Respiratory motion model based on the noise covariance matrix of a receive array

Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. Methods A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 79; no. 3; pp. 1730 - 1735
Main Authors Andreychenko, A., Denis de Senneville, B., Navest, R.J.M., Tijssen, R.H.N., Lagendijk, J.J.W., Berg, C.A.T.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.03.2018
Wiley
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.26775

Cover

Abstract Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. Methods A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. Results The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. Conclusions The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
AbstractList PurposeTracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.MethodsA 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.ResultsThe model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.ConclusionsThe 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.PURPOSETracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.METHODSA 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.RESULTSThe model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.CONCLUSIONSThe 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. Methods A 2D respiratory motion model was developed based on the MR‐derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. Results The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. Conclusions The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730–1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal. A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool. The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM. The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
PURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate signal.METHODS:A 2D respiratory motion model was developed based on the MR-derived motion fields and the NCM of a receive array used in MRI. Temporal dynamics of the NCM were used as a motion surrogate for a linear correspondence motion model. The model performance was tested on five healthy volunteers with a liver as the target. The motion fields were calculated from the cineMR frames with an optical flow registration tool.RESULTS:The model estimated the liver motion with an average residual error of 2.3 mm (13% of the motion amplitude). The model formation takes 3 min and the model latency was 0.5 s in the current implementation. The limiting factor for the latency is the current update time of the NCM (0.48 s), which in principle can be reduced to 0.004 s with an alternative way to determine the NCM.CONCLUSIONS:The 2D respiratory motion of the liver can be effectively estimated with the linear motion model that uses the temporal behavior of the NCM as motion surrogate. Magn Reson Med 79:1730-1735, 2018. © 2017 International Society for Magnetic Resonance in Medicine
Author Navest, R.J.M.
Tijssen, R.H.N.
Andreychenko, A.
Berg, C.A.T.
Denis de Senneville, B.
Lagendijk, J.J.W.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-6359-0763
  surname: Andreychenko
  fullname: Andreychenko, A.
  email: A.Andreychenko@umcutrecht.nl
  organization: University Medical Center Utrecht
– sequence: 2
  givenname: B.
  surname: Denis de Senneville
  fullname: Denis de Senneville, B.
  organization: IMB, UMR 5251 CNRS/University of Bordeaux
– sequence: 3
  givenname: R.J.M.
  surname: Navest
  fullname: Navest, R.J.M.
  organization: University Medical Center Utrecht
– sequence: 4
  givenname: R.H.N.
  surname: Tijssen
  fullname: Tijssen, R.H.N.
  organization: University Medical Center Utrecht
– sequence: 5
  givenname: J.J.W.
  surname: Lagendijk
  fullname: Lagendijk, J.J.W.
  organization: University Medical Center Utrecht
– sequence: 6
  givenname: C.A.T.
  surname: Berg
  fullname: Berg, C.A.T.
  organization: University Medical Center Utrecht
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28593709$$D View this record in MEDLINE/PubMed
https://hal.science/hal-01962483$$DView record in HAL
BookMark eNp90V9rFDEQAPAgFXutPvgFJOBLFbZNsn-SPJaiVriiFH0Os7kJTdndnMnu1f325tyzgmCfhgm_mTAzJ-RoCAMS8pqzc86YuOhjfy4aKetnZMVrIQpR6-qIrJisWFFyXR2Tk5TuGWNay-oFORaq1qVkekW-3mLa-ghjiDPtw-jDkMMGO9pCwg3N6XiHdAg-IbVhB9HDYJH2MEb_kwZHgUa06HdIIUaYX5LnDrqErw7xlHz_-OHb1XWx_vLp89XlurCVEHUBrXK8kWyjGyW5Yq5tFFY1160S2mqFileNQyZUWTpWW1FzobR0tQNh7caVp-T90ncatjA_QNeZbfQ9xNlwZvZrMXkt5vdaMn634Dv4ywJ4c325Nvs3xnUjKlXueLZni93G8GPCNJreJ4tdBwOGKRmumSxFxiLTt__Q-zDFIY-dldK8EqqRWb05qKntcfP4_58jZHCxABtDShGdsX6E_SnGCL57ap7HiqdmP3R_8B3O_4fm5vZmqfgFlA6zTQ
CitedBy_id crossref_primary_10_1109_TMI_2018_2808699
crossref_primary_10_1088_1361_6560_ab8cd8
crossref_primary_10_1002_mrm_27884
crossref_primary_10_1088_2057_1976_ab944c
crossref_primary_10_1002_mrm_27906
crossref_primary_10_1080_02656736_2019_1635274
Cites_doi 10.1088/0031-9155/60/23/9003
10.1109/MLSP.2012.6349746
10.1088/0031-9155/60/16/N301
10.1002/nbm.1526
10.1016/j.media.2014.03.006
10.1155/2014/421726
10.1118/1.2804576
10.1016/j.media.2011.08.003
10.1007/978-3-642-13711-2_11
10.1002/mrm.10483
10.1148/radiographics.16.1.185
10.1002/mrm.26108
10.1088/0031-9155/41/11/002
10.1088/0031-9155/59/21/R349
10.1002/mrm.25010
10.1145/355984.355989
10.1118/1.596503
10.1016/j.semradonc.2014.02.008
10.1109/TMI.2011.2144615
10.1007/s10334-012-0330-y
10.1002/mrm.22017
10.1016/j.media.2012.09.005
10.1109/TIT.2006.871582
10.1002/mrm.24695
10.1016/0730-725X(88)90403-1
10.1016/j.ijrobp.2009.01.065
ContentType Journal Article
Copyright 2017 International Society for Magnetic Resonance in Medicine
2017 International Society for Magnetic Resonance in Medicine.
2018 International Society for Magnetic Resonance in Medicine
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 International Society for Magnetic Resonance in Medicine
– notice: 2017 International Society for Magnetic Resonance in Medicine.
– notice: 2018 International Society for Magnetic Resonance in Medicine
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
1XC
ADTOC
UNPAY
DOI 10.1002/mrm.26775
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Biochemistry Abstracts 1
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1735
ExternalDocumentID 10.1002/mrm.26775
oai:HAL:hal-01962483v1
28593709
10_1002_mrm_26775
MRM26775
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ITEA (project 12026, SoRTS) and the European Research Council (project ERC-2010-AdG-20100317, Sound Pharma)
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
8FD
FR3
K9.
M7Z
P64
7X8
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c4225-ab8f1670d9687180fb68e4519b829c98e8146fe02833f05c2512897f5fa2ccdf3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Tue Aug 19 22:36:02 EDT 2025
Tue Oct 14 20:16:07 EDT 2025
Fri Jul 11 07:50:47 EDT 2025
Tue Oct 07 06:10:04 EDT 2025
Wed Feb 19 02:35:25 EST 2025
Thu Apr 24 23:08:30 EDT 2025
Wed Oct 01 02:05:20 EDT 2025
Thu Sep 25 07:35:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords noise sensor
respiratory motion model
noise covariance matrix
tracking
Respiratory motion model
Tracking
Noise sensor
Noise covariance matrix
Language English
License 2017 International Society for Magnetic Resonance in Medicine.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4225-ab8f1670d9687180fb68e4519b829c98e8146fe02833f05c2512897f5fa2ccdf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6359-0763
0000-0001-5284-8474
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26775
PMID 28593709
PQID 1989142867
PQPubID 1016391
PageCount 6
ParticipantIDs unpaywall_primary_10_1002_mrm_26775
hal_primary_oai_HAL_hal_01962483v1
proquest_miscellaneous_1907322482
proquest_journals_1989142867
pubmed_primary_28593709
crossref_citationtrail_10_1002_mrm_26775
crossref_primary_10_1002_mrm_26775
wiley_primary_10_1002_mrm_26775_MRM26775
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
20180301
2018-03
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2010; 6135
2006; 52
2013; 26
2009; 62
2012
1990; 17
2002; 1986
2011; 30
2014; 24
2014; 2014
2012; 16
2003; 50
1996; 16
2007; 34
2010; 23
2009; 74
2013; 17
2015; 60
1988; 6
2017; 77
2014; 59
1996; 41
1982; 8
2015
2014; 18
2014; 72
2014; 71
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
Jolliffe IT (e_1_2_7_14_1) 2002
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 1986
  start-page: p 519
  year: 2002
– volume: 50
  start-page: 122
  year: 2003
  end-page: 131
  article-title: Novel prospective respiratory motion correction approach for free‐breathing coronary MR angiography using a patient‐adapted affine motion model
  publication-title: Magn Reson Med
– volume: 77
  start-page: 221
  year: 2017
  end-page: 228
  article-title: Thermal noise variance of a receive radiofrequency coil as a respiratory motion sensor
  publication-title: Magn Reson Med
– volume: 2014
  start-page: 421726
  year: 2014
  article-title: Respiratory‐gated MRgHIFU in upper abdomen using an MR‐compatible in‐bore digital camera
  publication-title: Biomed Res Int
– volume: 62
  start-page: 440
  year: 2009
  end-page: 449
  article-title: Motion artifact correction in free‐breathing abdominal MRI using overlapping partial samples to recover image deformations
  publication-title: Magn Reson Med
– start-page: 3671
  year: 2015
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
– volume: 16
  start-page: 185
  year: 1996
  end-page: 195
  article-title: A clinical, noninvasive, MR imaging‐monitored ultrasound surgery method
  publication-title: Radiographics
– volume: 34
  start-page: 4772
  year: 2007
  end-page: 4781
  article-title: A patient‐specific respiratory model of anatomical motion for radiation treatment planning
  publication-title: Med Phys
– volume: 17
  start-page: 250
  year: 1990
  end-page: 257
  article-title: Signal‐to‐noise efficiency in magnetic resonance imaging
  publication-title: Med Phys
– start-page: 60
  year: 2012
  end-page: 65
– volume: 30
  start-page: 1737
  year: 2011
  end-page: 1745
  article-title: Automatic nonrigid calibration of image registration for real time MR‐guided HIFU ablations of mobile organs
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: R349
  year: 2014
  end-page: 369
  article-title: MR guidance in radiotherapy
  publication-title: Phys Med Biol
– volume: 6
  start-page: 281
  year: 1988
  end-page: 289
  article-title: The RF coil as a sensitive motion detector for magnetic resonance imaging
  publication-title: Magn Reson Imaging
– volume: 71
  start-page: 797
  year: 2014
  end-page: 806
  article-title: Respiration based steering for high intensity focused ultrasound liver ablation
  publication-title: Magn Reson Med
– volume: 74
  start-page: 644
  year: 2009
  end-page: 651
  article-title: Dedicated magnetic resonance imaging in the radiotherapy clinic
  publication-title: Int J Radiat Oncol Biol Phys
– volume: 60
  start-page: 9003
  year: 2015
  end-page: 9029
  article-title: An improved optical flow tracking technique for real‐time MR‐guided beam therapies in moving organs
  publication-title: Phys Med Biol
– volume: 41
  start-page: 2251
  year: 1996
  end-page: 2269
  article-title: The dielectric properties of biological tissues. II: Measurements in the frequency range 10 Hz to 20 GHz
  publication-title: Phys Med Biol
– volume: 26
  start-page: 5
  year: 2013
  end-page: 23
  article-title: Sequential whole‐body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer's perspective
  publication-title: Magma
– volume: 17
  start-page: 19
  year: 2013
  end-page: 42
  article-title: Respiratory motion models: a review
  publication-title: Med Image Anal
– volume: 72
  start-page: 1130
  year: 2014
  end-page: 1140
  article-title: Compressive manifold learning: estimating one‐dimensional respiratory motion directly from undersampled k‐space data
  publication-title: Magn Reson Med
– volume: 16
  start-page: 252
  year: 2012
  end-page: 264
  article-title: Thoracic respiratory motion estimation from MRI using a statistical model and a 2‐D image navigator
  publication-title: Med Image Anal
– volume: 8
  start-page: 43
  year: 1982
  end-page: 71
  article-title: LSQR—an algorithm for sparse linear‐equations and sparse least‐squares
  publication-title: ACM T Math Software
– volume: 60
  start-page: N301
  year: 2015
  end-page: N310
  article-title: On‐line 3D motion estimation using low resolution MRI
  publication-title: Phys Med Biol
– volume: 23
  start-page: 1103
  year: 2010
  end-page: 1108
  article-title: Rapid motion correction in MR‐guided high‐intensity focused ultrasound heating using real‐time ultrasound echo information
  publication-title: NMR Biomed
– volume: 6135
  start-page: 113
  year: 2010
  end-page: 123
  article-title: Simulating dynamic ultrasound using mr‐derived motion models to assess respiratory synchronisation for image‐guided liver interventions
  publication-title: Lect Notes Comput Sci
– volume: 24
  start-page: 196
  year: 2014
  end-page: 199
  article-title: The ViewRay system: magnetic resonance‐guided and controlled radiotherapy
  publication-title: Sem Rad Oncol
– volume: 18
  start-page: 740
  year: 2014
  end-page: 751
  article-title: Model‐guided respiratory organ motion prediction of the liver from 2D ultrasound
  publication-title: Med Image Anal
– ident: e_1_2_7_15_1
  doi: 10.1088/0031-9155/60/23/9003
– ident: e_1_2_7_7_1
  doi: 10.1109/MLSP.2012.6349746
– ident: e_1_2_7_18_1
  doi: 10.1088/0031-9155/60/16/N301
– ident: e_1_2_7_10_1
  doi: 10.1002/nbm.1526
– ident: e_1_2_7_19_1
  doi: 10.1016/j.media.2014.03.006
– ident: e_1_2_7_8_1
  doi: 10.1155/2014/421726
– ident: e_1_2_7_20_1
  doi: 10.1118/1.2804576
– ident: e_1_2_7_26_1
  doi: 10.1016/j.media.2011.08.003
– ident: e_1_2_7_6_1
  doi: 10.1007/978-3-642-13711-2_11
– ident: e_1_2_7_25_1
  doi: 10.1002/mrm.10483
– ident: e_1_2_7_4_1
  doi: 10.1148/radiographics.16.1.185
– ident: e_1_2_7_12_1
  doi: 10.1002/mrm.26108
– ident: e_1_2_7_22_1
  doi: 10.1088/0031-9155/41/11/002
– ident: e_1_2_7_2_1
  doi: 10.1088/0031-9155/59/21/R349
– ident: e_1_2_7_21_1
  doi: 10.1002/mrm.25010
– ident: e_1_2_7_17_1
  doi: 10.1145/355984.355989
– ident: e_1_2_7_23_1
  doi: 10.1118/1.596503
– ident: e_1_2_7_13_1
– start-page: p 519
  volume-title: Priniciple component analysis
  year: 2002
  ident: e_1_2_7_14_1
– ident: e_1_2_7_3_1
  doi: 10.1016/j.semradonc.2014.02.008
– ident: e_1_2_7_16_1
  doi: 10.1109/TMI.2011.2144615
– ident: e_1_2_7_28_1
  doi: 10.1007/s10334-012-0330-y
– ident: e_1_2_7_27_1
  doi: 10.1002/mrm.22017
– ident: e_1_2_7_5_1
  doi: 10.1016/j.media.2012.09.005
– ident: e_1_2_7_24_1
  doi: 10.1109/TIT.2006.871582
– ident: e_1_2_7_9_1
  doi: 10.1002/mrm.24695
– ident: e_1_2_7_11_1
  doi: 10.1016/0730-725X(88)90403-1
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ijrobp.2009.01.065
SSID ssj0009974
Score 2.2855394
Snippet Purpose Tracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a...
Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a surrogate...
PurposeTracking of the internal anatomy by means of a motion model that uses the MR‐derived motion fields and noise covariance matrix (NCM) dynamic as a...
PURPOSE:Tracking of the internal anatomy by means of a motion model that uses the MR-derived motion fields and noise covariance matrix (NCM) dynamic as a...
SourceID unpaywall
hal
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1730
SubjectTerms Algorithms
Covariance matrix
Engineering Sciences
Humans
Image Processing, Computer-Assisted - methods
Latency
Liver
Liver - diagnostic imaging
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Movement - physiology
noise covariance matrix
noise sensor
Optical flow (image analysis)
Respiration
respiratory motion model
Signal and Image processing
Three dimensional motion
tracking
Two dimensional models
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQBx4FFeQQWZx6GXLLu249jHFaJaIbaqKlYqp-A4torYTVb7KJRfz0ySDZSXkLgl8SSxnZnxZ3vyDcCLQVBGKF_EwhoTy-BFnDtTxFyH3DqppKqXBiZHajyVb06T0zbPKf0L0_BDdAtuZBm1vyYDXxSh8fPt7j5_OV_O-1ylabIDuypBMN6D3enR8eh9Q75JHqZOhYiDFI8R6Mstt9CP914akXbOKB7yV7B5A65vyoW9-Gxns8s4th6IDm_Bh20TmviTT_3NOu-7rz-xO_5HG2_DzRakslGjVXfgii_34Nqk3Ybfg6t13Khb3YXjk-9b9azJCMTq5DqMhseC4SkiTFZWH1eeueocZ-akZmxOmQG-sCowy7AeHn0us8ulvbgH08PX716N4zZJQ-wk-oLY5joMVToojMK5lx6EXGlPnDW55sYZ7WmNMXiCMSIMEkd4Sps0JMFy54og7kOvrEr_EFiifcqd8Eo6BB2JMGIo0RUrgbMyObQ2goPth8pcy2BOiTRmWcO9zDPsq6zuqwiedaKLhrbjt0L4tbtyItoej95mdI1Yg7jU4nwYwf5WGbLWvFcZBZoRVZ1KI3jaFaNh0m6LLX21IRn0ngiQNI_gQaNE3auINVCkAxPB806r_lbPg1pJ_iyRTU4m9cGjf3rgPvTWy41_jHBqnT9pTeYbkLgcOg
  priority: 102
  providerName: Unpaywall
Title Respiratory motion model based on the noise covariance matrix of a receive array
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.26775
https://www.ncbi.nlm.nih.gov/pubmed/28593709
https://www.proquest.com/docview/1989142867
https://www.proquest.com/docview/1907322482
https://hal.science/hal-01962483
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.26775
UnpaywallVersion publishedVersion
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VIq4HjpYjUCpzPPQl2yR2HFs8rRDVCrFVtWKlIiFFjmMLxG5S7VEovx6Pc6zKJcRbEk8Ux54Zf7bH3wC8jCyXlJsypErKkFlDw0LLMkyELZRmnHG_NDA-5qMpe3uanm7Bq-4sTMMP0S-4oWV4f40Grorl4YY0dL6YDxKeZXjAPKbcT6cmG-ooKRsG5oyhn5GsYxWKksP-zUtj0ZVPGAn5K8y8BTfW1Zm6-Kpms8sI1g9BR3fgY1f5JvLky2C9Kgb6-0-8jv_5d3fhdgtNybDRpXuwZaoduD5uN9934JqPFtXLXTiZbDboSZMHiPiUOgQHxZK4W4crSVV_Xhqi63M3H0flInPMB_CN1JYo4jytcZ6WqMVCXdyH6dGb969HYZuaIdTMeYBQFcLGPItKyd2MS0S24MIgU00hEqmlMLiyaA2CF2qjVCOKEjKzqVWJ1qWlD2C7qivzCEgqTJZoajjTDmqkVNKYOQfMqZuLsVipAA66Tsp1y1uO6TNmecO4nOSurXLfVgE870XPGrKO3wq5nu7LkV57NHyX4zPkCkqYoOdxAHudIuStUS9zDC9DgjqeBfCsL3bmiHssqjL1GmWcz3SwSCQBPGwUqP8UcgXSLJIBvOg16m_1PPAK8meJfDwZ-4vH_y76BG46yCeaKLo92F4t1uapg1WrYt_bzz5cnR6fDD_8AFpvG5w
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB61RVB44OhBAwXM8dCXbLOx49gSLxVQLbCp0KqV-oIix7EF6m5S7dFSfj2eXKtyCfGWxJPEsWfGn-3JNwCvAssl5Sb3qZLSZ9ZQP9My90NhM6UZZ7xaGkiO-OCEfTiNTlfgdfsvTM0P0S24oWVU_hoNHBek95esoZPppBfyOI5W4YZ7aIA6_Xa0JI-SsuZgjhl6GslaXqEg3O9uvTYarX7BWMhfgeYdWF8U5-rqUo3H1zFsNQgd3oPPbfXr2JOz3mKe9fT3n5gd__f77sPdBp2Sg1qdHsCKKTbgVtLsv2_AzSpgVM824dNouUdP6lRApMqqQ3BczIk7ddCSFOXXmSG6vHBTctQvMsGUAN9IaYkiztka52yJmk7V1RacHL47fjPwm-wMvmbOCfgqE7bP4yCX3E26RGAzLgyS1WQilFoKg4uL1iB-oTaINAIpIWMbWRVqnVu6DWtFWZgdIJEwcaip4Uw7tBFRSfvM-WBO3XSM9ZXyYK_tpVQ31OWYQWOc1qTLYeraKq3ayoMXneh5zdfxWyHX1V05MmwPDoYpXkO6oJAJetH3YLfVhLSx61mKEWbIUcdjD553xc4icZtFFaZcoIxzmw4ZidCDh7UGda9CukAaB9KDl51K_a2ee5WG_FkiTUZJdfDo30WfwfrgOBmmw_dHHx_DbYcARR1Utwtr8-nCPHEoa549rYzpByz-Hg0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZT9wwEB4BVWn70INeobR1jwdesmRjx7ElXlDpatuyCK2KxAuKHMcWqLvJag9a-PV4cq3opapvSTxRfMyMP9uTbwDeB5ZLyk3mUyWlz6yhfqpl5ofCpkozzni5NTA45P1j9vkkOlmB3eZfmIofot1wQ8so_TUauJlkdmfJGjqejjshj-NoFW6xSAoM6NsfLsmjpKw4mGOGnkayhlcoCHfaV2_MRqtnGAv5K9C8B3cW-URdflej0U0MW05CvQdw2lS_ij351lnM046--onZ8X_b9xDu1-iU7FXq9AhWTL4B64P6_H0DbpcBo3r2GI6GyzN6UqUCImVWHYLzYkbcrYOWJC_OZ4bo4sItyVG_yBhTAvwghSWKOGdrnLMlajpVl0_guPfx64e-X2dn8DVzTsBXqbBdHgeZ5G7RJQKbcmGQrCYVodRSGNxctAbxC7VBpBFICRnbyKpQ68zSp7CWF7l5DiQSJg41NZxphzYiKmmXOR_MqVuOsa5SHmw3o5TomrocM2iMkop0OUxcXyVlX3nwthWdVHwdvxVyQ92WI8N2f-8gwWdIFxQyQS-6Hmw1mpDUdj1LMMIMOep47MGbtthZJB6zqNwUC5RxbtMhIxF68KzSoPZTSBdI40B68K5Vqb_Vc7vUkD9LJIPhoLzY_HfR17B-tN9LDj4dfnkBdx0AFFVM3RaszacL89KBrHn6qrSla6v3HZE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RrQBx4FFeQQWZx6GXLLu249jHFaJaIbaqKlYqp-A4torYTVb7KJRfz0ySDZSXkLgl8SSxnZnxZ3vyDcCLQVBGKF_EwhoTy-BFnDtTxFyH3DqppKqXBiZHajyVb06T0zbPKf0L0_BDdAtuZBm1vyYDXxSh8fPt7j5_OV_O-1ylabIDuypBMN6D3enR8eh9Q75JHqZOhYiDFI8R6Mstt9CP914akXbOKB7yV7B5A65vyoW9-Gxns8s4th6IDm_Bh20TmviTT_3NOu-7rz-xO_5HG2_DzRakslGjVXfgii_34Nqk3Ybfg6t13Khb3YXjk-9b9azJCMTq5DqMhseC4SkiTFZWH1eeueocZ-akZmxOmQG-sCowy7AeHn0us8ulvbgH08PX716N4zZJQ-wk-oLY5joMVToojMK5lx6EXGlPnDW55sYZ7WmNMXiCMSIMEkd4Sps0JMFy54og7kOvrEr_EFiifcqd8Eo6BB2JMGIo0RUrgbMyObQ2goPth8pcy2BOiTRmWcO9zDPsq6zuqwiedaKLhrbjt0L4tbtyItoej95mdI1Yg7jU4nwYwf5WGbLWvFcZBZoRVZ1KI3jaFaNh0m6LLX21IRn0ngiQNI_gQaNE3auINVCkAxPB806r_lbPg1pJ_iyRTU4m9cGjf3rgPvTWy41_jHBqnT9pTeYbkLgcOg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+motion+model+based+on+the+noise+covariance+matrix+of+a+receive+array&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Andreychenko%2C+A.&rft.au=Denis+de+Senneville%2C+B.&rft.au=Navest%2C+R.J.M.&rft.au=Tijssen%2C+R.H.N.&rft.date=2018-03-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=79&rft.issue=3&rft.spage=1730&rft.epage=1735&rft_id=info:doi/10.1002%2Fmrm.26775&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_26775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon