Tin Halide Perovskites: Progress and Challenges

The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 10; no. 13
Main Authors Yang, Wen‐Fan, Igbari, Femi, Lou, Yan‐Hui, Wang, Zhao‐Kui, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2020
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201902584

Cover

Abstract The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance. The replacement of lead with tin in halide perovskites is feasible due to suitable ionic radius and valency. However, easy oxidation, high cost and toxicity concerns in Sn halide perovskite systems may limit the consideration of Sn as a suitable alternative to Pb.
AbstractList The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance. The replacement of lead with tin in halide perovskites is feasible due to suitable ionic radius and valency. However, easy oxidation, high cost and toxicity concerns in Sn halide perovskite systems may limit the consideration of Sn as a suitable alternative to Pb.
The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a feasible process due to the suitable ionic radius of Sn and its possibility of existing in the +2 state. Interestingly, a complete replacement narrows the bandgap while a partial replacement gives an anomalous phenomenon involving a further narrowing of bandgap relative to the pure Pb and Sn halide perovskite compounds. Unfortunately, the merits of this anomalous behavior have not been properly harnessed. Although promising progress has been made to advance the properties and performance of Sn‐based perovskite systems, their photovoltaic (PV) parameters are still significantly inferior to those of the Pb‐based analogs. This review summarizes the current progress and challenges in the preparation, morphological and photophysical properties of Sn‐based halide perovskites, and how these affect their PV performance. Although it can be argued that the Pb halide perovskite systems may remain the most sought after technology in the field of thin film perovskite PV, prospective research directions are suggested to advance the properties of Sn halide perovskite materials for improved device performance.
Author Wang, Zhao‐Kui
Liao, Liang‐Sheng
Igbari, Femi
Yang, Wen‐Fan
Lou, Yan‐Hui
Author_xml – sequence: 1
  givenname: Wen‐Fan
  surname: Yang
  fullname: Yang, Wen‐Fan
  organization: Soochow University
– sequence: 2
  givenname: Femi
  surname: Igbari
  fullname: Igbari, Femi
  organization: Soochow University
– sequence: 3
  givenname: Yan‐Hui
  surname: Lou
  fullname: Lou, Yan‐Hui
  email: yhlou@suda.edu.cn
  organization: Soochow University
– sequence: 4
  givenname: Zhao‐Kui
  orcidid: 0000-0003-1707-499X
  surname: Wang
  fullname: Wang, Zhao‐Kui
  email: zkwang@suda.edu.cn
  organization: Soochow University
– sequence: 5
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  organization: Soochow University
BookMark eNqFkE1Lw0AQhhepYK29eg54Trrf2XgrpVqhag_1vCzJpG5Nd-tuqvTfm1KpIIhzeefwPDPwXqKe8w4QuiY4IxjTkQG3ySgmBaZC8TPUJ5LwVCqOe6ed0Qs0jHGNu-EFwYz10WhpXTIzja0gWUDwH_HNthBvk0XwqwAxJsZVyeTVNA24FcQrdF6bJsLwOwfo5W66nMzS-fP9w2Q8T0tOKU9rwigUigLPJTDFFFUARlQEDK4AcClFXea1FEUpCqVySkkuOeW1qhiVWLABujne3Qb_voPY6rXfBde91JSpnCguGO8ofqTK4GMMUOvStqa13rXB2EYTrA_t6EM7-tROp2W_tG2wGxP2fwvFUfi0Dez_ofV4-vT4434Bs2p3Sw
CitedBy_id crossref_primary_10_1039_D4YA00204K
crossref_primary_10_1002_adfm_202104344
crossref_primary_10_1016_j_solener_2021_05_070
crossref_primary_10_1002_adfm_202109631
crossref_primary_10_3390_ma14051102
crossref_primary_10_1021_acs_jpclett_5c00200
crossref_primary_10_1021_acsami_9b18230
crossref_primary_10_1016_j_jechem_2021_06_011
crossref_primary_10_1002_adfm_202300282
crossref_primary_10_1002_adfm_202007447
crossref_primary_10_1002_solr_202200799
crossref_primary_10_1016_j_mssp_2023_107618
crossref_primary_10_1140_epjp_s13360_024_05085_3
crossref_primary_10_1039_D2CP02451A
crossref_primary_10_1002_smll_202411086
crossref_primary_10_3390_nano14070626
crossref_primary_10_1002_anie_202500557
crossref_primary_10_1063_5_0032951
crossref_primary_10_1002_anie_202421547
crossref_primary_10_1080_10408436_2022_2052798
crossref_primary_10_1016_j_mssp_2022_107193
crossref_primary_10_1002_ange_202402775
crossref_primary_10_1039_D1NR07893C
crossref_primary_10_1002_adfm_202108832
crossref_primary_10_1021_acsami_4c22290
crossref_primary_10_1088_1402_4896_acbdca
crossref_primary_10_1002_smll_202408468
crossref_primary_10_1016_j_cej_2022_136963
crossref_primary_10_1021_acs_jpclett_0c01589
crossref_primary_10_1039_D3DT02990E
crossref_primary_10_1016_j_matlet_2021_130099
crossref_primary_10_1016_j_cap_2023_06_001
crossref_primary_10_1007_s12274_020_3214_x
crossref_primary_10_3390_coatings11091045
crossref_primary_10_1002_solr_202100034
crossref_primary_10_1039_C9SE01181A
crossref_primary_10_47836_pjst_31_4_26
crossref_primary_10_1088_1402_4896_ad63e4
crossref_primary_10_1002_ange_202421547
crossref_primary_10_1021_acsami_1c14167
crossref_primary_10_1002_ange_202012280
crossref_primary_10_1016_j_mssp_2024_109103
crossref_primary_10_1021_acs_jpcc_4c01864
crossref_primary_10_3390_photonics10111242
crossref_primary_10_1039_D0QM01002B
crossref_primary_10_1007_s11426_021_1075_7
crossref_primary_10_1021_acsaem_0c01066
crossref_primary_10_1039_D0CS01488E
crossref_primary_10_1021_acsaem_1c01143
crossref_primary_10_1002_solr_202000056
crossref_primary_10_1002_adfm_202108296
crossref_primary_10_1002_nano_202000249
crossref_primary_10_1016_j_inoche_2022_109731
crossref_primary_10_1016_j_cej_2022_141246
crossref_primary_10_1016_j_cej_2021_133745
crossref_primary_10_1002_cctc_202301432
crossref_primary_10_1002_sstr_202100219
crossref_primary_10_1007_s12613_023_2604_y
crossref_primary_10_1021_acs_chemmater_4c03411
crossref_primary_10_1016_j_xcrp_2021_100341
crossref_primary_10_1021_acsami_3c07903
crossref_primary_10_1016_j_mseb_2023_116545
crossref_primary_10_1021_acsami_1c03041
crossref_primary_10_1002_smll_202103527
crossref_primary_10_1063_5_0022271
crossref_primary_10_1007_s11082_024_07127_7
crossref_primary_10_1088_1402_4896_ac9be5
crossref_primary_10_1007_s11426_023_1899_y
crossref_primary_10_1021_acsenergylett_1c01170
crossref_primary_10_3390_nano14171444
crossref_primary_10_1039_D2SC01914K
crossref_primary_10_1039_D1CC06117H
crossref_primary_10_1021_acs_jpcc_3c04912
crossref_primary_10_1088_1361_6463_abd273
crossref_primary_10_1002_adfm_202304848
crossref_primary_10_1002_aenm_202202491
crossref_primary_10_1007_s00339_021_05019_1
crossref_primary_10_1039_D3RA04085B
crossref_primary_10_1007_s11426_022_1489_8
crossref_primary_10_1021_acs_jpclett_3c02249
crossref_primary_10_1021_acsmaterialslett_0c00596
crossref_primary_10_1016_j_mseb_2023_116690
crossref_primary_10_1002_admt_202100006
crossref_primary_10_1021_acsenergylett_0c01796
crossref_primary_10_1002_ange_202500557
crossref_primary_10_1002_ifm2_10
crossref_primary_10_1021_acs_jpcc_3c04703
crossref_primary_10_1039_D1MA00196E
crossref_primary_10_1039_D2TA01170K
crossref_primary_10_1002_anie_202012280
crossref_primary_10_1007_s40843_023_2614_8
crossref_primary_10_1039_D0TC02231D
crossref_primary_10_1002_adfm_202306458
crossref_primary_10_1002_anie_202402775
crossref_primary_10_1016_j_jssc_2022_123608
crossref_primary_10_1002_aenm_202100784
crossref_primary_10_1039_D0MA00845A
crossref_primary_10_1002_adma_202102055
crossref_primary_10_1002_adom_202200458
crossref_primary_10_1146_annurev_matsci_080819_012808
crossref_primary_10_1002_smsc_202300014
crossref_primary_10_1016_j_matdes_2022_110951
crossref_primary_10_3389_frwa_2024_1390739
crossref_primary_10_1002_cssc_202400945
crossref_primary_10_1109_JPHOTOV_2021_3095457
crossref_primary_10_1002_adfm_202101163
crossref_primary_10_1039_D4MH01603C
crossref_primary_10_1002_admi_202201828
crossref_primary_10_1007_s40843_022_2197_4
crossref_primary_10_1007_s11082_023_05195_9
crossref_primary_10_1016_j_solener_2024_112982
crossref_primary_10_1016_j_cocom_2024_e00924
crossref_primary_10_1002_adom_202402372
crossref_primary_10_1016_j_jpcs_2021_110168
crossref_primary_10_1016_j_optmat_2024_115882
crossref_primary_10_1039_D3TA04782B
crossref_primary_10_1002_advs_202004315
crossref_primary_10_1002_aenm_202102213
crossref_primary_10_1002_adfm_202001557
crossref_primary_10_1002_aenm_202001471
crossref_primary_10_1016_j_jpcs_2022_110984
crossref_primary_10_1039_D4CP04639K
crossref_primary_10_1088_1402_4896_ad4519
crossref_primary_10_1016_j_jpcs_2024_112171
crossref_primary_10_1002_aenm_202302926
crossref_primary_10_1021_acs_jpclett_3c03557
crossref_primary_10_1021_acsaelm_3c00058
crossref_primary_10_1021_acsenergylett_0c00960
crossref_primary_10_1039_D4TA01783H
crossref_primary_10_1039_D2TA02088B
crossref_primary_10_1039_D0TC06000C
crossref_primary_10_1002_adom_202402360
crossref_primary_10_1088_1402_4896_ac4719
crossref_primary_10_1021_acsaem_2c02724
crossref_primary_10_1016_j_solener_2020_11_038
crossref_primary_10_1002_adfm_202310530
crossref_primary_10_1021_acs_chemrev_2c00422
crossref_primary_10_1002_adfm_202411836
crossref_primary_10_3390_ma15062180
crossref_primary_10_1002_adma_202410248
crossref_primary_10_1002_admt_202101189
crossref_primary_10_1007_s10904_024_03372_1
crossref_primary_10_1016_j_matchemphys_2024_129542
crossref_primary_10_1515_nanoph_2020_0632
crossref_primary_10_1002_adfm_202100931
crossref_primary_10_1103_PhysRevApplied_18_034084
crossref_primary_10_1007_s40820_021_00603_9
crossref_primary_10_1021_acs_jpcc_0c02223
crossref_primary_10_1002_solr_202300754
crossref_primary_10_1021_acs_jpcc_0c01252
crossref_primary_10_1002_aenm_202202209
crossref_primary_10_1002_adom_202002267
crossref_primary_10_1021_acs_energyfuels_0c02236
crossref_primary_10_1002_adma_202313252
crossref_primary_10_1002_adma_202314341
crossref_primary_10_1002_smsc_202000024
crossref_primary_10_35848_1347_4065_ac4adb
crossref_primary_10_1002_lpor_202200608
crossref_primary_10_1002_solr_202200827
Cites_doi 10.1021/acs.jpcc.8b01820
10.1088/1674-1056/25/10/108802
10.1107/S0108768108032734
10.1002/adfm.201605469
10.1021/jacs.5b04015
10.1039/C5RA21291J
10.1002/advs.201700183
10.1021/jacs.7b10898
10.1039/C8TA00751A
10.1038/srep35705
10.1021/acsenergylett.8b02243
10.1021/acsenergylett.7b00976
10.1039/C6CP03388A
10.1021/acsenergylett.7b00636
10.1039/C6DT04796C
10.1002/aenm.201500477
10.1002/adfm.201505127
10.1038/ncomms6757
10.1039/C6RA19476A
10.1021/jacs.6b08790
10.1021/acs.jpclett.8b03194
10.1016/j.chempr.2019.04.003
10.1063/1.4885256
10.1002/anie.201707037
10.1021/jp5126624
10.1038/s41467-018-05761-w
10.1002/solr.201900199
10.1021/acs.jpclett.8b00871
10.1016/j.electacta.2015.10.030
10.1002/adfm.201604818
10.1021/acsenergylett.9b01179
10.1021/ja504539w
10.1038/s41467-018-07255-1
10.1002/adma.201501978
10.1039/C6TA08332C
10.1103/PhysRevMaterials.2.075402
10.1021/acs.jpclett.8b03381
10.1002/anie.201511792
10.1021/acsenergylett.8b00687
10.1038/s41563-018-0081-x
10.1002/anie.201811539
10.1002/anie.201811497
10.1039/C5SC02966J
10.1109/tnano.2019.2923048
10.1021/acs.jpclett.6b00118
10.1039/C8NR03589J
10.1021/jacs.7b09379
10.1002/aenm.201501119
10.1016/j.nanoen.2018.05.006
10.1063/1.5023737
10.1021/jp504951h
10.1038/srep18721
10.1039/C4RA11155A
10.1021/acsami.8b11474
10.1021/acsenergylett.6b00514
10.1021/acsenergylett.7b00171
10.1021/acsenergylett.8b01046
10.1039/C6TA07712A
10.1016/j.electacta.2016.09.138
10.1002/pssa.201532594
10.1039/C5TA02950C
10.1126/science.aaf9717
10.1021/jacs.7b04219
10.1016/j.matlet.2018.05.047
10.1016/j.ijleo.2018.09.066
10.1002/adma.201606964
10.1021/acs.nanolett.8b00077
10.1021/nl500390f
10.1021/acs.jpclett.6b01452
10.1016/S0278-6915(03)00217-5
10.1021/acsenergylett.8b01888
10.1002/aenm.201402321
10.1246/bcsj.20110075
10.1021/acsphotonics.8b00422
10.1021/acs.jpclett.9b00422
10.1039/c2cp44397j
10.1039/C8TA03133A
10.1021/jacs.6b00142
10.1016/j.orgel.2018.04.051
10.1021/acsenergylett.8b02051
10.1002/adma.201602992
10.1183/09031936.04.10012704
10.1039/C8TA05444D
10.1021/jacs.6b10734
10.1002/adma.201800258
10.1039/C8EE00956B
10.1021/acsami.8b19143
10.1021/jp506498k
10.1002/adma.201604744
10.1021/acsenergylett.6b00196
10.1021/jp512420b
10.1039/C8QM00620B
10.1021/acsenergylett.8b01588
10.1021/acs.jpclett.8b02555
10.1039/C8TA01490F
10.1126/sciadv.1701293
10.1002/adma.201703800
10.1021/acs.jpcc.7b11976
10.1016/j.electacta.2017.04.067
10.1002/aenm.201803243
10.1002/aenm.201601130
10.1021/acsenergylett.8b01411
10.1002/solr.201800136
10.1016/j.nanoen.2016.09.009
10.1088/1361-6463/aae2ab
10.3389/fmats.2016.00019
10.1039/C8SE00314A
10.1021/acs.nanolett.6b03857
10.1039/C5CC06916E
10.1126/science.aav7911
10.1021/jacs.8b10851
10.1021/acsenergylett.6b00402
10.1021/acs.jpclett.8b00275
10.1039/C8TA11705E
10.1039/C4TA06230B
10.1021/acsami.7b06788
10.1021/acs.accounts.5b00455
10.1038/s41598-017-14435-4
10.1039/C8RA00248G
10.1002/solr.201800290
10.1038/srep31896
10.1021/acs.chemmater.7b02803
10.1039/C8NR08683D
10.1002/adfm.201807696
10.1002/adma.201803703
10.1021/acsami.8b19778
10.1016/j.physb.2019.03.035
10.1021/acs.jpclett.8b03164
10.1002/adfm.201808059
10.1038/s41586-019-1036-3
10.1088/1674-1056/25/10/107202
10.1016/j.isci.2018.11.003
10.1002/adom.201700615
10.1038/srep04467
10.1021/acs.jpcc.7b06278
10.1016/j.apsusc.2018.02.038
10.1038/s41467-019-08918-3
10.1021/acsenergylett.6b00513
10.1039/C8TA11891D
10.1021/acs.inorgchem.6b02318
10.1021/acs.chemmater.7b01630
10.1038/s41467-019-10468-7
10.1021/acs.inorgchem.6b01701
10.1016/j.jssc.2018.12.029
10.1021/ja809598r
10.1021/ja5033259
10.1021/acsami.7b16349
10.1002/advs.201700204
10.1039/C8TA05916K
10.1016/j.cplett.2017.04.008
10.1021/nl204297u
10.1016/j.solener.2019.05.007
10.1021/acs.chemmater.8b01695
10.1021/acs.nanolett.8b00701
10.1002/adma.201801401
10.1038/nature17439
10.1021/acs.jpclett.8b00494
10.1021/acs.jpcc.8b04013
10.1088/1742-6596/1080/1/012003
10.1088/1361-6463/aaa7ca
10.1002/pssr.201800090
10.1021/acs.jpclett.6b00322
10.1002/solr.201900285
10.1038/s41467-017-02684-w
10.1021/acsenergylett.7b00202
10.1038/s41467-018-07951-y
10.1021/acsenergylett.6b00320
10.1039/C8TA07699E
10.1016/j.joule.2018.04.026
10.1021/acsenergylett.8b00383
10.1021/acs.chemmater.6b04300
10.1021/acs.jpclett.6b02344
10.1021/jacs.5b06658
10.1007/s11051-017-4108-z
10.1021/ja508464w
10.1021/jacs.7b09018
10.1002/aenm.201601353
10.1021/acs.chemmater.7b04565
10.1021/jp306433g
10.1038/nmat4572
10.1021/acs.jpcc.8b00226
10.1021/acs.jpcc.8b00480
10.1002/adfm.201904810
10.1007/BF00682508
10.1039/C5TA09646D
10.1002/adma.201804506
10.1021/acsenergylett.8b00085
10.1007/BF01689737
10.1016/j.electacta.2018.05.143
10.1021/acs.jpcc.6b06722
10.1021/acsenergylett.9b00954
10.1021/jacs.6b08337
10.1021/acs.jpcc.8b02499
10.1002/advs.201802019
10.1021/jacs.6b09257
10.1016/j.matlet.2018.02.021
10.1039/C5TA00190K
10.1016/j.actamat.2010.11.041
10.1016/j.nanoen.2019.01.026
10.1007/s13391-018-00114-7
10.1039/C7TA10040J
10.1103/PhysRevB.77.235214
10.1039/C8TA06391E
10.1021/acsaem.8b00866
10.1039/C8RA00809D
10.1038/ncomms11755
10.1038/nenergy.2017.18
10.1002/aenm.201702019
10.1002/anie.201503153
10.1016/j.spmi.2019.04.017
10.1246/bcsj.20150110
10.1002/adma.201602696
10.1021/acsomega.7b01292
10.1038/nphoton.2014.82
10.1002/pssc.201510078
10.1021/acs.jpcc.8b04875
10.1021/acs.chemmater.6b00433
10.1039/C5RA19778C
10.1038/ncomms6900
10.1016/j.ijleo.2018.11.028
10.1088/1674-4926/40/3/032201
10.1126/science.aaa2725
10.3390/ma10070837
10.1039/C7TA01668A
10.1063/1.2424552
10.1021/acs.jpclett.6b02030
10.1002/solr.201700224
10.1021/acsenergylett.8b00645
10.1002/adma.201704587
10.1038/nenergy.2016.178
10.1021/jacs.5b13470
10.1021/acs.jpclett.9b02024
10.1063/1.5050557
10.1038/s41467-018-03757-0
10.1002/adma.201601418
10.1039/C5CP03102H
10.1016/j.nanoen.2017.02.040
10.1021/acs.inorgchem.6b01307
10.1002/anie.201902418
10.1039/C8NH00163D
10.1007/s40843-018-9272-3
10.1080/14686996.2018.1460176
10.1016/j.solmat.2017.05.045
10.1021/acs.chemmater.6b03054
10.1002/anie.201808385
10.1039/C6TC05069G
10.1039/C8TA05282D
10.1016/j.jpowsour.2018.07.091
10.1021/jp509358f
10.1016/j.solmat.2018.10.021
10.1007/s12274-016-1051-8
10.1016/j.solmat.2019.04.023
10.1021/jacs.7b07949
10.1016/j.solmat.2016.09.022
10.1039/C4EE01076K
10.1021/jacs.5b03615
10.1126/science.1232994
10.1021/acsenergylett.9b00251
10.1539/joh.10-0057-OA
10.1021/acs.nanolett.7b05469
10.1039/C7TA02662E
10.1039/C5TA01246E
10.1016/j.ijleo.2018.05.135
10.1016/j.matlet.2018.02.034
10.1021/acsaem.9b00486
10.1002/pssr.201600166
10.1038/s41560-018-0278-x
10.1002/advs.201800793
10.1002/cssc.201701653
10.1021/jacs.7b01815
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201902584
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_201902584
AENM201902584
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2016YFA0202402
– fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20170059
– fundername: State Administration of Foreign Experts Affairs
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Natural Science Foundation of China
  funderid: 61674109
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
– fundername: State Key Laboratory of Integrated Optoelectronics
  funderid: IOSKL2018KF07
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c4224-f132e982e476e383828eea5d1ea0dee0c65fc7f659c5988722176424f8d326053
ISSN 1614-6832
IngestDate Fri Jul 25 12:18:12 EDT 2025
Tue Jul 01 01:43:31 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Jan 22 16:35:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4224-f132e982e476e383828eea5d1ea0dee0c65fc7f659c5988722176424f8d326053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1707-499X
PQID 2387184534
PQPubID 886389
PageCount 30
ParticipantIDs proquest_journals_2387184534
crossref_citationtrail_10_1002_aenm_201902584
crossref_primary_10_1002_aenm_201902584
wiley_primary_10_1002_aenm_201902584_AENM201902584
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 441
2018; 282
2019; 11
2019; 10
2019; 15
2011; 53
2019; 567
2011; 59
2012; 12
2017; 159
2014; 136
2018; 49
2019; 563
2017; 678
2018; 6
2018; 9
2018; 8
2018; 3
2018; 2
2018; 170
2018; 5
2015; 137
2018; 1
2018; 218
2015; 88
2014; 14
2019; 29
2018; 30
2016; 49
2019; 270
2003; 41
2018; 35
2019; 7
2019; 9
2019; 4
2019; 191
2019; 3
2019; 6
2019; 5
2018; 227
2019; 2
2015; 51
2019; 1
2011; 84
2015; 54
2016; 10
2013; 340
2016; 18
2016; 16
2016; 15
2018; 20
2016; 13
2017; 139
2019; 186
2016; 4
2018; 19
2016; 6
2018; 18
2016; 7
2018; 17
2016; 1
2019; 40
2016; 3
2018; 1080
2016; 218
2017; 56
2019; 179
2015; 119
2016; 213
2018; 12
2016; 28
2018; 11
2018; 10
2012; 116
2016; 26
2016; 25
2016; 9
1994; 10
2019; 176
2015; 184
2017; 5
2018; 122
2017; 7
2017; 2
2017; 3
2017; 4
2015; 347
2008; B64
2018; 124
2017; 46
2019; 58
2008; 77
2017; 9
2019; 364
2005; 25
2014; 5
2013; 15
2014; 4
2014; 2
1991; 46
2017; 34
2016; 354
2017; 240
2017; 121
2014; 8
2014; 7
2019; 199
2014; 118
2015; 17
2015; 5
2015; 4
2018; 140
2015; 3
2017; 27
2018; 148
2017; 170
2017; 29
2018; 61
2009; 131
2019; 141
2016; 120
2016; 55
2015; 27
2006; 89
2018; 399
2017; 10
2017; 12
2019
2018
2016; 138
2018; 51
2016; 533
2019; 130
2018; 59
2018; 57
e_1_2_13_120_1
e_1_2_13_143_1
e_1_2_13_166_1
e_1_2_13_189_1
e_1_2_13_20_1
e_1_2_13_66_1
e_1_2_13_43_1
Singh A. (e_1_2_13_71_1) 2018
e_1_2_13_181_1
e_1_2_13_226_1
e_1_2_13_249_1
e_1_2_13_8_1
e_1_2_13_81_1
e_1_2_13_252_1
e_1_2_13_275_1
e_1_2_13_92_1
e_1_2_13_214_1
e_1_2_13_17_1
e_1_2_13_154_1
e_1_2_13_131_1
e_1_2_13_32_1
e_1_2_13_55_1
e_1_2_13_78_1
e_1_2_13_177_1
e_1_2_13_215_1
e_1_2_13_192_1
e_1_2_13_238_1
e_1_2_13_70_1
e_1_2_13_241_1
e_1_2_13_264_1
e_1_2_13_203_1
e_1_2_13_105_1
e_1_2_13_88_1
e_1_2_13_128_1
e_1_2_13_29_1
e_1_2_13_165_1
e_1_2_13_142_1
e_1_2_13_44_1
e_1_2_13_67_1
e_1_2_13_104_1
e_1_2_13_188_1
e_1_2_13_9_1
e_1_2_13_248_1
e_1_2_13_82_1
e_1_2_13_180_1
e_1_2_13_251_1
e_1_2_13_91_1
e_1_2_13_274_1
e_1_2_13_236_1
e_1_2_13_116_1
e_1_2_13_213_1
e_1_2_13_99_1
e_1_2_13_139_1
e_1_2_13_18_1
e_1_2_13_130_1
e_1_2_13_153_1
e_1_2_13_79_1
e_1_2_13_10_1
e_1_2_13_56_1
e_1_2_13_115_1
e_1_2_13_176_1
e_1_2_13_199_1
e_1_2_13_33_1
e_1_2_13_237_1
e_1_2_13_191_1
e_1_2_13_1_1
e_1_2_13_240_1
e_1_2_13_263_1
e_1_2_13_225_1
e_1_2_13_202_1
e_1_2_13_127_1
Zhang Y.‐Y. (e_1_2_13_36_1) 2018; 35
e_1_2_13_122_1
e_1_2_13_68_1
e_1_2_13_45_1
e_1_2_13_145_1
e_1_2_13_168_1
e_1_2_13_205_1
e_1_2_13_22_1
e_1_2_13_60_1
e_1_2_13_83_1
e_1_2_13_183_1
e_1_2_13_228_1
e_1_2_13_6_1
e_1_2_13_160_1
e_1_2_13_90_1
e_1_2_13_231_1
e_1_2_13_254_1
e_1_2_13_277_1
e_1_2_13_98_1
e_1_2_13_119_1
e_1_2_13_19_1
e_1_2_13_133_1
e_1_2_13_57_1
e_1_2_13_110_1
e_1_2_13_217_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_156_1
e_1_2_13_171_1
e_1_2_13_72_1
e_1_2_13_194_1
e_1_2_13_220_1
e_1_2_13_243_1
e_1_2_13_266_1
e_1_2_13_107_1
e_1_2_13_121_1
e_1_2_13_144_1
e_1_2_13_46_1
e_1_2_13_69_1
e_1_2_13_23_1
e_1_2_13_167_1
e_1_2_13_204_1
e_1_2_13_84_1
e_1_2_13_182_1
e_1_2_13_227_1
e_1_2_13_7_1
e_1_2_13_61_1
e_1_2_13_230_1
e_1_2_13_276_1
e_1_2_13_253_1
e_1_2_13_97_1
e_1_2_13_118_1
e_1_2_13_132_1
e_1_2_13_155_1
e_1_2_13_178_1
e_1_2_13_35_1
e_1_2_13_58_1
e_1_2_13_216_1
e_1_2_13_12_1
e_1_2_13_170_1
e_1_2_13_193_1
e_1_2_13_73_1
e_1_2_13_50_1
e_1_2_13_265_1
e_1_2_13_242_1
e_1_2_13_106_1
e_1_2_13_129_1
e_1_2_13_280_1
e_1_2_13_24_1
e_1_2_13_185_1
e_1_2_13_207_1
e_1_2_13_101_1
e_1_2_13_147_1
e_1_2_13_124_1
e_1_2_13_85_1
e_1_2_13_62_1
e_1_2_13_162_1
e_1_2_13_233_1
e_1_2_13_256_1
e_1_2_13_279_1
e_1_2_13_96_1
e_1_2_13_210_1
e_1_2_13_271_1
e_1_2_13_13_1
e_1_2_13_59_1
e_1_2_13_219_1
e_1_2_13_112_1
e_1_2_13_158_1
e_1_2_13_196_1
e_1_2_13_135_1
e_1_2_13_51_1
e_1_2_13_74_1
e_1_2_13_173_1
e_1_2_13_150_1
e_1_2_13_222_1
e_1_2_13_245_1
e_1_2_13_268_1
e_1_2_13_4_1
e_1_2_13_109_1
e_1_2_13_260_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_100_1
e_1_2_13_169_1
e_1_2_13_206_1
e_1_2_13_123_1
e_1_2_13_86_1
e_1_2_13_146_1
e_1_2_13_40_1
e_1_2_13_63_1
e_1_2_13_184_1
e_1_2_13_229_1
Nguyen‐Tran T. (e_1_2_13_77_1) 2018; 3
e_1_2_13_161_1
He Y. (e_1_2_13_239_1) 2018; 30
e_1_2_13_232_1
e_1_2_13_255_1
e_1_2_13_95_1
e_1_2_13_278_1
Sajid B. S. (e_1_2_13_269_1) 2018
Li Q. (e_1_2_13_47_1) 2019; 1
e_1_2_13_270_1
e_1_2_13_14_1
Jokar E. (e_1_2_13_21_1) 2018
e_1_2_13_111_1
e_1_2_13_37_1
e_1_2_13_218_1
e_1_2_13_134_1
e_1_2_13_157_1
e_1_2_13_75_1
e_1_2_13_52_1
e_1_2_13_172_1
e_1_2_13_195_1
e_1_2_13_221_1
e_1_2_13_5_1
e_1_2_13_244_1
e_1_2_13_267_1
e_1_2_13_108_1
e_1_2_13_49_1
e_1_2_13_141_1
e_1_2_13_164_1
e_1_2_13_209_1
e_1_2_13_26_1
e_1_2_13_126_1
e_1_2_13_87_1
e_1_2_13_187_1
e_1_2_13_64_1
e_1_2_13_103_1
e_1_2_13_41_1
e_1_2_13_273_1
e_1_2_13_94_1
e_1_2_13_235_1
e_1_2_13_258_1
Lekina Y. (e_1_2_13_179_1) 2019; 4
e_1_2_13_138_1
e_1_2_13_212_1
e_1_2_13_250_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_152_1
e_1_2_13_137_1
e_1_2_13_175_1
e_1_2_13_53_1
e_1_2_13_76_1
e_1_2_13_114_1
e_1_2_13_198_1
e_1_2_13_259_1
e_1_2_13_30_1
e_1_2_13_190_1
e_1_2_13_262_1
e_1_2_13_224_1
e_1_2_13_247_1
e_1_2_13_2_1
Shalauddin (e_1_2_13_117_1) 2017; 12
e_1_2_13_201_1
e_1_2_13_149_1
e_1_2_13_27_1
e_1_2_13_163_1
e_1_2_13_208_1
e_1_2_13_102_1
e_1_2_13_125_1
e_1_2_13_148_1
e_1_2_13_186_1
e_1_2_13_42_1
e_1_2_13_65_1
e_1_2_13_80_1
e_1_2_13_140_1
e_1_2_13_93_1
e_1_2_13_234_1
e_1_2_13_257_1
e_1_2_13_211_1
e_1_2_13_39_1
e_1_2_13_272_1
e_1_2_13_16_1
e_1_2_13_113_1
e_1_2_13_136_1
e_1_2_13_159_1
e_1_2_13_174_1
e_1_2_13_197_1
e_1_2_13_31_1
e_1_2_13_54_1
e_1_2_13_151_1
e_1_2_13_223_1
e_1_2_13_3_1
e_1_2_13_246_1
e_1_2_13_89_1
e_1_2_13_200_1
e_1_2_13_28_1
e_1_2_13_261_1
References_xml – volume: 58
  start-page: 130
  year: 2019
  publication-title: Nano Energy
– volume: 141
  start-page: 1171
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6806
  year: 2015
  publication-title: Adv. Mater.
– volume: 59
  start-page: 99
  year: 2018
  publication-title: Org. Electron.
– volume: 2
  start-page: 7016
  year: 2017
  publication-title: ACS Omega
– volume: 28
  start-page: 8191
  year: 2016
  publication-title: Adv. Mater.
– volume: B64
  start-page: 702
  year: 2008
  publication-title: Acta Crystallogr., Sect. B: Struct. Sci.
– volume: 7
  start-page: 5779
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 1053
  year: 2012
  publication-title: Nano Lett.
– volume: 347
  start-page: 519
  year: 2015
  publication-title: Science
– volume: 29
  start-page: 682
  year: 2017
  publication-title: Chem. Mater.
– volume: 26
  start-page: 3417
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 2
  year: 2014
  publication-title: APL Mater.
– volume: 53
  start-page: 175
  year: 2011
  publication-title: J. Occup. Health
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 534
  year: 2016
  publication-title: Chem. Sci.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 16
  start-page: 7739
  year: 2016
  publication-title: Nano Lett.
– volume: 4
  start-page: 4467
  year: 2015
  publication-title: Sci. Rep.
– volume: 29
  start-page: 5974
  year: 2017
  publication-title: Chem. Mater.
– volume: 186
  start-page: 136
  year: 2019
  publication-title: Sol. Energy
– volume: 4
  start-page: 208
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 6
  year: 2019
  publication-title: Adv. Sci.
– volume: 77
  year: 2008
  publication-title: Phys. Rev. B
– volume: 19
  start-page: 425
  year: 2018
  publication-title: Sci. Technol. Adv. Mater.
– year: 2019
– volume: 399
  start-page: 76
  year: 2018
  publication-title: J. Power Sources
– volume: 59
  start-page: 1742
  year: 2011
  publication-title: Acta Mater.
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 49
  start-page: 411
  year: 2018
  publication-title: Nano Energy
– volume: 1
  start-page: 4221
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 6
  start-page: 5652
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 567
  start-page: 511
  year: 2019
  publication-title: Nature
– volume: 3
  start-page: 1470
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 1682
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 58
  start-page: 1072
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 227
  start-page: 311
  year: 2018
  publication-title: Mater. Lett.
– volume: 12
  start-page: 1
  year: 2017
  publication-title: DIU J. Sci. Technol.
– volume: 40
  year: 2019
  publication-title: J. Semicond.
– volume: 170
  start-page: 463
  year: 2018
  publication-title: Optik
– volume: 139
  start-page: 836
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 469
  year: 2016
  publication-title: Nano Energy
– volume: 28
  start-page: 9333
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  start-page: 5900
  year: 2014
  publication-title: Nat. Commun.
– volume: 10
  start-page: 5277
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 563
  start-page: 107
  year: 2019
  publication-title: Phys. B
– volume: 56
  start-page: 92
  year: 2017
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 2353
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 2819
  year: 2016
  publication-title: RSC Adv.
– volume: 3
  start-page: 496
  year: 2019
  publication-title: Mater. Chem. Front.
– volume: 354
  start-page: 861
  year: 2016
  publication-title: Science
– volume: 10
  start-page: 965
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  start-page: 7901
  year: 2017
  publication-title: Chem. Mater.
– volume: 218
  start-page: 233
  year: 2018
  publication-title: Mater. Lett.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 3
  start-page: 9308
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 837
  year: 2017
  publication-title: Materials
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 3
  start-page: 19
  year: 2016
  publication-title: Front. Mater.
– volume: 56
  start-page: 84
  year: 2017
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 1513
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 282
  start-page: 807
  year: 2018
  publication-title: Electrochim. Acta
– volume: 2
  year: 2017
  publication-title: Nat. Energy
– volume: 13
  start-page: 13
  year: 2016
  publication-title: Phys. Status Solidi C
– volume: 9
  start-page: 7090
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 115
  year: 1994
  publication-title: J. Paleolimnol.
– volume: 1080
  year: 2018
  publication-title: J. Phys.: Conf. Ser.
– volume: 11
  start-page: 449
  year: 2018
  publication-title: ChemSusChem
– volume: 122
  start-page: 9275
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 34
  start-page: 392
  year: 2017
  publication-title: Nano Energy
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  year: 2016
  publication-title: Nat. Energy
– volume: 9
  start-page: 1336
  year: 2018
  publication-title: Nat. Commun.
– volume: 15
  start-page: 192
  year: 2019
  publication-title: Electron. Mater. Lett.
– volume: 9
  start-page: 337
  year: 2018
  publication-title: iScience
– volume: 9
  start-page: 243
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  start-page: 5757
  year: 2014
  publication-title: Nat. Commun.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 17
  year: 2015
  publication-title: Phys. Chem. Chem. Phys.
– volume: 7
  start-page: 3467
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 736
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 441
  start-page: 394
  year: 2018
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 2518
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 2566
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 12
  year: 2018
  publication-title: Phys. Status Solidi
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 2572
  year: 2013
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  start-page: 5
  year: 2018
  publication-title: J. Nanopart. Res.
– year: 2018
  publication-title: Small‐Scale Energy Harvesting
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 2
  start-page: 897
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 4728
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 2315
  year: 2016
  publication-title: Chem. Mater.
– volume: 9
  start-page: 3405
  year: 2018
  publication-title: Nat. Commun.
– volume: 4
  start-page: 17
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 191
  start-page: 33
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 58
  start-page: 6688
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 18
  start-page: 2428
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 7
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 3061
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 200
  year: 2005
  publication-title: Eur. Respir. J.
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 130
  start-page: 20
  year: 2019
  publication-title: Superlattices Microstruct.
– volume: 10
  start-page: 16
  year: 2019
  publication-title: Nat. Commun.
– volume: 4
  year: 2014
  publication-title: RSC Adv.
– volume: 4
  start-page: 615
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 587
  year: 2016
  publication-title: Phys. Stat. Sol.
– start-page: 518
  year: 2018
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1584
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 18
  start-page: 2060
  year: 2018
  publication-title: Nano Lett.
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 184
  start-page: 466
  year: 2015
  publication-title: Electrochim. Acta
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 118
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 10
  start-page: 2560
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 5897
  year: 2018
  publication-title: RSC Adv.
– volume: 3
  start-page: 2077
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 9208
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 41
  start-page: 1651
  year: 2003
  publication-title: Food Chem. Toxicol.
– volume: 240
  start-page: 98
  year: 2017
  publication-title: Electrochim. Acta
– volume: 30
  start-page: 35
  year: 2018
  publication-title: J. Phys.: Condens. Matter
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 3600
  year: 2018
  publication-title: Nano Lett.
– volume: 121
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 30
  start-page: 3920
  year: 2018
  publication-title: Chem. Mater.
– volume: 3
  start-page: 1093
  year: 2018
  publication-title: Nat. Energy
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 17
  start-page: 550
  year: 2018
  publication-title: Nat. Mater.
– volume: 2
  start-page: 1231
  year: 2018
  publication-title: Joule
– volume: 46
  start-page: 3500
  year: 2017
  publication-title: Dalton Trans.
– volume: 6
  start-page: 2577
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 5028
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 9391
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 148
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 18
  year: 2016
  publication-title: Phys. Chem. Chem. Phys.
– volume: 11
  start-page: 3053
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 46
  start-page: 906
  year: 1991
  publication-title: Bull. Environ. Contam. Toxicol.
– volume: 213
  start-page: 975
  year: 2016
  publication-title: Phys. Status Solidi A
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 170
  start-page: 8
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 678
  start-page: 17
  year: 2017
  publication-title: Chem. Phys. Lett.
– volume: 179
  start-page: 969
  year: 2019
  publication-title: Optik
– volume: 1
  start-page: 360
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 122
  start-page: 7838
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 276
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 6999
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 139
  start-page: 8038
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 84
  start-page: 926
  year: 2011
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 5
  start-page: 3189
  year: 2018
  publication-title: ACS Photonics
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2246
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 30
  start-page: 1556
  year: 2018
  publication-title: Chem. Mater.
– volume: 7
  start-page: 4178
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 2584
  year: 2014
  publication-title: Nano Lett.
– volume: 533
  start-page: 73
  year: 2016
  publication-title: Nature
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 2
  year: 2018
  publication-title: Sol. RRL
– volume: 3
  start-page: 713
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 9
  start-page: 2293
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 364
  start-page: 475
  year: 2019
  publication-title: Science
– volume: 1
  start-page: 595
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 124
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 54
  start-page: 8208
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 270
  start-page: 593
  year: 2019
  publication-title: J. Solid State Chem.
– volume: 28
  start-page: 8990
  year: 2016
  publication-title: Adv. Mater.
– volume: 6
  start-page: 9220
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 139
  start-page: 6693
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 218
  start-page: 263
  year: 2016
  publication-title: Electrochim. Acta
– volume: 3
  start-page: 1116
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 3
  year: 2019
  publication-title: Sol. RRL
– volume: 1
  start-page: 14
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 340
  start-page: 334
  year: 2013
  publication-title: Science
– volume: 1
  start-page: 1028
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 89
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 61
  start-page: 1549
  year: 2018
  publication-title: Sci. China Mater.
– volume: 11
  start-page: 1505
  year: 2019
  publication-title: Nanoscale
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 176
  start-page: 262
  year: 2019
  publication-title: Optik
– volume: 9
  start-page: 6024
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 218
  start-page: 253
  year: 2018
  publication-title: Mater. Lett.
– volume: 122
  start-page: 5940
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 8
  year: 2018
  publication-title: RSC Adv.
– volume: 2
  start-page: 2450
  year: 2018
  publication-title: Sustainable Energy Fuels
– volume: 2
  start-page: 4821
  year: 2019
  publication-title: ACS Appl. Energy Mater.
– volume: 88
  start-page: 1250
  year: 2015
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 7
  start-page: 776
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 58
  start-page: 806
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 1570
  year: 2016
  publication-title: Nano Res.
– volume: 3
  start-page: 2701
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 28
  start-page: 7781
  year: 2016
  publication-title: Chem. Mater.
– volume: 137
  start-page: 8227
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 116
  year: 2012
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 49
  start-page: 330
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 140
  start-page: 388
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 159
  start-page: 227
  year: 2017
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 55
  start-page: 3447
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  start-page: 3
  year: 2018
  publication-title: Chin. Phys. Lett.
– volume: 119
  start-page: 1763
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 15
  start-page: 247
  year: 2016
  publication-title: Nat. Mater.
– publication-title: IEEE Trans. Nanotechnol.
– year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 7
  start-page: 9154
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 51
  year: 2018
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  start-page: 1806
  year: 2019
  publication-title: Chem
– volume: 199
  start-page: 75
  year: 2019
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 471
  year: 2018
  publication-title: J. Sci.: Adv. Mater. Dev.
– volume: 138
  start-page: 3974
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 1086
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 189
  year: 2019
  publication-title: J. Sci: Adv. Mater. Dev.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 1321
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 5
  start-page: 1121
  year: 2017
  publication-title: J. Mater. Chem. C
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 120
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 25
  year: 2016
  publication-title: Chin. Phys. B
– volume: 56
  start-page: 26
  year: 2017
  publication-title: Inorg. Chem.
– volume: 4
  start-page: 1930
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 2
  start-page: 982
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 138
  start-page: 2941
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1790
  year: 2019
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 5265
  year: 2018
  publication-title: Nat. Commun.
– volume: 119
  start-page: 5755
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 22
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 46
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 2
  start-page: 2159
  year: 2017
  publication-title: ACS Energy Lett.
– ident: e_1_2_13_64_1
  doi: 10.1021/acs.jpcc.8b01820
– ident: e_1_2_13_210_1
  doi: 10.1088/1674-1056/25/10/108802
– ident: e_1_2_13_44_1
  doi: 10.1107/S0108768108032734
– ident: e_1_2_13_61_1
  doi: 10.1002/adfm.201605469
– ident: e_1_2_13_202_1
  doi: 10.1021/jacs.5b04015
– ident: e_1_2_13_63_1
  doi: 10.1039/C5RA21291J
– ident: e_1_2_13_108_1
  doi: 10.1002/advs.201700183
– ident: e_1_2_13_207_1
  doi: 10.1021/jacs.7b10898
– ident: e_1_2_13_181_1
  doi: 10.1039/C8TA00751A
– ident: e_1_2_13_273_1
  doi: 10.1038/srep35705
– ident: e_1_2_13_50_1
  doi: 10.1021/acsenergylett.8b02243
– ident: e_1_2_13_183_1
  doi: 10.1021/acsenergylett.7b00976
– ident: e_1_2_13_240_1
  doi: 10.1039/C6CP03388A
– ident: e_1_2_13_33_1
  doi: 10.1021/acsenergylett.7b00636
– ident: e_1_2_13_43_1
  doi: 10.1039/C6DT04796C
– ident: e_1_2_13_241_1
  doi: 10.1002/aenm.201500477
– ident: e_1_2_13_267_1
  doi: 10.1002/adfm.201505127
– ident: e_1_2_13_35_1
  doi: 10.1038/ncomms6757
– ident: e_1_2_13_53_1
  doi: 10.1039/C6RA19476A
– ident: e_1_2_13_200_1
  doi: 10.1021/jacs.6b08790
– ident: e_1_2_13_58_1
  doi: 10.1021/acs.jpclett.8b03194
– ident: e_1_2_13_214_1
  doi: 10.1016/j.chempr.2019.04.003
– ident: e_1_2_13_55_1
  doi: 10.1063/1.4885256
– ident: e_1_2_13_92_1
  doi: 10.1002/anie.201707037
– ident: e_1_2_13_85_1
  doi: 10.1021/jp5126624
– ident: e_1_2_13_38_1
  doi: 10.1038/s41467-018-05761-w
– ident: e_1_2_13_176_1
  doi: 10.1002/solr.201900199
– ident: e_1_2_13_195_1
  doi: 10.1021/acs.jpclett.8b00871
– ident: e_1_2_13_18_1
  doi: 10.1016/j.electacta.2015.10.030
– ident: e_1_2_13_93_1
  doi: 10.1002/adfm.201604818
– ident: e_1_2_13_268_1
  doi: 10.1021/acsenergylett.9b01179
– ident: e_1_2_13_215_1
  doi: 10.1021/ja504539w
– ident: e_1_2_13_243_1
  doi: 10.1038/s41467-018-07255-1
– ident: e_1_2_13_256_1
  doi: 10.1002/adma.201501978
– ident: e_1_2_13_29_1
  doi: 10.1039/C6TA08332C
– ident: e_1_2_13_121_1
  doi: 10.1103/PhysRevMaterials.2.075402
– ident: e_1_2_13_193_1
  doi: 10.1021/acs.jpclett.8b03381
– ident: e_1_2_13_52_1
  doi: 10.1002/anie.201511792
– ident: e_1_2_13_275_1
  doi: 10.1021/acsenergylett.8b00687
– ident: e_1_2_13_120_1
  doi: 10.1038/s41563-018-0081-x
– ident: e_1_2_13_204_1
  doi: 10.1002/anie.201811539
– ident: e_1_2_13_186_1
  doi: 10.1002/anie.201811497
– ident: e_1_2_13_109_1
  doi: 10.1039/C5SC02966J
– ident: e_1_2_13_259_1
  doi: 10.1109/tnano.2019.2923048
– ident: e_1_2_13_65_1
  doi: 10.1021/acs.jpclett.6b00118
– ident: e_1_2_13_189_1
  doi: 10.1039/C8NR03589J
– ident: e_1_2_13_41_1
  doi: 10.1021/jacs.7b09379
– ident: e_1_2_13_261_1
  doi: 10.1002/aenm.201501119
– ident: e_1_2_13_184_1
  doi: 10.1016/j.nanoen.2018.05.006
– ident: e_1_2_13_229_1
  doi: 10.1063/1.5023737
– ident: e_1_2_13_11_1
  doi: 10.1021/jp504951h
– ident: e_1_2_13_24_1
  doi: 10.1038/srep18721
– ident: e_1_2_13_201_1
  doi: 10.1039/C4RA11155A
– ident: e_1_2_13_3_1
  doi: 10.1021/acsami.8b11474
– ident: e_1_2_13_166_1
  doi: 10.1021/acsenergylett.6b00514
– ident: e_1_2_13_231_1
  doi: 10.1021/acsenergylett.7b00171
– ident: e_1_2_13_138_1
  doi: 10.1021/acsenergylett.8b01046
– ident: e_1_2_13_170_1
  doi: 10.1039/C6TA07712A
– ident: e_1_2_13_206_1
  doi: 10.1016/j.electacta.2016.09.138
– ident: e_1_2_13_66_1
  doi: 10.1002/pssa.201532594
– ident: e_1_2_13_220_1
  doi: 10.1039/C5TA02950C
– ident: e_1_2_13_167_1
  doi: 10.1126/science.aaf9717
– ident: e_1_2_13_157_1
  doi: 10.1021/jacs.7b04219
– volume: 3
  start-page: 471
  year: 2018
  ident: e_1_2_13_77_1
  publication-title: J. Sci.: Adv. Mater. Dev.
– ident: e_1_2_13_165_1
  doi: 10.1016/j.matlet.2018.05.047
– ident: e_1_2_13_142_1
  doi: 10.1016/j.ijleo.2018.09.066
– start-page: 518
  volume-title: IEEE WCPEC
  year: 2018
  ident: e_1_2_13_71_1
– ident: e_1_2_13_57_1
  doi: 10.1002/adma.201606964
– ident: e_1_2_13_192_1
  doi: 10.1021/acs.nanolett.8b00077
– ident: e_1_2_13_101_1
  doi: 10.1021/nl500390f
– ident: e_1_2_13_257_1
  doi: 10.1021/acs.jpclett.6b01452
– ident: e_1_2_13_251_1
  doi: 10.1016/S0278-6915(03)00217-5
– ident: e_1_2_13_177_1
  doi: 10.1021/acsenergylett.8b01888
– ident: e_1_2_13_219_1
  doi: 10.1002/aenm.201402321
– ident: e_1_2_13_95_1
  doi: 10.1246/bcsj.20110075
– ident: e_1_2_13_146_1
  doi: 10.1021/acsphotonics.8b00422
– ident: e_1_2_13_144_1
  doi: 10.1021/acs.jpclett.9b00422
– ident: e_1_2_13_212_1
  doi: 10.1039/c2cp44397j
– ident: e_1_2_13_134_1
  doi: 10.1039/C8TA03133A
– ident: e_1_2_13_72_1
  doi: 10.1021/jacs.6b00142
– ident: e_1_2_13_266_1
  doi: 10.1016/j.orgel.2018.04.051
– ident: e_1_2_13_191_1
  doi: 10.1021/acsenergylett.8b02051
– ident: e_1_2_13_90_1
  doi: 10.1002/adma.201602992
– ident: e_1_2_13_254_1
  doi: 10.1183/09031936.04.10012704
– ident: e_1_2_13_198_1
  doi: 10.1039/C8TA05444D
– ident: e_1_2_13_223_1
  doi: 10.1021/jacs.6b10734
– ident: e_1_2_13_159_1
  doi: 10.1002/adma.201800258
– ident: e_1_2_13_234_1
  doi: 10.1039/C8EE00956B
– ident: e_1_2_13_225_1
  doi: 10.1021/acsami.8b19143
– ident: e_1_2_13_110_1
  doi: 10.1021/jp506498k
– ident: e_1_2_13_154_1
  doi: 10.1002/adma.201604744
– ident: e_1_2_13_7_1
  doi: 10.1021/acsenergylett.6b00196
– ident: e_1_2_13_12_1
  doi: 10.1021/jp512420b
– ident: e_1_2_13_216_1
  doi: 10.1039/C8QM00620B
– ident: e_1_2_13_20_1
  doi: 10.1021/acsenergylett.8b01588
– ident: e_1_2_13_236_1
  doi: 10.1021/acs.jpclett.8b02555
– ident: e_1_2_13_42_1
  doi: 10.1039/C8TA01490F
– ident: e_1_2_13_82_1
  doi: 10.1126/sciadv.1701293
– ident: e_1_2_13_232_1
  doi: 10.1002/adma.201703800
– ident: e_1_2_13_130_1
  doi: 10.1021/acs.jpcc.7b11976
– ident: e_1_2_13_178_1
  doi: 10.1016/j.electacta.2017.04.067
– ident: e_1_2_13_133_1
  doi: 10.1002/aenm.201803243
– ident: e_1_2_13_265_1
  doi: 10.1002/aenm.201601130
– start-page: 1804835
  year: 2018
  ident: e_1_2_13_21_1
  publication-title: Adv. Mater.
– ident: e_1_2_13_174_1
  doi: 10.1021/acsenergylett.8b01411
– ident: e_1_2_13_13_1
  doi: 10.1002/solr.201800136
– ident: e_1_2_13_62_1
  doi: 10.1016/j.nanoen.2016.09.009
– ident: e_1_2_13_86_1
  doi: 10.1088/1361-6463/aae2ab
– ident: e_1_2_13_37_1
  doi: 10.3389/fmats.2016.00019
– ident: e_1_2_13_263_1
  doi: 10.1039/C8SE00314A
– ident: e_1_2_13_171_1
  doi: 10.1021/acs.nanolett.6b03857
– ident: e_1_2_13_255_1
  doi: 10.1039/C5CC06916E
– ident: e_1_2_13_264_1
  doi: 10.1126/science.aav7911
– ident: e_1_2_13_279_1
  doi: 10.1021/jacs.8b10851
– ident: e_1_2_13_84_1
  doi: 10.1021/acsenergylett.6b00402
– year: 2018
  ident: e_1_2_13_269_1
  publication-title: Small‐Scale Energy Harvesting
– volume: 12
  start-page: 1
  year: 2017
  ident: e_1_2_13_117_1
  publication-title: DIU J. Sci. Technol.
– ident: e_1_2_13_169_1
  doi: 10.1021/acs.jpclett.8b00275
– ident: e_1_2_13_49_1
  doi: 10.1039/C8TA11705E
– ident: e_1_2_13_197_1
  doi: 10.1039/C4TA06230B
– volume: 4
  start-page: 189
  year: 2019
  ident: e_1_2_13_179_1
  publication-title: J. Sci: Adv. Mater. Dev.
– ident: e_1_2_13_4_1
  doi: 10.1021/acsami.7b06788
– ident: e_1_2_13_245_1
  doi: 10.1021/acs.accounts.5b00455
– ident: e_1_2_13_114_1
  doi: 10.1038/s41598-017-14435-4
– ident: e_1_2_13_203_1
  doi: 10.1039/C8RA00248G
– ident: e_1_2_13_75_1
  doi: 10.1002/solr.201800290
– ident: e_1_2_13_252_1
  doi: 10.1038/srep31896
– ident: e_1_2_13_131_1
  doi: 10.1021/acs.chemmater.7b02803
– volume: 35
  start-page: 3
  year: 2018
  ident: e_1_2_13_36_1
  publication-title: Chin. Phys. Lett.
– ident: e_1_2_13_68_1
  doi: 10.1039/C8NR08683D
– ident: e_1_2_13_175_1
  doi: 10.1002/adfm.201807696
– ident: e_1_2_13_217_1
  doi: 10.1002/adma.201803703
– ident: e_1_2_13_98_1
  doi: 10.1021/acsami.8b19778
– volume: 1
  start-page: 14
  year: 2019
  ident: e_1_2_13_47_1
  publication-title: Appl. Phys. Lett.
– ident: e_1_2_13_100_1
  doi: 10.1016/j.physb.2019.03.035
– ident: e_1_2_13_119_1
  doi: 10.1021/acs.jpclett.8b03164
– ident: e_1_2_13_81_1
  doi: 10.1002/adfm.201808059
– ident: e_1_2_13_208_1
  doi: 10.1038/s41586-019-1036-3
– ident: e_1_2_13_106_1
  doi: 10.1088/1674-1056/25/10/107202
– ident: e_1_2_13_233_1
  doi: 10.1016/j.isci.2018.11.003
– ident: e_1_2_13_74_1
  doi: 10.1002/adom.201700615
– ident: e_1_2_13_112_1
  doi: 10.1038/srep04467
– ident: e_1_2_13_19_1
  doi: 10.1021/acs.jpcc.7b06278
– ident: e_1_2_13_221_1
  doi: 10.1016/j.apsusc.2018.02.038
– ident: e_1_2_13_237_1
  doi: 10.1038/s41467-019-08918-3
– ident: e_1_2_13_54_1
  doi: 10.1021/acsenergylett.6b00513
– ident: e_1_2_13_262_1
  doi: 10.1039/C8TA11891D
– ident: e_1_2_13_226_1
  doi: 10.1021/acs.inorgchem.6b02318
– ident: e_1_2_13_244_1
  doi: 10.1021/acs.chemmater.7b01630
– ident: e_1_2_13_113_1
  doi: 10.1038/s41467-019-10468-7
– ident: e_1_2_13_129_1
  doi: 10.1021/acs.inorgchem.6b01701
– ident: e_1_2_13_276_1
  doi: 10.1016/j.jssc.2018.12.029
– ident: e_1_2_13_1_1
  doi: 10.1021/ja809598r
– ident: e_1_2_13_145_1
  doi: 10.1021/ja5033259
– ident: e_1_2_13_17_1
  doi: 10.1021/acsami.7b16349
– ident: e_1_2_13_89_1
  doi: 10.1002/advs.201700204
– ident: e_1_2_13_224_1
  doi: 10.1039/C8TA05916K
– ident: e_1_2_13_16_1
  doi: 10.1016/j.cplett.2017.04.008
– ident: e_1_2_13_155_1
  doi: 10.1021/nl204297u
– ident: e_1_2_13_69_1
  doi: 10.1016/j.solener.2019.05.007
– ident: e_1_2_13_147_1
  doi: 10.1021/acs.chemmater.8b01695
– ident: e_1_2_13_205_1
  doi: 10.1021/acs.nanolett.8b00701
– ident: e_1_2_13_209_1
  doi: 10.1002/adma.201801401
– ident: e_1_2_13_39_1
  doi: 10.1038/nature17439
– ident: e_1_2_13_115_1
  doi: 10.1021/acs.jpclett.8b00494
– ident: e_1_2_13_173_1
  doi: 10.1021/acs.jpcc.8b04013
– ident: e_1_2_13_6_1
– ident: e_1_2_13_96_1
  doi: 10.1088/1742-6596/1080/1/012003
– ident: e_1_2_13_271_1
  doi: 10.1088/1361-6463/aaa7ca
– ident: e_1_2_13_260_1
  doi: 10.1002/pssr.201800090
– ident: e_1_2_13_107_1
  doi: 10.1021/acs.jpclett.6b00322
– ident: e_1_2_13_228_1
  doi: 10.1002/solr.201900285
– ident: e_1_2_13_124_1
  doi: 10.1038/s41467-017-02684-w
– ident: e_1_2_13_187_1
  doi: 10.1021/acsenergylett.7b00202
– volume: 30
  start-page: 35
  year: 2018
  ident: e_1_2_13_239_1
  publication-title: J. Phys.: Condens. Matter
– ident: e_1_2_13_272_1
  doi: 10.1038/s41467-018-07951-y
– ident: e_1_2_13_248_1
  doi: 10.1021/acsenergylett.6b00320
– ident: e_1_2_13_140_1
  doi: 10.1039/C8TA07699E
– ident: e_1_2_13_25_1
  doi: 10.1016/j.joule.2018.04.026
– ident: e_1_2_13_15_1
  doi: 10.1021/acsenergylett.8b00383
– ident: e_1_2_13_94_1
  doi: 10.1021/acs.chemmater.6b04300
– ident: e_1_2_13_67_1
  doi: 10.1021/acs.jpclett.6b02344
– ident: e_1_2_13_59_1
  doi: 10.1021/jacs.5b06658
– ident: e_1_2_13_79_1
  doi: 10.1007/s11051-017-4108-z
– ident: e_1_2_13_132_1
  doi: 10.1021/ja508464w
– ident: e_1_2_13_230_1
  doi: 10.1021/jacs.7b09018
– ident: e_1_2_13_51_1
  doi: 10.1002/aenm.201601353
– ident: e_1_2_13_143_1
  doi: 10.1021/acs.chemmater.7b04565
– ident: e_1_2_13_213_1
  doi: 10.1021/jp306433g
– ident: e_1_2_13_23_1
  doi: 10.1038/nmat4572
– ident: e_1_2_13_48_1
  doi: 10.1021/acs.jpcc.8b00226
– ident: e_1_2_13_158_1
  doi: 10.1021/acs.jpcc.8b00480
– ident: e_1_2_13_235_1
  doi: 10.1002/adfm.201904810
– ident: e_1_2_13_249_1
  doi: 10.1007/BF00682508
– ident: e_1_2_13_40_1
  doi: 10.1039/C5TA09646D
– ident: e_1_2_13_126_1
  doi: 10.1002/adma.201804506
– ident: e_1_2_13_185_1
  doi: 10.1021/acsenergylett.8b00085
– ident: e_1_2_13_250_1
  doi: 10.1007/BF01689737
– ident: e_1_2_13_164_1
  doi: 10.1016/j.electacta.2018.05.143
– ident: e_1_2_13_5_1
  doi: 10.1021/acs.jpcc.6b06722
– ident: e_1_2_13_188_1
  doi: 10.1021/acsenergylett.9b00954
– ident: e_1_2_13_26_1
  doi: 10.1021/jacs.6b08337
– ident: e_1_2_13_160_1
  doi: 10.1021/acs.jpcc.8b02499
– ident: e_1_2_13_278_1
  doi: 10.1002/advs.201802019
– ident: e_1_2_13_105_1
  doi: 10.1021/jacs.6b09257
– ident: e_1_2_13_149_1
  doi: 10.1016/j.matlet.2018.02.021
– ident: e_1_2_13_73_1
  doi: 10.1039/C5TA00190K
– ident: e_1_2_13_56_1
  doi: 10.1016/j.actamat.2010.11.041
– ident: e_1_2_13_168_1
  doi: 10.1016/j.nanoen.2019.01.026
– ident: e_1_2_13_91_1
  doi: 10.1007/s13391-018-00114-7
– ident: e_1_2_13_162_1
  doi: 10.1039/C7TA10040J
– ident: e_1_2_13_34_1
  doi: 10.1103/PhysRevB.77.235214
– ident: e_1_2_13_280_1
  doi: 10.1039/C8TA06391E
– ident: e_1_2_13_128_1
  doi: 10.1021/acsaem.8b00866
– ident: e_1_2_13_87_1
  doi: 10.1039/C8RA00809D
– ident: e_1_2_13_118_1
  doi: 10.1038/ncomms11755
– ident: e_1_2_13_27_1
  doi: 10.1038/nenergy.2017.18
– ident: e_1_2_13_80_1
  doi: 10.1002/aenm.201702019
– ident: e_1_2_13_242_1
  doi: 10.1002/anie.201503153
– ident: e_1_2_13_103_1
  doi: 10.1016/j.spmi.2019.04.017
– ident: e_1_2_13_137_1
  doi: 10.1246/bcsj.20150110
– ident: e_1_2_13_28_1
  doi: 10.1002/adma.201602696
– ident: e_1_2_13_70_1
  doi: 10.1021/acsomega.7b01292
– ident: e_1_2_13_32_1
  doi: 10.1038/nphoton.2014.82
– ident: e_1_2_13_9_1
  doi: 10.1002/pssc.201510078
– ident: e_1_2_13_45_1
  doi: 10.1021/acs.jpcc.8b04875
– ident: e_1_2_13_97_1
  doi: 10.1021/acs.chemmater.6b00433
– ident: e_1_2_13_151_1
  doi: 10.1039/C5RA19778C
– ident: e_1_2_13_125_1
  doi: 10.1038/ncomms6900
– ident: e_1_2_13_199_1
  doi: 10.1016/j.ijleo.2018.11.028
– ident: e_1_2_13_104_1
  doi: 10.1088/1674-4926/40/3/032201
– ident: e_1_2_13_8_1
  doi: 10.1126/science.aaa2725
– ident: e_1_2_13_78_1
  doi: 10.3390/ma10070837
– ident: e_1_2_13_139_1
  doi: 10.1039/C7TA01668A
– ident: e_1_2_13_211_1
  doi: 10.1063/1.2424552
– ident: e_1_2_13_274_1
  doi: 10.1021/acs.jpclett.6b02030
– ident: e_1_2_13_127_1
  doi: 10.1002/solr.201700224
– ident: e_1_2_13_14_1
  doi: 10.1021/acsenergylett.8b00645
– ident: e_1_2_13_46_1
  doi: 10.1002/adma.201704587
– ident: e_1_2_13_218_1
  doi: 10.1038/nenergy.2016.178
– ident: e_1_2_13_163_1
  doi: 10.1021/jacs.5b13470
– ident: e_1_2_13_30_1
  doi: 10.1021/acs.jpclett.9b02024
– ident: e_1_2_13_116_1
  doi: 10.1063/1.5050557
– ident: e_1_2_13_180_1
  doi: 10.1038/s41467-018-03757-0
– ident: e_1_2_13_258_1
  doi: 10.1002/adma.201601418
– ident: e_1_2_13_136_1
  doi: 10.1039/C5CP03102H
– ident: e_1_2_13_227_1
  doi: 10.1016/j.nanoen.2017.02.040
– ident: e_1_2_13_247_1
  doi: 10.1021/acs.inorgchem.6b01307
– ident: e_1_2_13_277_1
  doi: 10.1002/anie.201902418
– ident: e_1_2_13_238_1
  doi: 10.1039/C8NH00163D
– ident: e_1_2_13_270_1
  doi: 10.1007/s40843-018-9272-3
– ident: e_1_2_13_10_1
  doi: 10.1080/14686996.2018.1460176
– ident: e_1_2_13_141_1
  doi: 10.1016/j.solmat.2017.05.045
– ident: e_1_2_13_196_1
  doi: 10.1021/acs.chemmater.6b03054
– ident: e_1_2_13_60_1
  doi: 10.1002/anie.201808385
– ident: e_1_2_13_76_1
  doi: 10.1039/C6TC05069G
– ident: e_1_2_13_152_1
  doi: 10.1039/C8TA05282D
– ident: e_1_2_13_83_1
  doi: 10.1016/j.jpowsour.2018.07.091
– ident: e_1_2_13_111_1
  doi: 10.1021/jp509358f
– ident: e_1_2_13_194_1
  doi: 10.1016/j.solmat.2018.10.021
– ident: e_1_2_13_88_1
  doi: 10.1007/s12274-016-1051-8
– ident: e_1_2_13_102_1
  doi: 10.1016/j.solmat.2019.04.023
– ident: e_1_2_13_172_1
  doi: 10.1021/jacs.7b07949
– ident: e_1_2_13_22_1
  doi: 10.1016/j.solmat.2016.09.022
– ident: e_1_2_13_31_1
  doi: 10.1039/C4EE01076K
– ident: e_1_2_13_246_1
  doi: 10.1021/jacs.5b03615
– ident: e_1_2_13_156_1
  doi: 10.1126/science.1232994
– ident: e_1_2_13_150_1
  doi: 10.1021/acsenergylett.9b00251
– ident: e_1_2_13_253_1
  doi: 10.1539/joh.10-0057-OA
– ident: e_1_2_13_153_1
  doi: 10.1021/acs.nanolett.7b05469
– ident: e_1_2_13_123_1
  doi: 10.1039/C7TA02662E
– ident: e_1_2_13_161_1
  doi: 10.1039/C5TA01246E
– ident: e_1_2_13_222_1
  doi: 10.1016/j.ijleo.2018.05.135
– ident: e_1_2_13_135_1
  doi: 10.1016/j.matlet.2018.02.034
– ident: e_1_2_13_2_1
  doi: 10.1021/acsaem.9b00486
– ident: e_1_2_13_99_1
  doi: 10.1002/pssr.201600166
– ident: e_1_2_13_148_1
  doi: 10.1038/s41560-018-0278-x
– ident: e_1_2_13_190_1
  doi: 10.1002/advs.201800793
– ident: e_1_2_13_122_1
  doi: 10.1002/cssc.201701653
– ident: e_1_2_13_182_1
  doi: 10.1021/jacs.7b01815
SSID ssj0000491033
Score 2.6435454
SecondaryResourceType review_article
Snippet The chemical composition engineering of lead halide perovskites via a partial or complete replacement of toxic Pb with tin has been widely reported as a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Chemical composition
Energy gap
Lead compounds
Metal halides
Perovskites
Photovoltaic cells
Properties (attributes)
stability
Thin films
Tin
tin halide perovskites
toxicity
Title Tin Halide Perovskites: Progress and Challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201902584
https://www.proquest.com/docview/2387184534
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge4ED4lMsLCgHJA7IrGM7TsKtWlpV0BYkWlFOluPYCAmliLYc-PWM48RxpQUWLlFrp07kmY7fjGeeEXpWlqrghimcKlVjXtQ5rmqicaVFyTNlU2Fd7fBiKWZr_maTbQZ6gra6ZF-91D8vrSv5H6lCG8jVVcn-g2TDoNAAn0G-cAUJw_VqMnZEVQCka-My2bc_di4U2-a4vXdpV86Iubj4RX9gyi6GouN-99_48j-Arv6dh82aJqRCTMEMfFLdKuc06XOlfI26YycJpkMNv5gdvryYbw9RYHob-t5C38d-tC7kQEmUqXI1wxYZVFj-sSi6GKaJ2zxNU7DCJNY2dql192yxyjSOQiB1G6T-eLljGu3lOzldz-dyNdmsrqMTmgOoGqGT8evF_EMIv4FjlBLWll_0b9hTehJ6fvyIY8gy-CGxN9PCkdVtdKvzI5KxV4o76Jpp7qKbEbvkPXQO6pF49Ugi9XiV9MqRgHIkg3LcR-vpZHUxw935GFhzQF7YpoyasqCG58KwgoHzbIzK6tQoUhtDtMiszq3ISp2VsJhQcD_B3eS2qJlzY9kDNGq2jXmIEmapTbnhtS0sQHRSCWIFoTpnosq4EKcI91MgdUce784w-So97TWVbspkmLJT9Dzc_83Tpvz2zrN-RmX319pJwJGAmXjGoJu2s_yXUeR4slyEb4_-POZjdGPQ6jM02n8_mCcALffV005NfgHM23IB
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tin+Halide+Perovskites%3A+Progress+and+Challenges&rft.jtitle=Advanced+energy+materials&rft.au=Wen%E2%80%90Fan+Yang&rft.au=Igbari%2C+Femi&rft.au=Yan%E2%80%90Hui+Lou&rft.au=Zhao%E2%80%90Kui+Wang&rft.date=2020-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=10&rft.issue=13&rft_id=info:doi/10.1002%2Faenm.201902584&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon