Regasification of liquefied natural gas in satellite terminals: Techno-economic potential of cold recovery for boosting the efficiency of refrigerated facilities

•Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 248; p. 114783
Main Authors Atienza-Márquez, Antonio, Bruno, Joan Carles, Coronas, Alberto
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.11.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2021.114783

Cover

Abstract •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption and emissions up to 9–22%.•A reduction of 5–15% in the cost of refrigeration production would be achieved. The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system’s lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants.
AbstractList •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption and emissions up to 9–22%.•A reduction of 5–15% in the cost of refrigeration production would be achieved. The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system’s lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants.
The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system's lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants.
ArticleNumber 114783
Author Bruno, Joan Carles
Coronas, Alberto
Atienza-Márquez, Antonio
Author_xml – sequence: 1
  givenname: Antonio
  orcidid: 0000-0001-7185-743X
  surname: Atienza-Márquez
  fullname: Atienza-Márquez, Antonio
  email: antonio.atienza@alumni.urv.cat
– sequence: 2
  givenname: Joan Carles
  surname: Bruno
  fullname: Bruno, Joan Carles
– sequence: 3
  givenname: Alberto
  surname: Coronas
  fullname: Coronas, Alberto
BookMark eNqFkV9rFDEUxYNUcFv7FSTgiy-z5t9kZsQHpdgqFARpn0M2c7O9y0yyJtnCfhy_qZmuvvSlT4Hkd-65OeecnIUYgJB3nK054_rjbg3BxTDbsBZM8DXnquvlK7LifTc0QojujKwYH3TTD0y9Iec57xhjsmV6Rf78gq3N6NHZgjHQ6OmEvw_gEUYabDkkO9FKUAw02wLThAVogTRjsFP-RO_APYTYQN0gzujoPhYIBauqjnJxGmmqb4-QjtTHRDcx5oJhS8sDUPDVF-v2xwVO4BNuIVWXkXrrsFoh5Lfkta9OcPnvvCD319_urr43tz9vflx9vW2cErw0HlivOthwpVg7MlCcLTd6dLr1_aDVIEfQUohWDG4jtOZSg5BeKifHwQp5QT6c5u5TrAHkYmbMrn7YBoiHbISWuuNMqa6i75-hu3hISx6VYgPnrVSsUvpEuRRzrr8z-4SzTUfDmVmaMzvzvzmzNGdOzVXh52dCh-WpnpIsTi_Lv5zkUNN6REgmP4UMI9YqihkjvjTiL7hQvf8
CitedBy_id crossref_primary_10_1016_j_cej_2024_157722
crossref_primary_10_1016_j_ijhydene_2023_08_132
crossref_primary_10_1016_j_ijhydene_2024_04_053
crossref_primary_10_1016_j_heliyon_2023_e19393
crossref_primary_10_1016_j_enconman_2023_117726
crossref_primary_10_3390_pr11020517
Cites_doi 10.1016/j.enconman.2020.112790
10.1016/j.apenergy.2008.11.003
10.1016/j.apenergy.2020.115049
10.1016/j.enbuild.2012.11.029
10.1016/B978-0-12-387785-7.00010-4
10.1016/j.rser.2017.03.085
10.1016/j.apenergy.2017.01.061
10.1016/j.energy.2019.04.060
10.1016/j.enconman.2021.114128
10.1016/j.enconman.2021.114148
10.1007/978-3-319-04681-5_53
10.1016/j.enconman.2010.12.040
10.1016/j.ijhydene.2018.10.048
10.1016/j.enconman.2020.113151
10.1016/j.energy.2019.01.094
10.1016/j.energy.2009.04.036
10.1016/j.energy.2017.04.071
10.1016/j.enconman.2018.11.077
10.1016/j.apenergy.2016.02.036
10.1016/j.apenergy.2017.12.088
10.1061/9780784413609.257
10.1016/j.enconman.2018.08.028
10.1016/j.energy.2015.08.110
10.1016/j.applthermaleng.2017.12.073
10.1016/j.energy.2018.12.170
10.1016/j.enconman.2021.114495
10.1016/j.rser.2018.11.018
10.1016/j.enconman.2021.114352
10.1016/j.tej.2016.04.001
10.1016/j.enconman.2021.114363
10.1016/j.enconman.2021.114141
10.1016/j.energy.2015.07.101
10.1016/j.tsep.2017.08.001
10.1016/j.rser.2014.07.029
10.1016/j.fuel.2013.03.074
10.3390/en11040903
10.2172/5281927
10.1002/er.4510
10.1007/s11630-014-0679-5
10.1016/j.energy.2019.06.153
10.1016/j.rser.2018.09.027
ContentType Journal Article
Copyright 2021 The Authors
Copyright Elsevier Science Ltd. Nov 15, 2021
Copyright_xml – notice: 2021 The Authors
– notice: Copyright Elsevier Science Ltd. Nov 15, 2021
DBID 6I.
AAFTH
AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2021.114783
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Aerospace Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_114783
S0196890421009596
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
SOI
7S9
ACLOT
L.6
~HD
ID FETCH-LOGICAL-c421t-fe0847eb14405d0e410e0846dc65f896493de6322529cb266136e23f34c3d9a23
IEDL.DBID AIKHN
ISSN 0196-8904
IngestDate Sat Sep 27 19:03:56 EDT 2025
Wed Aug 13 05:54:57 EDT 2025
Tue Jul 01 03:03:15 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:45:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Cold recovery
Techno-economic potential
Liquefied natural gas regasification
Energy efficiency improvement
Sustainable refrigeration
Satellite LNG terminals
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-fe0847eb14405d0e410e0846dc65f896493de6322529cb266136e23f34c3d9a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7185-743X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0196890421009596
PQID 2609115340
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2636710447
proquest_journals_2609115340
crossref_primary_10_1016_j_enconman_2021_114783
crossref_citationtrail_10_1016_j_enconman_2021_114783
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114783
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Carron (b0265) 2014, 2014.
International Energy Agency (IEA). Gas Market Report, Q2-2021 2021. https://www.iea.org/reports/gas-market-report-q2-2021.
International Institute of Refrigeration (IIR). Future data centre cooled using waste cooling from LNG Terminal in Singapore 2021. https://iifiir.org/en/news/future-data-centre-cooled-using-waste-cooling-from-lng-terminal-in-singapore (accessed July 1, 2021).
Eghtesad, Afshin, Kazemzadeh (b0085) 2021; 243
Ayou, Eveloy (b0095) 2020; 213
Hall S. Cooling Towers. Branan’s Rules Thumb Chem. Eng., Elsevier; 2012, p. 182–9. 10.1016/B978-0-12-387785-7.00010-4.
Dorj P. Thermoeconomic Analysis of a New Geothermal Utilization CHP Plant in Tsetserleg, Mongolia. University of Iceland, 2005.
Woods (b0370) 2007
Roszak, Chorowski (b0175) 2013; 111
Khor, Dal Magro, Gundersen, Sze, Romagnoli (b0045) 2018; 174
Atienza-Márquez, Ayou, Carles Bruno, Coronas (b0290) 2020; 20
Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. Jonh Wiley & Sons, Inc.; 1996.
Strantzali, Aravossis, Livanos (b0260) 2017; 76
Pineda Quijano, Infante Ferreira, Duivenvoorden, Mieog (b0285) 2017
Strantzali, Aravossis, Livanos, Chrysanthopoulos (b0125) 2018; 11
LNGcold solutions GmbH 2019. http://lngcold.energy/ (accessed December 5, 2019).
Pospíšil, Charvát, Arsenyeva, Klimeš, Špiláček, Klemeš (b0030) 2019; 99
Romero Gómez, Ferreiro Garcia, Romero Gómez, Carbia (b0035) 2014; 38
Xu W, Huang Z, Fan S. Optimized Analysis of Cold Energy Utilization for Cold Storage Project of Xingtan LNG Satellite Station. In: Dincer I, Midilli A, Kucuk H, editors. Prog. Exergy, Energy, Environ., Cham: Springer International Publishing; 2014, p. 569–76. 10.1007/978-3-319-04681-5_53.
BITZER GmbH. Ammonia compressor packs - ACP Series 2018.
EnergyPlus - Weather Data 2019. https://energyplus.net/weather (accessed December 10, 2019).
Braun R, Otto P. Method and heat exchanger for recovering cold during re-gasification of cryogenic liquids. WO 2017/114518, 2017.
TRNSYS 2017. http://www.trnsys.com/ (accessed March 19, 2020).
Lin, Zhang, Gu (b0170) 2010; 35
United States Department of Energy. Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States. 2017.
Kanbur, Xiang, Dubey, Choo, Duan (b0205) 2019; 43
Wärtsilä. Small-and medium-scale LNG terminals 2018.
International Gas Union (IGU) Program Commitee (PGC) D3. Small Scale LNG. 2015.
Leeper SA. Wet Cooling Towers: “Rule-Of-Thumb” Design and simulation. 1981.
Kanbur, Xiang, Dubey, Choo, Duan (b0195) 2019; 181
International Energy Agency (IEA). Electricity Information: Overview (2020 Edition). Data Publ Stat Rep 2020:1–10.
Fang, Shang, Pan, Yao, Ma, Zhang (b0105) 2021; 238
Ning, Sun, Dong, Liu (b0180) 2019; 172
Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in MATLAB. 2nd Int. Conf. Vulnerability Risk Anal. Manag. (ICVRAM 2014), University of Liverpool, United Kingdom: 2014, p. 2554–63. 10.1061/9780784413609.257.
Fioriti, Baccioli, Pasini, Bischi, Migliarini, Poli (b0130) 2021; 238
Asano H, Mugabi N. Actual Energy Conservations By Using NH3/CO2 refrigeration system. Int. Conf. Sav. Energy Refrig. Air-Conditioning, Jeollanam-Do (South Korea): 2013, p. ICSERA2013-3-C–2.
Mehrpooya, Moftakhari Sharifzadeh, Rosen (b0050) 2015; 90
Sun, Zhao, Wu, Lin (b0040) 2021; 239
Zhao, Dong, Tang, Cai (b0210) 2016; 105
International Gas Union (IGU). Flexible LNG Facilities Enhancing Functionality Across the LNG Value Chain. 27th World Gas Conf., Washington DC (USA): 2018.
Kanagawa (b0145) 2008
Sultan, Muhammad, Bhatti, Min, Baek, Baik (b0065) 2021; 244
Nomura Research Institute. Study on Opportunities and Issues in introducing mini LNG facilities and equipments in Indonesia 2015.
Xu, Duan, Mao (b0160) 2014; 23
Eco ice Kaelte GmbH n.d. http://www.eco-ice.net/en/ (accessed August 16, 2021).
Naquash, Qyyum, Haider, Lim, Lee (b0155) 2021; 243
Atienza-Márquez A. Exergy recovery from LNG-regasification for polygeneration of energy, PhD Thesis. Tarragona (Spain): Universitat Rovira i Virgili, 2020. http://www.tdx.cat/handle/10803/670489.
United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement 2015. http://unfccc.int/paris_agreement/items/9485.php (accessed March 30, 2019).
New LNG power plant at Gibraltar powered by MAN Energy Solutions 2019. https://www.man-es.com/discover/gibraltar-builds-a-modern-lng-power-plant (accessed November 30, 2019).
The Carbon Trust. The Emerging Cold Economy. Sustainable solutions for rapidly increasing cooling needs. 2015.
Braun R, Peter O, Bihl L. Refrigeration supply plant coupled to regasification apparatus of a Liquefied Natural Gas terminal. WO 2019/020135, 2019.
Hawlader, Wahed (b0305) 2009; 86
He, Chong, Zheng, Ju, Linga (b0025) 2019; 170
Atienza-Márquez, Bruno, Akisawa, Nakayama, Coronas (b0100) 2019; 176
Kanbur, Xiang, Dubey, Choo, Duan (b0185) 2017; 129
Gao, Lin, Gu (b0070) 2011; 52
Basel Agency for Sustainable Energy (BASEL), International Energy Agency (IEA), SEAD. Webinar series: How Cooling as a Service is set to revolutionise the cooling industry 2020.
Kanbur, Xiang, Dubey, Choo, Duan (b0190) 2017; 204
Kälte-Klima-Sachsen GmbH n.d. http://kaelte-klima-sachsen.de/ (accessed December 11, 2019).
Atienza-Márquez, Bruno, Akisawa, Coronas (b0115) 2019; 183
ASHRAE. ASHRAE Handbook-Refrigeration - SI Edition. 2014.
Song, Liu, Deng, Li, Kitamura (b0060) 2019; 101
Atienza-Márquez, Bruno, Coronas (b0020) 2018; 132
Sveinbjörnsson D, Linn P, Jensen L, Trier D, Hassine I Ben, Jobard X. D2.3 - Large Storage Systems for DHC Networks. Fifth generation, low temperature, high exergy district heating and cooling networks (FLEXYNETS). 2017.
Smith (b0380) 2005
Heck, Smith, Hittinger (b0385) 2016; 29
Punnonen (b0240) 2013
Ji, Xu, Duan, Lu (b0335) 2016; 169
Qi, Park, Kim, Lee, Moon (b0055) 2020; 269
World Bank Group. State and Trends of Carbon Pricing October 2020. Washington DC (USA): 2020.
Asia Pacific Energy Research Centre (APERC). Small-scale LNG in Asia-Pacific. Asia-Pacicifc Economic Cooperation (APEC); 2019.
International Group of Liquefied Natural Gas Importers (GIIGNL). GIIGNL Annual Report 2021 2021. https://giignl.org/publications.
Ghorbani, Ebrahimi, Ziabasharhagh (b0110) 2020; 221
Wärtsilä. Wärtsilä 50DF multi-fuel engine 2019.
Emadi, Pourrahmani, Moghimi (b0090) 2018; 43
Biscardini, Schmill, Del Maestro (b0120) 2017
Mayekawa MFG. Co. L. NewTon 2009. https://mayekawa.com/lp/newton/ (accessed August 13, 2020).
Duanmu, Wang, Zhai, Li (b0340) 2013; 58
Kanbur, Xiang, Dubey, Choo, Duan (b0200) 2018; 220
Li, Wang, Dong, Jiang (b0075) 2017; 4
Mehrpooya (10.1016/j.enconman.2021.114783_b0050) 2015; 90
Ayou (10.1016/j.enconman.2021.114783_b0095) 2020; 213
Duanmu (10.1016/j.enconman.2021.114783_b0340) 2013; 58
Li (10.1016/j.enconman.2021.114783_b0075) 2017; 4
10.1016/j.enconman.2021.114783_b0280
10.1016/j.enconman.2021.114783_b0080
Qi (10.1016/j.enconman.2021.114783_b0055) 2020; 269
Atienza-Márquez (10.1016/j.enconman.2021.114783_b0100) 2019; 176
Kanagawa (10.1016/j.enconman.2021.114783_b0145) 2008
10.1016/j.enconman.2021.114783_b0235
10.1016/j.enconman.2021.114783_b0355
10.1016/j.enconman.2021.114783_b0315
10.1016/j.enconman.2021.114783_b0350
Atienza-Márquez (10.1016/j.enconman.2021.114783_b0115) 2019; 183
10.1016/j.enconman.2021.114783_b0150
10.1016/j.enconman.2021.114783_b0270
10.1016/j.enconman.2021.114783_b0310
10.1016/j.enconman.2021.114783_b0275
Kanbur (10.1016/j.enconman.2021.114783_b0195) 2019; 181
10.1016/j.enconman.2021.114783_b0230
10.1016/j.enconman.2021.114783_b0395
Gao (10.1016/j.enconman.2021.114783_b0070) 2011; 52
10.1016/j.enconman.2021.114783_b0390
Kanbur (10.1016/j.enconman.2021.114783_b0200) 2018; 220
Strantzali (10.1016/j.enconman.2021.114783_b0260) 2017; 76
10.1016/j.enconman.2021.114783_b0225
10.1016/j.enconman.2021.114783_b0345
Lin (10.1016/j.enconman.2021.114783_b0170) 2010; 35
Carron (10.1016/j.enconman.2021.114783_b0265) 2014
10.1016/j.enconman.2021.114783_b0300
Song (10.1016/j.enconman.2021.114783_b0060) 2019; 101
10.1016/j.enconman.2021.114783_b0140
Kanbur (10.1016/j.enconman.2021.114783_b0185) 2017; 129
Biscardini (10.1016/j.enconman.2021.114783_b0120) 2017
Pospíšil (10.1016/j.enconman.2021.114783_b0030) 2019; 99
10.1016/j.enconman.2021.114783_b0220
Smith (10.1016/j.enconman.2021.114783_b0380) 2005
Eghtesad (10.1016/j.enconman.2021.114783_b0085) 2021; 243
Emadi (10.1016/j.enconman.2021.114783_b0090) 2018; 43
Naquash (10.1016/j.enconman.2021.114783_b0155) 2021; 243
10.1016/j.enconman.2021.114783_b0215
10.1016/j.enconman.2021.114783_b0015
10.1016/j.enconman.2021.114783_b0135
Kanbur (10.1016/j.enconman.2021.114783_b0205) 2019; 43
Zhao (10.1016/j.enconman.2021.114783_b0210) 2016; 105
10.1016/j.enconman.2021.114783_b0295
10.1016/j.enconman.2021.114783_b0250
Xu (10.1016/j.enconman.2021.114783_b0160) 2014; 23
Ghorbani (10.1016/j.enconman.2021.114783_b0110) 2020; 221
Ning (10.1016/j.enconman.2021.114783_b0180) 2019; 172
10.1016/j.enconman.2021.114783_b0255
10.1016/j.enconman.2021.114783_b0375
Atienza-Márquez (10.1016/j.enconman.2021.114783_b0020) 2018; 132
10.1016/j.enconman.2021.114783_b0330
10.1016/j.enconman.2021.114783_b0010
Ji (10.1016/j.enconman.2021.114783_b0335) 2016; 169
Romero Gómez (10.1016/j.enconman.2021.114783_b0035) 2014; 38
Atienza-Márquez (10.1016/j.enconman.2021.114783_b0290) 2020; 20
Fang (10.1016/j.enconman.2021.114783_b0105) 2021; 238
Pineda Quijano (10.1016/j.enconman.2021.114783_b0285) 2017
Woods (10.1016/j.enconman.2021.114783_b0370) 2007
Fioriti (10.1016/j.enconman.2021.114783_b0130) 2021; 238
Strantzali (10.1016/j.enconman.2021.114783_b0125) 2018; 11
Kanbur (10.1016/j.enconman.2021.114783_b0190) 2017; 204
Khor (10.1016/j.enconman.2021.114783_b0045) 2018; 174
10.1016/j.enconman.2021.114783_b0325
10.1016/j.enconman.2021.114783_b0005
10.1016/j.enconman.2021.114783_b0400
10.1016/j.enconman.2021.114783_b0245
Punnonen (10.1016/j.enconman.2021.114783_b0240) 2013
Heck (10.1016/j.enconman.2021.114783_b0385) 2016; 29
Sun (10.1016/j.enconman.2021.114783_b0040) 2021; 239
10.1016/j.enconman.2021.114783_b0360
He (10.1016/j.enconman.2021.114783_b0025) 2019; 170
Hawlader (10.1016/j.enconman.2021.114783_b0305) 2009; 86
Sultan (10.1016/j.enconman.2021.114783_b0065) 2021; 244
Roszak (10.1016/j.enconman.2021.114783_b0175) 2013; 111
10.1016/j.enconman.2021.114783_b0365
10.1016/j.enconman.2021.114783_b0320
10.1016/j.enconman.2021.114783_b0165
References_xml – reference: LNGcold solutions GmbH 2019. http://lngcold.energy/ (accessed December 5, 2019).
– reference: Leeper SA. Wet Cooling Towers: “Rule-Of-Thumb” Design and simulation. 1981.
– reference: International Gas Union (IGU) Program Commitee (PGC) D3. Small Scale LNG. 2015.
– reference: TRNSYS 2017. http://www.trnsys.com/ (accessed March 19, 2020).
– reference: Asia Pacific Energy Research Centre (APERC). Small-scale LNG in Asia-Pacific. Asia-Pacicifc Economic Cooperation (APEC); 2019.
– volume: 238
  year: 2021
  ident: b0105
  article-title: Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy
  publication-title: Energy Convers Manag
– reference: Dorj P. Thermoeconomic Analysis of a New Geothermal Utilization CHP Plant in Tsetserleg, Mongolia. University of Iceland, 2005.
– reference: Xu W, Huang Z, Fan S. Optimized Analysis of Cold Energy Utilization for Cold Storage Project of Xingtan LNG Satellite Station. In: Dincer I, Midilli A, Kucuk H, editors. Prog. Exergy, Energy, Environ., Cham: Springer International Publishing; 2014, p. 569–76. 10.1007/978-3-319-04681-5_53.
– reference: Atienza-Márquez A. Exergy recovery from LNG-regasification for polygeneration of energy, PhD Thesis. Tarragona (Spain): Universitat Rovira i Virgili, 2020. http://www.tdx.cat/handle/10803/670489.
– reference: Wärtsilä. Wärtsilä 50DF multi-fuel engine 2019.
– reference: Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in MATLAB. 2nd Int. Conf. Vulnerability Risk Anal. Manag. (ICVRAM 2014), University of Liverpool, United Kingdom: 2014, p. 2554–63. 10.1061/9780784413609.257.
– reference: Kälte-Klima-Sachsen GmbH n.d. http://kaelte-klima-sachsen.de/ (accessed December 11, 2019).
– volume: 58
  start-page: 281
  year: 2013
  end-page: 291
  ident: b0340
  article-title: A simplified method to predict hourly building cooling load for urban energy planning
  publication-title: Energy Build
– reference: Hall S. Cooling Towers. Branan’s Rules Thumb Chem. Eng., Elsevier; 2012, p. 182–9. 10.1016/B978-0-12-387785-7.00010-4.
– volume: 220
  start-page: 944
  year: 2018
  end-page: 961
  ident: b0200
  article-title: Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems
  publication-title: Appl Energy
– volume: 38
  start-page: 781
  year: 2014
  end-page: 795
  ident: b0035
  article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process
  publication-title: Renew Sustain Energy Rev
– volume: 244
  year: 2021
  ident: b0065
  article-title: Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration
  publication-title: Energy Convers Manag
– reference: International Gas Union (IGU). Flexible LNG Facilities Enhancing Functionality Across the LNG Value Chain. 27th World Gas Conf., Washington DC (USA): 2018.
– reference: Eco ice Kaelte GmbH n.d. http://www.eco-ice.net/en/ (accessed August 16, 2021).
– reference: Asano H, Mugabi N. Actual Energy Conservations By Using NH3/CO2 refrigeration system. Int. Conf. Sav. Energy Refrig. Air-Conditioning, Jeollanam-Do (South Korea): 2013, p. ICSERA2013-3-C–2.
– volume: 169
  start-page: 309
  year: 2016
  end-page: 323
  ident: b0335
  article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data
  publication-title: Appl Energy
– reference: Mayekawa MFG. Co. L. NewTon 2009. https://mayekawa.com/lp/newton/ (accessed August 13, 2020).
– reference: BITZER GmbH. Ammonia compressor packs - ACP Series 2018.
– reference: World Bank Group. State and Trends of Carbon Pricing October 2020. Washington DC (USA): 2020.
– volume: 86
  start-page: 1170
  year: 2009
  end-page: 1178
  ident: b0305
  article-title: Analyses of ice slurry formation using direct contact heat transfer
  publication-title: Appl Energy
– volume: 172
  start-page: 36
  year: 2019
  end-page: 44
  ident: b0180
  article-title: Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG
  publication-title: Energy
– reference: United States Department of Energy. Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States. 2017.
– volume: 269
  year: 2020
  ident: b0055
  article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation
  publication-title: Appl Energy
– volume: 99
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0030
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
– volume: 43
  start-page: 4104
  year: 2019
  end-page: 4126
  ident: b0205
  article-title: Life-cycle-integrated thermoeconomic and enviroeconomic assessments of the small-scale-liquefied natural gas cold utilization systems
  publication-title: Int J Energy Res
– reference: International Energy Agency (IEA). Electricity Information: Overview (2020 Edition). Data Publ Stat Rep 2020:1–10.
– volume: 76
  start-page: 775
  year: 2017
  end-page: 787
  ident: b0260
  article-title: Evaluation of future sustainable electricity generation alternatives: The case of a Greek island
  publication-title: Renew Sustain Energy Rev
– reference: Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. Jonh Wiley & Sons, Inc.; 1996.
– volume: 90
  start-page: 2047
  year: 2015
  end-page: 2069
  ident: b0050
  article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization
  publication-title: Energy
– reference: International Group of Liquefied Natural Gas Importers (GIIGNL). GIIGNL Annual Report 2021 2021. https://giignl.org/publications.
– reference: Basel Agency for Sustainable Energy (BASEL), International Energy Agency (IEA), SEAD. Webinar series: How Cooling as a Service is set to revolutionise the cooling industry 2020.
– volume: 204
  start-page: 1148
  year: 2017
  end-page: 1162
  ident: b0190
  article-title: Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization
  publication-title: Appl Energy
– volume: 105
  start-page: 45
  year: 2016
  end-page: 56
  ident: b0210
  article-title: Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry
  publication-title: Energy
– year: 2014, 2014.
  ident: b0265
  article-title: Small Scale LNG Based Power Generation in the Philippines
  publication-title: Power Genp Asia
– year: 2007
  ident: b0370
  article-title: Rules of Thumb in Engineering Practice
  publication-title: Wiley
– year: 2005
  ident: b0380
  article-title: Chemical Process Design and Integration
  publication-title: John Wiley & Sons, Ltd
– volume: 129
  start-page: 171
  year: 2017
  end-page: 184
  ident: b0185
  article-title: Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization
  publication-title: Energy
– volume: 243
  year: 2021
  ident: b0155
  article-title: Renewable LNG production: Biogas upgrading through CO2 solidification integrated with single-loop mixed refrigerant biomethane liquefaction process
  publication-title: Energy Convers Manag
– year: 2017
  ident: b0285
  article-title: Noortgaete T Van Der, Velpen B Van Der. Techno-economic feasibility study of a system for the transfer of refrigeration capacity from LNG regasification plants to industrial assets. 12th IEA Heat Pump Conf
  publication-title: Rotterdam
– year: 2008
  ident: b0145
  article-title: Japan’s LNG Utilization and Environmental Efforts
  publication-title: Tokyo (Japan)
– volume: 4
  start-page: 1
  year: 2017
  end-page: 10
  ident: b0075
  article-title: Thermodynamic analysis on the process of regasification of LNG and its application in the cold warehouse
  publication-title: Therm Sci Eng Prog
– volume: 238
  year: 2021
  ident: b0130
  article-title: LNG regasification and electricity production for port energy communities: Economic profitability and thermodynamic performance
  publication-title: Energy Convers Manag
– volume: 170
  start-page: 557
  year: 2019
  end-page: 568
  ident: b0025
  article-title: LNG cold energy utilization: Prospects and challenges
  publication-title: Energy
– reference: The Carbon Trust. The Emerging Cold Economy. Sustainable solutions for rapidly increasing cooling needs. 2015.
– volume: 239
  year: 2021
  ident: b0040
  article-title: Thermodynamic comparison of modified Rankine cycle configurations for LNG cold energy recovery under different working conditions
  publication-title: Energy Convers Manag
– volume: 132
  start-page: 463
  year: 2018
  end-page: 478
  ident: b0020
  article-title: Cold recovery from LNG-regasification for polygeneration applications
  publication-title: Appl Therm Eng
– volume: 11
  start-page: 903
  year: 2018
  ident: b0125
  article-title: A Novel Multicriteria Evaluation of Small-Scale LNG Supply Alternatives: The Case of Greece
  publication-title: Energies
– volume: 101
  start-page: 265
  year: 2019
  end-page: 278
  ident: b0060
  article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges
  publication-title: Renew Sustain Energy Rev
– volume: 221
  year: 2020
  ident: b0110
  article-title: Novel integrated CCHP system for generation of liquid methanol, power, cooling and liquid fuels using Kalina power cycle through liquefied natural gas regasification
  publication-title: Energy Convers Manag
– reference: International Energy Agency (IEA). Gas Market Report, Q2-2021 2021. https://www.iea.org/reports/gas-market-report-q2-2021.
– volume: 52
  start-page: 2401
  year: 2011
  end-page: 2404
  ident: b0070
  article-title: Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized
  publication-title: Energy Convers Manag
– volume: 183
  start-page: 448
  year: 2019
  end-page: 461
  ident: b0115
  article-title: Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification
  publication-title: Energy
– reference: Braun R, Otto P. Method and heat exchanger for recovering cold during re-gasification of cryogenic liquids. WO 2017/114518, 2017.
– volume: 243
  year: 2021
  ident: b0085
  article-title: Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas
  publication-title: Energy Convers Manag
– volume: 176
  start-page: 1020
  year: 2019
  end-page: 1036
  ident: b0100
  article-title: Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification
  publication-title: Energy
– year: 2017
  ident: b0120
  article-title: Small going big. Why small-scale LNG may be the next big wave
  publication-title: Strategy & (Part of the PwC network)
– volume: 23
  start-page: 77
  year: 2014
  end-page: 84
  ident: b0160
  article-title: Process study and exergy analysis of a novel air separation process cooled by LNG cold energy
  publication-title: J Therm Sci
– volume: 111
  start-page: 755
  year: 2013
  end-page: 762
  ident: b0175
  article-title: Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling
  publication-title: Fuel
– reference: Sveinbjörnsson D, Linn P, Jensen L, Trier D, Hassine I Ben, Jobard X. D2.3 - Large Storage Systems for DHC Networks. Fifth generation, low temperature, high exergy district heating and cooling networks (FLEXYNETS). 2017.
– reference: New LNG power plant at Gibraltar powered by MAN Energy Solutions 2019. https://www.man-es.com/discover/gibraltar-builds-a-modern-lng-power-plant (accessed November 30, 2019).
– reference: International Institute of Refrigeration (IIR). Future data centre cooled using waste cooling from LNG Terminal in Singapore 2021. https://iifiir.org/en/news/future-data-centre-cooled-using-waste-cooling-from-lng-terminal-in-singapore (accessed July 1, 2021).
– volume: 35
  start-page: 4383
  year: 2010
  end-page: 4391
  ident: b0170
  article-title: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure
  publication-title: Energy
– volume: 20
  year: 2020
  ident: b0290
  article-title: Energy polygeneration systems based on LNG-regasification: Comprehensive overview and techno-economic feasibility
  publication-title: Therm Sci Eng Prog
– reference: Braun R, Peter O, Bihl L. Refrigeration supply plant coupled to regasification apparatus of a Liquefied Natural Gas terminal. WO 2019/020135, 2019.
– reference: United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement 2015. http://unfccc.int/paris_agreement/items/9485.php (accessed March 30, 2019).
– volume: 43
  start-page: 22075
  year: 2018
  end-page: 22087
  ident: b0090
  article-title: Performance evaluation of an integrated hydrogen production system with LNG cold energy utilization
  publication-title: Int J Hydrogen Energy
– volume: 174
  start-page: 336
  year: 2018
  end-page: 355
  ident: b0045
  article-title: Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles
  publication-title: Energy Convers Manag
– start-page: 1
  year: 2013
  end-page: 18
  ident: b0240
  article-title: Small and Medium size LNG for Power Production
– volume: 29
  start-page: 21
  year: 2016
  end-page: 30
  ident: b0385
  article-title: A Monte Carlo approach to integrating uncertainty into the levelized cost of electricity
  publication-title: Electr J
– volume: 181
  start-page: 507
  year: 2019
  end-page: 518
  ident: b0195
  article-title: Thermoeconomic analysis and optimization of the small scale power generation and carbon dioxide capture system from liquefied natural gas
  publication-title: Energy Convers Manag
– reference: EnergyPlus - Weather Data 2019. https://energyplus.net/weather (accessed December 10, 2019).
– reference: Wärtsilä. Small-and medium-scale LNG terminals 2018.
– volume: 213
  year: 2020
  ident: b0095
  article-title: Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification
  publication-title: Energy Convers Manag
– reference: Nomura Research Institute. Study on Opportunities and Issues in introducing mini LNG facilities and equipments in Indonesia 2015.
– reference: ASHRAE. ASHRAE Handbook-Refrigeration - SI Edition. 2014.
– volume: 213
  year: 2020
  ident: 10.1016/j.enconman.2021.114783_b0095
  article-title: Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.112790
– volume: 86
  start-page: 1170
  year: 2009
  ident: 10.1016/j.enconman.2021.114783_b0305
  article-title: Analyses of ice slurry formation using direct contact heat transfer
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2008.11.003
– ident: 10.1016/j.enconman.2021.114783_b0310
– ident: 10.1016/j.enconman.2021.114783_b0230
– year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0120
  article-title: Small going big. Why small-scale LNG may be the next big wave
– ident: 10.1016/j.enconman.2021.114783_b0400
– ident: 10.1016/j.enconman.2021.114783_b0295
– volume: 269
  year: 2020
  ident: 10.1016/j.enconman.2021.114783_b0055
  article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115049
– volume: 58
  start-page: 281
  year: 2013
  ident: 10.1016/j.enconman.2021.114783_b0340
  article-title: A simplified method to predict hourly building cooling load for urban energy planning
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2012.11.029
– ident: 10.1016/j.enconman.2021.114783_b0325
  doi: 10.1016/B978-0-12-387785-7.00010-4
– ident: 10.1016/j.enconman.2021.114783_b0140
– volume: 76
  start-page: 775
  year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0260
  article-title: Evaluation of future sustainable electricity generation alternatives: The case of a Greek island
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.03.085
– ident: 10.1016/j.enconman.2021.114783_b0215
– ident: 10.1016/j.enconman.2021.114783_b0395
– ident: 10.1016/j.enconman.2021.114783_b0150
– volume: 204
  start-page: 1148
  year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0190
  article-title: Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.01.061
– volume: 176
  start-page: 1020
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0100
  article-title: Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.060
– volume: 238
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0130
  article-title: LNG regasification and electricity production for port energy communities: Economic profitability and thermodynamic performance
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114128
– ident: 10.1016/j.enconman.2021.114783_b0135
– ident: 10.1016/j.enconman.2021.114783_b0250
– volume: 238
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0105
  article-title: Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114148
– ident: 10.1016/j.enconman.2021.114783_b0315
– ident: 10.1016/j.enconman.2021.114783_b0165
  doi: 10.1007/978-3-319-04681-5_53
– ident: 10.1016/j.enconman.2021.114783_b0015
– year: 2008
  ident: 10.1016/j.enconman.2021.114783_b0145
  article-title: Japan’s LNG Utilization and Environmental Efforts
  publication-title: Tokyo (Japan)
– year: 2005
  ident: 10.1016/j.enconman.2021.114783_b0380
  article-title: Chemical Process Design and Integration
  publication-title: John Wiley & Sons, Ltd
– volume: 52
  start-page: 2401
  year: 2011
  ident: 10.1016/j.enconman.2021.114783_b0070
  article-title: Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2010.12.040
– volume: 43
  start-page: 22075
  year: 2018
  ident: 10.1016/j.enconman.2021.114783_b0090
  article-title: Performance evaluation of an integrated hydrogen production system with LNG cold energy utilization
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.048
– ident: 10.1016/j.enconman.2021.114783_b0275
– volume: 221
  year: 2020
  ident: 10.1016/j.enconman.2021.114783_b0110
  article-title: Novel integrated CCHP system for generation of liquid methanol, power, cooling and liquid fuels using Kalina power cycle through liquefied natural gas regasification
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113151
– start-page: 1
  year: 2013
  ident: 10.1016/j.enconman.2021.114783_b0240
– ident: 10.1016/j.enconman.2021.114783_b0300
– volume: 172
  start-page: 36
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0180
  article-title: Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG
  publication-title: Energy
  doi: 10.1016/j.energy.2019.01.094
– volume: 35
  start-page: 4383
  year: 2010
  ident: 10.1016/j.enconman.2021.114783_b0170
  article-title: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.036
– volume: 129
  start-page: 171
  year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0185
  article-title: Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.071
– volume: 181
  start-page: 507
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0195
  article-title: Thermoeconomic analysis and optimization of the small scale power generation and carbon dioxide capture system from liquefied natural gas
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.11.077
– ident: 10.1016/j.enconman.2021.114783_b0390
– ident: 10.1016/j.enconman.2021.114783_b0080
– volume: 169
  start-page: 309
  year: 2016
  ident: 10.1016/j.enconman.2021.114783_b0335
  article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.02.036
– volume: 220
  start-page: 944
  year: 2018
  ident: 10.1016/j.enconman.2021.114783_b0200
  article-title: Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.088
– ident: 10.1016/j.enconman.2021.114783_b0270
– ident: 10.1016/j.enconman.2021.114783_b0360
  doi: 10.1061/9780784413609.257
– ident: 10.1016/j.enconman.2021.114783_b0255
– ident: 10.1016/j.enconman.2021.114783_b0010
– volume: 174
  start-page: 336
  year: 2018
  ident: 10.1016/j.enconman.2021.114783_b0045
  article-title: Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.08.028
– volume: 20
  year: 2020
  ident: 10.1016/j.enconman.2021.114783_b0290
  article-title: Energy polygeneration systems based on LNG-regasification: Comprehensive overview and techno-economic feasibility
  publication-title: Therm Sci Eng Prog
– ident: 10.1016/j.enconman.2021.114783_b0345
– ident: 10.1016/j.enconman.2021.114783_b0005
– year: 2007
  ident: 10.1016/j.enconman.2021.114783_b0370
  article-title: Rules of Thumb in Engineering Practice
  publication-title: Wiley
– ident: 10.1016/j.enconman.2021.114783_b0280
– volume: 105
  start-page: 45
  year: 2016
  ident: 10.1016/j.enconman.2021.114783_b0210
  article-title: Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry
  publication-title: Energy
  doi: 10.1016/j.energy.2015.08.110
– year: 2014
  ident: 10.1016/j.enconman.2021.114783_b0265
  article-title: Small Scale LNG Based Power Generation in the Philippines
  publication-title: Power Genp Asia
– ident: 10.1016/j.enconman.2021.114783_b0225
– volume: 132
  start-page: 463
  year: 2018
  ident: 10.1016/j.enconman.2021.114783_b0020
  article-title: Cold recovery from LNG-regasification for polygeneration applications
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.12.073
– volume: 170
  start-page: 557
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0025
  article-title: LNG cold energy utilization: Prospects and challenges
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.170
– ident: 10.1016/j.enconman.2021.114783_b0355
– volume: 244
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0065
  article-title: Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114495
– volume: 101
  start-page: 265
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0060
  article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.11.018
– ident: 10.1016/j.enconman.2021.114783_b0365
– volume: 243
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0085
  article-title: Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114352
– ident: 10.1016/j.enconman.2021.114783_b0330
– volume: 29
  start-page: 21
  year: 2016
  ident: 10.1016/j.enconman.2021.114783_b0385
  article-title: A Monte Carlo approach to integrating uncertainty into the levelized cost of electricity
  publication-title: Electr J
  doi: 10.1016/j.tej.2016.04.001
– ident: 10.1016/j.enconman.2021.114783_b0235
– volume: 243
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0155
  article-title: Renewable LNG production: Biogas upgrading through CO2 solidification integrated with single-loop mixed refrigerant biomethane liquefaction process
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114363
– volume: 239
  year: 2021
  ident: 10.1016/j.enconman.2021.114783_b0040
  article-title: Thermodynamic comparison of modified Rankine cycle configurations for LNG cold energy recovery under different working conditions
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.114141
– volume: 90
  start-page: 2047
  year: 2015
  ident: 10.1016/j.enconman.2021.114783_b0050
  article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.101
– volume: 4
  start-page: 1
  year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0075
  article-title: Thermodynamic analysis on the process of regasification of LNG and its application in the cold warehouse
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2017.08.001
– volume: 38
  start-page: 781
  year: 2014
  ident: 10.1016/j.enconman.2021.114783_b0035
  article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.029
– volume: 111
  start-page: 755
  year: 2013
  ident: 10.1016/j.enconman.2021.114783_b0175
  article-title: Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.03.074
– ident: 10.1016/j.enconman.2021.114783_b0220
– volume: 11
  start-page: 903
  year: 2018
  ident: 10.1016/j.enconman.2021.114783_b0125
  article-title: A Novel Multicriteria Evaluation of Small-Scale LNG Supply Alternatives: The Case of Greece
  publication-title: Energies
  doi: 10.3390/en11040903
– ident: 10.1016/j.enconman.2021.114783_b0320
  doi: 10.2172/5281927
– ident: 10.1016/j.enconman.2021.114783_b0350
– volume: 43
  start-page: 4104
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0205
  article-title: Life-cycle-integrated thermoeconomic and enviroeconomic assessments of the small-scale-liquefied natural gas cold utilization systems
  publication-title: Int J Energy Res
  doi: 10.1002/er.4510
– ident: 10.1016/j.enconman.2021.114783_b0245
– volume: 23
  start-page: 77
  year: 2014
  ident: 10.1016/j.enconman.2021.114783_b0160
  article-title: Process study and exergy analysis of a novel air separation process cooled by LNG cold energy
  publication-title: J Therm Sci
  doi: 10.1007/s11630-014-0679-5
– ident: 10.1016/j.enconman.2021.114783_b0375
– year: 2017
  ident: 10.1016/j.enconman.2021.114783_b0285
  article-title: Noortgaete T Van Der, Velpen B Van Der. Techno-economic feasibility study of a system for the transfer of refrigeration capacity from LNG regasification plants to industrial assets. 12th IEA Heat Pump Conf
  publication-title: Rotterdam
– volume: 183
  start-page: 448
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0115
  article-title: Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.153
– volume: 99
  start-page: 1
  year: 2019
  ident: 10.1016/j.enconman.2021.114783_b0030
  article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.09.027
SSID ssj0003506
Score 2.408805
Snippet •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration...
The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114783
SubjectTerms administrative management
byproducts
Cold
Cold recovery
Compression
Condensates
condensation (phase transition)
Cooling towers
Cost analysis
Economic analysis
Economics
electricity
energy conversion
Energy efficiency improvement
Food industry
gasification
Harbor facilities
Liquefied natural gas
Liquefied natural gas regasification
Low temperature
Monte Carlo method
Monte Carlo simulation
Natural gas
Peak load
Recovery
Reference systems
Refrigeration
Satellite LNG terminals
satellites
Sustainable refrigeration
Techno-economic potential
Terminals
Thermal analysis
Thermal energy
Title Regasification of liquefied natural gas in satellite terminals: Techno-economic potential of cold recovery for boosting the efficiency of refrigerated facilities
URI https://dx.doi.org/10.1016/j.enconman.2021.114783
https://www.proquest.com/docview/2609115340
https://www.proquest.com/docview/2636710447
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wscEE-xUCojcXU3iV8Jt6qiWkD0AFTqzbITG221za5IeuDCf-GfMpM4q4KEeuASKY7HTjzjmXE88xngjYpCu7yM3DXecGmc4c4bxTOX-SJKE3xNCc6fzvXyQn64VJd7cDrlwlBYZdL9o04ftHUqWaTRXGxXq8UXQnYpKxS6fIDX1ftwUKC1L2dwcPL-4_J8p5CFGo7YpPqcCG4lCl8dE1xke-0ICrXICTnXlOJfNuovbT2YoLOH8CD5juxkfL1HsBfax3D_FqLgE_j1OXxzHYX_DCPONpGtCaE1oqfJBhBPbABrsFXLOjegcfaBpYiYdfeWjb_aeUj5ymy76SmeCKmwKRSahtESGuX_B0N3l6GP3lHgNEM_koUBjoJyOakyfhau_AmzGbuOrqYgXFyWP4WLs3dfT5c8ncLAaxzanseQlcQz2gVWTRZknlGJbmqtYllpWYkmaNILRVV7svdCh0JEIWvRVK4Qz2DWbtrwHJjxvnEm5oZgAlEQypo2vvHSFM7LTMxBTeNu6wRRTidlrO0Ui3ZlJ35Z4pcd-TWHxY5uO4J03ElRTWy1f4ibRUtyJ-3hJAc2TfjO4rIQzYYSMpvD691jnKq0_-LasLmhOkKjQyelefEf3b-Ee3RH-ZC5OoRZ__0mvELHqPdHsH_8Mz9K4v8bNSAREg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4IJ5iSwEjcTWbxK-EW1VRbWm7B2il3iwnsautluyKpIf-HP4pM4mzKkioBy452B478YxnxvHMZ4CPKgjt0jxwV5eGS-MMd6VRPHFJmQVpfFlRgvPZQs8v5NdLdbkDh2MuDIVVRt0_6PReW8eSWZzN2Wa5nH0nZJe8QKFLe3hd_QB2JV1qPYHdg-OT-WKrkIXqr9ik9pwI7iQKX38iuMjmhyMo1Cwl5FyTi3_ZqL-0dW-Cjp7Ck-g7soPh9Z7Bjm-ew-M7iIIv4Nc3f-VaCv_pZ5ytA1sRQmtAT5P1IJ7YAbZgy4a1rkfj7DyLETGr9jMbfrVzH_OV2WbdUTwRUmFXKDQ1oy00yv8tQ3eXoY_eUuA0Qz-S-R6OgnI5qTF-Fu78CbMZhw6uoiBc3Ja_hIujL-eHcx5vYeAVTm3Hg09y4hmdAqs68TJNqETXlVYhL7QsRO016YWsqEqy90L7TAQhK1EXLhOvYNKsG_8amCnL2pmQGoIJREHIKzr4xkeduVImYgpqnHdbRYhyuiljZcdYtGs78ssSv-zArynMtnSbAaTjXopiZKv9Q9wsWpJ7afdHObBxwbcWt4VoNpSQyRQ-bKtxqdL5i2v8-obaCI0OnZRm7z-Gfw8P5-dnp_b0eHHyBh5RDeVGpmofJt3PG_8WnaSufBcXwW-iMhL4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regasification+of+liquefied+natural+gas+in+satellite+terminals%3A+Techno-economic+potential+of+cold+recovery+for+boosting+the+efficiency+of+refrigerated+facilities&rft.jtitle=Energy+conversion+and+management&rft.au=Atienza-M%C3%A1rquez%2C+Antonio&rft.au=Bruno%2C+Joan+Carles&rft.au=Coronas%2C+Alberto&rft.date=2021-11-15&rft.issn=0196-8904&rft.volume=248&rft.spage=114783&rft_id=info:doi/10.1016%2Fj.enconman.2021.114783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114783
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon