A systematic approach for the generation and verification of structural hypotheses

During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilize...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in chemistry Vol. 47; no. 5; pp. 371 - 389
Main Authors Elyashberg, Mikhail, Blinov, Kirill, Williams, Antony
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.05.2009
Subjects
Online AccessGet full text
ISSN0749-1581
1097-458X
1097-458X
DOI10.1002/mrc.2397

Cover

Abstract During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd. In this article we show that the most rational manner by which to create structural hypotheses is by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data. Empirical or quantum‐mechanical (QM) NMR prediction methods are compared. It is shown that when an expert system is used the best structure(s) can be distinguished using either incremental or neural net (NN)‐based NMR prediction algorithms.
AbstractList During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the best structures to confirm the suggested solution.
During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the 'best' structures to confirm the suggested solution.During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the 'best' structures to confirm the suggested solution.
During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd.
During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd. In this article we show that the most rational manner by which to create structural hypotheses is by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data. Empirical or quantum‐mechanical (QM) NMR prediction methods are compared. It is shown that when an expert system is used the best structure(s) can be distinguished using either incremental or neural net (NN)‐based NMR prediction algorithms.
Author Williams, Antony
Elyashberg, Mikhail
Blinov, Kirill
Author_xml – sequence: 1
  givenname: Mikhail
  surname: Elyashberg
  fullname: Elyashberg, Mikhail
  organization: Advanced Chemistry Development, Moscow Department, 6 Akademik Bakulev Street, Moscow 117513, Russian Federation
– sequence: 2
  givenname: Kirill
  surname: Blinov
  fullname: Blinov, Kirill
  organization: Advanced Chemistry Development, Moscow Department, 6 Akademik Bakulev Street, Moscow 117513, Russian Federation
– sequence: 3
  givenname: Antony
  surname: Williams
  fullname: Williams, Antony
  email: antony.williams@chemspider.com
  organization: ChemZoo Inc., 904 Tamaras Circle, Wake Forest, North Carolina 27587, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19197914$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlvFDEQhS0URCYJEr8A-YTg0IPX9vgYjcgiBRBRIuZmub0wht5id5P0v4-THoFALCer7O9V-b06AHtt1zoAXmC0xAiRt000S0KleAIWGElRML7a7IEFEkwWmK_wPjhI6StCSEpBn4F9LLEUErMFuDyGaUqDa_QQDNR9HzttttB3EQ5bB7-41sX81LVQtxZ-dzH4YOaLzsM0xNEMY9Q13E59lxXJpSPw1Os6uee78xBcn7y7Wp8VFx9Pz9fHF4VhhIjC2pJbhjm3FfFeIGFk5WhZEoYRN5XJBaeVRV7asspOjNSWW8kJ5VXlHaOH4M3cd2x7Pd3qulZ9DI2Ok8JIPeSici7qIZfMvprZ7O9mdGlQTUjG1bVuXTcmVQrMiBD0vyBldEU4W2Xw5Q4cq8bZn6N30Wbg9QyY2KUUnf_X75a_oSYMjyEPUYf6T4JiFtyG2k1_bazeX65_5UNe9d0PXsdv2TkVXH3-cKquzk4-oY3cKErvAS9pt2Y
CitedBy_id crossref_primary_10_1186_1758_2946_4_5
crossref_primary_10_1016_j_molstruc_2009_06_021
crossref_primary_10_1039_c002332a
crossref_primary_10_1134_S1061934811030051
crossref_primary_10_3390_md21050308
crossref_primary_10_1016_j_molstruc_2015_10_061
crossref_primary_10_3390_molecules26247543
crossref_primary_10_1002_mrc_5115
crossref_primary_10_1039_b927074b
crossref_primary_10_3390_molecules26164846
crossref_primary_10_1002_ejoc_200901255
crossref_primary_10_1002_mrc_2571
crossref_primary_10_3987_COM_15_13267
crossref_primary_10_1002_cmr_a_20229
crossref_primary_10_1039_c3cs60073d
Cites_doi 10.1007/s002160100757
10.1021/ci00008a005
10.1002/anie.200602854
10.1021/np070557t
10.1016/j.tetlet.2004.03.182
10.1021/ci000021c
10.1021/ci700363r
10.1016/j.theochem.2006.12.056
10.1002/mrc.1992
10.1007/s008940050052
10.1002/cjoc.20030211006
10.1021/ci700256n
10.1002/1521-3765(20020715)8:14<3233::AID-CHEM3233>3.0.CO;2-0
10.7164/antibiotics.55.814
10.1007/s00214-006-0196-z
10.1021/ci049956
10.1007/s11172-006-0580-9
10.1002/mrc.1187
10.1021/ci050469j
10.1021/ol048724t
10.1002/mrc.1410
10.1002/chem.200501583
10.1016/j.pnmrs.2007.04.003
10.1021/np50070a006
10.1021/ci034058j
10.1021/ci950141y
10.1021/ci600528g
10.1002/anie.200460864
10.1016/j.molstruc.2006.01.008
10.1021/ol049953i
10.1021/ol0611346
10.1081/SCC-120002407
10.1002/nadc.19980460141
10.1021/ci0341060
ContentType Journal Article
Copyright Copyright © 2009 John Wiley & Sons, Ltd.
Copyright (c) 2009 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2009 John Wiley & Sons, Ltd.
– notice: Copyright (c) 2009 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ADTOC
UNPAY
DOI 10.1002/mrc.2397
DatabaseName Istex
CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1097-458X
EndPage 389
ExternalDocumentID oai:figshare.com:article/653814
19197914
10_1002_mrc_2397
MRC2397
ark_67375_WNG_THFQ0X9X_3
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6K
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
TUS
TWZ
UB1
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
YNT
YQT
ZCG
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c4227-dd65d4155db2ff707c9be36624105cbcbe353bd0f9d6b074c9ad5d95235bbfe43
IEDL.DBID DR2
ISSN 0749-1581
1097-458X
IngestDate Sun Oct 26 04:06:11 EDT 2025
Fri Jul 11 15:48:15 EDT 2025
Thu Oct 02 06:19:01 EDT 2025
Mon Jul 21 06:04:32 EDT 2025
Thu Apr 24 23:04:00 EDT 2025
Sat Oct 25 05:23:44 EDT 2025
Sun Sep 21 06:21:16 EDT 2025
Sun Sep 21 06:19:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright (c) 2009 John Wiley & Sons, Ltd.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4227-dd65d4155db2ff707c9be36624105cbcbe353bd0f9d6b074c9ad5d95235bbfe43
Notes ark:/67375/WNG-THFQ0X9X-3
Supporting Information
ArticleID:MRC2397
istex:CFD4DB1AABA7ED3274E2348CE0550FA8FF9716C0
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/A_systematic_approach_for_the_generation_and_verification_of_structural_hypotheses_/653814
PMID 19197914
PQID 34382548
PQPubID 23500
PageCount 19
ParticipantIDs unpaywall_primary_10_1002_mrc_2397
proquest_miscellaneous_67142773
proquest_miscellaneous_34382548
pubmed_primary_19197914
crossref_primary_10_1002_mrc_2397
crossref_citationtrail_10_1002_mrc_2397
wiley_primary_10_1002_mrc_2397_MRC2397
istex_primary_ark_67375_WNG_THFQ0X9X_3
PublicationCentury 2000
PublicationDate May 2009
PublicationDateYYYYMMDD 2009-05-01
PublicationDate_xml – month: 05
  year: 2009
  text: May 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Magnetic resonance in chemistry
PublicationTitleAlternate Magn. Reson. Chem
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References A. P. Li, P. Y. Bie, X. S. Peng, T. X. Wu, X. F. Pan, A. S. C. Chan, T. K. Yang, Synth. Commun. 2002, 32, 605.
A. Bagno, G. Saielli, Theor. Chem. Acc. 2007, 117, 603.
W. Steglich, V. Hellwig, Org. Lett. 2004, 6, 3175.
K. A. Blinov, M. E. Elyashberg, S. G. Molodtsov, A. J. Williams, E. R. Martirosian, Fresenius' J. Anal. Chem. 2001, 369, 709.
I. Ara, B. S. Siddiqui, S. Faizi, S. Siddiqui, J. Nat. Prod. 1990, 53, 816.
O. Lindel, J. Junker, M. Kock, J. Mol. Model. 1997, 3, 364.
J. A. J. Porco, S. Su, X. Lei, S. Bardhan, S. D. Rychnovsky, Angew. Chem., Int. Ed. 2006, 45, 1.
S. G. Molodtsov, M. E. Elyashberg, K. A. Blinov, A. J. Williams, G. M. Martin, B. Lefebvre, J. Chem. Inf. Comput. Sci. 2004, 44, 1737.
M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2007, 47, 1053.
A. J. Williams, M. E. Elyashberg, K. A. Blinov, D. C. Lankin, G. E. Martin, W. F. Reynolds, J. A. Porco, C. A. Singleton, S. Su, J. Nat. Prod. 2008, 71, 581.
M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, Y. D. Smurnyy, A. J. Williams, T. S. Churanova, J. Cheminformatics (in press).
A. Balandina, V. Mamedov, F. Xavier, F. Bruno, S. Latypov, Tetrahedron Lett. 2004, 45, 4003.
H. Friebolin, Basic One- and Two-dimensional Spectroscopy, WILEY-VCH: Weinheim, 2005.
B. Blümich, Essential NMR for Scientists and Engineers, Springer: Berlin, 2005.
G. E. Martin, A. S. Zektzer, N. M. R. Methods, Two-dimensional for Establishing Molecular Connectivity, VCH: New York, 1988.
A. Balandina, D. Saifina, V. Mamedov, S. Latypov, J. Mol. Struct. 2006, 791, 77.
S. D. Rychnovsky, Org. Lett. 2006, 8, 2895.
K. A. Blinov, Y. D. Smurnyy, M. E. Elyashberg, T. S. Churanova, M. Kvasha, C. Steinbeck, B. A. Lefebvre, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 550.
K. A. Blinov, D. Carlson, M. E. Elyashberg, G. E. Martin, E. R. Martirosian, S. G. Molodtsov, A. J. Williams, J. Magn. Reson. Chem. 2003, 41, 359.
J. Meiler, R. Meusinger, M. Will, J. Chem. Inf. Comput. Sci. 2000, 40, 1169.
W. Robien, Nachr. Chem. Tech. Lab. 1998, 46, 74.
V. Barone, P. Cimino, O. Crescenzi, M. Pavone, J. Mol. Struct. 2007, 811, 323.
M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2006, 46, 1643.
A. A. Balandina, V. A. Mamedov, E. A. Khafizova, S. K. Latypov, Russ. Chem. Bull. 2006, 55, 2256.
G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, G. Bifulco, Chem.-Eur. J. 2002, 8, 3233.
M. E. Elyashberg, L. A. Gribov, V. V. Serov, Molecular Spectral Analysis and Computer (In Russian), Nauka: Moscow, 1980.
E. Pretsch, A. Furst, M. Badertscher, R. B. Schaller, M. E. Munk, J. Chem. Inf. Comput. Sci. 1992, 32, 291.
M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, A. J. Williams, G. E. Martin, J. Chem. Inf. Comput. Sci. 2004, 44, 771.
D. Sanz, R. M. Claramunt, A. Saini, V. Kumar, R. Aggarwal, S. P. Singh, I. Alkorta, J. Elguero, Magn. Reson. Chem. 2007, 45, 513.
Y. D. Smurnyy, K. A. Blinov, T. S. Churanova, M. E. Elyashberg, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 128.
P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Magn. Reson. Chem. 2004, 42, S26.
R. B. Schaller, M. E. Munk, E. Pretsch, J. Chem. Inf. Model. 1996, 36, 239.
W.-G. Kim, J.-W. Kim, I.-J. Ryoo, J.-P. Kim, Y.-H. Kim, I.-D. Yoo, Org. Lett. 2004, 6, 823.
J.-M. Nuzillard, Chin. J. Chem. 2003, 21, 1263.
A. Bagno, F. Rastrelli, G. Saielli, Chem.-Eur. J. 2006, 12, 5514.
K. C. Nicolaou, S. A. Snyder, Angew. Chem., Int. Ed. 2005, 44, 1012.
M. E. Elyashberg, A. J. Williams, G. E. Martin, Prog. NMR Spectrosc. 2008, 53, 1.
K. P. Schulz, A. Korytko, M. E. Munk, J. Chem. Inf. Comput. Sci. 2003, 43, 1447.
K. A. Blinov, Y. D. Smurnyy, T. S. Churanova, M. E. Elyashberg, A. J. Williams, Chemom. Intell. Lab. Syst. (in press).
B. Schlegel, A. Hartl, H.-M. Dahse, F. A. Gollmick, U. Gräfe, H. Dörfelt, B. Kappes, J. Antibiot. 2002, 55, 814.
2004; 44
1990; 53
2004; 42
2006; 12
2006; 55
2004; 45
2002; 32
2002; 8
2002; 55
2006; 8
2004; 6
2006; 791
2005
2008; 53
1996; 36
1992; 32
1997; 3
2008; 71
2005; 44
2001; 369
1998; 46
2007; 811
2007; 117
2006; 45
2006; 46
2000; 40
2008; 48
1980
2003; 41
2007; 45
2003; 21
2003; 43
2007; 47
1988
Blümich B. (e_1_2_1_43_2) 2005
e_1_2_1_41_2
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
Elyashberg M. E. (e_1_2_1_20_2)
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_28_2
e_1_2_1_29_2
Blinov K. A. (e_1_2_1_14_2)
Elyashberg M. E. (e_1_2_1_8_2) 1980
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
Martin G. E. (e_1_2_1_42_2) 1988
Friebolin H. (e_1_2_1_44_2) 2005
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: J. Meiler, R. Meusinger, M. Will, J. Chem. Inf. Comput. Sci. 2000, 40, 1169.
– reference: A. Balandina, V. Mamedov, F. Xavier, F. Bruno, S. Latypov, Tetrahedron Lett. 2004, 45, 4003.
– reference: I. Ara, B. S. Siddiqui, S. Faizi, S. Siddiqui, J. Nat. Prod. 1990, 53, 816.
– reference: K. C. Nicolaou, S. A. Snyder, Angew. Chem., Int. Ed. 2005, 44, 1012.
– reference: K. P. Schulz, A. Korytko, M. E. Munk, J. Chem. Inf. Comput. Sci. 2003, 43, 1447.
– reference: W.-G. Kim, J.-W. Kim, I.-J. Ryoo, J.-P. Kim, Y.-H. Kim, I.-D. Yoo, Org. Lett. 2004, 6, 823.
– reference: M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2007, 47, 1053.
– reference: P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Magn. Reson. Chem. 2004, 42, S26.
– reference: B. Schlegel, A. Hartl, H.-M. Dahse, F. A. Gollmick, U. Gräfe, H. Dörfelt, B. Kappes, J. Antibiot. 2002, 55, 814.
– reference: D. Sanz, R. M. Claramunt, A. Saini, V. Kumar, R. Aggarwal, S. P. Singh, I. Alkorta, J. Elguero, Magn. Reson. Chem. 2007, 45, 513.
– reference: B. Blümich, Essential NMR for Scientists and Engineers, Springer: Berlin, 2005.
– reference: K. A. Blinov, Y. D. Smurnyy, M. E. Elyashberg, T. S. Churanova, M. Kvasha, C. Steinbeck, B. A. Lefebvre, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 550.
– reference: S. G. Molodtsov, M. E. Elyashberg, K. A. Blinov, A. J. Williams, G. M. Martin, B. Lefebvre, J. Chem. Inf. Comput. Sci. 2004, 44, 1737.
– reference: M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2006, 46, 1643.
– reference: W. Robien, Nachr. Chem. Tech. Lab. 1998, 46, 74.
– reference: A. Balandina, D. Saifina, V. Mamedov, S. Latypov, J. Mol. Struct. 2006, 791, 77.
– reference: G. E. Martin, A. S. Zektzer, N. M. R. Methods, Two-dimensional for Establishing Molecular Connectivity, VCH: New York, 1988.
– reference: A. J. Williams, M. E. Elyashberg, K. A. Blinov, D. C. Lankin, G. E. Martin, W. F. Reynolds, J. A. Porco, C. A. Singleton, S. Su, J. Nat. Prod. 2008, 71, 581.
– reference: A. P. Li, P. Y. Bie, X. S. Peng, T. X. Wu, X. F. Pan, A. S. C. Chan, T. K. Yang, Synth. Commun. 2002, 32, 605.
– reference: J.-M. Nuzillard, Chin. J. Chem. 2003, 21, 1263.
– reference: M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, Y. D. Smurnyy, A. J. Williams, T. S. Churanova, J. Cheminformatics (in press).
– reference: K. A. Blinov, D. Carlson, M. E. Elyashberg, G. E. Martin, E. R. Martirosian, S. G. Molodtsov, A. J. Williams, J. Magn. Reson. Chem. 2003, 41, 359.
– reference: H. Friebolin, Basic One- and Two-dimensional Spectroscopy, WILEY-VCH: Weinheim, 2005.
– reference: K. A. Blinov, Y. D. Smurnyy, T. S. Churanova, M. E. Elyashberg, A. J. Williams, Chemom. Intell. Lab. Syst. (in press).
– reference: W. Steglich, V. Hellwig, Org. Lett. 2004, 6, 3175.
– reference: A. Bagno, F. Rastrelli, G. Saielli, Chem.-Eur. J. 2006, 12, 5514.
– reference: A. Bagno, G. Saielli, Theor. Chem. Acc. 2007, 117, 603.
– reference: G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, G. Bifulco, Chem.-Eur. J. 2002, 8, 3233.
– reference: R. B. Schaller, M. E. Munk, E. Pretsch, J. Chem. Inf. Model. 1996, 36, 239.
– reference: M. E. Elyashberg, A. J. Williams, G. E. Martin, Prog. NMR Spectrosc. 2008, 53, 1.
– reference: Y. D. Smurnyy, K. A. Blinov, T. S. Churanova, M. E. Elyashberg, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 128.
– reference: S. D. Rychnovsky, Org. Lett. 2006, 8, 2895.
– reference: J. A. J. Porco, S. Su, X. Lei, S. Bardhan, S. D. Rychnovsky, Angew. Chem., Int. Ed. 2006, 45, 1.
– reference: E. Pretsch, A. Furst, M. Badertscher, R. B. Schaller, M. E. Munk, J. Chem. Inf. Comput. Sci. 1992, 32, 291.
– reference: M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, A. J. Williams, G. E. Martin, J. Chem. Inf. Comput. Sci. 2004, 44, 771.
– reference: K. A. Blinov, M. E. Elyashberg, S. G. Molodtsov, A. J. Williams, E. R. Martirosian, Fresenius' J. Anal. Chem. 2001, 369, 709.
– reference: V. Barone, P. Cimino, O. Crescenzi, M. Pavone, J. Mol. Struct. 2007, 811, 323.
– reference: O. Lindel, J. Junker, M. Kock, J. Mol. Model. 1997, 3, 364.
– reference: M. E. Elyashberg, L. A. Gribov, V. V. Serov, Molecular Spectral Analysis and Computer (In Russian), Nauka: Moscow, 1980.
– reference: A. A. Balandina, V. A. Mamedov, E. A. Khafizova, S. K. Latypov, Russ. Chem. Bull. 2006, 55, 2256.
– volume: 117
  start-page: 603
  year: 2007
  publication-title: Theor. Chem. Acc.
– volume: 44
  start-page: 771
  year: 2004
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 32
  start-page: 291
  year: 1992
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 53
  start-page: 816
  year: 1990
  publication-title: J. Nat. Prod.
– volume: 3
  start-page: 364
  year: 1997
  publication-title: J. Mol. Model.
– year: 2005
– volume: 12
  start-page: 5514
  year: 2006
  publication-title: Chem.—Eur. J.
– volume: 791
  start-page: 77
  year: 2006
  publication-title: J. Mol. Struct.
– volume: 36
  start-page: 239
  year: 1996
  publication-title: J. Chem. Inf. Model.
– volume: 8
  start-page: 3233
  year: 2002
  publication-title: Chem.—Eur. J.
– volume: 44
  start-page: 1737
  year: 2004
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 44
  start-page: 1012
  year: 2005
  publication-title: Angew. Chem., Int. Ed.
– volume: 40
  start-page: 1169
  year: 2000
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 45
  start-page: 4003
  year: 2004
  publication-title: Tetrahedron Lett.
– volume: 43
  start-page: 1447
  year: 2003
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 32
  start-page: 605
  year: 2002
  publication-title: Synth. Commun.
– volume: 369
  start-page: 709
  year: 2001
  publication-title: Fresenius' J. Anal. Chem.
– volume: 53
  start-page: 1
  year: 2008
  publication-title: Prog. NMR Spectrosc.
– volume: 42
  start-page: S26
  year: 2004
  publication-title: Magn. Reson. Chem.
– volume: 6
  start-page: 823
  year: 2004
  publication-title: Org. Lett.
– volume: 21
  start-page: 1263
  year: 2003
  publication-title: Chin. J. Chem.
– volume: 811
  start-page: 323
  year: 2007
  publication-title: J. Mol. Struct.
– volume: 48
  start-page: 128
  year: 2008
  publication-title: J. Chem. Inf. Model.
– volume: 46
  start-page: 1643
  year: 2006
  publication-title: J. Chem. Inf. Model.
– volume: 55
  start-page: 814
  year: 2002
  publication-title: J. Antibiot.
– year: 1980
– volume: 48
  start-page: 550
  year: 2008
  publication-title: J. Chem. Inf. Model.
– volume: 71
  start-page: 581
  year: 2008
  publication-title: J. Nat. Prod.
– volume: 47
  start-page: 1053
  year: 2007
  publication-title: J. Chem. Inf. Model.
– year: 1988
– volume: 45
  start-page: 1
  year: 2006
  publication-title: Angew. Chem., Int. Ed.
– volume: 55
  start-page: 2256
  year: 2006
  publication-title: Russ. Chem. Bull.
– publication-title: J. Cheminformatics
– volume: 46
  start-page: 74
  year: 1998
  publication-title: Nachr. Chem. Tech. Lab.
– volume: 8
  start-page: 2895
  year: 2006
  publication-title: Org. Lett.
– volume: 45
  start-page: 513
  year: 2007
  publication-title: Magn. Reson. Chem.
– publication-title: Chemom. Intell. Lab. Syst.
– volume: 41
  start-page: 359
  year: 2003
  publication-title: J. Magn. Reson. Chem.
– volume: 6
  start-page: 3175
  year: 2004
  publication-title: Org. Lett.
– ident: e_1_2_1_4_2
  doi: 10.1007/s002160100757
– ident: e_1_2_1_11_2
  doi: 10.1021/ci00008a005
– ident: e_1_2_1_29_2
  doi: 10.1002/anie.200602854
– ident: e_1_2_1_30_2
  doi: 10.1021/np070557t
– ident: e_1_2_1_20_2
  publication-title: J. Cheminformatics
– ident: e_1_2_1_32_2
  doi: 10.1016/j.tetlet.2004.03.182
– ident: e_1_2_1_10_2
  doi: 10.1021/ci000021c
– ident: e_1_2_1_15_2
  doi: 10.1021/ci700363r
– ident: e_1_2_1_25_2
  doi: 10.1016/j.theochem.2006.12.056
– ident: e_1_2_1_31_2
  doi: 10.1002/mrc.1992
– ident: e_1_2_1_36_2
– ident: e_1_2_1_9_2
– ident: e_1_2_1_5_2
  doi: 10.1007/s008940050052
– ident: e_1_2_1_6_2
  doi: 10.1002/cjoc.20030211006
– ident: e_1_2_1_16_2
  doi: 10.1021/ci700256n
– volume-title: Molecular Spectral Analysis and Computer (In Russian)
  year: 1980
  ident: e_1_2_1_8_2
– ident: e_1_2_1_14_2
  publication-title: Chemom. Intell. Lab. Syst.
– ident: e_1_2_1_24_2
  doi: 10.1002/1521-3765(20020715)8:14<3233::AID-CHEM3233>3.0.CO;2-0
– volume-title: Two‐dimensional for Establishing Molecular Connectivity
  year: 1988
  ident: e_1_2_1_42_2
– ident: e_1_2_1_35_2
– ident: e_1_2_1_28_2
  doi: 10.7164/antibiotics.55.814
– ident: e_1_2_1_22_2
  doi: 10.1007/s00214-006-0196-z
– ident: e_1_2_1_40_2
  doi: 10.1021/ci049956
– ident: e_1_2_1_33_2
  doi: 10.1007/s11172-006-0580-9
– ident: e_1_2_1_17_2
  doi: 10.1002/mrc.1187
– volume-title: Essential NMR for Scientists and Engineers
  year: 2005
  ident: e_1_2_1_43_2
– ident: e_1_2_1_19_2
  doi: 10.1021/ci050469j
– ident: e_1_2_1_39_2
  doi: 10.1021/ol048724t
– volume-title: Basic One‐ and Two‐dimensional Spectroscopy
  year: 2005
  ident: e_1_2_1_44_2
– ident: e_1_2_1_26_2
  doi: 10.1002/mrc.1410
– ident: e_1_2_1_21_2
  doi: 10.1002/chem.200501583
– ident: e_1_2_1_37_2
– ident: e_1_2_1_2_2
  doi: 10.1016/j.pnmrs.2007.04.003
– ident: e_1_2_1_45_2
  doi: 10.1021/np50070a006
– ident: e_1_2_1_7_2
  doi: 10.1021/ci034058j
– ident: e_1_2_1_13_2
  doi: 10.1021/ci950141y
– ident: e_1_2_1_34_2
– ident: e_1_2_1_41_2
  doi: 10.1021/ci600528g
– ident: e_1_2_1_3_2
  doi: 10.1002/anie.200460864
– ident: e_1_2_1_23_2
  doi: 10.1016/j.molstruc.2006.01.008
– ident: e_1_2_1_38_2
  doi: 10.1021/ol049953i
– ident: e_1_2_1_27_2
  doi: 10.1021/ol0611346
– ident: e_1_2_1_46_2
  doi: 10.1081/SCC-120002407
– ident: e_1_2_1_12_2
  doi: 10.1002/nadc.19980460141
– ident: e_1_2_1_18_2
  doi: 10.1021/ci0341060
SSID ssj0009973
Score 1.9864595
Snippet During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 371
SubjectTerms 13C
15N
expert system
GIAO
increments
neural nets
NMR
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELem9mHwwH9G-WsQgqe0SWzH82NVUSqkVTCtIjxZcRxvaCWt2lUwvgNfhc_IXZw0A22IR56iRCefdXeWfxeff0fIy1DJwmaRDYR1HBIUYQPlMHHljAmFlOgMbyMfTJPJjL9LRbpDfjR3Ydzn4_VJtvI_kprasEFtV12Vb9d9oAZD3ZId64aBWwPU0wCd9HHF2oyCGlJyjAssvfEfFk57dlZkttAn50u87LQu1nqQwPrHttjdRAC075DubPp--MlTeaogElXTUzy0DbjYTxsy2zAefFnl_ZghddSF7a2Lnvp2GXa9TnY35TI7_5rN57_D4mpfG98kPxuL-HKW0_7mzPTz73-QRf43JrtFbtQImg79FG6TnaK8Q3ZHTeO6u-RwSFv9tNFPQT-F0Wirn4J-elE_XTja6qet_ntkNn5zNJoEdeuIIOdxLANrE2ERK1kTOydDmStTsCSJsao1Nzm8CGZs6JRNDPg2V5kVVkFWLoxxBWf3SadclMUDQsPMsFwKLkEa0E9sHFc8k8qafVNA-tkjrxuP67zmVcf2HnPtGaFjDbGhMTZ65PlWcum5RC6ReVUFzVYgW51i7Z0U-uP0rT6ajD-EqUo165FnTVRpsC8e82RlsdisNcOzXUhEr5ZIZMRjKWGMPR-O7XRUpKSKeI-82Mbn3-ZaBe6VAvrgcITPh_8y2iNyzZ_UYTHpY9IBbxdPAPCdmaf1MvwFXB1lwA
  priority: 102
  providerName: Unpaywall
Title A systematic approach for the generation and verification of structural hypotheses
URI https://api.istex.fr/ark:/67375/WNG-THFQ0X9X-3/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.2397
https://www.ncbi.nlm.nih.gov/pubmed/19197914
https://www.proquest.com/docview/34382548
https://www.proquest.com/docview/67142773
https://figshare.com/articles/journal_contribution/A_systematic_approach_for_the_generation_and_verification_of_structural_hypotheses_/653814
UnpaywallVersion submittedVersion
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-458X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-458X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009973
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQ9jB44H4pjGEQgqd0iS_x_FhVlAppFVSrKOLB8i0graTVumobv37n5NJqaEOIpyjRSeSci_0d-_gzIW9TrWKwWUhkKAQkKDIkusDEVXAuNVKic9yNfDjKhxPxaSqnTVUl7oWp-SHWE24YGVV_jQFu3XJ_Qxr668R3GYym0P1mPK-yqfGGOUpr1TBw6iSTB1nLO5uy_fbFKyPRNir1_DqYeYfsrMqFvTizs9lVBFsNQYN75Hvb-Lry5Li7OnVd__sPXsf_-7v75G6DTGmvdqUH5FYsH5Kdfnsg3CMy7tEN7zNtycgpoF4KKJL-qAis0c7UloFCiGAVUv1gXtCaqBZJPujPiwXu-1rG5WMyGXw46g-T5kiGxAvGVBJCLgNikOBYUahUee0iz3OG1aLeebiR3IW00CF3oHyvbZBBQ7YrnSui4E_IVjkv4zNCU-u4V1IokAZUwVwhtLBKB3fgIqR1HfK-NY_xDV85HpsxMzXTMjOgI4M66pDXa8lFzdFxjcy7ysJrAXtyjDVtSpqvo4_maDj4kk711PAOedW6gAH94vKJLeN8tTQc10whwbtZIleZYErBN57WvrNpjs600pnokDdrZ_pbWyvXuFHAHI77eH3-r4IvyO16FQwLNXfJFlg8vgQwder2qrDZI9uT0efet0uobx12
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a20Phgful3GYQgqd0iS_xLJ6milJgrUTViT5MsnxJQFpJq3UVjF-PT9y0GtoQ4ilKdBLZ5xJ_xz7-DPAqVbLwJvOJ8CUPCYrwiSoxceWMCYWU6Ax3Iw-Gef-If5yIyRa8bfbCRH6I9YQbRkb9v8YAxwnpvQ1r6PdT16FhOL0GOzwPaQoiotGGO0opueLgVEkm9rOGeTale82bF8aiHVTrz8uA5g1oLau5Of9hptOLGLYehHq34Lhpfqw9Oeksz2zH_fqD2fE_-3cbbq7AKTmI3nQHtorqLrS6zZlw92B0QDbUz6ThIycB-JIAJMnXmsMaTU1M5UmIEixEig9mJYlctcjzQb6dz3Hr16JY3Iej3rtxt5-sTmVIHKdUJt7nwiMM8ZaWpUylU7ZgeU6xYNRZF24Esz4tlc9t0L5TxguvQsIrrC0Lzh7AdjWrikdAUmOZk4LLIB2ABbUlV9xI5e2-LUJm14Y3jX20W1GW48kZUx3JlqkOOtKooza8WEvOI03HJTKvaxOvBczpCZa1SaG_DN_rcb_3OZ2oiWZt2G18QAf94gqKqYrZcqEZLpuGHO9qiVxmnEoZvvEwOs-mOSpTUmW8DS_X3vS3tta-caWAHoy6eH38r4K70OqPB4f68MPw0xO4HhfFsG7zKWwH6xfPArY6s8_rGPoNdCsf5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am8TggTuj3GYQgqd0SWzHtXiaOkq5rIJqE31AsnzLkFbSal0F49fjEzethjaEeIoSnUTOucTfyTn-DPAilcI7nbmEu5KFBIW7RJaYuDJKuURKdIqrkfcHRf-QvR_x0Rq8btbCRH6I5Q83jIz6e40B7qeu3Fmxhn4_se08TKdXYINx2cF-vr3hijtKSrHg4JRJxjtZwzyb5jvNnefmog1U68-LgOZ12JxXU332Q4_H5zFsPQn1bsLXZvix9-S4PT81bfvrD2bH_3y_W3BjAU7JbvSm27Dmqzuw2W32hLsLw12yon4mDR85CcCXBCBJjmoOazQ10ZUjIUqwESlemJQkctUizwf5djbFpV8zP7sHh703B91-stiVIbEsz0XiXMEdwhBn8rIUqbDSeFoUOTaMWmPDCafGpaV0hQnat1I77mRIeLkxpWf0PqxXk8o_AJJqQ63gTATpACxyUzLJtJDOdIwPmV0LXjX2UXZBWY47Z4xVJFvOVdCRQh214NlSchppOi6QeVmbeCmgT46xrU1w9WXwVh30e5_TkRwp2oLtxgdU0C9WUHTlJ_OZolg2DTne5RKFyFguRHjGVnSe1XBkJoXMWAueL73pb2OtfeNSAbU_7OLx4b8KbsPVT3s99fHd4MMjuBZrYti2-RjWg_H9kwCtTs3TOoR-A_KUH2s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELem9mHwwH9G-WsQgqe0SWzH82NVUSqkVTCtIjxZcRxvaCWt2lUwvgNfhc_IXZw0A22IR56iRCefdXeWfxeff0fIy1DJwmaRDYR1HBIUYQPlMHHljAmFlOgMbyMfTJPJjL9LRbpDfjR3Ydzn4_VJtvI_kprasEFtV12Vb9d9oAZD3ZId64aBWwPU0wCd9HHF2oyCGlJyjAssvfEfFk57dlZkttAn50u87LQu1nqQwPrHttjdRAC075DubPp--MlTeaogElXTUzy0DbjYTxsy2zAefFnl_ZghddSF7a2Lnvp2GXa9TnY35TI7_5rN57_D4mpfG98kPxuL-HKW0_7mzPTz73-QRf43JrtFbtQImg79FG6TnaK8Q3ZHTeO6u-RwSFv9tNFPQT-F0Wirn4J-elE_XTja6qet_ntkNn5zNJoEdeuIIOdxLANrE2ERK1kTOydDmStTsCSJsao1Nzm8CGZs6JRNDPg2V5kVVkFWLoxxBWf3SadclMUDQsPMsFwKLkEa0E9sHFc8k8qafVNA-tkjrxuP67zmVcf2HnPtGaFjDbGhMTZ65PlWcum5RC6ReVUFzVYgW51i7Z0U-uP0rT6ajD-EqUo165FnTVRpsC8e82RlsdisNcOzXUhEr5ZIZMRjKWGMPR-O7XRUpKSKeI-82Mbn3-ZaBe6VAvrgcITPh_8y2iNyzZ_UYTHpY9IBbxdPAPCdmaf1MvwFXB1lwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+approach+for+the+generation+and+verification+of+structural+hypotheses&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Elyashberg%2C+Mikhail&rft.au=Blinov%2C+Kirill&rft.au=Williams%2C+Antony&rft.date=2009-05-01&rft.eissn=1097-458X&rft.volume=47&rft.issue=5&rft.spage=371&rft_id=info:doi/10.1002%2Fmrc.2397&rft_id=info%3Apmid%2F19197914&rft.externalDocID=19197914
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon