Regasification of liquefied natural gas in satellite terminals: Techno-economic potential of cold recovery for boosting the efficiency of refrigerated facilities
•Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption...
Saved in:
Published in | Energy conversion and management Vol. 248; p. 114783 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.11.2021
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0196-8904 1879-2227 |
DOI | 10.1016/j.enconman.2021.114783 |
Cover
Abstract | •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption and emissions up to 9–22%.•A reduction of 5–15% in the cost of refrigeration production would be achieved.
The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system’s lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants. |
---|---|
AbstractList | •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration machines.•The system competitiveness improves for tropical climates and large plant sizes.•The system would reduce the electricity consumption and emissions up to 9–22%.•A reduction of 5–15% in the cost of refrigeration production would be achieved.
The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system’s lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants. The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly focus on large-scale harbour terminals rather than on small-scale applications in satellite facilities. This paper proposes a new system configuration that can be used to exploit liquefied natural gas cold as a by-product of regasification in satellite plants supplying sub-zero refrigeration in agro-food industries. Cold is applied indirectly to lower the condensation temperature of the vapour-compression chillers which handle the thermal load of cold rooms. The system seeks to boost efficiency, an effect that would be more marked in warm climates. Performance is best when the peak refrigeration load matches the maximum cold thermal energy available from the regasification site. When this is the case, the annual electricity saving is 9–22% more than when a conventional refrigeration system is used with wet cooling towers and with no liquefied natural gas cold recovery. The economic potential of the system is assessed with a Monte Carlo analysis. The cost of producing refrigeration throughout the system's lifetime can be reduced by 5–15% with respect to the conventional reference system in warm/temperate locations and for large/medium plant sizes. However, the system is no so competitive in economic terms for cold locations and small-size plants. |
ArticleNumber | 114783 |
Author | Bruno, Joan Carles Coronas, Alberto Atienza-Márquez, Antonio |
Author_xml | – sequence: 1 givenname: Antonio orcidid: 0000-0001-7185-743X surname: Atienza-Márquez fullname: Atienza-Márquez, Antonio email: antonio.atienza@alumni.urv.cat – sequence: 2 givenname: Joan Carles surname: Bruno fullname: Bruno, Joan Carles – sequence: 3 givenname: Alberto surname: Coronas fullname: Coronas, Alberto |
BookMark | eNqFkV9rFDEUxYNUcFv7FSTgiy-z5t9kZsQHpdgqFARpn0M2c7O9y0yyJtnCfhy_qZmuvvSlT4Hkd-65OeecnIUYgJB3nK054_rjbg3BxTDbsBZM8DXnquvlK7LifTc0QojujKwYH3TTD0y9Iec57xhjsmV6Rf78gq3N6NHZgjHQ6OmEvw_gEUYabDkkO9FKUAw02wLThAVogTRjsFP-RO_APYTYQN0gzujoPhYIBauqjnJxGmmqb4-QjtTHRDcx5oJhS8sDUPDVF-v2xwVO4BNuIVWXkXrrsFoh5Lfkta9OcPnvvCD319_urr43tz9vflx9vW2cErw0HlivOthwpVg7MlCcLTd6dLr1_aDVIEfQUohWDG4jtOZSg5BeKifHwQp5QT6c5u5TrAHkYmbMrn7YBoiHbISWuuNMqa6i75-hu3hISx6VYgPnrVSsUvpEuRRzrr8z-4SzTUfDmVmaMzvzvzmzNGdOzVXh52dCh-WpnpIsTi_Lv5zkUNN6REgmP4UMI9YqihkjvjTiL7hQvf8 |
CitedBy_id | crossref_primary_10_1016_j_cej_2024_157722 crossref_primary_10_1016_j_ijhydene_2023_08_132 crossref_primary_10_1016_j_ijhydene_2024_04_053 crossref_primary_10_1016_j_heliyon_2023_e19393 crossref_primary_10_1016_j_enconman_2023_117726 crossref_primary_10_3390_pr11020517 |
Cites_doi | 10.1016/j.enconman.2020.112790 10.1016/j.apenergy.2008.11.003 10.1016/j.apenergy.2020.115049 10.1016/j.enbuild.2012.11.029 10.1016/B978-0-12-387785-7.00010-4 10.1016/j.rser.2017.03.085 10.1016/j.apenergy.2017.01.061 10.1016/j.energy.2019.04.060 10.1016/j.enconman.2021.114128 10.1016/j.enconman.2021.114148 10.1007/978-3-319-04681-5_53 10.1016/j.enconman.2010.12.040 10.1016/j.ijhydene.2018.10.048 10.1016/j.enconman.2020.113151 10.1016/j.energy.2019.01.094 10.1016/j.energy.2009.04.036 10.1016/j.energy.2017.04.071 10.1016/j.enconman.2018.11.077 10.1016/j.apenergy.2016.02.036 10.1016/j.apenergy.2017.12.088 10.1061/9780784413609.257 10.1016/j.enconman.2018.08.028 10.1016/j.energy.2015.08.110 10.1016/j.applthermaleng.2017.12.073 10.1016/j.energy.2018.12.170 10.1016/j.enconman.2021.114495 10.1016/j.rser.2018.11.018 10.1016/j.enconman.2021.114352 10.1016/j.tej.2016.04.001 10.1016/j.enconman.2021.114363 10.1016/j.enconman.2021.114141 10.1016/j.energy.2015.07.101 10.1016/j.tsep.2017.08.001 10.1016/j.rser.2014.07.029 10.1016/j.fuel.2013.03.074 10.3390/en11040903 10.2172/5281927 10.1002/er.4510 10.1007/s11630-014-0679-5 10.1016/j.energy.2019.06.153 10.1016/j.rser.2018.09.027 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright Elsevier Science Ltd. Nov 15, 2021 |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright Elsevier Science Ltd. Nov 15, 2021 |
DBID | 6I. AAFTH AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.enconman.2021.114783 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Aerospace Database AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
EISSN | 1879-2227 |
ExternalDocumentID | 10_1016_j_enconman_2021_114783 S0196890421009596 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7ST 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M SOI 7S9 ACLOT L.6 ~HD |
ID | FETCH-LOGICAL-c421t-fe0847eb14405d0e410e0846dc65f896493de6322529cb266136e23f34c3d9a23 |
IEDL.DBID | AIKHN |
ISSN | 0196-8904 |
IngestDate | Sat Sep 27 19:03:56 EDT 2025 Wed Aug 13 05:54:57 EDT 2025 Tue Jul 01 03:03:15 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:45:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cold recovery Techno-economic potential Liquefied natural gas regasification Energy efficiency improvement Sustainable refrigeration Satellite LNG terminals |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-fe0847eb14405d0e410e0846dc65f896493de6322529cb266136e23f34c3d9a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7185-743X |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0196890421009596 |
PQID | 2609115340 |
PQPubID | 2047472 |
ParticipantIDs | proquest_miscellaneous_2636710447 proquest_journals_2609115340 crossref_primary_10_1016_j_enconman_2021_114783 crossref_citationtrail_10_1016_j_enconman_2021_114783 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_114783 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-15 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Carron (b0265) 2014, 2014. International Energy Agency (IEA). Gas Market Report, Q2-2021 2021. https://www.iea.org/reports/gas-market-report-q2-2021. International Institute of Refrigeration (IIR). Future data centre cooled using waste cooling from LNG Terminal in Singapore 2021. https://iifiir.org/en/news/future-data-centre-cooled-using-waste-cooling-from-lng-terminal-in-singapore (accessed July 1, 2021). Eghtesad, Afshin, Kazemzadeh (b0085) 2021; 243 Ayou, Eveloy (b0095) 2020; 213 Hall S. Cooling Towers. Branan’s Rules Thumb Chem. Eng., Elsevier; 2012, p. 182–9. 10.1016/B978-0-12-387785-7.00010-4. Dorj P. Thermoeconomic Analysis of a New Geothermal Utilization CHP Plant in Tsetserleg, Mongolia. University of Iceland, 2005. Woods (b0370) 2007 Roszak, Chorowski (b0175) 2013; 111 Khor, Dal Magro, Gundersen, Sze, Romagnoli (b0045) 2018; 174 Atienza-Márquez, Ayou, Carles Bruno, Coronas (b0290) 2020; 20 Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. Jonh Wiley & Sons, Inc.; 1996. Strantzali, Aravossis, Livanos (b0260) 2017; 76 Pineda Quijano, Infante Ferreira, Duivenvoorden, Mieog (b0285) 2017 Strantzali, Aravossis, Livanos, Chrysanthopoulos (b0125) 2018; 11 LNGcold solutions GmbH 2019. http://lngcold.energy/ (accessed December 5, 2019). Pospíšil, Charvát, Arsenyeva, Klimeš, Špiláček, Klemeš (b0030) 2019; 99 Romero Gómez, Ferreiro Garcia, Romero Gómez, Carbia (b0035) 2014; 38 Xu W, Huang Z, Fan S. Optimized Analysis of Cold Energy Utilization for Cold Storage Project of Xingtan LNG Satellite Station. In: Dincer I, Midilli A, Kucuk H, editors. Prog. Exergy, Energy, Environ., Cham: Springer International Publishing; 2014, p. 569–76. 10.1007/978-3-319-04681-5_53. BITZER GmbH. Ammonia compressor packs - ACP Series 2018. EnergyPlus - Weather Data 2019. https://energyplus.net/weather (accessed December 10, 2019). Braun R, Otto P. Method and heat exchanger for recovering cold during re-gasification of cryogenic liquids. WO 2017/114518, 2017. TRNSYS 2017. http://www.trnsys.com/ (accessed March 19, 2020). Lin, Zhang, Gu (b0170) 2010; 35 United States Department of Energy. Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States. 2017. Kanbur, Xiang, Dubey, Choo, Duan (b0205) 2019; 43 Wärtsilä. Small-and medium-scale LNG terminals 2018. International Gas Union (IGU) Program Commitee (PGC) D3. Small Scale LNG. 2015. Leeper SA. Wet Cooling Towers: “Rule-Of-Thumb” Design and simulation. 1981. Kanbur, Xiang, Dubey, Choo, Duan (b0195) 2019; 181 International Energy Agency (IEA). Electricity Information: Overview (2020 Edition). Data Publ Stat Rep 2020:1–10. Fang, Shang, Pan, Yao, Ma, Zhang (b0105) 2021; 238 Ning, Sun, Dong, Liu (b0180) 2019; 172 Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in MATLAB. 2nd Int. Conf. Vulnerability Risk Anal. Manag. (ICVRAM 2014), University of Liverpool, United Kingdom: 2014, p. 2554–63. 10.1061/9780784413609.257. Fioriti, Baccioli, Pasini, Bischi, Migliarini, Poli (b0130) 2021; 238 Asano H, Mugabi N. Actual Energy Conservations By Using NH3/CO2 refrigeration system. Int. Conf. Sav. Energy Refrig. Air-Conditioning, Jeollanam-Do (South Korea): 2013, p. ICSERA2013-3-C–2. Mehrpooya, Moftakhari Sharifzadeh, Rosen (b0050) 2015; 90 Sun, Zhao, Wu, Lin (b0040) 2021; 239 Zhao, Dong, Tang, Cai (b0210) 2016; 105 International Gas Union (IGU). Flexible LNG Facilities Enhancing Functionality Across the LNG Value Chain. 27th World Gas Conf., Washington DC (USA): 2018. Kanagawa (b0145) 2008 Sultan, Muhammad, Bhatti, Min, Baek, Baik (b0065) 2021; 244 Nomura Research Institute. Study on Opportunities and Issues in introducing mini LNG facilities and equipments in Indonesia 2015. Xu, Duan, Mao (b0160) 2014; 23 Eco ice Kaelte GmbH n.d. http://www.eco-ice.net/en/ (accessed August 16, 2021). Naquash, Qyyum, Haider, Lim, Lee (b0155) 2021; 243 Atienza-Márquez A. Exergy recovery from LNG-regasification for polygeneration of energy, PhD Thesis. Tarragona (Spain): Universitat Rovira i Virgili, 2020. http://www.tdx.cat/handle/10803/670489. United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement 2015. http://unfccc.int/paris_agreement/items/9485.php (accessed March 30, 2019). New LNG power plant at Gibraltar powered by MAN Energy Solutions 2019. https://www.man-es.com/discover/gibraltar-builds-a-modern-lng-power-plant (accessed November 30, 2019). The Carbon Trust. The Emerging Cold Economy. Sustainable solutions for rapidly increasing cooling needs. 2015. Braun R, Peter O, Bihl L. Refrigeration supply plant coupled to regasification apparatus of a Liquefied Natural Gas terminal. WO 2019/020135, 2019. Hawlader, Wahed (b0305) 2009; 86 He, Chong, Zheng, Ju, Linga (b0025) 2019; 170 Atienza-Márquez, Bruno, Akisawa, Nakayama, Coronas (b0100) 2019; 176 Kanbur, Xiang, Dubey, Choo, Duan (b0185) 2017; 129 Gao, Lin, Gu (b0070) 2011; 52 Basel Agency for Sustainable Energy (BASEL), International Energy Agency (IEA), SEAD. Webinar series: How Cooling as a Service is set to revolutionise the cooling industry 2020. Kanbur, Xiang, Dubey, Choo, Duan (b0190) 2017; 204 Kälte-Klima-Sachsen GmbH n.d. http://kaelte-klima-sachsen.de/ (accessed December 11, 2019). Atienza-Márquez, Bruno, Akisawa, Coronas (b0115) 2019; 183 ASHRAE. ASHRAE Handbook-Refrigeration - SI Edition. 2014. Song, Liu, Deng, Li, Kitamura (b0060) 2019; 101 Atienza-Márquez, Bruno, Coronas (b0020) 2018; 132 Sveinbjörnsson D, Linn P, Jensen L, Trier D, Hassine I Ben, Jobard X. D2.3 - Large Storage Systems for DHC Networks. Fifth generation, low temperature, high exergy district heating and cooling networks (FLEXYNETS). 2017. Smith (b0380) 2005 Heck, Smith, Hittinger (b0385) 2016; 29 Punnonen (b0240) 2013 Ji, Xu, Duan, Lu (b0335) 2016; 169 Qi, Park, Kim, Lee, Moon (b0055) 2020; 269 World Bank Group. State and Trends of Carbon Pricing October 2020. Washington DC (USA): 2020. Asia Pacific Energy Research Centre (APERC). Small-scale LNG in Asia-Pacific. Asia-Pacicifc Economic Cooperation (APEC); 2019. International Group of Liquefied Natural Gas Importers (GIIGNL). GIIGNL Annual Report 2021 2021. https://giignl.org/publications. Ghorbani, Ebrahimi, Ziabasharhagh (b0110) 2020; 221 Wärtsilä. Wärtsilä 50DF multi-fuel engine 2019. Emadi, Pourrahmani, Moghimi (b0090) 2018; 43 Biscardini, Schmill, Del Maestro (b0120) 2017 Mayekawa MFG. Co. L. NewTon 2009. https://mayekawa.com/lp/newton/ (accessed August 13, 2020). Duanmu, Wang, Zhai, Li (b0340) 2013; 58 Kanbur, Xiang, Dubey, Choo, Duan (b0200) 2018; 220 Li, Wang, Dong, Jiang (b0075) 2017; 4 Mehrpooya (10.1016/j.enconman.2021.114783_b0050) 2015; 90 Ayou (10.1016/j.enconman.2021.114783_b0095) 2020; 213 Duanmu (10.1016/j.enconman.2021.114783_b0340) 2013; 58 Li (10.1016/j.enconman.2021.114783_b0075) 2017; 4 10.1016/j.enconman.2021.114783_b0280 10.1016/j.enconman.2021.114783_b0080 Qi (10.1016/j.enconman.2021.114783_b0055) 2020; 269 Atienza-Márquez (10.1016/j.enconman.2021.114783_b0100) 2019; 176 Kanagawa (10.1016/j.enconman.2021.114783_b0145) 2008 10.1016/j.enconman.2021.114783_b0235 10.1016/j.enconman.2021.114783_b0355 10.1016/j.enconman.2021.114783_b0315 10.1016/j.enconman.2021.114783_b0350 Atienza-Márquez (10.1016/j.enconman.2021.114783_b0115) 2019; 183 10.1016/j.enconman.2021.114783_b0150 10.1016/j.enconman.2021.114783_b0270 10.1016/j.enconman.2021.114783_b0310 10.1016/j.enconman.2021.114783_b0275 Kanbur (10.1016/j.enconman.2021.114783_b0195) 2019; 181 10.1016/j.enconman.2021.114783_b0230 10.1016/j.enconman.2021.114783_b0395 Gao (10.1016/j.enconman.2021.114783_b0070) 2011; 52 10.1016/j.enconman.2021.114783_b0390 Kanbur (10.1016/j.enconman.2021.114783_b0200) 2018; 220 Strantzali (10.1016/j.enconman.2021.114783_b0260) 2017; 76 10.1016/j.enconman.2021.114783_b0225 10.1016/j.enconman.2021.114783_b0345 Lin (10.1016/j.enconman.2021.114783_b0170) 2010; 35 Carron (10.1016/j.enconman.2021.114783_b0265) 2014 10.1016/j.enconman.2021.114783_b0300 Song (10.1016/j.enconman.2021.114783_b0060) 2019; 101 10.1016/j.enconman.2021.114783_b0140 Kanbur (10.1016/j.enconman.2021.114783_b0185) 2017; 129 Biscardini (10.1016/j.enconman.2021.114783_b0120) 2017 Pospíšil (10.1016/j.enconman.2021.114783_b0030) 2019; 99 10.1016/j.enconman.2021.114783_b0220 Smith (10.1016/j.enconman.2021.114783_b0380) 2005 Eghtesad (10.1016/j.enconman.2021.114783_b0085) 2021; 243 Emadi (10.1016/j.enconman.2021.114783_b0090) 2018; 43 Naquash (10.1016/j.enconman.2021.114783_b0155) 2021; 243 10.1016/j.enconman.2021.114783_b0215 10.1016/j.enconman.2021.114783_b0015 10.1016/j.enconman.2021.114783_b0135 Kanbur (10.1016/j.enconman.2021.114783_b0205) 2019; 43 Zhao (10.1016/j.enconman.2021.114783_b0210) 2016; 105 10.1016/j.enconman.2021.114783_b0295 10.1016/j.enconman.2021.114783_b0250 Xu (10.1016/j.enconman.2021.114783_b0160) 2014; 23 Ghorbani (10.1016/j.enconman.2021.114783_b0110) 2020; 221 Ning (10.1016/j.enconman.2021.114783_b0180) 2019; 172 10.1016/j.enconman.2021.114783_b0255 10.1016/j.enconman.2021.114783_b0375 Atienza-Márquez (10.1016/j.enconman.2021.114783_b0020) 2018; 132 10.1016/j.enconman.2021.114783_b0330 10.1016/j.enconman.2021.114783_b0010 Ji (10.1016/j.enconman.2021.114783_b0335) 2016; 169 Romero Gómez (10.1016/j.enconman.2021.114783_b0035) 2014; 38 Atienza-Márquez (10.1016/j.enconman.2021.114783_b0290) 2020; 20 Fang (10.1016/j.enconman.2021.114783_b0105) 2021; 238 Pineda Quijano (10.1016/j.enconman.2021.114783_b0285) 2017 Woods (10.1016/j.enconman.2021.114783_b0370) 2007 Fioriti (10.1016/j.enconman.2021.114783_b0130) 2021; 238 Strantzali (10.1016/j.enconman.2021.114783_b0125) 2018; 11 Kanbur (10.1016/j.enconman.2021.114783_b0190) 2017; 204 Khor (10.1016/j.enconman.2021.114783_b0045) 2018; 174 10.1016/j.enconman.2021.114783_b0325 10.1016/j.enconman.2021.114783_b0005 10.1016/j.enconman.2021.114783_b0400 10.1016/j.enconman.2021.114783_b0245 Punnonen (10.1016/j.enconman.2021.114783_b0240) 2013 Heck (10.1016/j.enconman.2021.114783_b0385) 2016; 29 Sun (10.1016/j.enconman.2021.114783_b0040) 2021; 239 10.1016/j.enconman.2021.114783_b0360 He (10.1016/j.enconman.2021.114783_b0025) 2019; 170 Hawlader (10.1016/j.enconman.2021.114783_b0305) 2009; 86 Sultan (10.1016/j.enconman.2021.114783_b0065) 2021; 244 Roszak (10.1016/j.enconman.2021.114783_b0175) 2013; 111 10.1016/j.enconman.2021.114783_b0365 10.1016/j.enconman.2021.114783_b0320 10.1016/j.enconman.2021.114783_b0165 |
References_xml | – reference: LNGcold solutions GmbH 2019. http://lngcold.energy/ (accessed December 5, 2019). – reference: Leeper SA. Wet Cooling Towers: “Rule-Of-Thumb” Design and simulation. 1981. – reference: International Gas Union (IGU) Program Commitee (PGC) D3. Small Scale LNG. 2015. – reference: TRNSYS 2017. http://www.trnsys.com/ (accessed March 19, 2020). – reference: Asia Pacific Energy Research Centre (APERC). Small-scale LNG in Asia-Pacific. Asia-Pacicifc Economic Cooperation (APEC); 2019. – volume: 238 year: 2021 ident: b0105 article-title: Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy publication-title: Energy Convers Manag – reference: Dorj P. Thermoeconomic Analysis of a New Geothermal Utilization CHP Plant in Tsetserleg, Mongolia. University of Iceland, 2005. – reference: Xu W, Huang Z, Fan S. Optimized Analysis of Cold Energy Utilization for Cold Storage Project of Xingtan LNG Satellite Station. In: Dincer I, Midilli A, Kucuk H, editors. Prog. Exergy, Energy, Environ., Cham: Springer International Publishing; 2014, p. 569–76. 10.1007/978-3-319-04681-5_53. – reference: Atienza-Márquez A. Exergy recovery from LNG-regasification for polygeneration of energy, PhD Thesis. Tarragona (Spain): Universitat Rovira i Virgili, 2020. http://www.tdx.cat/handle/10803/670489. – reference: Wärtsilä. Wärtsilä 50DF multi-fuel engine 2019. – reference: Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in MATLAB. 2nd Int. Conf. Vulnerability Risk Anal. Manag. (ICVRAM 2014), University of Liverpool, United Kingdom: 2014, p. 2554–63. 10.1061/9780784413609.257. – reference: Kälte-Klima-Sachsen GmbH n.d. http://kaelte-klima-sachsen.de/ (accessed December 11, 2019). – volume: 58 start-page: 281 year: 2013 end-page: 291 ident: b0340 article-title: A simplified method to predict hourly building cooling load for urban energy planning publication-title: Energy Build – reference: Hall S. Cooling Towers. Branan’s Rules Thumb Chem. Eng., Elsevier; 2012, p. 182–9. 10.1016/B978-0-12-387785-7.00010-4. – volume: 220 start-page: 944 year: 2018 end-page: 961 ident: b0200 article-title: Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems publication-title: Appl Energy – volume: 38 start-page: 781 year: 2014 end-page: 795 ident: b0035 article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process publication-title: Renew Sustain Energy Rev – volume: 244 year: 2021 ident: b0065 article-title: Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration publication-title: Energy Convers Manag – reference: International Gas Union (IGU). Flexible LNG Facilities Enhancing Functionality Across the LNG Value Chain. 27th World Gas Conf., Washington DC (USA): 2018. – reference: Eco ice Kaelte GmbH n.d. http://www.eco-ice.net/en/ (accessed August 16, 2021). – reference: Asano H, Mugabi N. Actual Energy Conservations By Using NH3/CO2 refrigeration system. Int. Conf. Sav. Energy Refrig. Air-Conditioning, Jeollanam-Do (South Korea): 2013, p. ICSERA2013-3-C–2. – volume: 169 start-page: 309 year: 2016 end-page: 323 ident: b0335 article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data publication-title: Appl Energy – reference: Mayekawa MFG. Co. L. NewTon 2009. https://mayekawa.com/lp/newton/ (accessed August 13, 2020). – reference: BITZER GmbH. Ammonia compressor packs - ACP Series 2018. – reference: World Bank Group. State and Trends of Carbon Pricing October 2020. Washington DC (USA): 2020. – volume: 86 start-page: 1170 year: 2009 end-page: 1178 ident: b0305 article-title: Analyses of ice slurry formation using direct contact heat transfer publication-title: Appl Energy – volume: 172 start-page: 36 year: 2019 end-page: 44 ident: b0180 article-title: Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG publication-title: Energy – reference: United States Department of Energy. Water and Wastewater Annual Price Escalation Rates for Selected Cities across the United States. 2017. – volume: 269 year: 2020 ident: b0055 article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation publication-title: Appl Energy – volume: 99 start-page: 1 year: 2019 end-page: 15 ident: b0030 article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage publication-title: Renew Sustain Energy Rev – volume: 43 start-page: 4104 year: 2019 end-page: 4126 ident: b0205 article-title: Life-cycle-integrated thermoeconomic and enviroeconomic assessments of the small-scale-liquefied natural gas cold utilization systems publication-title: Int J Energy Res – reference: International Energy Agency (IEA). Electricity Information: Overview (2020 Edition). Data Publ Stat Rep 2020:1–10. – volume: 76 start-page: 775 year: 2017 end-page: 787 ident: b0260 article-title: Evaluation of future sustainable electricity generation alternatives: The case of a Greek island publication-title: Renew Sustain Energy Rev – reference: Bejan A, Tsatsaronis G, Moran M. Thermal Design and Optimization. Jonh Wiley & Sons, Inc.; 1996. – volume: 90 start-page: 2047 year: 2015 end-page: 2069 ident: b0050 article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization publication-title: Energy – reference: International Group of Liquefied Natural Gas Importers (GIIGNL). GIIGNL Annual Report 2021 2021. https://giignl.org/publications. – reference: Basel Agency for Sustainable Energy (BASEL), International Energy Agency (IEA), SEAD. Webinar series: How Cooling as a Service is set to revolutionise the cooling industry 2020. – volume: 204 start-page: 1148 year: 2017 end-page: 1162 ident: b0190 article-title: Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization publication-title: Appl Energy – volume: 105 start-page: 45 year: 2016 end-page: 56 ident: b0210 article-title: Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry publication-title: Energy – year: 2014, 2014. ident: b0265 article-title: Small Scale LNG Based Power Generation in the Philippines publication-title: Power Genp Asia – year: 2007 ident: b0370 article-title: Rules of Thumb in Engineering Practice publication-title: Wiley – year: 2005 ident: b0380 article-title: Chemical Process Design and Integration publication-title: John Wiley & Sons, Ltd – volume: 129 start-page: 171 year: 2017 end-page: 184 ident: b0185 article-title: Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization publication-title: Energy – volume: 243 year: 2021 ident: b0155 article-title: Renewable LNG production: Biogas upgrading through CO2 solidification integrated with single-loop mixed refrigerant biomethane liquefaction process publication-title: Energy Convers Manag – year: 2017 ident: b0285 article-title: Noortgaete T Van Der, Velpen B Van Der. Techno-economic feasibility study of a system for the transfer of refrigeration capacity from LNG regasification plants to industrial assets. 12th IEA Heat Pump Conf publication-title: Rotterdam – year: 2008 ident: b0145 article-title: Japan’s LNG Utilization and Environmental Efforts publication-title: Tokyo (Japan) – volume: 4 start-page: 1 year: 2017 end-page: 10 ident: b0075 article-title: Thermodynamic analysis on the process of regasification of LNG and its application in the cold warehouse publication-title: Therm Sci Eng Prog – volume: 238 year: 2021 ident: b0130 article-title: LNG regasification and electricity production for port energy communities: Economic profitability and thermodynamic performance publication-title: Energy Convers Manag – volume: 170 start-page: 557 year: 2019 end-page: 568 ident: b0025 article-title: LNG cold energy utilization: Prospects and challenges publication-title: Energy – reference: The Carbon Trust. The Emerging Cold Economy. Sustainable solutions for rapidly increasing cooling needs. 2015. – volume: 239 year: 2021 ident: b0040 article-title: Thermodynamic comparison of modified Rankine cycle configurations for LNG cold energy recovery under different working conditions publication-title: Energy Convers Manag – volume: 132 start-page: 463 year: 2018 end-page: 478 ident: b0020 article-title: Cold recovery from LNG-regasification for polygeneration applications publication-title: Appl Therm Eng – volume: 11 start-page: 903 year: 2018 ident: b0125 article-title: A Novel Multicriteria Evaluation of Small-Scale LNG Supply Alternatives: The Case of Greece publication-title: Energies – volume: 101 start-page: 265 year: 2019 end-page: 278 ident: b0060 article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges publication-title: Renew Sustain Energy Rev – volume: 221 year: 2020 ident: b0110 article-title: Novel integrated CCHP system for generation of liquid methanol, power, cooling and liquid fuels using Kalina power cycle through liquefied natural gas regasification publication-title: Energy Convers Manag – reference: International Energy Agency (IEA). Gas Market Report, Q2-2021 2021. https://www.iea.org/reports/gas-market-report-q2-2021. – volume: 52 start-page: 2401 year: 2011 end-page: 2404 ident: b0070 article-title: Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized publication-title: Energy Convers Manag – volume: 183 start-page: 448 year: 2019 end-page: 461 ident: b0115 article-title: Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification publication-title: Energy – reference: Braun R, Otto P. Method and heat exchanger for recovering cold during re-gasification of cryogenic liquids. WO 2017/114518, 2017. – volume: 243 year: 2021 ident: b0085 article-title: Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas publication-title: Energy Convers Manag – volume: 176 start-page: 1020 year: 2019 end-page: 1036 ident: b0100 article-title: Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification publication-title: Energy – year: 2017 ident: b0120 article-title: Small going big. Why small-scale LNG may be the next big wave publication-title: Strategy & (Part of the PwC network) – volume: 23 start-page: 77 year: 2014 end-page: 84 ident: b0160 article-title: Process study and exergy analysis of a novel air separation process cooled by LNG cold energy publication-title: J Therm Sci – volume: 111 start-page: 755 year: 2013 end-page: 762 ident: b0175 article-title: Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling publication-title: Fuel – reference: Sveinbjörnsson D, Linn P, Jensen L, Trier D, Hassine I Ben, Jobard X. D2.3 - Large Storage Systems for DHC Networks. Fifth generation, low temperature, high exergy district heating and cooling networks (FLEXYNETS). 2017. – reference: New LNG power plant at Gibraltar powered by MAN Energy Solutions 2019. https://www.man-es.com/discover/gibraltar-builds-a-modern-lng-power-plant (accessed November 30, 2019). – reference: International Institute of Refrigeration (IIR). Future data centre cooled using waste cooling from LNG Terminal in Singapore 2021. https://iifiir.org/en/news/future-data-centre-cooled-using-waste-cooling-from-lng-terminal-in-singapore (accessed July 1, 2021). – volume: 35 start-page: 4383 year: 2010 end-page: 4391 ident: b0170 article-title: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure publication-title: Energy – volume: 20 year: 2020 ident: b0290 article-title: Energy polygeneration systems based on LNG-regasification: Comprehensive overview and techno-economic feasibility publication-title: Therm Sci Eng Prog – reference: Braun R, Peter O, Bihl L. Refrigeration supply plant coupled to regasification apparatus of a Liquefied Natural Gas terminal. WO 2019/020135, 2019. – reference: United Nations Framework Convention on Climate Change (UNFCCC). The Paris Agreement 2015. http://unfccc.int/paris_agreement/items/9485.php (accessed March 30, 2019). – volume: 43 start-page: 22075 year: 2018 end-page: 22087 ident: b0090 article-title: Performance evaluation of an integrated hydrogen production system with LNG cold energy utilization publication-title: Int J Hydrogen Energy – volume: 174 start-page: 336 year: 2018 end-page: 355 ident: b0045 article-title: Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles publication-title: Energy Convers Manag – start-page: 1 year: 2013 end-page: 18 ident: b0240 article-title: Small and Medium size LNG for Power Production – volume: 29 start-page: 21 year: 2016 end-page: 30 ident: b0385 article-title: A Monte Carlo approach to integrating uncertainty into the levelized cost of electricity publication-title: Electr J – volume: 181 start-page: 507 year: 2019 end-page: 518 ident: b0195 article-title: Thermoeconomic analysis and optimization of the small scale power generation and carbon dioxide capture system from liquefied natural gas publication-title: Energy Convers Manag – reference: EnergyPlus - Weather Data 2019. https://energyplus.net/weather (accessed December 10, 2019). – reference: Wärtsilä. Small-and medium-scale LNG terminals 2018. – volume: 213 year: 2020 ident: b0095 article-title: Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification publication-title: Energy Convers Manag – reference: Nomura Research Institute. Study on Opportunities and Issues in introducing mini LNG facilities and equipments in Indonesia 2015. – reference: ASHRAE. ASHRAE Handbook-Refrigeration - SI Edition. 2014. – volume: 213 year: 2020 ident: 10.1016/j.enconman.2021.114783_b0095 article-title: Energy, exergy and exergoeconomic analysis of an ultra low-grade heat-driven ammonia-water combined absorption power-cooling cycle for district space cooling, sub-zero refrigeration, power and LNG regasification publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112790 – volume: 86 start-page: 1170 year: 2009 ident: 10.1016/j.enconman.2021.114783_b0305 article-title: Analyses of ice slurry formation using direct contact heat transfer publication-title: Appl Energy doi: 10.1016/j.apenergy.2008.11.003 – ident: 10.1016/j.enconman.2021.114783_b0310 – ident: 10.1016/j.enconman.2021.114783_b0230 – year: 2017 ident: 10.1016/j.enconman.2021.114783_b0120 article-title: Small going big. Why small-scale LNG may be the next big wave – ident: 10.1016/j.enconman.2021.114783_b0400 – ident: 10.1016/j.enconman.2021.114783_b0295 – volume: 269 year: 2020 ident: 10.1016/j.enconman.2021.114783_b0055 article-title: Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115049 – volume: 58 start-page: 281 year: 2013 ident: 10.1016/j.enconman.2021.114783_b0340 article-title: A simplified method to predict hourly building cooling load for urban energy planning publication-title: Energy Build doi: 10.1016/j.enbuild.2012.11.029 – ident: 10.1016/j.enconman.2021.114783_b0325 doi: 10.1016/B978-0-12-387785-7.00010-4 – ident: 10.1016/j.enconman.2021.114783_b0140 – volume: 76 start-page: 775 year: 2017 ident: 10.1016/j.enconman.2021.114783_b0260 article-title: Evaluation of future sustainable electricity generation alternatives: The case of a Greek island publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.03.085 – ident: 10.1016/j.enconman.2021.114783_b0215 – ident: 10.1016/j.enconman.2021.114783_b0395 – ident: 10.1016/j.enconman.2021.114783_b0150 – volume: 204 start-page: 1148 year: 2017 ident: 10.1016/j.enconman.2021.114783_b0190 article-title: Thermoeconomic and environmental assessments of a combined cycle for the small scale LNG cold utilization publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.01.061 – volume: 176 start-page: 1020 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0100 article-title: Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification publication-title: Energy doi: 10.1016/j.energy.2019.04.060 – volume: 238 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0130 article-title: LNG regasification and electricity production for port energy communities: Economic profitability and thermodynamic performance publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114128 – ident: 10.1016/j.enconman.2021.114783_b0135 – ident: 10.1016/j.enconman.2021.114783_b0250 – volume: 238 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0105 article-title: Exergoeconomic analysis and optimization of a combined cooling, heating and power system based on organic Rankine and Kalina cycles using liquified natural gas cold energy publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114148 – ident: 10.1016/j.enconman.2021.114783_b0315 – ident: 10.1016/j.enconman.2021.114783_b0165 doi: 10.1007/978-3-319-04681-5_53 – ident: 10.1016/j.enconman.2021.114783_b0015 – year: 2008 ident: 10.1016/j.enconman.2021.114783_b0145 article-title: Japan’s LNG Utilization and Environmental Efforts publication-title: Tokyo (Japan) – year: 2005 ident: 10.1016/j.enconman.2021.114783_b0380 article-title: Chemical Process Design and Integration publication-title: John Wiley & Sons, Ltd – volume: 52 start-page: 2401 year: 2011 ident: 10.1016/j.enconman.2021.114783_b0070 article-title: Improved processes of light hydrocarbon separation from LNG with its cryogenic energy utilized publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2010.12.040 – volume: 43 start-page: 22075 year: 2018 ident: 10.1016/j.enconman.2021.114783_b0090 article-title: Performance evaluation of an integrated hydrogen production system with LNG cold energy utilization publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.048 – ident: 10.1016/j.enconman.2021.114783_b0275 – volume: 221 year: 2020 ident: 10.1016/j.enconman.2021.114783_b0110 article-title: Novel integrated CCHP system for generation of liquid methanol, power, cooling and liquid fuels using Kalina power cycle through liquefied natural gas regasification publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113151 – start-page: 1 year: 2013 ident: 10.1016/j.enconman.2021.114783_b0240 – ident: 10.1016/j.enconman.2021.114783_b0300 – volume: 172 start-page: 36 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0180 article-title: Performance study of supplying cooling load and output power combined cycle using the cold energy of the small scale LNG publication-title: Energy doi: 10.1016/j.energy.2019.01.094 – volume: 35 start-page: 4383 year: 2010 ident: 10.1016/j.enconman.2021.114783_b0170 article-title: LNG (liquefied natural gas): A necessary part in China’s future energy infrastructure publication-title: Energy doi: 10.1016/j.energy.2009.04.036 – volume: 129 start-page: 171 year: 2017 ident: 10.1016/j.enconman.2021.114783_b0185 article-title: Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization publication-title: Energy doi: 10.1016/j.energy.2017.04.071 – volume: 181 start-page: 507 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0195 article-title: Thermoeconomic analysis and optimization of the small scale power generation and carbon dioxide capture system from liquefied natural gas publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.11.077 – ident: 10.1016/j.enconman.2021.114783_b0390 – ident: 10.1016/j.enconman.2021.114783_b0080 – volume: 169 start-page: 309 year: 2016 ident: 10.1016/j.enconman.2021.114783_b0335 article-title: Estimating hourly cooling load in commercial buildings using a thermal network model and electricity submetering data publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.02.036 – volume: 220 start-page: 944 year: 2018 ident: 10.1016/j.enconman.2021.114783_b0200 article-title: Finite sum based thermoeconomic and sustainable analyses of the small scale LNG cold utilized power generation systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.088 – ident: 10.1016/j.enconman.2021.114783_b0270 – ident: 10.1016/j.enconman.2021.114783_b0360 doi: 10.1061/9780784413609.257 – ident: 10.1016/j.enconman.2021.114783_b0255 – ident: 10.1016/j.enconman.2021.114783_b0010 – volume: 174 start-page: 336 year: 2018 ident: 10.1016/j.enconman.2021.114783_b0045 article-title: Recovery of cold energy from liquefied natural gas regasification: Applications beyond power cycles publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.08.028 – volume: 20 year: 2020 ident: 10.1016/j.enconman.2021.114783_b0290 article-title: Energy polygeneration systems based on LNG-regasification: Comprehensive overview and techno-economic feasibility publication-title: Therm Sci Eng Prog – ident: 10.1016/j.enconman.2021.114783_b0345 – ident: 10.1016/j.enconman.2021.114783_b0005 – year: 2007 ident: 10.1016/j.enconman.2021.114783_b0370 article-title: Rules of Thumb in Engineering Practice publication-title: Wiley – ident: 10.1016/j.enconman.2021.114783_b0280 – volume: 105 start-page: 45 year: 2016 ident: 10.1016/j.enconman.2021.114783_b0210 article-title: Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry publication-title: Energy doi: 10.1016/j.energy.2015.08.110 – year: 2014 ident: 10.1016/j.enconman.2021.114783_b0265 article-title: Small Scale LNG Based Power Generation in the Philippines publication-title: Power Genp Asia – ident: 10.1016/j.enconman.2021.114783_b0225 – volume: 132 start-page: 463 year: 2018 ident: 10.1016/j.enconman.2021.114783_b0020 article-title: Cold recovery from LNG-regasification for polygeneration applications publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.12.073 – volume: 170 start-page: 557 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0025 article-title: LNG cold energy utilization: Prospects and challenges publication-title: Energy doi: 10.1016/j.energy.2018.12.170 – ident: 10.1016/j.enconman.2021.114783_b0355 – volume: 244 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0065 article-title: Reducing the efficiency penalty of carbon dioxide capture and compression process in a natural gas combined cycle power plant by process modification and liquefied natural gas cold energy integration publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114495 – volume: 101 start-page: 265 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0060 article-title: Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.11.018 – ident: 10.1016/j.enconman.2021.114783_b0365 – volume: 243 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0085 article-title: Energy, exergy, exergoeconomic, and economic analysis of a novel power generation cycle integrated with seawater desalination system using the cold energy of liquified natural gas publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114352 – ident: 10.1016/j.enconman.2021.114783_b0330 – volume: 29 start-page: 21 year: 2016 ident: 10.1016/j.enconman.2021.114783_b0385 article-title: A Monte Carlo approach to integrating uncertainty into the levelized cost of electricity publication-title: Electr J doi: 10.1016/j.tej.2016.04.001 – ident: 10.1016/j.enconman.2021.114783_b0235 – volume: 243 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0155 article-title: Renewable LNG production: Biogas upgrading through CO2 solidification integrated with single-loop mixed refrigerant biomethane liquefaction process publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114363 – volume: 239 year: 2021 ident: 10.1016/j.enconman.2021.114783_b0040 article-title: Thermodynamic comparison of modified Rankine cycle configurations for LNG cold energy recovery under different working conditions publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114141 – volume: 90 start-page: 2047 year: 2015 ident: 10.1016/j.enconman.2021.114783_b0050 article-title: Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization publication-title: Energy doi: 10.1016/j.energy.2015.07.101 – volume: 4 start-page: 1 year: 2017 ident: 10.1016/j.enconman.2021.114783_b0075 article-title: Thermodynamic analysis on the process of regasification of LNG and its application in the cold warehouse publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2017.08.001 – volume: 38 start-page: 781 year: 2014 ident: 10.1016/j.enconman.2021.114783_b0035 article-title: Review of thermal cycles exploiting the exergy of liquefied natural gas in the regasification process publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.029 – volume: 111 start-page: 755 year: 2013 ident: 10.1016/j.enconman.2021.114783_b0175 article-title: Exergy analysis of combined simultaneous Liquid Natural Gas vaporization and Adsorbed Natural Gas cooling publication-title: Fuel doi: 10.1016/j.fuel.2013.03.074 – ident: 10.1016/j.enconman.2021.114783_b0220 – volume: 11 start-page: 903 year: 2018 ident: 10.1016/j.enconman.2021.114783_b0125 article-title: A Novel Multicriteria Evaluation of Small-Scale LNG Supply Alternatives: The Case of Greece publication-title: Energies doi: 10.3390/en11040903 – ident: 10.1016/j.enconman.2021.114783_b0320 doi: 10.2172/5281927 – ident: 10.1016/j.enconman.2021.114783_b0350 – volume: 43 start-page: 4104 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0205 article-title: Life-cycle-integrated thermoeconomic and enviroeconomic assessments of the small-scale-liquefied natural gas cold utilization systems publication-title: Int J Energy Res doi: 10.1002/er.4510 – ident: 10.1016/j.enconman.2021.114783_b0245 – volume: 23 start-page: 77 year: 2014 ident: 10.1016/j.enconman.2021.114783_b0160 article-title: Process study and exergy analysis of a novel air separation process cooled by LNG cold energy publication-title: J Therm Sci doi: 10.1007/s11630-014-0679-5 – ident: 10.1016/j.enconman.2021.114783_b0375 – year: 2017 ident: 10.1016/j.enconman.2021.114783_b0285 article-title: Noortgaete T Van Der, Velpen B Van Der. Techno-economic feasibility study of a system for the transfer of refrigeration capacity from LNG regasification plants to industrial assets. 12th IEA Heat Pump Conf publication-title: Rotterdam – volume: 183 start-page: 448 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0115 article-title: Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification publication-title: Energy doi: 10.1016/j.energy.2019.06.153 – volume: 99 start-page: 1 year: 2019 ident: 10.1016/j.enconman.2021.114783_b0030 article-title: Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.09.027 |
SSID | ssj0003506 |
Score | 2.408805 |
Snippet | •Cold recovery from cryogenic fuels regasification addressed in satellite terminals.•New configuration for boosting the efficiency of sub-zero refrigeration... The regasification of liquefied natural gas releases low-temperature thermal energy, which is usually wasted. Most initiatives to recover this cold mainly... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114783 |
SubjectTerms | administrative management byproducts Cold Cold recovery Compression Condensates condensation (phase transition) Cooling towers Cost analysis Economic analysis Economics electricity energy conversion Energy efficiency improvement Food industry gasification Harbor facilities Liquefied natural gas Liquefied natural gas regasification Low temperature Monte Carlo method Monte Carlo simulation Natural gas Peak load Recovery Reference systems Refrigeration Satellite LNG terminals satellites Sustainable refrigeration Techno-economic potential Terminals Thermal analysis Thermal energy |
Title | Regasification of liquefied natural gas in satellite terminals: Techno-economic potential of cold recovery for boosting the efficiency of refrigerated facilities |
URI | https://dx.doi.org/10.1016/j.enconman.2021.114783 https://www.proquest.com/docview/2609115340 https://www.proquest.com/docview/2636710447 |
Volume | 248 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB612wscEE-xUCojcXU3iV8Jt6qiWkD0AFTqzbITG221za5IeuDCf-GfMpM4q4KEeuASKY7HTjzjmXE88xngjYpCu7yM3DXecGmc4c4bxTOX-SJKE3xNCc6fzvXyQn64VJd7cDrlwlBYZdL9o04ftHUqWaTRXGxXq8UXQnYpKxS6fIDX1ftwUKC1L2dwcPL-4_J8p5CFGo7YpPqcCG4lCl8dE1xke-0ICrXICTnXlOJfNuovbT2YoLOH8CD5juxkfL1HsBfax3D_FqLgE_j1OXxzHYX_DCPONpGtCaE1oqfJBhBPbABrsFXLOjegcfaBpYiYdfeWjb_aeUj5ymy76SmeCKmwKRSahtESGuX_B0N3l6GP3lHgNEM_koUBjoJyOakyfhau_AmzGbuOrqYgXFyWP4WLs3dfT5c8ncLAaxzanseQlcQz2gVWTRZknlGJbmqtYllpWYkmaNILRVV7svdCh0JEIWvRVK4Qz2DWbtrwHJjxvnEm5oZgAlEQypo2vvHSFM7LTMxBTeNu6wRRTidlrO0Ui3ZlJ35Z4pcd-TWHxY5uO4J03ElRTWy1f4ibRUtyJ-3hJAc2TfjO4rIQzYYSMpvD691jnKq0_-LasLmhOkKjQyelefEf3b-Ee3RH-ZC5OoRZ__0mvELHqPdHsH_8Mz9K4v8bNSAREg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QE4IJ5iSwEjcTWbxK-EW1VRbWm7B2il3iwnsautluyKpIf-HP4pM4mzKkioBy452B478YxnxvHMZ4CPKgjt0jxwV5eGS-MMd6VRPHFJmQVpfFlRgvPZQs8v5NdLdbkDh2MuDIVVRt0_6PReW8eSWZzN2Wa5nH0nZJe8QKFLe3hd_QB2JV1qPYHdg-OT-WKrkIXqr9ik9pwI7iQKX38iuMjmhyMo1Cwl5FyTi3_ZqL-0dW-Cjp7Ck-g7soPh9Z7Bjm-ew-M7iIIv4Nc3f-VaCv_pZ5ytA1sRQmtAT5P1IJ7YAbZgy4a1rkfj7DyLETGr9jMbfrVzH_OV2WbdUTwRUmFXKDQ1oy00yv8tQ3eXoY_eUuA0Qz-S-R6OgnI5qTF-Fu78CbMZhw6uoiBc3Ja_hIujL-eHcx5vYeAVTm3Hg09y4hmdAqs68TJNqETXlVYhL7QsRO016YWsqEqy90L7TAQhK1EXLhOvYNKsG_8amCnL2pmQGoIJREHIKzr4xkeduVImYgpqnHdbRYhyuiljZcdYtGs78ssSv-zArynMtnSbAaTjXopiZKv9Q9wsWpJ7afdHObBxwbcWt4VoNpSQyRQ-bKtxqdL5i2v8-obaCI0OnZRm7z-Gfw8P5-dnp_b0eHHyBh5RDeVGpmofJt3PG_8WnaSufBcXwW-iMhL4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regasification+of+liquefied+natural+gas+in+satellite+terminals%3A+Techno-economic+potential+of+cold+recovery+for+boosting+the+efficiency+of+refrigerated+facilities&rft.jtitle=Energy+conversion+and+management&rft.au=Atienza-M%C3%A1rquez%2C+Antonio&rft.au=Bruno%2C+Joan+Carles&rft.au=Coronas%2C+Alberto&rft.date=2021-11-15&rft.issn=0196-8904&rft.volume=248&rft.spage=114783&rft_id=info:doi/10.1016%2Fj.enconman.2021.114783&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_114783 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |