A systematic approach for the generation and verification of structural hypotheses
During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilize...
Saved in:
| Published in | Magnetic resonance in chemistry Vol. 47; no. 5; pp. 371 - 389 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.05.2009
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0749-1581 1097-458X 1097-458X |
| DOI | 10.1002/mrc.2397 |
Cover
| Abstract | During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd.
In this article we show that the most rational manner by which to create structural hypotheses is by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data. Empirical or quantum‐mechanical (QM) NMR prediction methods are compared. It is shown that when an expert system is used the best structure(s) can be distinguished using either incremental or neural net (NN)‐based NMR prediction algorithms. |
|---|---|
| AbstractList | During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the best structures to confirm the suggested solution. During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the 'best' structures to confirm the suggested solution.During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum-mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time-consuming QM calculations can then be applied, if necessary, to one or more of the 'best' structures to confirm the suggested solution. During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd. During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The prediction is carried out using either empirical or quantum‐mechanical (QM) methods. When QM methods are used, NMR prediction commonly utilizes the GIAO option of the DFT approximation. In this approach the structural hypotheses are expected to be investigated by scientist. In this article we hope to show that the most rational manner by which to create structural hypotheses is actually by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data and specifically using 2D NMR data. When an expert system is used the best structure(s) can be distinguished using chemical shift prediction, which is best performed either by an incremental or neural net algorithm. The time‐consuming QM calculations can then be applied, if necessary, to one or more of the ‘best’ structures to confirm the suggested solution. Copyright © 2009 John Wiley & Sons, Ltd. In this article we show that the most rational manner by which to create structural hypotheses is by the application of an expert system capable of deducing all potential structures consistent with the experimental spectral data. Empirical or quantum‐mechanical (QM) NMR prediction methods are compared. It is shown that when an expert system is used the best structure(s) can be distinguished using either incremental or neural net (NN)‐based NMR prediction algorithms. |
| Author | Williams, Antony Elyashberg, Mikhail Blinov, Kirill |
| Author_xml | – sequence: 1 givenname: Mikhail surname: Elyashberg fullname: Elyashberg, Mikhail organization: Advanced Chemistry Development, Moscow Department, 6 Akademik Bakulev Street, Moscow 117513, Russian Federation – sequence: 2 givenname: Kirill surname: Blinov fullname: Blinov, Kirill organization: Advanced Chemistry Development, Moscow Department, 6 Akademik Bakulev Street, Moscow 117513, Russian Federation – sequence: 3 givenname: Antony surname: Williams fullname: Williams, Antony email: antony.williams@chemspider.com organization: ChemZoo Inc., 904 Tamaras Circle, Wake Forest, North Carolina 27587, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19197914$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkUlvFDEQhS0URCYJEr8A-YTg0IPX9vgYjcgiBRBRIuZmub0wht5id5P0v4-THoFALCer7O9V-b06AHtt1zoAXmC0xAiRt000S0KleAIWGElRML7a7IEFEkwWmK_wPjhI6StCSEpBn4F9LLEUErMFuDyGaUqDa_QQDNR9HzttttB3EQ5bB7-41sX81LVQtxZ-dzH4YOaLzsM0xNEMY9Q13E59lxXJpSPw1Os6uee78xBcn7y7Wp8VFx9Pz9fHF4VhhIjC2pJbhjm3FfFeIGFk5WhZEoYRN5XJBaeVRV7asspOjNSWW8kJ5VXlHaOH4M3cd2x7Pd3qulZ9DI2Ok8JIPeSici7qIZfMvprZ7O9mdGlQTUjG1bVuXTcmVQrMiBD0vyBldEU4W2Xw5Q4cq8bZn6N30Wbg9QyY2KUUnf_X75a_oSYMjyEPUYf6T4JiFtyG2k1_bazeX65_5UNe9d0PXsdv2TkVXH3-cKquzk4-oY3cKErvAS9pt2Y |
| CitedBy_id | crossref_primary_10_1186_1758_2946_4_5 crossref_primary_10_1016_j_molstruc_2009_06_021 crossref_primary_10_1039_c002332a crossref_primary_10_1134_S1061934811030051 crossref_primary_10_3390_md21050308 crossref_primary_10_1016_j_molstruc_2015_10_061 crossref_primary_10_3390_molecules26247543 crossref_primary_10_1002_mrc_5115 crossref_primary_10_1039_b927074b crossref_primary_10_3390_molecules26164846 crossref_primary_10_1002_ejoc_200901255 crossref_primary_10_1002_mrc_2571 crossref_primary_10_3987_COM_15_13267 crossref_primary_10_1002_cmr_a_20229 crossref_primary_10_1039_c3cs60073d |
| Cites_doi | 10.1007/s002160100757 10.1021/ci00008a005 10.1002/anie.200602854 10.1021/np070557t 10.1016/j.tetlet.2004.03.182 10.1021/ci000021c 10.1021/ci700363r 10.1016/j.theochem.2006.12.056 10.1002/mrc.1992 10.1007/s008940050052 10.1002/cjoc.20030211006 10.1021/ci700256n 10.1002/1521-3765(20020715)8:14<3233::AID-CHEM3233>3.0.CO;2-0 10.7164/antibiotics.55.814 10.1007/s00214-006-0196-z 10.1021/ci049956 10.1007/s11172-006-0580-9 10.1002/mrc.1187 10.1021/ci050469j 10.1021/ol048724t 10.1002/mrc.1410 10.1002/chem.200501583 10.1016/j.pnmrs.2007.04.003 10.1021/np50070a006 10.1021/ci034058j 10.1021/ci950141y 10.1021/ci600528g 10.1002/anie.200460864 10.1016/j.molstruc.2006.01.008 10.1021/ol049953i 10.1021/ol0611346 10.1081/SCC-120002407 10.1002/nadc.19980460141 10.1021/ci0341060 |
| ContentType | Journal Article |
| Copyright | Copyright © 2009 John Wiley & Sons, Ltd. Copyright (c) 2009 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2009 John Wiley & Sons, Ltd. – notice: Copyright (c) 2009 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ADTOC UNPAY |
| DOI | 10.1002/mrc.2397 |
| DatabaseName | Istex CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1097-458X |
| EndPage | 389 |
| ExternalDocumentID | oai:figshare.com:article/653814 19197914 10_1002_mrc_2397 MRC2397 ark_67375_WNG_THFQ0X9X_3 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB AQPKS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH5 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RNS ROL RX1 RYL SAMSI SUPJJ TUS TWZ UB1 V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRJ WXSBR WYISQ XG1 XPP XV2 YNT YQT ZCG ZY4 ZZTAW ~IA ~WT AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4227-dd65d4155db2ff707c9be36624105cbcbe353bd0f9d6b074c9ad5d95235bbfe43 |
| IEDL.DBID | DR2 |
| ISSN | 0749-1581 1097-458X |
| IngestDate | Sun Oct 26 04:06:11 EDT 2025 Fri Jul 11 15:48:15 EDT 2025 Thu Oct 02 06:19:01 EDT 2025 Mon Jul 21 06:04:32 EDT 2025 Thu Apr 24 23:04:00 EDT 2025 Sat Oct 25 05:23:44 EDT 2025 Sun Sep 21 06:21:16 EDT 2025 Sun Sep 21 06:19:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright (c) 2009 John Wiley & Sons, Ltd. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4227-dd65d4155db2ff707c9be36624105cbcbe353bd0f9d6b074c9ad5d95235bbfe43 |
| Notes | ark:/67375/WNG-THFQ0X9X-3 Supporting Information ArticleID:MRC2397 istex:CFD4DB1AABA7ED3274E2348CE0550FA8FF9716C0 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://figshare.com/articles/journal_contribution/A_systematic_approach_for_the_generation_and_verification_of_structural_hypotheses_/653814 |
| PMID | 19197914 |
| PQID | 34382548 |
| PQPubID | 23500 |
| PageCount | 19 |
| ParticipantIDs | unpaywall_primary_10_1002_mrc_2397 proquest_miscellaneous_67142773 proquest_miscellaneous_34382548 pubmed_primary_19197914 crossref_primary_10_1002_mrc_2397 crossref_citationtrail_10_1002_mrc_2397 wiley_primary_10_1002_mrc_2397_MRC2397 istex_primary_ark_67375_WNG_THFQ0X9X_3 |
| PublicationCentury | 2000 |
| PublicationDate | May 2009 |
| PublicationDateYYYYMMDD | 2009-05-01 |
| PublicationDate_xml | – month: 05 year: 2009 text: May 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: England |
| PublicationTitle | Magnetic resonance in chemistry |
| PublicationTitleAlternate | Magn. Reson. Chem |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | A. P. Li, P. Y. Bie, X. S. Peng, T. X. Wu, X. F. Pan, A. S. C. Chan, T. K. Yang, Synth. Commun. 2002, 32, 605. A. Bagno, G. Saielli, Theor. Chem. Acc. 2007, 117, 603. W. Steglich, V. Hellwig, Org. Lett. 2004, 6, 3175. K. A. Blinov, M. E. Elyashberg, S. G. Molodtsov, A. J. Williams, E. R. Martirosian, Fresenius' J. Anal. Chem. 2001, 369, 709. I. Ara, B. S. Siddiqui, S. Faizi, S. Siddiqui, J. Nat. Prod. 1990, 53, 816. O. Lindel, J. Junker, M. Kock, J. Mol. Model. 1997, 3, 364. J. A. J. Porco, S. Su, X. Lei, S. Bardhan, S. D. Rychnovsky, Angew. Chem., Int. Ed. 2006, 45, 1. S. G. Molodtsov, M. E. Elyashberg, K. A. Blinov, A. J. Williams, G. M. Martin, B. Lefebvre, J. Chem. Inf. Comput. Sci. 2004, 44, 1737. M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2007, 47, 1053. A. J. Williams, M. E. Elyashberg, K. A. Blinov, D. C. Lankin, G. E. Martin, W. F. Reynolds, J. A. Porco, C. A. Singleton, S. Su, J. Nat. Prod. 2008, 71, 581. M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, Y. D. Smurnyy, A. J. Williams, T. S. Churanova, J. Cheminformatics (in press). A. Balandina, V. Mamedov, F. Xavier, F. Bruno, S. Latypov, Tetrahedron Lett. 2004, 45, 4003. H. Friebolin, Basic One- and Two-dimensional Spectroscopy, WILEY-VCH: Weinheim, 2005. B. Blümich, Essential NMR for Scientists and Engineers, Springer: Berlin, 2005. G. E. Martin, A. S. Zektzer, N. M. R. Methods, Two-dimensional for Establishing Molecular Connectivity, VCH: New York, 1988. A. Balandina, D. Saifina, V. Mamedov, S. Latypov, J. Mol. Struct. 2006, 791, 77. S. D. Rychnovsky, Org. Lett. 2006, 8, 2895. K. A. Blinov, Y. D. Smurnyy, M. E. Elyashberg, T. S. Churanova, M. Kvasha, C. Steinbeck, B. A. Lefebvre, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 550. K. A. Blinov, D. Carlson, M. E. Elyashberg, G. E. Martin, E. R. Martirosian, S. G. Molodtsov, A. J. Williams, J. Magn. Reson. Chem. 2003, 41, 359. J. Meiler, R. Meusinger, M. Will, J. Chem. Inf. Comput. Sci. 2000, 40, 1169. W. Robien, Nachr. Chem. Tech. Lab. 1998, 46, 74. V. Barone, P. Cimino, O. Crescenzi, M. Pavone, J. Mol. Struct. 2007, 811, 323. M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2006, 46, 1643. A. A. Balandina, V. A. Mamedov, E. A. Khafizova, S. K. Latypov, Russ. Chem. Bull. 2006, 55, 2256. G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, G. Bifulco, Chem.-Eur. J. 2002, 8, 3233. M. E. Elyashberg, L. A. Gribov, V. V. Serov, Molecular Spectral Analysis and Computer (In Russian), Nauka: Moscow, 1980. E. Pretsch, A. Furst, M. Badertscher, R. B. Schaller, M. E. Munk, J. Chem. Inf. Comput. Sci. 1992, 32, 291. M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, A. J. Williams, G. E. Martin, J. Chem. Inf. Comput. Sci. 2004, 44, 771. D. Sanz, R. M. Claramunt, A. Saini, V. Kumar, R. Aggarwal, S. P. Singh, I. Alkorta, J. Elguero, Magn. Reson. Chem. 2007, 45, 513. Y. D. Smurnyy, K. A. Blinov, T. S. Churanova, M. E. Elyashberg, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 128. P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Magn. Reson. Chem. 2004, 42, S26. R. B. Schaller, M. E. Munk, E. Pretsch, J. Chem. Inf. Model. 1996, 36, 239. W.-G. Kim, J.-W. Kim, I.-J. Ryoo, J.-P. Kim, Y.-H. Kim, I.-D. Yoo, Org. Lett. 2004, 6, 823. J.-M. Nuzillard, Chin. J. Chem. 2003, 21, 1263. A. Bagno, F. Rastrelli, G. Saielli, Chem.-Eur. J. 2006, 12, 5514. K. C. Nicolaou, S. A. Snyder, Angew. Chem., Int. Ed. 2005, 44, 1012. M. E. Elyashberg, A. J. Williams, G. E. Martin, Prog. NMR Spectrosc. 2008, 53, 1. K. P. Schulz, A. Korytko, M. E. Munk, J. Chem. Inf. Comput. Sci. 2003, 43, 1447. K. A. Blinov, Y. D. Smurnyy, T. S. Churanova, M. E. Elyashberg, A. J. Williams, Chemom. Intell. Lab. Syst. (in press). B. Schlegel, A. Hartl, H.-M. Dahse, F. A. Gollmick, U. Gräfe, H. Dörfelt, B. Kappes, J. Antibiot. 2002, 55, 814. 2004; 44 1990; 53 2004; 42 2006; 12 2006; 55 2004; 45 2002; 32 2002; 8 2002; 55 2006; 8 2004; 6 2006; 791 2005 2008; 53 1996; 36 1992; 32 1997; 3 2008; 71 2005; 44 2001; 369 1998; 46 2007; 811 2007; 117 2006; 45 2006; 46 2000; 40 2008; 48 1980 2003; 41 2007; 45 2003; 21 2003; 43 2007; 47 1988 Blümich B. (e_1_2_1_43_2) 2005 e_1_2_1_41_2 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 Elyashberg M. E. (e_1_2_1_20_2) e_1_2_1_25_2 e_1_2_1_46_2 e_1_2_1_28_2 e_1_2_1_29_2 Blinov K. A. (e_1_2_1_14_2) Elyashberg M. E. (e_1_2_1_8_2) 1980 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 Martin G. E. (e_1_2_1_42_2) 1988 Friebolin H. (e_1_2_1_44_2) 2005 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
| References_xml | – reference: J. Meiler, R. Meusinger, M. Will, J. Chem. Inf. Comput. Sci. 2000, 40, 1169. – reference: A. Balandina, V. Mamedov, F. Xavier, F. Bruno, S. Latypov, Tetrahedron Lett. 2004, 45, 4003. – reference: I. Ara, B. S. Siddiqui, S. Faizi, S. Siddiqui, J. Nat. Prod. 1990, 53, 816. – reference: K. C. Nicolaou, S. A. Snyder, Angew. Chem., Int. Ed. 2005, 44, 1012. – reference: K. P. Schulz, A. Korytko, M. E. Munk, J. Chem. Inf. Comput. Sci. 2003, 43, 1447. – reference: W.-G. Kim, J.-W. Kim, I.-J. Ryoo, J.-P. Kim, Y.-H. Kim, I.-D. Yoo, Org. Lett. 2004, 6, 823. – reference: M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2007, 47, 1053. – reference: P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, G. Bifulco, Magn. Reson. Chem. 2004, 42, S26. – reference: B. Schlegel, A. Hartl, H.-M. Dahse, F. A. Gollmick, U. Gräfe, H. Dörfelt, B. Kappes, J. Antibiot. 2002, 55, 814. – reference: D. Sanz, R. M. Claramunt, A. Saini, V. Kumar, R. Aggarwal, S. P. Singh, I. Alkorta, J. Elguero, Magn. Reson. Chem. 2007, 45, 513. – reference: B. Blümich, Essential NMR for Scientists and Engineers, Springer: Berlin, 2005. – reference: K. A. Blinov, Y. D. Smurnyy, M. E. Elyashberg, T. S. Churanova, M. Kvasha, C. Steinbeck, B. A. Lefebvre, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 550. – reference: S. G. Molodtsov, M. E. Elyashberg, K. A. Blinov, A. J. Williams, G. M. Martin, B. Lefebvre, J. Chem. Inf. Comput. Sci. 2004, 44, 1737. – reference: M. E. Elyashberg, K. A. Blinov, A. J. Williams, S. G. Molodtsov, G. E. Martin, J. Chem. Inf. Model. 2006, 46, 1643. – reference: W. Robien, Nachr. Chem. Tech. Lab. 1998, 46, 74. – reference: A. Balandina, D. Saifina, V. Mamedov, S. Latypov, J. Mol. Struct. 2006, 791, 77. – reference: G. E. Martin, A. S. Zektzer, N. M. R. Methods, Two-dimensional for Establishing Molecular Connectivity, VCH: New York, 1988. – reference: A. J. Williams, M. E. Elyashberg, K. A. Blinov, D. C. Lankin, G. E. Martin, W. F. Reynolds, J. A. Porco, C. A. Singleton, S. Su, J. Nat. Prod. 2008, 71, 581. – reference: A. P. Li, P. Y. Bie, X. S. Peng, T. X. Wu, X. F. Pan, A. S. C. Chan, T. K. Yang, Synth. Commun. 2002, 32, 605. – reference: J.-M. Nuzillard, Chin. J. Chem. 2003, 21, 1263. – reference: M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, Y. D. Smurnyy, A. J. Williams, T. S. Churanova, J. Cheminformatics (in press). – reference: K. A. Blinov, D. Carlson, M. E. Elyashberg, G. E. Martin, E. R. Martirosian, S. G. Molodtsov, A. J. Williams, J. Magn. Reson. Chem. 2003, 41, 359. – reference: H. Friebolin, Basic One- and Two-dimensional Spectroscopy, WILEY-VCH: Weinheim, 2005. – reference: K. A. Blinov, Y. D. Smurnyy, T. S. Churanova, M. E. Elyashberg, A. J. Williams, Chemom. Intell. Lab. Syst. (in press). – reference: W. Steglich, V. Hellwig, Org. Lett. 2004, 6, 3175. – reference: A. Bagno, F. Rastrelli, G. Saielli, Chem.-Eur. J. 2006, 12, 5514. – reference: A. Bagno, G. Saielli, Theor. Chem. Acc. 2007, 117, 603. – reference: G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, G. Bifulco, Chem.-Eur. J. 2002, 8, 3233. – reference: R. B. Schaller, M. E. Munk, E. Pretsch, J. Chem. Inf. Model. 1996, 36, 239. – reference: M. E. Elyashberg, A. J. Williams, G. E. Martin, Prog. NMR Spectrosc. 2008, 53, 1. – reference: Y. D. Smurnyy, K. A. Blinov, T. S. Churanova, M. E. Elyashberg, A. J. Williams, J. Chem. Inf. Model. 2008, 48, 128. – reference: S. D. Rychnovsky, Org. Lett. 2006, 8, 2895. – reference: J. A. J. Porco, S. Su, X. Lei, S. Bardhan, S. D. Rychnovsky, Angew. Chem., Int. Ed. 2006, 45, 1. – reference: E. Pretsch, A. Furst, M. Badertscher, R. B. Schaller, M. E. Munk, J. Chem. Inf. Comput. Sci. 1992, 32, 291. – reference: M. E. Elyashberg, K. A. Blinov, S. G. Molodtsov, A. J. Williams, G. E. Martin, J. Chem. Inf. Comput. Sci. 2004, 44, 771. – reference: K. A. Blinov, M. E. Elyashberg, S. G. Molodtsov, A. J. Williams, E. R. Martirosian, Fresenius' J. Anal. Chem. 2001, 369, 709. – reference: V. Barone, P. Cimino, O. Crescenzi, M. Pavone, J. Mol. Struct. 2007, 811, 323. – reference: O. Lindel, J. Junker, M. Kock, J. Mol. Model. 1997, 3, 364. – reference: M. E. Elyashberg, L. A. Gribov, V. V. Serov, Molecular Spectral Analysis and Computer (In Russian), Nauka: Moscow, 1980. – reference: A. A. Balandina, V. A. Mamedov, E. A. Khafizova, S. K. Latypov, Russ. Chem. Bull. 2006, 55, 2256. – volume: 117 start-page: 603 year: 2007 publication-title: Theor. Chem. Acc. – volume: 44 start-page: 771 year: 2004 publication-title: J. Chem. Inf. Comput. Sci. – volume: 32 start-page: 291 year: 1992 publication-title: J. Chem. Inf. Comput. Sci. – volume: 53 start-page: 816 year: 1990 publication-title: J. Nat. Prod. – volume: 3 start-page: 364 year: 1997 publication-title: J. Mol. Model. – year: 2005 – volume: 12 start-page: 5514 year: 2006 publication-title: Chem.—Eur. J. – volume: 791 start-page: 77 year: 2006 publication-title: J. Mol. Struct. – volume: 36 start-page: 239 year: 1996 publication-title: J. Chem. Inf. Model. – volume: 8 start-page: 3233 year: 2002 publication-title: Chem.—Eur. J. – volume: 44 start-page: 1737 year: 2004 publication-title: J. Chem. Inf. Comput. Sci. – volume: 44 start-page: 1012 year: 2005 publication-title: Angew. Chem., Int. Ed. – volume: 40 start-page: 1169 year: 2000 publication-title: J. Chem. Inf. Comput. Sci. – volume: 45 start-page: 4003 year: 2004 publication-title: Tetrahedron Lett. – volume: 43 start-page: 1447 year: 2003 publication-title: J. Chem. Inf. Comput. Sci. – volume: 32 start-page: 605 year: 2002 publication-title: Synth. Commun. – volume: 369 start-page: 709 year: 2001 publication-title: Fresenius' J. Anal. Chem. – volume: 53 start-page: 1 year: 2008 publication-title: Prog. NMR Spectrosc. – volume: 42 start-page: S26 year: 2004 publication-title: Magn. Reson. Chem. – volume: 6 start-page: 823 year: 2004 publication-title: Org. Lett. – volume: 21 start-page: 1263 year: 2003 publication-title: Chin. J. Chem. – volume: 811 start-page: 323 year: 2007 publication-title: J. Mol. Struct. – volume: 48 start-page: 128 year: 2008 publication-title: J. Chem. Inf. Model. – volume: 46 start-page: 1643 year: 2006 publication-title: J. Chem. Inf. Model. – volume: 55 start-page: 814 year: 2002 publication-title: J. Antibiot. – year: 1980 – volume: 48 start-page: 550 year: 2008 publication-title: J. Chem. Inf. Model. – volume: 71 start-page: 581 year: 2008 publication-title: J. Nat. Prod. – volume: 47 start-page: 1053 year: 2007 publication-title: J. Chem. Inf. Model. – year: 1988 – volume: 45 start-page: 1 year: 2006 publication-title: Angew. Chem., Int. Ed. – volume: 55 start-page: 2256 year: 2006 publication-title: Russ. Chem. Bull. – publication-title: J. Cheminformatics – volume: 46 start-page: 74 year: 1998 publication-title: Nachr. Chem. Tech. Lab. – volume: 8 start-page: 2895 year: 2006 publication-title: Org. Lett. – volume: 45 start-page: 513 year: 2007 publication-title: Magn. Reson. Chem. – publication-title: Chemom. Intell. Lab. Syst. – volume: 41 start-page: 359 year: 2003 publication-title: J. Magn. Reson. Chem. – volume: 6 start-page: 3175 year: 2004 publication-title: Org. Lett. – ident: e_1_2_1_4_2 doi: 10.1007/s002160100757 – ident: e_1_2_1_11_2 doi: 10.1021/ci00008a005 – ident: e_1_2_1_29_2 doi: 10.1002/anie.200602854 – ident: e_1_2_1_30_2 doi: 10.1021/np070557t – ident: e_1_2_1_20_2 publication-title: J. Cheminformatics – ident: e_1_2_1_32_2 doi: 10.1016/j.tetlet.2004.03.182 – ident: e_1_2_1_10_2 doi: 10.1021/ci000021c – ident: e_1_2_1_15_2 doi: 10.1021/ci700363r – ident: e_1_2_1_25_2 doi: 10.1016/j.theochem.2006.12.056 – ident: e_1_2_1_31_2 doi: 10.1002/mrc.1992 – ident: e_1_2_1_36_2 – ident: e_1_2_1_9_2 – ident: e_1_2_1_5_2 doi: 10.1007/s008940050052 – ident: e_1_2_1_6_2 doi: 10.1002/cjoc.20030211006 – ident: e_1_2_1_16_2 doi: 10.1021/ci700256n – volume-title: Molecular Spectral Analysis and Computer (In Russian) year: 1980 ident: e_1_2_1_8_2 – ident: e_1_2_1_14_2 publication-title: Chemom. Intell. Lab. Syst. – ident: e_1_2_1_24_2 doi: 10.1002/1521-3765(20020715)8:14<3233::AID-CHEM3233>3.0.CO;2-0 – volume-title: Two‐dimensional for Establishing Molecular Connectivity year: 1988 ident: e_1_2_1_42_2 – ident: e_1_2_1_35_2 – ident: e_1_2_1_28_2 doi: 10.7164/antibiotics.55.814 – ident: e_1_2_1_22_2 doi: 10.1007/s00214-006-0196-z – ident: e_1_2_1_40_2 doi: 10.1021/ci049956 – ident: e_1_2_1_33_2 doi: 10.1007/s11172-006-0580-9 – ident: e_1_2_1_17_2 doi: 10.1002/mrc.1187 – volume-title: Essential NMR for Scientists and Engineers year: 2005 ident: e_1_2_1_43_2 – ident: e_1_2_1_19_2 doi: 10.1021/ci050469j – ident: e_1_2_1_39_2 doi: 10.1021/ol048724t – volume-title: Basic One‐ and Two‐dimensional Spectroscopy year: 2005 ident: e_1_2_1_44_2 – ident: e_1_2_1_26_2 doi: 10.1002/mrc.1410 – ident: e_1_2_1_21_2 doi: 10.1002/chem.200501583 – ident: e_1_2_1_37_2 – ident: e_1_2_1_2_2 doi: 10.1016/j.pnmrs.2007.04.003 – ident: e_1_2_1_45_2 doi: 10.1021/np50070a006 – ident: e_1_2_1_7_2 doi: 10.1021/ci034058j – ident: e_1_2_1_13_2 doi: 10.1021/ci950141y – ident: e_1_2_1_34_2 – ident: e_1_2_1_41_2 doi: 10.1021/ci600528g – ident: e_1_2_1_3_2 doi: 10.1002/anie.200460864 – ident: e_1_2_1_23_2 doi: 10.1016/j.molstruc.2006.01.008 – ident: e_1_2_1_38_2 doi: 10.1021/ol049953i – ident: e_1_2_1_27_2 doi: 10.1021/ol0611346 – ident: e_1_2_1_46_2 doi: 10.1081/SCC-120002407 – ident: e_1_2_1_12_2 doi: 10.1002/nadc.19980460141 – ident: e_1_2_1_18_2 doi: 10.1021/ci0341060 |
| SSID | ssj0009973 |
| Score | 1.9864595 |
| Snippet | During the process of molecular structure elucidation the selection of the most probable structural hypothesis may be based on chemical shift prediction. The... |
| SourceID | unpaywall proquest pubmed crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 371 |
| SubjectTerms | 13C 15N expert system GIAO increments neural nets NMR |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELem9mHwwH9G-WsQgqe0SWzH82NVUSqkVTCtIjxZcRxvaCWt2lUwvgNfhc_IXZw0A22IR56iRCefdXeWfxeff0fIy1DJwmaRDYR1HBIUYQPlMHHljAmFlOgMbyMfTJPJjL9LRbpDfjR3Ydzn4_VJtvI_kprasEFtV12Vb9d9oAZD3ZId64aBWwPU0wCd9HHF2oyCGlJyjAssvfEfFk57dlZkttAn50u87LQu1nqQwPrHttjdRAC075DubPp--MlTeaogElXTUzy0DbjYTxsy2zAefFnl_ZghddSF7a2Lnvp2GXa9TnY35TI7_5rN57_D4mpfG98kPxuL-HKW0_7mzPTz73-QRf43JrtFbtQImg79FG6TnaK8Q3ZHTeO6u-RwSFv9tNFPQT-F0Wirn4J-elE_XTja6qet_ntkNn5zNJoEdeuIIOdxLANrE2ERK1kTOydDmStTsCSJsao1Nzm8CGZs6JRNDPg2V5kVVkFWLoxxBWf3SadclMUDQsPMsFwKLkEa0E9sHFc8k8qafVNA-tkjrxuP67zmVcf2HnPtGaFjDbGhMTZ65PlWcum5RC6ReVUFzVYgW51i7Z0U-uP0rT6ajD-EqUo165FnTVRpsC8e82RlsdisNcOzXUhEr5ZIZMRjKWGMPR-O7XRUpKSKeI-82Mbn3-ZaBe6VAvrgcITPh_8y2iNyzZ_UYTHpY9IBbxdPAPCdmaf1MvwFXB1lwA priority: 102 providerName: Unpaywall |
| Title | A systematic approach for the generation and verification of structural hypotheses |
| URI | https://api.istex.fr/ark:/67375/WNG-THFQ0X9X-3/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrc.2397 https://www.ncbi.nlm.nih.gov/pubmed/19197914 https://www.proquest.com/docview/34382548 https://www.proquest.com/docview/67142773 https://figshare.com/articles/journal_contribution/A_systematic_approach_for_the_generation_and_verification_of_structural_hypotheses_/653814 |
| UnpaywallVersion | submittedVersion |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-458X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-458X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009973 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbQ9jB44H4pjGEQgqd0iS_x_FhVlAppFVSrKOLB8i0graTVumobv37n5NJqaEOIpyjRSeSci_0d-_gzIW9TrWKwWUhkKAQkKDIkusDEVXAuNVKic9yNfDjKhxPxaSqnTVUl7oWp-SHWE24YGVV_jQFu3XJ_Qxr668R3GYym0P1mPK-yqfGGOUpr1TBw6iSTB1nLO5uy_fbFKyPRNir1_DqYeYfsrMqFvTizs9lVBFsNQYN75Hvb-Lry5Li7OnVd__sPXsf_-7v75G6DTGmvdqUH5FYsH5Kdfnsg3CMy7tEN7zNtycgpoF4KKJL-qAis0c7UloFCiGAVUv1gXtCaqBZJPujPiwXu-1rG5WMyGXw46g-T5kiGxAvGVBJCLgNikOBYUahUee0iz3OG1aLeebiR3IW00CF3oHyvbZBBQ7YrnSui4E_IVjkv4zNCU-u4V1IokAZUwVwhtLBKB3fgIqR1HfK-NY_xDV85HpsxMzXTMjOgI4M66pDXa8lFzdFxjcy7ysJrAXtyjDVtSpqvo4_maDj4kk711PAOedW6gAH94vKJLeN8tTQc10whwbtZIleZYErBN57WvrNpjs600pnokDdrZ_pbWyvXuFHAHI77eH3-r4IvyO16FQwLNXfJFlg8vgQwder2qrDZI9uT0efet0uobx12 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a20Phgful3GYQgqd0iS_xLJ6milJgrUTViT5MsnxJQFpJq3UVjF-PT9y0GtoQ4ilKdBLZ5xJ_xz7-DPAqVbLwJvOJ8CUPCYrwiSoxceWMCYWU6Ax3Iw-Gef-If5yIyRa8bfbCRH6I9YQbRkb9v8YAxwnpvQ1r6PdT16FhOL0GOzwPaQoiotGGO0opueLgVEkm9rOGeTale82bF8aiHVTrz8uA5g1oLau5Of9hptOLGLYehHq34Lhpfqw9Oeksz2zH_fqD2fE_-3cbbq7AKTmI3nQHtorqLrS6zZlw92B0QDbUz6ThIycB-JIAJMnXmsMaTU1M5UmIEixEig9mJYlctcjzQb6dz3Hr16JY3Iej3rtxt5-sTmVIHKdUJt7nwiMM8ZaWpUylU7ZgeU6xYNRZF24Esz4tlc9t0L5TxguvQsIrrC0Lzh7AdjWrikdAUmOZk4LLIB2ABbUlV9xI5e2-LUJm14Y3jX20W1GW48kZUx3JlqkOOtKooza8WEvOI03HJTKvaxOvBczpCZa1SaG_DN_rcb_3OZ2oiWZt2G18QAf94gqKqYrZcqEZLpuGHO9qiVxmnEoZvvEwOs-mOSpTUmW8DS_X3vS3tta-caWAHoy6eH38r4K70OqPB4f68MPw0xO4HhfFsG7zKWwH6xfPArY6s8_rGPoNdCsf5w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am8TggTuj3GYQgqd0SWzHtXiaOkq5rIJqE31AsnzLkFbSal0F49fjEzethjaEeIoSnUTOucTfyTn-DPAilcI7nbmEu5KFBIW7RJaYuDJKuURKdIqrkfcHRf-QvR_x0Rq8btbCRH6I5Q83jIz6e40B7qeu3Fmxhn4_se08TKdXYINx2cF-vr3hijtKSrHg4JRJxjtZwzyb5jvNnefmog1U68-LgOZ12JxXU332Q4_H5zFsPQn1bsLXZvix9-S4PT81bfvrD2bH_3y_W3BjAU7JbvSm27Dmqzuw2W32hLsLw12yon4mDR85CcCXBCBJjmoOazQ10ZUjIUqwESlemJQkctUizwf5djbFpV8zP7sHh703B91-stiVIbEsz0XiXMEdwhBn8rIUqbDSeFoUOTaMWmPDCafGpaV0hQnat1I77mRIeLkxpWf0PqxXk8o_AJJqQ63gTATpACxyUzLJtJDOdIwPmV0LXjX2UXZBWY47Z4xVJFvOVdCRQh214NlSchppOi6QeVmbeCmgT46xrU1w9WXwVh30e5_TkRwp2oLtxgdU0C9WUHTlJ_OZolg2DTne5RKFyFguRHjGVnSe1XBkJoXMWAueL73pb2OtfeNSAbU_7OLx4b8KbsPVT3s99fHd4MMjuBZrYti2-RjWg_H9kwCtTs3TOoR-A_KUH2s |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1fb9MwELem9mHwwH9G-WsQgqe0SWzH82NVUSqkVTCtIjxZcRxvaCWt2lUwvgNfhc_IXZw0A22IR56iRCefdXeWfxeff0fIy1DJwmaRDYR1HBIUYQPlMHHljAmFlOgMbyMfTJPJjL9LRbpDfjR3Ydzn4_VJtvI_kprasEFtV12Vb9d9oAZD3ZId64aBWwPU0wCd9HHF2oyCGlJyjAssvfEfFk57dlZkttAn50u87LQu1nqQwPrHttjdRAC075DubPp--MlTeaogElXTUzy0DbjYTxsy2zAefFnl_ZghddSF7a2Lnvp2GXa9TnY35TI7_5rN57_D4mpfG98kPxuL-HKW0_7mzPTz73-QRf43JrtFbtQImg79FG6TnaK8Q3ZHTeO6u-RwSFv9tNFPQT-F0Wirn4J-elE_XTja6qet_ntkNn5zNJoEdeuIIOdxLANrE2ERK1kTOydDmStTsCSJsao1Nzm8CGZs6JRNDPg2V5kVVkFWLoxxBWf3SadclMUDQsPMsFwKLkEa0E9sHFc8k8qafVNA-tkjrxuP67zmVcf2HnPtGaFjDbGhMTZ65PlWcum5RC6ReVUFzVYgW51i7Z0U-uP0rT6ajD-EqUo165FnTVRpsC8e82RlsdisNcOzXUhEr5ZIZMRjKWGMPR-O7XRUpKSKeI-82Mbn3-ZaBe6VAvrgcITPh_8y2iNyzZ_UYTHpY9IBbxdPAPCdmaf1MvwFXB1lwA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+systematic+approach+for+the+generation+and+verification+of+structural+hypotheses&rft.jtitle=Magnetic+resonance+in+chemistry&rft.au=Elyashberg%2C+Mikhail&rft.au=Blinov%2C+Kirill&rft.au=Williams%2C+Antony&rft.date=2009-05-01&rft.eissn=1097-458X&rft.volume=47&rft.issue=5&rft.spage=371&rft_id=info:doi/10.1002%2Fmrc.2397&rft_id=info%3Apmid%2F19197914&rft.externalDocID=19197914 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0749-1581&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0749-1581&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0749-1581&client=summon |