpK4iJoiqZ4mpoGlOubQz8-yqO3EjwPYli58swgGg4JZ-yu9q-bQvVe5tVGQFNPiw2TQX0O27mkWMyUNtPIpq8esXBsd_tGMRzZdAFDcK8SU0pQfLaO4DPSFctSecrs8rqHWidYbHMCBzfxVODVbYath_gnos7cSwnw5xlkIRF4mpMSBiDI_vNB7mGWzyYbCKes3T6-OWU-ZhcGLmeSPHVcQznCTUpVp7xoMliUlBAkAr2pDE067UNA50QoRixICwSIw0kseaAV4wdA1VB-lAryNMFacKIKBnKGWJlIHPBRWBDwuNjChnG6j-3gthXJKU21wZj2HuLPf90FottFYLC6ttoKPJG1lB0PGL7D507ETMMmu3GpehvQdIl0Gr-AuocAg9FpZT-fnHyjb_KLeHZronzfDyrHOxhWY9-7meh7Bto-poONY7gGlG0W4-bt8ANz3pbg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Unfolding+of+a+Proximal+Interior+Point+Method+for+Image+Restoration&rft.jtitle=Inverse+problems&rft.au=Bertocchi%2C+Carla&rft.au=Chouzenoux%2C+Emilie&rft.au=Corbineau%2C+Marie-Caroline&rft.au=Pesquet%2C+Jean-Christophe&rft.date=2020-03-01&rft.pub=IOP+Publishing&rft.issn=0266-5611&rft.eissn=1361-6420&rft_id=info:doi/10.1088%2F1361-6420%2Fab460a&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_01943475v4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-5611&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-5611&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-5611&client=summon