Respiratory motion model based on the noise covariance matrix of a receive array
Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. Methods A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 79; no. 3; pp. 1730 - 1735 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.03.2018
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.26775 |
Cover
| Abstract | Purpose
Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.
Methods
A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.
Results
The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.
Conclusions
The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine. |
|---|---|
| AbstractList | PurposeTracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.MethodsA 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.ResultsThe model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.ConclusionsThe 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.PURPOSETracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.METHODSA 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.RESULTSThe model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONSThe 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. Methods A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. Results The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. Conclusions The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine. Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine. PURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.METHODS:A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.RESULTS:The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.CONCLUSIONS:The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine |
| Author | Navest, R.J.M. Tijssen, R.H.N. Andreychenko, A. Berg, C.A.T. Denis de Senneville, B. Lagendijk, J.J.W. |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-6359-0763 surname: Andreychenko fullname: Andreychenko, A. email: A.Andreychenko@umcutrecht.nl organization: University Medical Center Utrecht – sequence: 2 givenname: B. surname: Denis de Senneville fullname: Denis de Senneville, B. organization: IMB, UMR 5251 CNRS/University of Bordeaux – sequence: 3 givenname: R.J.M. surname: Navest fullname: Navest, R.J.M. organization: University Medical Center Utrecht – sequence: 4 givenname: R.H.N. surname: Tijssen fullname: Tijssen, R.H.N. organization: University Medical Center Utrecht – sequence: 5 givenname: J.J.W. surname: Lagendijk fullname: Lagendijk, J.J.W. organization: University Medical Center Utrecht – sequence: 6 givenname: C.A.T. surname: Berg fullname: Berg, C.A.T. organization: University Medical Center Utrecht |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28593709$$D View this record in MEDLINE/PubMed https://hal.science/hal-01962483$$DView record in HAL |
| BookMark | eNp90V9rFDEQAPAgFXutPvgFJOBLFbZNsn-SPJaiVriiFH0Os7kJTdndnMnu1f325tyzgmCfhgm_mTAzJ-RoCAMS8pqzc86YuOhjfy4aKetnZMVrIQpR6-qIrJisWFFyXR2Tk5TuGWNay-oFORaq1qVkekW-3mLa-ghjiDPtw-jDkMMGO9pCwg3N6XiHdAg-IbVhB9HDYJH2MEb_kwZHgUa06HdIIUaYX5LnDrqErw7xlHz_-OHb1XWx_vLp89XlurCVEHUBrXK8kWyjGyW5Yq5tFFY1160S2mqFileNQyZUWTpWW1FzobR0tQNh7caVp-T90ncatjA_QNeZbfQ9xNlwZvZrMXkt5vdaMn634Dv4ywJ4c325Nvs3xnUjKlXueLZni93G8GPCNJreJ4tdBwOGKRmumSxFxiLTt__Q-zDFIY-dldK8EqqRWb05qKntcfP4_58jZHCxABtDShGdsX6E_SnGCL57ap7HiqdmP3R_8B3O_4fm5vZmqfgFlA6zTQ |
| CitedBy_id | crossref_primary_10_1109_TMI_2018_2808699 crossref_primary_10_1088_1361_6560_ab8cd8 crossref_primary_10_1002_mrm_27884 crossref_primary_10_1088_2057_1976_ab944c crossref_primary_10_1002_mrm_27906 crossref_primary_10_1080_02656736_2019_1635274 |
| Cites_doi | 10.1088/0031-9155/60/23/9003 10.1109/MLSP.2012.6349746 10.1088/0031-9155/60/16/N301 10.1002/nbm.1526 10.1016/j.media.2014.03.006 10.1155/2014/421726 10.1118/1.2804576 10.1016/j.media.2011.08.003 10.1007/978-3-642-13711-2_11 10.1002/mrm.10483 10.1148/radiographics.16.1.185 10.1002/mrm.26108 10.1088/0031-9155/41/11/002 10.1088/0031-9155/59/21/R349 10.1002/mrm.25010 10.1145/355984.355989 10.1118/1.596503 10.1016/j.semradonc.2014.02.008 10.1109/TMI.2011.2144615 10.1007/s10334-012-0330-y 10.1002/mrm.22017 10.1016/j.media.2012.09.005 10.1109/TIT.2006.871582 10.1002/mrm.24695 10.1016/0730-725X(88)90403-1 10.1016/j.ijrobp.2009.01.065 |
| ContentType | Journal Article |
| Copyright | 2017 International Society for Magnetic Resonance in Medicine 2017 International Society for Magnetic Resonance in Medicine. 2018 International Society for Magnetic Resonance in Medicine Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 International Society for Magnetic Resonance in Medicine – notice: 2017 International Society for Magnetic Resonance in Medicine. – notice: 2018 International Society for Magnetic Resonance in Medicine – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 1XC ADTOC UNPAY |
| DOI | 10.1002/mrm.26775 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Biochemistry Abstracts 1 MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 1735 |
| ExternalDocumentID | 10.1002/mrm.26775 oai:HAL:hal-01962483v1 28593709 10_1002_mrm_26775 MRM26775 |
| Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ITEA (project 12026, SoRTS) and the European Research Council (project ERC-2010-AdG-20100317, Sound Pharma) |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AIQQE AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RGB RWI WRC WUP 8FD FR3 K9. M7Z P64 7X8 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4225-ab8f1670d9687180fb68e4519b829c98e8146fe02833f05c2512897f5fa2ccdf3 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Tue Aug 19 22:36:02 EDT 2025 Tue Oct 14 20:16:07 EDT 2025 Fri Jul 11 07:50:47 EDT 2025 Tue Oct 07 06:10:04 EDT 2025 Wed Feb 19 02:35:25 EST 2025 Thu Apr 24 23:08:30 EDT 2025 Wed Oct 01 02:05:20 EDT 2025 Thu Sep 25 07:35:15 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | noise sensor respiratory motion model noise covariance matrix tracking Respiratory motion model Tracking Noise sensor Noise covariance matrix |
| Language | English |
| License | 2017 International Society for Magnetic Resonance in Medicine. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4225-ab8f1670d9687180fb68e4519b829c98e8146fe02833f05c2512897f5fa2ccdf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6359-0763 0000-0001-5284-8474 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26775 |
| PMID | 28593709 |
| PQID | 1989142867 |
| PQPubID | 1016391 |
| PageCount | 6 |
| ParticipantIDs | unpaywall_primary_10_1002_mrm_26775 hal_primary_oai_HAL_hal_01962483v1 proquest_miscellaneous_1907322482 proquest_journals_1989142867 pubmed_primary_28593709 crossref_citationtrail_10_1002_mrm_26775 crossref_primary_10_1002_mrm_26775 wiley_primary_10_1002_mrm_26775_MRM26775 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2018 2018-03-00 20180301 2018-03 |
| PublicationDateYYYYMMDD | 2018-03-01 |
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2018 |
| Publisher | Wiley Subscription Services, Inc Wiley |
| Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
| References | 2010; 6135 2006; 52 2013; 26 2009; 62 2012 1990; 17 2002; 1986 2011; 30 2014; 24 2014; 2014 2012; 16 2003; 50 1996; 16 2007; 34 2010; 23 2009; 74 2013; 17 2015; 60 1988; 6 2017; 77 2014; 59 1996; 41 1982; 8 2015 2014; 18 2014; 72 2014; 71 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 Jolliffe IT (e_1_2_7_14_1) 2002 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 |
| References_xml | – volume: 1986 start-page: p 519 year: 2002 – volume: 50 start-page: 122 year: 2003 end-page: 131 article-title: Novel prospective respiratory motion correction approach for free‐breathing coronary MR angiography using a patient‐adapted affine motion model publication-title: Magn Reson Med – volume: 77 start-page: 221 year: 2017 end-page: 228 article-title: Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor publication-title: Magn Reson Med – volume: 2014 start-page: 421726 year: 2014 article-title: Respiratory‐gated MRgHIFU in upper abdomen using an MR‐compatible in‐bore digital camera publication-title: Biomed Res Int – volume: 62 start-page: 440 year: 2009 end-page: 449 article-title: Motion artifact correction in free‐breathing abdominal MRI using overlapping partial samples to recover image deformations publication-title: Magn Reson Med – start-page: 3671 year: 2015 – volume: 52 start-page: 1289 year: 2006 end-page: 1306 article-title: Compressed sensing publication-title: IEEE Trans Inf Theory – volume: 16 start-page: 185 year: 1996 end-page: 195 article-title: A clinical, noninvasive, MR imaging‐monitored ultrasound surgery method publication-title: Radiographics – volume: 34 start-page: 4772 year: 2007 end-page: 4781 article-title: A patient‐specific respiratory model of anatomical motion for radiation treatment planning publication-title: Med Phys – volume: 17 start-page: 250 year: 1990 end-page: 257 article-title: Signal‐to‐noise efficiency in magnetic resonance imaging publication-title: Med Phys – start-page: 60 year: 2012 end-page: 65 – volume: 30 start-page: 1737 year: 2011 end-page: 1745 article-title: Automatic nonrigid calibration of image registration for real time MR‐guided HIFU ablations of mobile organs publication-title: IEEE Trans Med Imaging – volume: 59 start-page: R349 year: 2014 end-page: 369 article-title: MR guidance in radiotherapy publication-title: Phys Med Biol – volume: 6 start-page: 281 year: 1988 end-page: 289 article-title: The RF coil as a sensitive motion detector for magnetic resonance imaging publication-title: Magn Reson Imaging – volume: 71 start-page: 797 year: 2014 end-page: 806 article-title: Respiration based steering for high intensity focused ultrasound liver ablation publication-title: Magn Reson Med – volume: 74 start-page: 644 year: 2009 end-page: 651 article-title: Dedicated magnetic resonance imaging in the radiotherapy clinic publication-title: Int J Radiat Oncol Biol Phys – volume: 60 start-page: 9003 year: 2015 end-page: 9029 article-title: An improved optical flow tracking technique for real‐time MR‐guided beam therapies in moving organs publication-title: Phys Med Biol – volume: 41 start-page: 2251 year: 1996 end-page: 2269 article-title: The dielectric properties of biological tissues. II: Measurements in the frequency range 10 Hz to 20 GHz publication-title: Phys Med Biol – volume: 26 start-page: 5 year: 2013 end-page: 23 article-title: Sequential whole‐body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective publication-title: Magma – volume: 17 start-page: 19 year: 2013 end-page: 42 article-title: Respiratory motion models: a review publication-title: Med Image Anal – volume: 72 start-page: 1130 year: 2014 end-page: 1140 article-title: Compressive manifold learning: estimating one‐dimensional respiratory motion directly from undersampled k‐space data publication-title: Magn Reson Med – volume: 16 start-page: 252 year: 2012 end-page: 264 article-title: Thoracic respiratory motion estimation from MRI using a statistical model and a 2‐D image navigator publication-title: Med Image Anal – volume: 8 start-page: 43 year: 1982 end-page: 71 article-title: LSQR—an algorithm for sparse linear‐equations and sparse least‐squares publication-title: ACM T Math Software – volume: 60 start-page: N301 year: 2015 end-page: N310 article-title: On‐line 3D motion estimation using low resolution MRI publication-title: Phys Med Biol – volume: 23 start-page: 1103 year: 2010 end-page: 1108 article-title: Rapid motion correction in MR‐guided high‐intensity focused ultrasound heating using real‐time ultrasound echo information publication-title: NMR Biomed – volume: 6135 start-page: 113 year: 2010 end-page: 123 article-title: Simulating dynamic ultrasound using mr‐derived motion models to assess respiratory synchronisation for image‐guided liver interventions publication-title: Lect Notes Comput Sci – volume: 24 start-page: 196 year: 2014 end-page: 199 article-title: The ViewRay system: magnetic resonance‐guided and controlled radiotherapy publication-title: Sem Rad Oncol – volume: 18 start-page: 740 year: 2014 end-page: 751 article-title: Model‐guided respiratory organ motion prediction of the liver from 2D ultrasound publication-title: Med Image Anal – ident: e_1_2_7_15_1 doi: 10.1088/0031-9155/60/23/9003 – ident: e_1_2_7_7_1 doi: 10.1109/MLSP.2012.6349746 – ident: e_1_2_7_18_1 doi: 10.1088/0031-9155/60/16/N301 – ident: e_1_2_7_10_1 doi: 10.1002/nbm.1526 – ident: e_1_2_7_19_1 doi: 10.1016/j.media.2014.03.006 – ident: e_1_2_7_8_1 doi: 10.1155/2014/421726 – ident: e_1_2_7_20_1 doi: 10.1118/1.2804576 – ident: e_1_2_7_26_1 doi: 10.1016/j.media.2011.08.003 – ident: e_1_2_7_6_1 doi: 10.1007/978-3-642-13711-2_11 – ident: e_1_2_7_25_1 doi: 10.1002/mrm.10483 – ident: e_1_2_7_4_1 doi: 10.1148/radiographics.16.1.185 – ident: e_1_2_7_12_1 doi: 10.1002/mrm.26108 – ident: e_1_2_7_22_1 doi: 10.1088/0031-9155/41/11/002 – ident: e_1_2_7_2_1 doi: 10.1088/0031-9155/59/21/R349 – ident: e_1_2_7_21_1 doi: 10.1002/mrm.25010 – ident: e_1_2_7_17_1 doi: 10.1145/355984.355989 – ident: e_1_2_7_23_1 doi: 10.1118/1.596503 – ident: e_1_2_7_13_1 – start-page: p 519 volume-title: Priniciple component analysis year: 2002 ident: e_1_2_7_14_1 – ident: e_1_2_7_3_1 doi: 10.1016/j.semradonc.2014.02.008 – ident: e_1_2_7_16_1 doi: 10.1109/TMI.2011.2144615 – ident: e_1_2_7_28_1 doi: 10.1007/s10334-012-0330-y – ident: e_1_2_7_27_1 doi: 10.1002/mrm.22017 – ident: e_1_2_7_5_1 doi: 10.1016/j.media.2012.09.005 – ident: e_1_2_7_24_1 doi: 10.1109/TIT.2006.871582 – ident: e_1_2_7_9_1 doi: 10.1002/mrm.24695 – ident: e_1_2_7_11_1 doi: 10.1016/0730-725X(88)90403-1 – ident: e_1_2_7_29_1 doi: 10.1016/j.ijrobp.2009.01.065 |
| SSID | ssj0009974 |
| Score | 2.2855394 |
| Snippet | Purpose
Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a... Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate... PurposeTracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a... PURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a... |
| SourceID | unpaywall hal proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1730 |
| SubjectTerms | Algorithms Covariance matrix Engineering Sciences Humans Image Processing, Computer-Assisted - methods Latency Liver Liver - diagnostic imaging Magnetic resonance imaging Magnetic Resonance Imaging - methods Movement - physiology noise covariance matrix noise sensor Optical flow (image analysis) Respiration respiratory motion model Signal and Image processing Three dimensional motion tracking Two dimensional models |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQBx4FFeQQWZx6GXLLu249jHFaJaIbaqKlYqp-A4torYTVb7KJRfz0ySDZSXkLgl8SSxnZnxZ3vyDcCLQVBGKF_EwhoTy-BFnDtTxFyH3DqppKqXBiZHajyVb06T0zbPKf0L0_BDdAtuZBm1vyYDXxSh8fPt7j5_OV_O-1ylabIDuypBMN6D3enR8eh9Q75JHqZOhYiDFI8R6Mstt9CP914akXbOKB7yV7B5A65vyoW9-Gxns8s4th6IDm_Bh20TmviTT_3NOu-7rz-xO_5HG2_DzRakslGjVXfgii_34Nqk3Ybfg6t13Khb3YXjk-9b9azJCMTq5DqMhseC4SkiTFZWH1eeueocZ-akZmxOmQG-sCowy7AeHn0us8ulvbgH08PX716N4zZJQ-wk-oLY5joMVToojMK5lx6EXGlPnDW55sYZ7WmNMXiCMSIMEkd4Sps0JMFy54og7kOvrEr_EFiifcqd8Eo6BB2JMGIo0RUrgbMyObQ2goPth8pcy2BOiTRmWcO9zDPsq6zuqwiedaKLhrbjt0L4tbtyItoej95mdI1Yg7jU4nwYwf5WGbLWvFcZBZoRVZ1KI3jaFaNh0m6LLX21IRn0ngiQNI_gQaNE3auINVCkAxPB806r_lbPg1pJ_iyRTU4m9cGjf3rgPvTWy41_jHBqnT9pTeYbkLgcOg priority: 102 providerName: Unpaywall |
| Title | Respiratory motion model based on the noise covariance matrix of a receive array |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26775 https://www.ncbi.nlm.nih.gov/pubmed/28593709 https://www.proquest.com/docview/1989142867 https://www.proquest.com/docview/1907322482 https://hal.science/hal-01962483 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26775 |
| UnpaywallVersion | publishedVersion |
| Volume | 79 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1522-2594 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIq4HjpYjUCpzPPQl2yR2HFs8rRDVCrFVtWKlIiFFjmMLxG5S7VEovx6Pc6zKJcRbEk8Ux54Zf7bH3wC8jCyXlJsypErKkFlDw0LLMkyELZRmnHG_NDA-5qMpe3uanm7Bq-4sTMMP0S-4oWV4f40Grorl4YY0dL6YDxKeZXjAPKbcT6cmG-ooKRsG5oyhn5GsYxWKksP-zUtj0ZVPGAn5K8y8BTfW1Zm6-Kpms8sI1g9BR3fgY1f5JvLky2C9Kgb6-0-8jv_5d3fhdgtNybDRpXuwZaoduD5uN9934JqPFtXLXTiZbDboSZMHiPiUOgQHxZK4W4crSVV_Xhqi63M3H0flInPMB_CN1JYo4jytcZ6WqMVCXdyH6dGb969HYZuaIdTMeYBQFcLGPItKyd2MS0S24MIgU00hEqmlMLiyaA2CF2qjVCOKEjKzqVWJ1qWlD2C7qivzCEgqTJZoajjTDmqkVNKYOQfMqZuLsVipAA66Tsp1y1uO6TNmecO4nOSurXLfVgE870XPGrKO3wq5nu7LkV57NHyX4zPkCkqYoOdxAHudIuStUS9zDC9DgjqeBfCsL3bmiHssqjL1GmWcz3SwSCQBPGwUqP8UcgXSLJIBvOg16m_1PPAK8meJfDwZ-4vH_y76BG46yCeaKLo92F4t1uapg1WrYt_bzz5cnR6fDD_8AFpvG5w |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB61RVB44OhBAwXM8dCXbLOx49gSLxVQLbCp0KqV-oIix7EF6m5S7dFSfj2eXKtyCfGWxJPEsWfGn-3JNwCvAssl5Sb3qZLSZ9ZQP9My90NhM6UZZ7xaGkiO-OCEfTiNTlfgdfsvTM0P0S24oWVU_hoNHBek95esoZPppBfyOI5W4YZ7aIA6_Xa0JI-SsuZgjhl6GslaXqEg3O9uvTYarX7BWMhfgeYdWF8U5-rqUo3H1zFsNQgd3oPPbfXr2JOz3mKe9fT3n5gd__f77sPdBp2Sg1qdHsCKKTbgVtLsv2_AzSpgVM824dNouUdP6lRApMqqQ3BczIk7ddCSFOXXmSG6vHBTctQvMsGUAN9IaYkiztka52yJmk7V1RacHL47fjPwm-wMvmbOCfgqE7bP4yCX3E26RGAzLgyS1WQilFoKg4uL1iB-oTaINAIpIWMbWRVqnVu6DWtFWZgdIJEwcaip4Uw7tBFRSfvM-WBO3XSM9ZXyYK_tpVQ31OWYQWOc1qTLYeraKq3ayoMXneh5zdfxWyHX1V05MmwPDoYpXkO6oJAJetH3YLfVhLSx61mKEWbIUcdjD553xc4icZtFFaZcoIxzmw4ZidCDh7UGda9CukAaB9KDl51K_a2ee5WG_FkiTUZJdfDo30WfwfrgOBmmw_dHHx_DbYcARR1Utwtr8-nCPHEoa549rYzpByz-Hg0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4BVWn70INeobR1jwdesmRjx7ElXlDpatuyCK2KxAuKHMcWqLvJag9a-PV4cq3opapvSTxRfMyMP9uTbwDeB5ZLyk3mUyWlz6yhfqpl5ofCpkozzni5NTA45P1j9vkkOlmB3eZfmIofot1wQ8so_TUauJlkdmfJGjqejjshj-NoFW6xSAoM6NsfLsmjpKw4mGOGnkayhlcoCHfaV2_MRqtnGAv5K9C8B3cW-URdflej0U0MW05CvQdw2lS_ij351lnM046--onZ8X_b9xDu1-iU7FXq9AhWTL4B64P6_H0DbpcBo3r2GI6GyzN6UqUCImVWHYLzYkbcrYOWJC_OZ4bo4sItyVG_yBhTAvwghSWKOGdrnLMlajpVl0_guPfx64e-X2dn8DVzTsBXqbBdHgeZ5G7RJQKbcmGQrCYVodRSGNxctAbxC7VBpBFICRnbyKpQ68zSp7CWF7l5DiQSJg41NZxphzYiKmmXOR_MqVuOsa5SHmw3o5TomrocM2iMkop0OUxcXyVlX3nwthWdVHwdvxVyQ92WI8N2f-8gwWdIFxQyQS-6Hmw1mpDUdj1LMMIMOep47MGbtthZJB6zqNwUC5RxbtMhIxF68KzSoPZTSBdI40B68K5Vqb_Vc7vUkD9LJIPhoLzY_HfR17B-tN9LDj4dfnkBdx0AFFVM3RaszacL89KBrHn6qrSla6v3HZE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQBx4FFeQQWZx6GXLLu249jHFaJaIbaqKlYqp-A4torYTVb7KJRfz0ySDZSXkLgl8SSxnZnxZ3vyDcCLQVBGKF_EwhoTy-BFnDtTxFyH3DqppKqXBiZHajyVb06T0zbPKf0L0_BDdAtuZBm1vyYDXxSh8fPt7j5_OV_O-1ylabIDuypBMN6D3enR8eh9Q75JHqZOhYiDFI8R6Mstt9CP914akXbOKB7yV7B5A65vyoW9-Gxns8s4th6IDm_Bh20TmviTT_3NOu-7rz-xO_5HG2_DzRakslGjVXfgii_34Nqk3Ybfg6t13Khb3YXjk-9b9azJCMTq5DqMhseC4SkiTFZWH1eeueocZ-akZmxOmQG-sCowy7AeHn0us8ulvbgH08PX716N4zZJQ-wk-oLY5joMVToojMK5lx6EXGlPnDW55sYZ7WmNMXiCMSIMEkd4Sps0JMFy54og7kOvrEr_EFiifcqd8Eo6BB2JMGIo0RUrgbMyObQ2goPth8pcy2BOiTRmWcO9zDPsq6zuqwiedaKLhrbjt0L4tbtyItoej95mdI1Yg7jU4nwYwf5WGbLWvFcZBZoRVZ1KI3jaFaNh0m6LLX21IRn0ngiQNI_gQaNE3auINVCkAxPB806r_lbPg1pJ_iyRTU4m9cGjf3rgPvTWy41_jHBqnT9pTeYbkLgcOg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+motion+model+based+on+the+noise+covariance+matrix+of+a+receive+array&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Andreychenko%2C+A.&rft.au=Denis+de+Senneville%2C+B.&rft.au=Navest%2C+R.J.M.&rft.au=Tijssen%2C+R.H.N.&rft.date=2018-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=3&rft.spage=1730&rft.epage=1735&rft_id=info:doi/10.1002%2Fmrm.26775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_26775 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |