Tin Halide Perovskites: Progress and Challenges
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narr...
Saved in:
Published in | Advanced energy materials Vol. 10; no. 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201902584 |
Cover
Abstract | The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.
The replacement of lead with tin in halide perovskites is feasible due to suitable ionic radius and valency. However, easy oxidation, high cost and toxicity concerns in Sn halide perovskite systems may limit the consideration of Sn as a suitable alternative to Pb. |
---|---|
AbstractList | The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.
The replacement of lead with tin in halide perovskites is feasible due to suitable ionic radius and valency. However, easy oxidation, high cost and toxicity concerns in Sn halide perovskite systems may limit the consideration of Sn as a suitable alternative to Pb. The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance. |
Author | Wang, Zhao‐Kui Liao, Liang‐Sheng Igbari, Femi Yang, Wen‐Fan Lou, Yan‐Hui |
Author_xml | – sequence: 1 givenname: Wen‐Fan surname: Yang fullname: Yang, Wen‐Fan organization: Soochow University – sequence: 2 givenname: Femi surname: Igbari fullname: Igbari, Femi organization: Soochow University – sequence: 3 givenname: Yan‐Hui surname: Lou fullname: Lou, Yan‐Hui email: yhlou@suda.edu.cn organization: Soochow University – sequence: 4 givenname: Zhao‐Kui orcidid: 0000-0003-1707-499X surname: Wang fullname: Wang, Zhao‐Kui email: zkwang@suda.edu.cn organization: Soochow University – sequence: 5 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng organization: Soochow University |
BookMark | eNqFkE1Lw0AQhhepYK29eg54Trrf2XgrpVqhag_1vCzJpG5Nd-tuqvTfm1KpIIhzeefwPDPwXqKe8w4QuiY4IxjTkQG3ySgmBaZC8TPUJ5LwVCqOe6ed0Qs0jHGNu-EFwYz10WhpXTIzja0gWUDwH_HNthBvk0XwqwAxJsZVyeTVNA24FcQrdF6bJsLwOwfo5W66nMzS-fP9w2Q8T0tOKU9rwigUigLPJTDFFFUARlQEDK4AcClFXea1FEUpCqVySkkuOeW1qhiVWLABujne3Qb_voPY6rXfBde91JSpnCguGO8ofqTK4GMMUOvStqa13rXB2EYTrA_t6EM7-tROp2W_tG2wGxP2fwvFUfi0Dez_ofV4-vT4434Bs2p3Sw |
CitedBy_id | crossref_primary_10_1039_D4YA00204K crossref_primary_10_1002_adfm_202104344 crossref_primary_10_1016_j_solener_2021_05_070 crossref_primary_10_1002_adfm_202109631 crossref_primary_10_3390_ma14051102 crossref_primary_10_1021_acs_jpclett_5c00200 crossref_primary_10_1021_acsami_9b18230 crossref_primary_10_1016_j_jechem_2021_06_011 crossref_primary_10_1002_adfm_202300282 crossref_primary_10_1002_adfm_202007447 crossref_primary_10_1002_solr_202200799 crossref_primary_10_1016_j_mssp_2023_107618 crossref_primary_10_1140_epjp_s13360_024_05085_3 crossref_primary_10_1039_D2CP02451A crossref_primary_10_1002_smll_202411086 crossref_primary_10_3390_nano14070626 crossref_primary_10_1002_anie_202500557 crossref_primary_10_1063_5_0032951 crossref_primary_10_1002_anie_202421547 crossref_primary_10_1080_10408436_2022_2052798 crossref_primary_10_1016_j_mssp_2022_107193 crossref_primary_10_1002_ange_202402775 crossref_primary_10_1039_D1NR07893C crossref_primary_10_1002_adfm_202108832 crossref_primary_10_1021_acsami_4c22290 crossref_primary_10_1088_1402_4896_acbdca crossref_primary_10_1002_smll_202408468 crossref_primary_10_1016_j_cej_2022_136963 crossref_primary_10_1021_acs_jpclett_0c01589 crossref_primary_10_1039_D3DT02990E crossref_primary_10_1016_j_matlet_2021_130099 crossref_primary_10_1016_j_cap_2023_06_001 crossref_primary_10_1007_s12274_020_3214_x crossref_primary_10_3390_coatings11091045 crossref_primary_10_1002_solr_202100034 crossref_primary_10_1039_C9SE01181A crossref_primary_10_47836_pjst_31_4_26 crossref_primary_10_1088_1402_4896_ad63e4 crossref_primary_10_1002_ange_202421547 crossref_primary_10_1021_acsami_1c14167 crossref_primary_10_1002_ange_202012280 crossref_primary_10_1016_j_mssp_2024_109103 crossref_primary_10_1021_acs_jpcc_4c01864 crossref_primary_10_3390_photonics10111242 crossref_primary_10_1039_D0QM01002B crossref_primary_10_1007_s11426_021_1075_7 crossref_primary_10_1021_acsaem_0c01066 crossref_primary_10_1039_D0CS01488E crossref_primary_10_1021_acsaem_1c01143 crossref_primary_10_1002_solr_202000056 crossref_primary_10_1002_adfm_202108296 crossref_primary_10_1002_nano_202000249 crossref_primary_10_1016_j_inoche_2022_109731 crossref_primary_10_1016_j_cej_2022_141246 crossref_primary_10_1016_j_cej_2021_133745 crossref_primary_10_1002_cctc_202301432 crossref_primary_10_1002_sstr_202100219 crossref_primary_10_1007_s12613_023_2604_y crossref_primary_10_1021_acs_chemmater_4c03411 crossref_primary_10_1016_j_xcrp_2021_100341 crossref_primary_10_1021_acsami_3c07903 crossref_primary_10_1016_j_mseb_2023_116545 crossref_primary_10_1021_acsami_1c03041 crossref_primary_10_1002_smll_202103527 crossref_primary_10_1063_5_0022271 crossref_primary_10_1007_s11082_024_07127_7 crossref_primary_10_1088_1402_4896_ac9be5 crossref_primary_10_1007_s11426_023_1899_y crossref_primary_10_1021_acsenergylett_1c01170 crossref_primary_10_3390_nano14171444 crossref_primary_10_1039_D2SC01914K crossref_primary_10_1039_D1CC06117H crossref_primary_10_1021_acs_jpcc_3c04912 crossref_primary_10_1088_1361_6463_abd273 crossref_primary_10_1002_adfm_202304848 crossref_primary_10_1002_aenm_202202491 crossref_primary_10_1007_s00339_021_05019_1 crossref_primary_10_1039_D3RA04085B crossref_primary_10_1007_s11426_022_1489_8 crossref_primary_10_1021_acs_jpclett_3c02249 crossref_primary_10_1021_acsmaterialslett_0c00596 crossref_primary_10_1016_j_mseb_2023_116690 crossref_primary_10_1002_admt_202100006 crossref_primary_10_1021_acsenergylett_0c01796 crossref_primary_10_1002_ange_202500557 crossref_primary_10_1002_ifm2_10 crossref_primary_10_1021_acs_jpcc_3c04703 crossref_primary_10_1039_D1MA00196E crossref_primary_10_1039_D2TA01170K crossref_primary_10_1002_anie_202012280 crossref_primary_10_1007_s40843_023_2614_8 crossref_primary_10_1039_D0TC02231D crossref_primary_10_1002_adfm_202306458 crossref_primary_10_1002_anie_202402775 crossref_primary_10_1016_j_jssc_2022_123608 crossref_primary_10_1002_aenm_202100784 crossref_primary_10_1039_D0MA00845A crossref_primary_10_1002_adma_202102055 crossref_primary_10_1002_adom_202200458 crossref_primary_10_1146_annurev_matsci_080819_012808 crossref_primary_10_1002_smsc_202300014 crossref_primary_10_1016_j_matdes_2022_110951 crossref_primary_10_3389_frwa_2024_1390739 crossref_primary_10_1002_cssc_202400945 crossref_primary_10_1109_JPHOTOV_2021_3095457 crossref_primary_10_1002_adfm_202101163 crossref_primary_10_1039_D4MH01603C crossref_primary_10_1002_admi_202201828 crossref_primary_10_1007_s40843_022_2197_4 crossref_primary_10_1007_s11082_023_05195_9 crossref_primary_10_1016_j_solener_2024_112982 crossref_primary_10_1016_j_cocom_2024_e00924 crossref_primary_10_1002_adom_202402372 crossref_primary_10_1016_j_jpcs_2021_110168 crossref_primary_10_1016_j_optmat_2024_115882 crossref_primary_10_1039_D3TA04782B crossref_primary_10_1002_advs_202004315 crossref_primary_10_1002_aenm_202102213 crossref_primary_10_1002_adfm_202001557 crossref_primary_10_1002_aenm_202001471 crossref_primary_10_1016_j_jpcs_2022_110984 crossref_primary_10_1039_D4CP04639K crossref_primary_10_1088_1402_4896_ad4519 crossref_primary_10_1016_j_jpcs_2024_112171 crossref_primary_10_1002_aenm_202302926 crossref_primary_10_1021_acs_jpclett_3c03557 crossref_primary_10_1021_acsaelm_3c00058 crossref_primary_10_1021_acsenergylett_0c00960 crossref_primary_10_1039_D4TA01783H crossref_primary_10_1039_D2TA02088B crossref_primary_10_1039_D0TC06000C crossref_primary_10_1002_adom_202402360 crossref_primary_10_1088_1402_4896_ac4719 crossref_primary_10_1021_acsaem_2c02724 crossref_primary_10_1016_j_solener_2020_11_038 crossref_primary_10_1002_adfm_202310530 crossref_primary_10_1021_acs_chemrev_2c00422 crossref_primary_10_1002_adfm_202411836 crossref_primary_10_3390_ma15062180 crossref_primary_10_1002_adma_202410248 crossref_primary_10_1002_admt_202101189 crossref_primary_10_1007_s10904_024_03372_1 crossref_primary_10_1016_j_matchemphys_2024_129542 crossref_primary_10_1515_nanoph_2020_0632 crossref_primary_10_1002_adfm_202100931 crossref_primary_10_1103_PhysRevApplied_18_034084 crossref_primary_10_1007_s40820_021_00603_9 crossref_primary_10_1021_acs_jpcc_0c02223 crossref_primary_10_1002_solr_202300754 crossref_primary_10_1021_acs_jpcc_0c01252 crossref_primary_10_1002_aenm_202202209 crossref_primary_10_1002_adom_202002267 crossref_primary_10_1021_acs_energyfuels_0c02236 crossref_primary_10_1002_adma_202313252 crossref_primary_10_1002_adma_202314341 crossref_primary_10_1002_smsc_202000024 crossref_primary_10_35848_1347_4065_ac4adb crossref_primary_10_1002_lpor_202200608 crossref_primary_10_1002_solr_202200827 |
Cites_doi | 10.1021/acs.jpcc.8b01820 10.1088/1674-1056/25/10/108802 10.1107/S0108768108032734 10.1002/adfm.201605469 10.1021/jacs.5b04015 10.1039/C5RA21291J 10.1002/advs.201700183 10.1021/jacs.7b10898 10.1039/C8TA00751A 10.1038/srep35705 10.1021/acsenergylett.8b02243 10.1021/acsenergylett.7b00976 10.1039/C6CP03388A 10.1021/acsenergylett.7b00636 10.1039/C6DT04796C 10.1002/aenm.201500477 10.1002/adfm.201505127 10.1038/ncomms6757 10.1039/C6RA19476A 10.1021/jacs.6b08790 10.1021/acs.jpclett.8b03194 10.1016/j.chempr.2019.04.003 10.1063/1.4885256 10.1002/anie.201707037 10.1021/jp5126624 10.1038/s41467-018-05761-w 10.1002/solr.201900199 10.1021/acs.jpclett.8b00871 10.1016/j.electacta.2015.10.030 10.1002/adfm.201604818 10.1021/acsenergylett.9b01179 10.1021/ja504539w 10.1038/s41467-018-07255-1 10.1002/adma.201501978 10.1039/C6TA08332C 10.1103/PhysRevMaterials.2.075402 10.1021/acs.jpclett.8b03381 10.1002/anie.201511792 10.1021/acsenergylett.8b00687 10.1038/s41563-018-0081-x 10.1002/anie.201811539 10.1002/anie.201811497 10.1039/C5SC02966J 10.1109/tnano.2019.2923048 10.1021/acs.jpclett.6b00118 10.1039/C8NR03589J 10.1021/jacs.7b09379 10.1002/aenm.201501119 10.1016/j.nanoen.2018.05.006 10.1063/1.5023737 10.1021/jp504951h 10.1038/srep18721 10.1039/C4RA11155A 10.1021/acsami.8b11474 10.1021/acsenergylett.6b00514 10.1021/acsenergylett.7b00171 10.1021/acsenergylett.8b01046 10.1039/C6TA07712A 10.1016/j.electacta.2016.09.138 10.1002/pssa.201532594 10.1039/C5TA02950C 10.1126/science.aaf9717 10.1021/jacs.7b04219 10.1016/j.matlet.2018.05.047 10.1016/j.ijleo.2018.09.066 10.1002/adma.201606964 10.1021/acs.nanolett.8b00077 10.1021/nl500390f 10.1021/acs.jpclett.6b01452 10.1016/S0278-6915(03)00217-5 10.1021/acsenergylett.8b01888 10.1002/aenm.201402321 10.1246/bcsj.20110075 10.1021/acsphotonics.8b00422 10.1021/acs.jpclett.9b00422 10.1039/c2cp44397j 10.1039/C8TA03133A 10.1021/jacs.6b00142 10.1016/j.orgel.2018.04.051 10.1021/acsenergylett.8b02051 10.1002/adma.201602992 10.1183/09031936.04.10012704 10.1039/C8TA05444D 10.1021/jacs.6b10734 10.1002/adma.201800258 10.1039/C8EE00956B 10.1021/acsami.8b19143 10.1021/jp506498k 10.1002/adma.201604744 10.1021/acsenergylett.6b00196 10.1021/jp512420b 10.1039/C8QM00620B 10.1021/acsenergylett.8b01588 10.1021/acs.jpclett.8b02555 10.1039/C8TA01490F 10.1126/sciadv.1701293 10.1002/adma.201703800 10.1021/acs.jpcc.7b11976 10.1016/j.electacta.2017.04.067 10.1002/aenm.201803243 10.1002/aenm.201601130 10.1021/acsenergylett.8b01411 10.1002/solr.201800136 10.1016/j.nanoen.2016.09.009 10.1088/1361-6463/aae2ab 10.3389/fmats.2016.00019 10.1039/C8SE00314A 10.1021/acs.nanolett.6b03857 10.1039/C5CC06916E 10.1126/science.aav7911 10.1021/jacs.8b10851 10.1021/acsenergylett.6b00402 10.1021/acs.jpclett.8b00275 10.1039/C8TA11705E 10.1039/C4TA06230B 10.1021/acsami.7b06788 10.1021/acs.accounts.5b00455 10.1038/s41598-017-14435-4 10.1039/C8RA00248G 10.1002/solr.201800290 10.1038/srep31896 10.1021/acs.chemmater.7b02803 10.1039/C8NR08683D 10.1002/adfm.201807696 10.1002/adma.201803703 10.1021/acsami.8b19778 10.1016/j.physb.2019.03.035 10.1021/acs.jpclett.8b03164 10.1002/adfm.201808059 10.1038/s41586-019-1036-3 10.1088/1674-1056/25/10/107202 10.1016/j.isci.2018.11.003 10.1002/adom.201700615 10.1038/srep04467 10.1021/acs.jpcc.7b06278 10.1016/j.apsusc.2018.02.038 10.1038/s41467-019-08918-3 10.1021/acsenergylett.6b00513 10.1039/C8TA11891D 10.1021/acs.inorgchem.6b02318 10.1021/acs.chemmater.7b01630 10.1038/s41467-019-10468-7 10.1021/acs.inorgchem.6b01701 10.1016/j.jssc.2018.12.029 10.1021/ja809598r 10.1021/ja5033259 10.1021/acsami.7b16349 10.1002/advs.201700204 10.1039/C8TA05916K 10.1016/j.cplett.2017.04.008 10.1021/nl204297u 10.1016/j.solener.2019.05.007 10.1021/acs.chemmater.8b01695 10.1021/acs.nanolett.8b00701 10.1002/adma.201801401 10.1038/nature17439 10.1021/acs.jpclett.8b00494 10.1021/acs.jpcc.8b04013 10.1088/1742-6596/1080/1/012003 10.1088/1361-6463/aaa7ca 10.1002/pssr.201800090 10.1021/acs.jpclett.6b00322 10.1002/solr.201900285 10.1038/s41467-017-02684-w 10.1021/acsenergylett.7b00202 10.1038/s41467-018-07951-y 10.1021/acsenergylett.6b00320 10.1039/C8TA07699E 10.1016/j.joule.2018.04.026 10.1021/acsenergylett.8b00383 10.1021/acs.chemmater.6b04300 10.1021/acs.jpclett.6b02344 10.1021/jacs.5b06658 10.1007/s11051-017-4108-z 10.1021/ja508464w 10.1021/jacs.7b09018 10.1002/aenm.201601353 10.1021/acs.chemmater.7b04565 10.1021/jp306433g 10.1038/nmat4572 10.1021/acs.jpcc.8b00226 10.1021/acs.jpcc.8b00480 10.1002/adfm.201904810 10.1007/BF00682508 10.1039/C5TA09646D 10.1002/adma.201804506 10.1021/acsenergylett.8b00085 10.1007/BF01689737 10.1016/j.electacta.2018.05.143 10.1021/acs.jpcc.6b06722 10.1021/acsenergylett.9b00954 10.1021/jacs.6b08337 10.1021/acs.jpcc.8b02499 10.1002/advs.201802019 10.1021/jacs.6b09257 10.1016/j.matlet.2018.02.021 10.1039/C5TA00190K 10.1016/j.actamat.2010.11.041 10.1016/j.nanoen.2019.01.026 10.1007/s13391-018-00114-7 10.1039/C7TA10040J 10.1103/PhysRevB.77.235214 10.1039/C8TA06391E 10.1021/acsaem.8b00866 10.1039/C8RA00809D 10.1038/ncomms11755 10.1038/nenergy.2017.18 10.1002/aenm.201702019 10.1002/anie.201503153 10.1016/j.spmi.2019.04.017 10.1246/bcsj.20150110 10.1002/adma.201602696 10.1021/acsomega.7b01292 10.1038/nphoton.2014.82 10.1002/pssc.201510078 10.1021/acs.jpcc.8b04875 10.1021/acs.chemmater.6b00433 10.1039/C5RA19778C 10.1038/ncomms6900 10.1016/j.ijleo.2018.11.028 10.1088/1674-4926/40/3/032201 10.1126/science.aaa2725 10.3390/ma10070837 10.1039/C7TA01668A 10.1063/1.2424552 10.1021/acs.jpclett.6b02030 10.1002/solr.201700224 10.1021/acsenergylett.8b00645 10.1002/adma.201704587 10.1038/nenergy.2016.178 10.1021/jacs.5b13470 10.1021/acs.jpclett.9b02024 10.1063/1.5050557 10.1038/s41467-018-03757-0 10.1002/adma.201601418 10.1039/C5CP03102H 10.1016/j.nanoen.2017.02.040 10.1021/acs.inorgchem.6b01307 10.1002/anie.201902418 10.1039/C8NH00163D 10.1007/s40843-018-9272-3 10.1080/14686996.2018.1460176 10.1016/j.solmat.2017.05.045 10.1021/acs.chemmater.6b03054 10.1002/anie.201808385 10.1039/C6TC05069G 10.1039/C8TA05282D 10.1016/j.jpowsour.2018.07.091 10.1021/jp509358f 10.1016/j.solmat.2018.10.021 10.1007/s12274-016-1051-8 10.1016/j.solmat.2019.04.023 10.1021/jacs.7b07949 10.1016/j.solmat.2016.09.022 10.1039/C4EE01076K 10.1021/jacs.5b03615 10.1126/science.1232994 10.1021/acsenergylett.9b00251 10.1539/joh.10-0057-OA 10.1021/acs.nanolett.7b05469 10.1039/C7TA02662E 10.1039/C5TA01246E 10.1016/j.ijleo.2018.05.135 10.1016/j.matlet.2018.02.034 10.1021/acsaem.9b00486 10.1002/pssr.201600166 10.1038/s41560-018-0278-x 10.1002/advs.201800793 10.1002/cssc.201701653 10.1021/jacs.7b01815 |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201902584 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_201902584 AENM201902584 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2016YFA0202402 – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20170059 – fundername: State Administration of Foreign Experts Affairs – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Natural Science Foundation of China funderid: 61674109 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology – fundername: State Key Laboratory of Integrated Optoelectronics funderid: IOSKL2018KF07 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c4224-f132e982e476e383828eea5d1ea0dee0c65fc7f659c5988722176424f8d326053 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:18:12 EDT 2025 Tue Jul 01 01:43:31 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Jan 22 16:35:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4224-f132e982e476e383828eea5d1ea0dee0c65fc7f659c5988722176424f8d326053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1707-499X |
PQID | 2387184534 |
PQPubID | 886389 |
PageCount | 30 |
ParticipantIDs | proquest_journals_2387184534 crossref_citationtrail_10_1002_aenm_201902584 crossref_primary_10_1002_aenm_201902584 wiley_primary_10_1002_aenm_201902584_AENM201902584 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 441 2018; 282 2019; 11 2019; 10 2019; 15 2011; 53 2019; 567 2011; 59 2012; 12 2017; 159 2014; 136 2018; 49 2019; 563 2017; 678 2018; 6 2018; 9 2018; 8 2018; 3 2018; 2 2018; 170 2018; 5 2015; 137 2018; 1 2018; 218 2015; 88 2014; 14 2019; 29 2018; 30 2016; 49 2019; 270 2003; 41 2018; 35 2019; 7 2019; 9 2019; 4 2019; 191 2019; 3 2019; 6 2019; 5 2018; 227 2019; 2 2015; 51 2019; 1 2011; 84 2015; 54 2016; 10 2013; 340 2016; 18 2016; 16 2016; 15 2018; 20 2016; 13 2017; 139 2019; 186 2016; 4 2018; 19 2016; 6 2018; 18 2016; 7 2018; 17 2016; 1 2019; 40 2016; 3 2018; 1080 2016; 218 2017; 56 2019; 179 2015; 119 2016; 213 2018; 12 2016; 28 2018; 11 2018; 10 2012; 116 2016; 26 2016; 25 2016; 9 1994; 10 2019; 176 2015; 184 2017; 5 2018; 122 2017; 7 2017; 2 2017; 3 2017; 4 2015; 347 2008; B64 2018; 124 2017; 46 2019; 58 2008; 77 2017; 9 2019; 364 2005; 25 2014; 5 2013; 15 2014; 4 2014; 2 1991; 46 2017; 34 2016; 354 2017; 240 2017; 121 2014; 8 2014; 7 2019; 199 2014; 118 2015; 17 2015; 5 2015; 4 2018; 140 2015; 3 2017; 27 2018; 148 2017; 170 2017; 29 2018; 61 2009; 131 2019; 141 2016; 120 2016; 55 2015; 27 2006; 89 2018; 399 2017; 10 2017; 12 2019 2018 2016; 138 2018; 51 2016; 533 2019; 130 2018; 59 2018; 57 e_1_2_13_120_1 e_1_2_13_143_1 e_1_2_13_166_1 e_1_2_13_189_1 e_1_2_13_20_1 e_1_2_13_66_1 e_1_2_13_43_1 Singh A. (e_1_2_13_71_1) 2018 e_1_2_13_181_1 e_1_2_13_226_1 e_1_2_13_249_1 e_1_2_13_8_1 e_1_2_13_81_1 e_1_2_13_252_1 e_1_2_13_275_1 e_1_2_13_92_1 e_1_2_13_214_1 e_1_2_13_17_1 e_1_2_13_154_1 e_1_2_13_131_1 e_1_2_13_32_1 e_1_2_13_55_1 e_1_2_13_78_1 e_1_2_13_177_1 e_1_2_13_215_1 e_1_2_13_192_1 e_1_2_13_238_1 e_1_2_13_70_1 e_1_2_13_241_1 e_1_2_13_264_1 e_1_2_13_203_1 e_1_2_13_105_1 e_1_2_13_88_1 e_1_2_13_128_1 e_1_2_13_29_1 e_1_2_13_165_1 e_1_2_13_142_1 e_1_2_13_44_1 e_1_2_13_67_1 e_1_2_13_104_1 e_1_2_13_188_1 e_1_2_13_9_1 e_1_2_13_248_1 e_1_2_13_82_1 e_1_2_13_180_1 e_1_2_13_251_1 e_1_2_13_91_1 e_1_2_13_274_1 e_1_2_13_236_1 e_1_2_13_116_1 e_1_2_13_213_1 e_1_2_13_99_1 e_1_2_13_139_1 e_1_2_13_18_1 e_1_2_13_130_1 e_1_2_13_153_1 e_1_2_13_79_1 e_1_2_13_10_1 e_1_2_13_56_1 e_1_2_13_115_1 e_1_2_13_176_1 e_1_2_13_199_1 e_1_2_13_33_1 e_1_2_13_237_1 e_1_2_13_191_1 e_1_2_13_1_1 e_1_2_13_240_1 e_1_2_13_263_1 e_1_2_13_225_1 e_1_2_13_202_1 e_1_2_13_127_1 Zhang Y.‐Y. (e_1_2_13_36_1) 2018; 35 e_1_2_13_122_1 e_1_2_13_68_1 e_1_2_13_45_1 e_1_2_13_145_1 e_1_2_13_168_1 e_1_2_13_205_1 e_1_2_13_22_1 e_1_2_13_60_1 e_1_2_13_83_1 e_1_2_13_183_1 e_1_2_13_228_1 e_1_2_13_6_1 e_1_2_13_160_1 e_1_2_13_90_1 e_1_2_13_231_1 e_1_2_13_254_1 e_1_2_13_277_1 e_1_2_13_98_1 e_1_2_13_119_1 e_1_2_13_19_1 e_1_2_13_133_1 e_1_2_13_57_1 e_1_2_13_110_1 e_1_2_13_217_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_156_1 e_1_2_13_171_1 e_1_2_13_72_1 e_1_2_13_194_1 e_1_2_13_220_1 e_1_2_13_243_1 e_1_2_13_266_1 e_1_2_13_107_1 e_1_2_13_121_1 e_1_2_13_144_1 e_1_2_13_46_1 e_1_2_13_69_1 e_1_2_13_23_1 e_1_2_13_167_1 e_1_2_13_204_1 e_1_2_13_84_1 e_1_2_13_182_1 e_1_2_13_227_1 e_1_2_13_7_1 e_1_2_13_61_1 e_1_2_13_230_1 e_1_2_13_276_1 e_1_2_13_253_1 e_1_2_13_97_1 e_1_2_13_118_1 e_1_2_13_132_1 e_1_2_13_155_1 e_1_2_13_178_1 e_1_2_13_35_1 e_1_2_13_58_1 e_1_2_13_216_1 e_1_2_13_12_1 e_1_2_13_170_1 e_1_2_13_193_1 e_1_2_13_73_1 e_1_2_13_50_1 e_1_2_13_265_1 e_1_2_13_242_1 e_1_2_13_106_1 e_1_2_13_129_1 e_1_2_13_280_1 e_1_2_13_24_1 e_1_2_13_185_1 e_1_2_13_207_1 e_1_2_13_101_1 e_1_2_13_147_1 e_1_2_13_124_1 e_1_2_13_85_1 e_1_2_13_62_1 e_1_2_13_162_1 e_1_2_13_233_1 e_1_2_13_256_1 e_1_2_13_279_1 e_1_2_13_96_1 e_1_2_13_210_1 e_1_2_13_271_1 e_1_2_13_13_1 e_1_2_13_59_1 e_1_2_13_219_1 e_1_2_13_112_1 e_1_2_13_158_1 e_1_2_13_196_1 e_1_2_13_135_1 e_1_2_13_51_1 e_1_2_13_74_1 e_1_2_13_173_1 e_1_2_13_150_1 e_1_2_13_222_1 e_1_2_13_245_1 e_1_2_13_268_1 e_1_2_13_4_1 e_1_2_13_109_1 e_1_2_13_260_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_100_1 e_1_2_13_169_1 e_1_2_13_206_1 e_1_2_13_123_1 e_1_2_13_86_1 e_1_2_13_146_1 e_1_2_13_40_1 e_1_2_13_63_1 e_1_2_13_184_1 e_1_2_13_229_1 Nguyen‐Tran T. (e_1_2_13_77_1) 2018; 3 e_1_2_13_161_1 He Y. (e_1_2_13_239_1) 2018; 30 e_1_2_13_232_1 e_1_2_13_255_1 e_1_2_13_95_1 e_1_2_13_278_1 Sajid B. S. (e_1_2_13_269_1) 2018 Li Q. (e_1_2_13_47_1) 2019; 1 e_1_2_13_270_1 e_1_2_13_14_1 Jokar E. (e_1_2_13_21_1) 2018 e_1_2_13_111_1 e_1_2_13_37_1 e_1_2_13_218_1 e_1_2_13_134_1 e_1_2_13_157_1 e_1_2_13_75_1 e_1_2_13_52_1 e_1_2_13_172_1 e_1_2_13_195_1 e_1_2_13_221_1 e_1_2_13_5_1 e_1_2_13_244_1 e_1_2_13_267_1 e_1_2_13_108_1 e_1_2_13_49_1 e_1_2_13_141_1 e_1_2_13_164_1 e_1_2_13_209_1 e_1_2_13_26_1 e_1_2_13_126_1 e_1_2_13_87_1 e_1_2_13_187_1 e_1_2_13_64_1 e_1_2_13_103_1 e_1_2_13_41_1 e_1_2_13_273_1 e_1_2_13_94_1 e_1_2_13_235_1 e_1_2_13_258_1 Lekina Y. (e_1_2_13_179_1) 2019; 4 e_1_2_13_138_1 e_1_2_13_212_1 e_1_2_13_250_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_152_1 e_1_2_13_137_1 e_1_2_13_175_1 e_1_2_13_53_1 e_1_2_13_76_1 e_1_2_13_114_1 e_1_2_13_198_1 e_1_2_13_259_1 e_1_2_13_30_1 e_1_2_13_190_1 e_1_2_13_262_1 e_1_2_13_224_1 e_1_2_13_247_1 e_1_2_13_2_1 Shalauddin (e_1_2_13_117_1) 2017; 12 e_1_2_13_201_1 e_1_2_13_149_1 e_1_2_13_27_1 e_1_2_13_163_1 e_1_2_13_208_1 e_1_2_13_102_1 e_1_2_13_125_1 e_1_2_13_148_1 e_1_2_13_186_1 e_1_2_13_42_1 e_1_2_13_65_1 e_1_2_13_80_1 e_1_2_13_140_1 e_1_2_13_93_1 e_1_2_13_234_1 e_1_2_13_257_1 e_1_2_13_211_1 e_1_2_13_39_1 e_1_2_13_272_1 e_1_2_13_16_1 e_1_2_13_113_1 e_1_2_13_136_1 e_1_2_13_159_1 e_1_2_13_174_1 e_1_2_13_197_1 e_1_2_13_31_1 e_1_2_13_54_1 e_1_2_13_151_1 e_1_2_13_223_1 e_1_2_13_3_1 e_1_2_13_246_1 e_1_2_13_89_1 e_1_2_13_200_1 e_1_2_13_28_1 e_1_2_13_261_1 |
References_xml | – volume: 58 start-page: 130 year: 2019 publication-title: Nano Energy – volume: 141 start-page: 1171 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 6806 year: 2015 publication-title: Adv. Mater. – volume: 59 start-page: 99 year: 2018 publication-title: Org. Electron. – volume: 2 start-page: 7016 year: 2017 publication-title: ACS Omega – volume: 28 start-page: 8191 year: 2016 publication-title: Adv. Mater. – volume: B64 start-page: 702 year: 2008 publication-title: Acta Crystallogr., Sect. B: Struct. Sci. – volume: 7 start-page: 5779 year: 2019 publication-title: J. Mater. Chem. A – volume: 12 start-page: 1053 year: 2012 publication-title: Nano Lett. – volume: 347 start-page: 519 year: 2015 publication-title: Science – volume: 29 start-page: 682 year: 2017 publication-title: Chem. Mater. – volume: 26 start-page: 3417 year: 2016 publication-title: Adv. Funct. Mater. – volume: 2 year: 2014 publication-title: APL Mater. – volume: 53 start-page: 175 year: 2011 publication-title: J. Occup. Health – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 534 year: 2016 publication-title: Chem. Sci. – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 16 start-page: 7739 year: 2016 publication-title: Nano Lett. – volume: 4 start-page: 4467 year: 2015 publication-title: Sci. Rep. – volume: 29 start-page: 5974 year: 2017 publication-title: Chem. Mater. – volume: 186 start-page: 136 year: 2019 publication-title: Sol. Energy – volume: 4 start-page: 208 year: 2019 publication-title: Nanoscale Horiz. – volume: 6 year: 2019 publication-title: Adv. Sci. – volume: 77 year: 2008 publication-title: Phys. Rev. B – volume: 19 start-page: 425 year: 2018 publication-title: Sci. Technol. Adv. Mater. – year: 2019 – volume: 399 start-page: 76 year: 2018 publication-title: J. Power Sources – volume: 59 start-page: 1742 year: 2011 publication-title: Acta Mater. – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 3 year: 2015 publication-title: J. Mater. Chem. A – year: 2019 publication-title: Adv. Funct. Mater. – volume: 49 start-page: 411 year: 2018 publication-title: Nano Energy – volume: 1 start-page: 4221 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 6 start-page: 5652 year: 2018 publication-title: J. Mater. Chem. A – volume: 567 start-page: 511 year: 2019 publication-title: Nature – volume: 3 start-page: 1470 year: 2018 publication-title: ACS Energy Lett. – volume: 9 start-page: 1682 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 58 start-page: 1072 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 year: 2016 publication-title: RSC Adv. – volume: 227 start-page: 311 year: 2018 publication-title: Mater. Lett. – volume: 12 start-page: 1 year: 2017 publication-title: DIU J. Sci. Technol. – volume: 40 year: 2019 publication-title: J. Semicond. – volume: 170 start-page: 463 year: 2018 publication-title: Optik – volume: 139 start-page: 836 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 469 year: 2016 publication-title: Nano Energy – volume: 28 start-page: 9333 year: 2016 publication-title: Adv. Mater. – volume: 5 start-page: 5900 year: 2014 publication-title: Nat. Commun. – volume: 10 start-page: 5277 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 563 start-page: 107 year: 2019 publication-title: Phys. B – volume: 56 start-page: 92 year: 2017 publication-title: Inorg. Chem. – volume: 11 start-page: 2353 year: 2018 publication-title: Energy Environ. Sci. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 2819 year: 2016 publication-title: RSC Adv. – volume: 3 start-page: 496 year: 2019 publication-title: Mater. Chem. Front. – volume: 354 start-page: 861 year: 2016 publication-title: Science – volume: 10 start-page: 965 year: 2019 publication-title: Nat. Commun. – volume: 29 start-page: 7901 year: 2017 publication-title: Chem. Mater. – volume: 218 start-page: 233 year: 2018 publication-title: Mater. Lett. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 3 start-page: 9308 year: 2015 publication-title: J. Mater. Chem. A – volume: 10 start-page: 837 year: 2017 publication-title: Materials – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 3 start-page: 19 year: 2016 publication-title: Front. Mater. – volume: 56 start-page: 84 year: 2017 publication-title: Inorg. Chem. – volume: 4 start-page: 1513 year: 2019 publication-title: ACS Energy Lett. – volume: 282 start-page: 807 year: 2018 publication-title: Electrochim. Acta – volume: 2 year: 2017 publication-title: Nat. Energy – volume: 13 start-page: 13 year: 2016 publication-title: Phys. Status Solidi C – volume: 9 start-page: 7090 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 115 year: 1994 publication-title: J. Paleolimnol. – volume: 1080 year: 2018 publication-title: J. Phys.: Conf. Ser. – volume: 11 start-page: 449 year: 2018 publication-title: ChemSusChem – volume: 122 start-page: 9275 year: 2018 publication-title: J. Phys. Chem. C – volume: 34 start-page: 392 year: 2017 publication-title: Nano Energy – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 1 year: 2016 publication-title: Nat. Energy – volume: 9 start-page: 1336 year: 2018 publication-title: Nat. Commun. – volume: 15 start-page: 192 year: 2019 publication-title: Electron. Mater. Lett. – volume: 9 start-page: 337 year: 2018 publication-title: iScience – volume: 9 start-page: 243 year: 2018 publication-title: Nat. Commun. – volume: 5 start-page: 5757 year: 2014 publication-title: Nat. Commun. – volume: 3 year: 2017 publication-title: Sci. Adv. – volume: 17 year: 2015 publication-title: Phys. Chem. Chem. Phys. – volume: 7 start-page: 3467 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 736 year: 2019 publication-title: ACS Energy Lett. – volume: 441 start-page: 394 year: 2018 publication-title: Appl. Surf. Sci. – volume: 9 start-page: 2518 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 2566 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 12 year: 2018 publication-title: Phys. Status Solidi – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 15 start-page: 2572 year: 2013 publication-title: Phys. Chem. Chem. Phys. – volume: 20 start-page: 5 year: 2018 publication-title: J. Nanopart. Res. – year: 2018 publication-title: Small‐Scale Energy Harvesting – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 2 start-page: 897 year: 2017 publication-title: ACS Energy Lett. – volume: 4 start-page: 4728 year: 2016 publication-title: J. Mater. Chem. A – volume: 28 start-page: 2315 year: 2016 publication-title: Chem. Mater. – volume: 9 start-page: 3405 year: 2018 publication-title: Nat. Commun. – volume: 4 start-page: 17 year: 2019 publication-title: ACS Energy Lett. – volume: 191 start-page: 33 year: 2019 publication-title: Sol. Energy Mater. Sol. Cells – volume: 58 start-page: 6688 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 18 start-page: 2428 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 7 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 3061 year: 2014 publication-title: Energy Environ. Sci. – volume: 25 start-page: 200 year: 2005 publication-title: Eur. Respir. J. – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 130 start-page: 20 year: 2019 publication-title: Superlattices Microstruct. – volume: 10 start-page: 16 year: 2019 publication-title: Nat. Commun. – volume: 4 year: 2014 publication-title: RSC Adv. – volume: 4 start-page: 615 year: 2019 publication-title: ACS Energy Lett. – volume: 10 start-page: 587 year: 2016 publication-title: Phys. Stat. Sol. – start-page: 518 year: 2018 – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1584 year: 2018 publication-title: ACS Energy Lett. – volume: 18 start-page: 2060 year: 2018 publication-title: Nano Lett. – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 184 start-page: 466 year: 2015 publication-title: Electrochim. Acta – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 118 year: 2014 publication-title: J. Phys. Chem. C – volume: 10 start-page: 2560 year: 2019 publication-title: Nat. Commun. – volume: 8 start-page: 5897 year: 2018 publication-title: RSC Adv. – volume: 3 start-page: 2077 year: 2018 publication-title: ACS Energy Lett. – volume: 3 start-page: 9208 year: 2015 publication-title: J. Mater. Chem. A – volume: 27 year: 2017 publication-title: Adv. Funct. Mater. – volume: 41 start-page: 1651 year: 2003 publication-title: Food Chem. Toxicol. – volume: 240 start-page: 98 year: 2017 publication-title: Electrochim. Acta – volume: 30 start-page: 35 year: 2018 publication-title: J. Phys.: Condens. Matter – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 18 start-page: 3600 year: 2018 publication-title: Nano Lett. – volume: 121 year: 2017 publication-title: J. Phys. Chem. C – volume: 30 start-page: 3920 year: 2018 publication-title: Chem. Mater. – volume: 3 start-page: 1093 year: 2018 publication-title: Nat. Energy – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 17 start-page: 550 year: 2018 publication-title: Nat. Mater. – volume: 2 start-page: 1231 year: 2018 publication-title: Joule – volume: 46 start-page: 3500 year: 2017 publication-title: Dalton Trans. – volume: 6 start-page: 2577 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 start-page: 5028 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 9391 year: 2017 publication-title: J. Mater. Chem. A – volume: 148 year: 2018 publication-title: J. Chem. Phys. – volume: 18 year: 2016 publication-title: Phys. Chem. Chem. Phys. – volume: 11 start-page: 3053 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 46 start-page: 906 year: 1991 publication-title: Bull. Environ. Contam. Toxicol. – volume: 213 start-page: 975 year: 2016 publication-title: Phys. Status Solidi A – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 170 start-page: 8 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 678 start-page: 17 year: 2017 publication-title: Chem. Phys. Lett. – volume: 179 start-page: 969 year: 2019 publication-title: Optik – volume: 1 start-page: 360 year: 2016 publication-title: ACS Energy Lett. – volume: 122 start-page: 7838 year: 2018 publication-title: J. Phys. Chem. C – volume: 4 start-page: 276 year: 2019 publication-title: ACS Energy Lett. – volume: 9 start-page: 6999 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 139 start-page: 8038 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 84 start-page: 926 year: 2011 publication-title: Bull. Chem. Soc. Jpn. – volume: 5 start-page: 3189 year: 2018 publication-title: ACS Photonics – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 3 start-page: 2246 year: 2018 publication-title: ACS Energy Lett. – volume: 30 start-page: 1556 year: 2018 publication-title: Chem. Mater. – volume: 7 start-page: 4178 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 2584 year: 2014 publication-title: Nano Lett. – volume: 533 start-page: 73 year: 2016 publication-title: Nature – volume: 8 start-page: 489 year: 2014 publication-title: Nat. Photonics – volume: 2 year: 2018 publication-title: Sol. RRL – volume: 3 start-page: 713 year: 2018 publication-title: ACS Energy Lett. – volume: 9 start-page: 2293 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 364 start-page: 475 year: 2019 publication-title: Science – volume: 1 start-page: 595 year: 2016 publication-title: ACS Energy Lett. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 124 year: 2018 publication-title: J. Appl. Phys. – volume: 54 start-page: 8208 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 270 start-page: 593 year: 2019 publication-title: J. Solid State Chem. – volume: 28 start-page: 8990 year: 2016 publication-title: Adv. Mater. – volume: 6 start-page: 9220 year: 2018 publication-title: J. Mater. Chem. A – volume: 139 start-page: 6693 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 218 start-page: 263 year: 2016 publication-title: Electrochim. Acta – volume: 3 start-page: 1116 year: 2018 publication-title: ACS Energy Lett. – volume: 3 year: 2019 publication-title: Sol. RRL – volume: 1 start-page: 14 year: 2019 publication-title: Appl. Phys. Lett. – volume: 340 start-page: 334 year: 2013 publication-title: Science – volume: 1 start-page: 1028 year: 2016 publication-title: ACS Energy Lett. – volume: 89 year: 2006 publication-title: Appl. Phys. Lett. – volume: 61 start-page: 1549 year: 2018 publication-title: Sci. China Mater. – volume: 11 start-page: 1505 year: 2019 publication-title: Nanoscale – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 176 start-page: 262 year: 2019 publication-title: Optik – volume: 9 start-page: 6024 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 218 start-page: 253 year: 2018 publication-title: Mater. Lett. – volume: 122 start-page: 5940 year: 2018 publication-title: J. Phys. Chem. C – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 2 start-page: 2450 year: 2018 publication-title: Sustainable Energy Fuels – volume: 2 start-page: 4821 year: 2019 publication-title: ACS Appl. Energy Mater. – volume: 88 start-page: 1250 year: 2015 publication-title: Bull. Chem. Soc. Jpn. – volume: 7 start-page: 776 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 58 start-page: 806 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 1570 year: 2016 publication-title: Nano Res. – volume: 3 start-page: 2701 year: 2018 publication-title: ACS Energy Lett. – volume: 28 start-page: 7781 year: 2016 publication-title: Chem. Mater. – volume: 137 start-page: 8227 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 116 year: 2012 publication-title: J. Phys. Chem. C – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 49 start-page: 330 year: 2016 publication-title: Acc. Chem. Res. – volume: 140 start-page: 388 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 159 start-page: 227 year: 2017 publication-title: Sol. Energy Mater. Sol. Cells – volume: 55 start-page: 3447 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 35 start-page: 3 year: 2018 publication-title: Chin. Phys. Lett. – volume: 119 start-page: 1763 year: 2015 publication-title: J. Phys. Chem. C – volume: 15 start-page: 247 year: 2016 publication-title: Nat. Mater. – publication-title: IEEE Trans. Nanotechnol. – year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 7 start-page: 9154 year: 2019 publication-title: J. Mater. Chem. A – volume: 51 year: 2018 publication-title: J. Phys. D: Appl. Phys. – volume: 5 start-page: 1806 year: 2019 publication-title: Chem – volume: 199 start-page: 75 year: 2019 publication-title: Sol. Energy Mater. Sol. Cells – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 471 year: 2018 publication-title: J. Sci.: Adv. Mater. Dev. – volume: 138 start-page: 3974 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 1086 year: 2016 publication-title: ACS Energy Lett. – volume: 4 start-page: 189 year: 2019 publication-title: J. Sci: Adv. Mater. Dev. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 1321 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 5 start-page: 1121 year: 2017 publication-title: J. Mater. Chem. C – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 120 year: 2016 publication-title: J. Phys. Chem. C – volume: 25 year: 2016 publication-title: Chin. Phys. B – volume: 56 start-page: 26 year: 2017 publication-title: Inorg. Chem. – volume: 4 start-page: 1930 year: 2019 publication-title: ACS Energy Lett. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 2 start-page: 982 year: 2017 publication-title: ACS Energy Lett. – volume: 138 start-page: 2941 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1790 year: 2019 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 5265 year: 2018 publication-title: Nat. Commun. – volume: 119 start-page: 5755 year: 2015 publication-title: J. Phys. Chem. C – volume: 2 start-page: 22 year: 2017 publication-title: ACS Energy Lett. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 46 year: 2018 publication-title: ACS Energy Lett. – volume: 2 start-page: 2159 year: 2017 publication-title: ACS Energy Lett. – ident: e_1_2_13_64_1 doi: 10.1021/acs.jpcc.8b01820 – ident: e_1_2_13_210_1 doi: 10.1088/1674-1056/25/10/108802 – ident: e_1_2_13_44_1 doi: 10.1107/S0108768108032734 – ident: e_1_2_13_61_1 doi: 10.1002/adfm.201605469 – ident: e_1_2_13_202_1 doi: 10.1021/jacs.5b04015 – ident: e_1_2_13_63_1 doi: 10.1039/C5RA21291J – ident: e_1_2_13_108_1 doi: 10.1002/advs.201700183 – ident: e_1_2_13_207_1 doi: 10.1021/jacs.7b10898 – ident: e_1_2_13_181_1 doi: 10.1039/C8TA00751A – ident: e_1_2_13_273_1 doi: 10.1038/srep35705 – ident: e_1_2_13_50_1 doi: 10.1021/acsenergylett.8b02243 – ident: e_1_2_13_183_1 doi: 10.1021/acsenergylett.7b00976 – ident: e_1_2_13_240_1 doi: 10.1039/C6CP03388A – ident: e_1_2_13_33_1 doi: 10.1021/acsenergylett.7b00636 – ident: e_1_2_13_43_1 doi: 10.1039/C6DT04796C – ident: e_1_2_13_241_1 doi: 10.1002/aenm.201500477 – ident: e_1_2_13_267_1 doi: 10.1002/adfm.201505127 – ident: e_1_2_13_35_1 doi: 10.1038/ncomms6757 – ident: e_1_2_13_53_1 doi: 10.1039/C6RA19476A – ident: e_1_2_13_200_1 doi: 10.1021/jacs.6b08790 – ident: e_1_2_13_58_1 doi: 10.1021/acs.jpclett.8b03194 – ident: e_1_2_13_214_1 doi: 10.1016/j.chempr.2019.04.003 – ident: e_1_2_13_55_1 doi: 10.1063/1.4885256 – ident: e_1_2_13_92_1 doi: 10.1002/anie.201707037 – ident: e_1_2_13_85_1 doi: 10.1021/jp5126624 – ident: e_1_2_13_38_1 doi: 10.1038/s41467-018-05761-w – ident: e_1_2_13_176_1 doi: 10.1002/solr.201900199 – ident: e_1_2_13_195_1 doi: 10.1021/acs.jpclett.8b00871 – ident: e_1_2_13_18_1 doi: 10.1016/j.electacta.2015.10.030 – ident: e_1_2_13_93_1 doi: 10.1002/adfm.201604818 – ident: e_1_2_13_268_1 doi: 10.1021/acsenergylett.9b01179 – ident: e_1_2_13_215_1 doi: 10.1021/ja504539w – ident: e_1_2_13_243_1 doi: 10.1038/s41467-018-07255-1 – ident: e_1_2_13_256_1 doi: 10.1002/adma.201501978 – ident: e_1_2_13_29_1 doi: 10.1039/C6TA08332C – ident: e_1_2_13_121_1 doi: 10.1103/PhysRevMaterials.2.075402 – ident: e_1_2_13_193_1 doi: 10.1021/acs.jpclett.8b03381 – ident: e_1_2_13_52_1 doi: 10.1002/anie.201511792 – ident: e_1_2_13_275_1 doi: 10.1021/acsenergylett.8b00687 – ident: e_1_2_13_120_1 doi: 10.1038/s41563-018-0081-x – ident: e_1_2_13_204_1 doi: 10.1002/anie.201811539 – ident: e_1_2_13_186_1 doi: 10.1002/anie.201811497 – ident: e_1_2_13_109_1 doi: 10.1039/C5SC02966J – ident: e_1_2_13_259_1 doi: 10.1109/tnano.2019.2923048 – ident: e_1_2_13_65_1 doi: 10.1021/acs.jpclett.6b00118 – ident: e_1_2_13_189_1 doi: 10.1039/C8NR03589J – ident: e_1_2_13_41_1 doi: 10.1021/jacs.7b09379 – ident: e_1_2_13_261_1 doi: 10.1002/aenm.201501119 – ident: e_1_2_13_184_1 doi: 10.1016/j.nanoen.2018.05.006 – ident: e_1_2_13_229_1 doi: 10.1063/1.5023737 – ident: e_1_2_13_11_1 doi: 10.1021/jp504951h – ident: e_1_2_13_24_1 doi: 10.1038/srep18721 – ident: e_1_2_13_201_1 doi: 10.1039/C4RA11155A – ident: e_1_2_13_3_1 doi: 10.1021/acsami.8b11474 – ident: e_1_2_13_166_1 doi: 10.1021/acsenergylett.6b00514 – ident: e_1_2_13_231_1 doi: 10.1021/acsenergylett.7b00171 – ident: e_1_2_13_138_1 doi: 10.1021/acsenergylett.8b01046 – ident: e_1_2_13_170_1 doi: 10.1039/C6TA07712A – ident: e_1_2_13_206_1 doi: 10.1016/j.electacta.2016.09.138 – ident: e_1_2_13_66_1 doi: 10.1002/pssa.201532594 – ident: e_1_2_13_220_1 doi: 10.1039/C5TA02950C – ident: e_1_2_13_167_1 doi: 10.1126/science.aaf9717 – ident: e_1_2_13_157_1 doi: 10.1021/jacs.7b04219 – volume: 3 start-page: 471 year: 2018 ident: e_1_2_13_77_1 publication-title: J. Sci.: Adv. Mater. Dev. – ident: e_1_2_13_165_1 doi: 10.1016/j.matlet.2018.05.047 – ident: e_1_2_13_142_1 doi: 10.1016/j.ijleo.2018.09.066 – start-page: 518 volume-title: IEEE WCPEC year: 2018 ident: e_1_2_13_71_1 – ident: e_1_2_13_57_1 doi: 10.1002/adma.201606964 – ident: e_1_2_13_192_1 doi: 10.1021/acs.nanolett.8b00077 – ident: e_1_2_13_101_1 doi: 10.1021/nl500390f – ident: e_1_2_13_257_1 doi: 10.1021/acs.jpclett.6b01452 – ident: e_1_2_13_251_1 doi: 10.1016/S0278-6915(03)00217-5 – ident: e_1_2_13_177_1 doi: 10.1021/acsenergylett.8b01888 – ident: e_1_2_13_219_1 doi: 10.1002/aenm.201402321 – ident: e_1_2_13_95_1 doi: 10.1246/bcsj.20110075 – ident: e_1_2_13_146_1 doi: 10.1021/acsphotonics.8b00422 – ident: e_1_2_13_144_1 doi: 10.1021/acs.jpclett.9b00422 – ident: e_1_2_13_212_1 doi: 10.1039/c2cp44397j – ident: e_1_2_13_134_1 doi: 10.1039/C8TA03133A – ident: e_1_2_13_72_1 doi: 10.1021/jacs.6b00142 – ident: e_1_2_13_266_1 doi: 10.1016/j.orgel.2018.04.051 – ident: e_1_2_13_191_1 doi: 10.1021/acsenergylett.8b02051 – ident: e_1_2_13_90_1 doi: 10.1002/adma.201602992 – ident: e_1_2_13_254_1 doi: 10.1183/09031936.04.10012704 – ident: e_1_2_13_198_1 doi: 10.1039/C8TA05444D – ident: e_1_2_13_223_1 doi: 10.1021/jacs.6b10734 – ident: e_1_2_13_159_1 doi: 10.1002/adma.201800258 – ident: e_1_2_13_234_1 doi: 10.1039/C8EE00956B – ident: e_1_2_13_225_1 doi: 10.1021/acsami.8b19143 – ident: e_1_2_13_110_1 doi: 10.1021/jp506498k – ident: e_1_2_13_154_1 doi: 10.1002/adma.201604744 – ident: e_1_2_13_7_1 doi: 10.1021/acsenergylett.6b00196 – ident: e_1_2_13_12_1 doi: 10.1021/jp512420b – ident: e_1_2_13_216_1 doi: 10.1039/C8QM00620B – ident: e_1_2_13_20_1 doi: 10.1021/acsenergylett.8b01588 – ident: e_1_2_13_236_1 doi: 10.1021/acs.jpclett.8b02555 – ident: e_1_2_13_42_1 doi: 10.1039/C8TA01490F – ident: e_1_2_13_82_1 doi: 10.1126/sciadv.1701293 – ident: e_1_2_13_232_1 doi: 10.1002/adma.201703800 – ident: e_1_2_13_130_1 doi: 10.1021/acs.jpcc.7b11976 – ident: e_1_2_13_178_1 doi: 10.1016/j.electacta.2017.04.067 – ident: e_1_2_13_133_1 doi: 10.1002/aenm.201803243 – ident: e_1_2_13_265_1 doi: 10.1002/aenm.201601130 – start-page: 1804835 year: 2018 ident: e_1_2_13_21_1 publication-title: Adv. Mater. – ident: e_1_2_13_174_1 doi: 10.1021/acsenergylett.8b01411 – ident: e_1_2_13_13_1 doi: 10.1002/solr.201800136 – ident: e_1_2_13_62_1 doi: 10.1016/j.nanoen.2016.09.009 – ident: e_1_2_13_86_1 doi: 10.1088/1361-6463/aae2ab – ident: e_1_2_13_37_1 doi: 10.3389/fmats.2016.00019 – ident: e_1_2_13_263_1 doi: 10.1039/C8SE00314A – ident: e_1_2_13_171_1 doi: 10.1021/acs.nanolett.6b03857 – ident: e_1_2_13_255_1 doi: 10.1039/C5CC06916E – ident: e_1_2_13_264_1 doi: 10.1126/science.aav7911 – ident: e_1_2_13_279_1 doi: 10.1021/jacs.8b10851 – ident: e_1_2_13_84_1 doi: 10.1021/acsenergylett.6b00402 – year: 2018 ident: e_1_2_13_269_1 publication-title: Small‐Scale Energy Harvesting – volume: 12 start-page: 1 year: 2017 ident: e_1_2_13_117_1 publication-title: DIU J. Sci. Technol. – ident: e_1_2_13_169_1 doi: 10.1021/acs.jpclett.8b00275 – ident: e_1_2_13_49_1 doi: 10.1039/C8TA11705E – ident: e_1_2_13_197_1 doi: 10.1039/C4TA06230B – volume: 4 start-page: 189 year: 2019 ident: e_1_2_13_179_1 publication-title: J. Sci: Adv. Mater. Dev. – ident: e_1_2_13_4_1 doi: 10.1021/acsami.7b06788 – ident: e_1_2_13_245_1 doi: 10.1021/acs.accounts.5b00455 – ident: e_1_2_13_114_1 doi: 10.1038/s41598-017-14435-4 – ident: e_1_2_13_203_1 doi: 10.1039/C8RA00248G – ident: e_1_2_13_75_1 doi: 10.1002/solr.201800290 – ident: e_1_2_13_252_1 doi: 10.1038/srep31896 – ident: e_1_2_13_131_1 doi: 10.1021/acs.chemmater.7b02803 – volume: 35 start-page: 3 year: 2018 ident: e_1_2_13_36_1 publication-title: Chin. Phys. Lett. – ident: e_1_2_13_68_1 doi: 10.1039/C8NR08683D – ident: e_1_2_13_175_1 doi: 10.1002/adfm.201807696 – ident: e_1_2_13_217_1 doi: 10.1002/adma.201803703 – ident: e_1_2_13_98_1 doi: 10.1021/acsami.8b19778 – volume: 1 start-page: 14 year: 2019 ident: e_1_2_13_47_1 publication-title: Appl. Phys. Lett. – ident: e_1_2_13_100_1 doi: 10.1016/j.physb.2019.03.035 – ident: e_1_2_13_119_1 doi: 10.1021/acs.jpclett.8b03164 – ident: e_1_2_13_81_1 doi: 10.1002/adfm.201808059 – ident: e_1_2_13_208_1 doi: 10.1038/s41586-019-1036-3 – ident: e_1_2_13_106_1 doi: 10.1088/1674-1056/25/10/107202 – ident: e_1_2_13_233_1 doi: 10.1016/j.isci.2018.11.003 – ident: e_1_2_13_74_1 doi: 10.1002/adom.201700615 – ident: e_1_2_13_112_1 doi: 10.1038/srep04467 – ident: e_1_2_13_19_1 doi: 10.1021/acs.jpcc.7b06278 – ident: e_1_2_13_221_1 doi: 10.1016/j.apsusc.2018.02.038 – ident: e_1_2_13_237_1 doi: 10.1038/s41467-019-08918-3 – ident: e_1_2_13_54_1 doi: 10.1021/acsenergylett.6b00513 – ident: e_1_2_13_262_1 doi: 10.1039/C8TA11891D – ident: e_1_2_13_226_1 doi: 10.1021/acs.inorgchem.6b02318 – ident: e_1_2_13_244_1 doi: 10.1021/acs.chemmater.7b01630 – ident: e_1_2_13_113_1 doi: 10.1038/s41467-019-10468-7 – ident: e_1_2_13_129_1 doi: 10.1021/acs.inorgchem.6b01701 – ident: e_1_2_13_276_1 doi: 10.1016/j.jssc.2018.12.029 – ident: e_1_2_13_1_1 doi: 10.1021/ja809598r – ident: e_1_2_13_145_1 doi: 10.1021/ja5033259 – ident: e_1_2_13_17_1 doi: 10.1021/acsami.7b16349 – ident: e_1_2_13_89_1 doi: 10.1002/advs.201700204 – ident: e_1_2_13_224_1 doi: 10.1039/C8TA05916K – ident: e_1_2_13_16_1 doi: 10.1016/j.cplett.2017.04.008 – ident: e_1_2_13_155_1 doi: 10.1021/nl204297u – ident: e_1_2_13_69_1 doi: 10.1016/j.solener.2019.05.007 – ident: e_1_2_13_147_1 doi: 10.1021/acs.chemmater.8b01695 – ident: e_1_2_13_205_1 doi: 10.1021/acs.nanolett.8b00701 – ident: e_1_2_13_209_1 doi: 10.1002/adma.201801401 – ident: e_1_2_13_39_1 doi: 10.1038/nature17439 – ident: e_1_2_13_115_1 doi: 10.1021/acs.jpclett.8b00494 – ident: e_1_2_13_173_1 doi: 10.1021/acs.jpcc.8b04013 – ident: e_1_2_13_6_1 – ident: e_1_2_13_96_1 doi: 10.1088/1742-6596/1080/1/012003 – ident: e_1_2_13_271_1 doi: 10.1088/1361-6463/aaa7ca – ident: e_1_2_13_260_1 doi: 10.1002/pssr.201800090 – ident: e_1_2_13_107_1 doi: 10.1021/acs.jpclett.6b00322 – ident: e_1_2_13_228_1 doi: 10.1002/solr.201900285 – ident: e_1_2_13_124_1 doi: 10.1038/s41467-017-02684-w – ident: e_1_2_13_187_1 doi: 10.1021/acsenergylett.7b00202 – volume: 30 start-page: 35 year: 2018 ident: e_1_2_13_239_1 publication-title: J. Phys.: Condens. Matter – ident: e_1_2_13_272_1 doi: 10.1038/s41467-018-07951-y – ident: e_1_2_13_248_1 doi: 10.1021/acsenergylett.6b00320 – ident: e_1_2_13_140_1 doi: 10.1039/C8TA07699E – ident: e_1_2_13_25_1 doi: 10.1016/j.joule.2018.04.026 – ident: e_1_2_13_15_1 doi: 10.1021/acsenergylett.8b00383 – ident: e_1_2_13_94_1 doi: 10.1021/acs.chemmater.6b04300 – ident: e_1_2_13_67_1 doi: 10.1021/acs.jpclett.6b02344 – ident: e_1_2_13_59_1 doi: 10.1021/jacs.5b06658 – ident: e_1_2_13_79_1 doi: 10.1007/s11051-017-4108-z – ident: e_1_2_13_132_1 doi: 10.1021/ja508464w – ident: e_1_2_13_230_1 doi: 10.1021/jacs.7b09018 – ident: e_1_2_13_51_1 doi: 10.1002/aenm.201601353 – ident: e_1_2_13_143_1 doi: 10.1021/acs.chemmater.7b04565 – ident: e_1_2_13_213_1 doi: 10.1021/jp306433g – ident: e_1_2_13_23_1 doi: 10.1038/nmat4572 – ident: e_1_2_13_48_1 doi: 10.1021/acs.jpcc.8b00226 – ident: e_1_2_13_158_1 doi: 10.1021/acs.jpcc.8b00480 – ident: e_1_2_13_235_1 doi: 10.1002/adfm.201904810 – ident: e_1_2_13_249_1 doi: 10.1007/BF00682508 – ident: e_1_2_13_40_1 doi: 10.1039/C5TA09646D – ident: e_1_2_13_126_1 doi: 10.1002/adma.201804506 – ident: e_1_2_13_185_1 doi: 10.1021/acsenergylett.8b00085 – ident: e_1_2_13_250_1 doi: 10.1007/BF01689737 – ident: e_1_2_13_164_1 doi: 10.1016/j.electacta.2018.05.143 – ident: e_1_2_13_5_1 doi: 10.1021/acs.jpcc.6b06722 – ident: e_1_2_13_188_1 doi: 10.1021/acsenergylett.9b00954 – ident: e_1_2_13_26_1 doi: 10.1021/jacs.6b08337 – ident: e_1_2_13_160_1 doi: 10.1021/acs.jpcc.8b02499 – ident: e_1_2_13_278_1 doi: 10.1002/advs.201802019 – ident: e_1_2_13_105_1 doi: 10.1021/jacs.6b09257 – ident: e_1_2_13_149_1 doi: 10.1016/j.matlet.2018.02.021 – ident: e_1_2_13_73_1 doi: 10.1039/C5TA00190K – ident: e_1_2_13_56_1 doi: 10.1016/j.actamat.2010.11.041 – ident: e_1_2_13_168_1 doi: 10.1016/j.nanoen.2019.01.026 – ident: e_1_2_13_91_1 doi: 10.1007/s13391-018-00114-7 – ident: e_1_2_13_162_1 doi: 10.1039/C7TA10040J – ident: e_1_2_13_34_1 doi: 10.1103/PhysRevB.77.235214 – ident: e_1_2_13_280_1 doi: 10.1039/C8TA06391E – ident: e_1_2_13_128_1 doi: 10.1021/acsaem.8b00866 – ident: e_1_2_13_87_1 doi: 10.1039/C8RA00809D – ident: e_1_2_13_118_1 doi: 10.1038/ncomms11755 – ident: e_1_2_13_27_1 doi: 10.1038/nenergy.2017.18 – ident: e_1_2_13_80_1 doi: 10.1002/aenm.201702019 – ident: e_1_2_13_242_1 doi: 10.1002/anie.201503153 – ident: e_1_2_13_103_1 doi: 10.1016/j.spmi.2019.04.017 – ident: e_1_2_13_137_1 doi: 10.1246/bcsj.20150110 – ident: e_1_2_13_28_1 doi: 10.1002/adma.201602696 – ident: e_1_2_13_70_1 doi: 10.1021/acsomega.7b01292 – ident: e_1_2_13_32_1 doi: 10.1038/nphoton.2014.82 – ident: e_1_2_13_9_1 doi: 10.1002/pssc.201510078 – ident: e_1_2_13_45_1 doi: 10.1021/acs.jpcc.8b04875 – ident: e_1_2_13_97_1 doi: 10.1021/acs.chemmater.6b00433 – ident: e_1_2_13_151_1 doi: 10.1039/C5RA19778C – ident: e_1_2_13_125_1 doi: 10.1038/ncomms6900 – ident: e_1_2_13_199_1 doi: 10.1016/j.ijleo.2018.11.028 – ident: e_1_2_13_104_1 doi: 10.1088/1674-4926/40/3/032201 – ident: e_1_2_13_8_1 doi: 10.1126/science.aaa2725 – ident: e_1_2_13_78_1 doi: 10.3390/ma10070837 – ident: e_1_2_13_139_1 doi: 10.1039/C7TA01668A – ident: e_1_2_13_211_1 doi: 10.1063/1.2424552 – ident: e_1_2_13_274_1 doi: 10.1021/acs.jpclett.6b02030 – ident: e_1_2_13_127_1 doi: 10.1002/solr.201700224 – ident: e_1_2_13_14_1 doi: 10.1021/acsenergylett.8b00645 – ident: e_1_2_13_46_1 doi: 10.1002/adma.201704587 – ident: e_1_2_13_218_1 doi: 10.1038/nenergy.2016.178 – ident: e_1_2_13_163_1 doi: 10.1021/jacs.5b13470 – ident: e_1_2_13_30_1 doi: 10.1021/acs.jpclett.9b02024 – ident: e_1_2_13_116_1 doi: 10.1063/1.5050557 – ident: e_1_2_13_180_1 doi: 10.1038/s41467-018-03757-0 – ident: e_1_2_13_258_1 doi: 10.1002/adma.201601418 – ident: e_1_2_13_136_1 doi: 10.1039/C5CP03102H – ident: e_1_2_13_227_1 doi: 10.1016/j.nanoen.2017.02.040 – ident: e_1_2_13_247_1 doi: 10.1021/acs.inorgchem.6b01307 – ident: e_1_2_13_277_1 doi: 10.1002/anie.201902418 – ident: e_1_2_13_238_1 doi: 10.1039/C8NH00163D – ident: e_1_2_13_270_1 doi: 10.1007/s40843-018-9272-3 – ident: e_1_2_13_10_1 doi: 10.1080/14686996.2018.1460176 – ident: e_1_2_13_141_1 doi: 10.1016/j.solmat.2017.05.045 – ident: e_1_2_13_196_1 doi: 10.1021/acs.chemmater.6b03054 – ident: e_1_2_13_60_1 doi: 10.1002/anie.201808385 – ident: e_1_2_13_76_1 doi: 10.1039/C6TC05069G – ident: e_1_2_13_152_1 doi: 10.1039/C8TA05282D – ident: e_1_2_13_83_1 doi: 10.1016/j.jpowsour.2018.07.091 – ident: e_1_2_13_111_1 doi: 10.1021/jp509358f – ident: e_1_2_13_194_1 doi: 10.1016/j.solmat.2018.10.021 – ident: e_1_2_13_88_1 doi: 10.1007/s12274-016-1051-8 – ident: e_1_2_13_102_1 doi: 10.1016/j.solmat.2019.04.023 – ident: e_1_2_13_172_1 doi: 10.1021/jacs.7b07949 – ident: e_1_2_13_22_1 doi: 10.1016/j.solmat.2016.09.022 – ident: e_1_2_13_31_1 doi: 10.1039/C4EE01076K – ident: e_1_2_13_246_1 doi: 10.1021/jacs.5b03615 – ident: e_1_2_13_156_1 doi: 10.1126/science.1232994 – ident: e_1_2_13_150_1 doi: 10.1021/acsenergylett.9b00251 – ident: e_1_2_13_253_1 doi: 10.1539/joh.10-0057-OA – ident: e_1_2_13_153_1 doi: 10.1021/acs.nanolett.7b05469 – ident: e_1_2_13_123_1 doi: 10.1039/C7TA02662E – ident: e_1_2_13_161_1 doi: 10.1039/C5TA01246E – ident: e_1_2_13_222_1 doi: 10.1016/j.ijleo.2018.05.135 – ident: e_1_2_13_135_1 doi: 10.1016/j.matlet.2018.02.034 – ident: e_1_2_13_2_1 doi: 10.1021/acsaem.9b00486 – ident: e_1_2_13_99_1 doi: 10.1002/pssr.201600166 – ident: e_1_2_13_148_1 doi: 10.1038/s41560-018-0278-x – ident: e_1_2_13_190_1 doi: 10.1002/advs.201800793 – ident: e_1_2_13_122_1 doi: 10.1002/cssc.201701653 – ident: e_1_2_13_182_1 doi: 10.1021/jacs.7b01815 |
SSID | ssj0000491033 |
Score | 2.6435454 |
SecondaryResourceType | review_article |
Snippet | The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Chemical composition Energy gap Lead compounds Metal halides Perovskites Photovoltaic cells Properties (attributes) stability Thin films Tin tin halide perovskites toxicity |
Title | Tin Halide Perovskites: Progress and Challenges |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902584 https://www.proquest.com/docview/2387184534 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge4ED4lMsLCgHJA7IrGM7TsKtWlpV0BYkWlFOluPYCAmliLYc-PWM48RxpQUWLlFrp07kmY7fjGeeEXpWlqrghimcKlVjXtQ5rmqicaVFyTNlU2Fd7fBiKWZr_maTbQZ6gra6ZF-91D8vrSv5H6lCG8jVVcn-g2TDoNAAn0G-cAUJw_VqMnZEVQCka-My2bc_di4U2-a4vXdpV86Iubj4RX9gyi6GouN-99_48j-Arv6dh82aJqRCTMEMfFLdKuc06XOlfI26YycJpkMNv5gdvryYbw9RYHob-t5C38d-tC7kQEmUqXI1wxYZVFj-sSi6GKaJ2zxNU7DCJNY2dql192yxyjSOQiB1G6T-eLljGu3lOzldz-dyNdmsrqMTmgOoGqGT8evF_EMIv4FjlBLWll_0b9hTehJ6fvyIY8gy-CGxN9PCkdVtdKvzI5KxV4o76Jpp7qKbEbvkPXQO6pF49Ugi9XiV9MqRgHIkg3LcR-vpZHUxw935GFhzQF7YpoyasqCG58KwgoHzbIzK6tQoUhtDtMiszq3ISp2VsJhQcD_B3eS2qJlzY9kDNGq2jXmIEmapTbnhtS0sQHRSCWIFoTpnosq4EKcI91MgdUce784w-So97TWVbspkmLJT9Dzc_83Tpvz2zrN-RmX319pJwJGAmXjGoJu2s_yXUeR4slyEb4_-POZjdGPQ6jM02n8_mCcALffV005NfgHM23IB |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tin+Halide+Perovskites%3A+Progress+and+Challenges&rft.jtitle=Advanced+energy+materials&rft.au=Wen%E2%80%90Fan+Yang&rft.au=Igbari%2C+Femi&rft.au=Yan%E2%80%90Hui+Lou&rft.au=Zhao%E2%80%90Kui+Wang&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=13&rft_id=info:doi/10.1002%2Faenm.201902584&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |