Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence
Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners respons...
Saved in:
| Published in | Science & justice Vol. 65; no. 4; p. 101255 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier B.V
01.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1355-0306 1876-4452 1876-4452 |
| DOI | 10.1016/j.scijus.2025.101255 |
Cover
| Abstract | Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.
•Shoe-MS is a deep-learning-based shoeprint analysis algorithm using a Siamese net.•Evaluated on comparably clean (DB1) and degraded (DB2) footwear impression.•Shoe-MS outperformed other methods, especially on degraded and noisy condition.•Fine-tuning improved performance on task-specific and challenging conditions.•Future work targets generalizability, partial prints, and broader shoe datasets. |
|---|---|
| AbstractList | Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. AbstractQuantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. •Shoe-MS is a deep-learning-based shoeprint analysis algorithm using a Siamese net.•Evaluated on comparably clean (DB1) and degraded (DB2) footwear impression.•Shoe-MS outperformed other methods, especially on degraded and noisy condition.•Fine-tuning improved performance on task-specific and challenging conditions.•Future work targets generalizability, partial prints, and broader shoe datasets. |
| ArticleNumber | 101255 |
| Author | Carriquiry, Alicia Jang, Moonsoo Park, Soyoung |
| Author_xml | – sequence: 1 givenname: Moonsoo orcidid: 0009-0002-3431-1424 surname: Jang fullname: Jang, Moonsoo organization: Department of Statistics, Pusan National University, Republic of Korea – sequence: 2 givenname: Alicia surname: Carriquiry fullname: Carriquiry, Alicia organization: Department of Statistics, Iowa State University, United States of America – sequence: 3 givenname: Soyoung orcidid: 0000-0002-8833-3971 surname: Park fullname: Park, Soyoung email: soyoung@pusan.ac.kr organization: Department of Statistics, Pusan National University, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40480703$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVkU1r3DAQhkVJab76D0rRsRdvRrLlj1IKIaRJISWHzV3I8ngtVyttJTuw_74yTnsroScNwzOvmGfOyYnzDgn5wGDDgJVX4yZqM85xw4GLpcWFeEPOWF2VWVEIfpLqXIgMcihPyXmMI4CoWAnvyGkBRQ0V5GdE37pBOW3cjvY-oItG0zh4PATjJqqcssdo4md6fThYo9VkvKO-p9OAdJuw7MeWKrvzwUzDnk6e6kFZi263BOKz6dBpvCRve2Ujvn95L8jTt9unm_vs4fHu-831Q6YLzqas59DwFnjX1oKjaOuGV6LJK-wr3jPQSnHVlXWd-kypNu_KpuqRq7YCZD3PL8inNfYQ_K8Z4yT3Jmq0Vjn0c5Q5Z2XZiLysEvrxBZ3bPXYybbtX4Sj_eElAsQI6-BgD9n8RBnLRL0e56peLfrnqT2Nf1zFMaz4bDAu0KOhMQD3Jzpv_DdDWuCTe_sQjxtHPIZ0kSiYjlyC3y4WXA3MBAHmzBHz5d8Dr__8Ga6e4ng |
| Cites_doi | 10.1093/lpr/mgy008 10.1186/1471-2105-12-77 10.1002/sam.11449 10.1111/1556-4029.14802 10.1109/CVPR.2016.90 10.1016/j.forsciint.2017.02.030 10.1109/ICCV.2017.514 10.1111/1556-4029.14658 10.1016/j.forsciint.2016.06.012 10.2307/2531595 10.1109/ICCV.2017.74 10.1111/1556-4029.12089 10.1016/j.dib.2020.105508 10.1073/pnas.1712161115 10.1016/j.forsciint.2021.111126 10.1002/sam.11636 10.1016/j.jksuci.2022.03.024 10.1016/j.forsciint.2017.11.038 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors The Authors Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.scijus.2025.101255 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Welfare & Social Work Law |
| EISSN | 1876-4452 |
| EndPage | 101255 |
| ExternalDocumentID | 40480703 10_1016_j_scijus_2025_101255 S1355030625000395 1_s2_0_S1355030625000395 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Center for Statistics and Applications in Forensic Evidence (CSAFE), United States funderid: http://dx.doi.org/10.13039/100014725 – fundername: National Research Foundation of Korea (NRF) grantid: 2021R1C1C100711111 funderid: http://dx.doi.org/10.13039/501100003725 |
| GroupedDBID | --- --K --M -RU .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ AAEDT AAEDW AAFJI AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AATTM AAXKI AAXUO AAYWO ABBQC ABGSF ABJNI ABMAC ABMMH ABMZM ABUDA ABWVN ABXDB ABZDS ACDAQ ACGFS ACIEU ACIWK ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADECG ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AFZHZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJSZI AJUYK AKBMS AKRWK AKYEP ALCLG ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOMHK APXCP ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 R2- ROL RPZ SCB SDF SDG SEL SES SPC SPCBC SSB SSH SSK SSO SSP SSU SSZ T5K TN5 Z5R ZHY ~G- ~HD AFCTW AGCQF AGRNS RIG 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c421t-f2092b02db852e5b89275937ef72f10caa2ad6888921aab3d697fe2ab70e1f23 |
| IEDL.DBID | .~1 |
| ISSN | 1355-0306 1876-4452 |
| IngestDate | Thu Oct 02 22:37:06 EDT 2025 Mon Jul 21 05:51:23 EDT 2025 Wed Oct 01 05:50:26 EDT 2025 Sat Aug 09 17:31:41 EDT 2025 Fri Aug 01 03:32:49 EDT 2025 Tue Oct 14 19:31:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Deep learning Shoe-MS algorithm Pattern evidence Shoeprint |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-f2092b02db852e5b89275937ef72f10caa2ad6888921aab3d697fe2ab70e1f23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0002-3431-1424 0000-0002-8833-3971 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1355030625000395 |
| PMID | 40480703 |
| PQID | 3216695367 |
| PQPubID | 23479 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_3216695367 pubmed_primary_40480703 crossref_primary_10_1016_j_scijus_2025_101255 elsevier_sciencedirect_doi_10_1016_j_scijus_2025_101255 elsevier_clinicalkeyesjournals_1_s2_0_S1355030625000395 elsevier_clinicalkey_doi_10_1016_j_scijus_2025_101255 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Science & justice |
| PublicationTitleAlternate | Sci Justice |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hasegawa, Tabbone (b27) 2012 Park, Carriquiry (b11) 2020; 13 Jang, Park, Carriquiry (b15) 2023; 16 Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. Hicklin, McVicker, Parks, LeMay, Richetelli, Smith, Buscaglia, Perlman, Peters, Eckenrode (b35) 2022; 339 Bell, Sah, Albright, Gates, Denton, Casadevall (b7) 2018; 115 Park, Carriquiry (b30) 2020; 30 Takita, Aoki, Sasaki, Higuchi, Kobayashi (b19) 2003; 86 Gueham, Bouridane, Crookes (b8) 2007; vol. 4 Richetelli, Lee, Lasky, Gump, Speir (b18) 2017; 275 Ito, Nakajima, Kobayashi, Aoki, Higuchi (b20) 2004; 87 Damary, Mandel, Wiesner, Yekutieli, Shor, Spiegelman (b3) 2018; 283 DeLong, DeLong, Clarke-Pearson (b32) 1988 Venkatasubramanian, Hegde, Padi, Iyer, Herman (b13) 2021; 66 Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (b24) 2016 Di Stefano, Mattoccia, Mola (b16) 2003 Gueham, Bouridane, Crookes (b9) 2008 Simonyan, Zisserman (b21) 2014 Speir (b31) 2021 Park, Carriquiry (b12) 2022; 331 Kong, Supancic, Ramanan, Fowlkes (b14) 2017 Speir, Richetelli, Fagert, Hite, Bodziak (b2) 2016; 266 Hassan, Wang, Pang, Wang, Li, Zhou, Xu (b25) 2022; 34 Committee on Identifying the Needs of the Forensic Sciences Community and National Research Council (US). Committee on Science and Law Policy and Global Affairs and Committee on Science and Law and Committee on Applied and Theoretical Statistics (b6) 2009 Venkatasubramanian, Hegde, Lund, Iyer, Herman (b17) 2021; 66 Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (b33) 2011; 12 Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao, Image super-resolution using dense skip connections, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4799–4807. Scientific Working Group for Shoeprint and Tire Tread Evidence (SWGTREAD) (b4) 2013 Deng, Dong, Socher, Li, Li, Fei-Fei (b26) 2009 Koch, Zemel, Salakhutdinov (b29) 2015; vol. 2 Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626. Ommen, Saunders (b1) 2018; 17 Gueham, Bouridane, Crookes, Nibouche (b10) 2008 Holdren, Lander, Press, Savitz, Austin, Chyba (b5) 2016 Wei, Li, Gwo (b28) 2013; 58 Hasegawa (10.1016/j.scijus.2025.101255_b27) 2012 Park (10.1016/j.scijus.2025.101255_b12) 2022; 331 Hicklin (10.1016/j.scijus.2025.101255_b35) 2022; 339 Gueham (10.1016/j.scijus.2025.101255_b10) 2008 Speir (10.1016/j.scijus.2025.101255_b2) 2016; 266 Robin (10.1016/j.scijus.2025.101255_b33) 2011; 12 Ommen (10.1016/j.scijus.2025.101255_b1) 2018; 17 Richetelli (10.1016/j.scijus.2025.101255_b18) 2017; 275 Di Stefano (10.1016/j.scijus.2025.101255_b16) 2003 DeLong (10.1016/j.scijus.2025.101255_b32) 1988 10.1016/j.scijus.2025.101255_b34 Scientific Working Group for Shoeprint and Tire Tread Evidence (SWGTREAD) (10.1016/j.scijus.2025.101255_b4) 2013 Gueham (10.1016/j.scijus.2025.101255_b8) 2007; vol. 4 Holdren (10.1016/j.scijus.2025.101255_b5) 2016 Takita (10.1016/j.scijus.2025.101255_b19) 2003; 86 Kong (10.1016/j.scijus.2025.101255_b14) 2017 Committee on Identifying the Needs of the Forensic Sciences Community and National Research Council (US). Committee on Science and Law Policy and Global Affairs and Committee on Science and Law and Committee on Applied and Theoretical Statistics (10.1016/j.scijus.2025.101255_b6) 2009 Venkatasubramanian (10.1016/j.scijus.2025.101255_b13) 2021; 66 Drozdzal (10.1016/j.scijus.2025.101255_b24) 2016 Jang (10.1016/j.scijus.2025.101255_b15) 2023; 16 Venkatasubramanian (10.1016/j.scijus.2025.101255_b17) 2021; 66 Ito (10.1016/j.scijus.2025.101255_b20) 2004; 87 Deng (10.1016/j.scijus.2025.101255_b26) 2009 Simonyan (10.1016/j.scijus.2025.101255_b21) 2014 Damary (10.1016/j.scijus.2025.101255_b3) 2018; 283 Koch (10.1016/j.scijus.2025.101255_b29) 2015; vol. 2 Gueham (10.1016/j.scijus.2025.101255_b9) 2008 Park (10.1016/j.scijus.2025.101255_b11) 2020; 13 Speir (10.1016/j.scijus.2025.101255_b31) 2021 Bell (10.1016/j.scijus.2025.101255_b7) 2018; 115 10.1016/j.scijus.2025.101255_b22 10.1016/j.scijus.2025.101255_b23 Park (10.1016/j.scijus.2025.101255_b30) 2020; 30 Wei (10.1016/j.scijus.2025.101255_b28) 2013; 58 Hassan (10.1016/j.scijus.2025.101255_b25) 2022; 34 |
| References_xml | – volume: 339 year: 2022 ident: b35 article-title: Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions publication-title: Forensic Sci. Int. – year: 2009 ident: b6 article-title: Strengthening Forensic Science in the United States: a Path Forward – volume: 16 start-page: 511 year: 2023 end-page: 527 ident: b15 article-title: A finely tuned deep transfer learning algorithm to compare outsole images publication-title: Stat. Anal. Data Min.: ASA Data Sci. J. – reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778. – volume: vol. 4 start-page: IV year: 2007 end-page: 441 ident: b8 article-title: Automatic recognition of partial shoeprints based on phase-only correlation publication-title: 2007 IEEE International Conference on Image Processing – volume: 86 start-page: 1925 year: 2003 end-page: 1934 ident: b19 article-title: High-accuracy subpixel image registration based on phase-only correlation publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – start-page: 675 year: 2012 end-page: 683 ident: b27 article-title: A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset publication-title: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, SSPR&SPR 2012, Hiroshima, Japan, November 7-9, 2012. Proceedings – reference: Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao, Image super-resolution using dense skip connections, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4799–4807. – volume: 34 start-page: 2743 year: 2022 end-page: 2757 ident: b25 article-title: IPAS-Net: A deep-learning model for generating high-fidelity shoeprints from low-quality images with no natural references publication-title: J. King Saud University- Comput. Inf. Sci. – volume: 12 start-page: 1 year: 2011 end-page: 8 ident: b33 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics – volume: 115 start-page: 4541 year: 2018 end-page: 4544 ident: b7 article-title: A call for more science in forensic science publication-title: Proc. Natl. Acad. Sci. – volume: 66 start-page: 2232 year: 2021 end-page: 2251 ident: b17 article-title: Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system publication-title: J. Forensic Sci. – reference: Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626. – start-page: 179 year: 2016 end-page: 187 ident: b24 article-title: The importance of skip connections in biomedical image segmentation publication-title: International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis – start-page: 248 year: 2009 end-page: 255 ident: b26 article-title: Imagenet: A large-scale hierarchical image database publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition – volume: 87 start-page: 682 year: 2004 end-page: 691 ident: b20 article-title: A fingerprint matching algorithm using phase-only correlation publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – year: 2013 ident: b4 article-title: Standard for terminology used for forensic footwear and tire impression evidence – year: 2014 ident: b21 article-title: Very deep convolutional networks for large-scale image recognition – year: 2021 ident: b31 article-title: Crime scene shoe impression data set – year: 2017 ident: b14 article-title: Cross-domain forensic shoeprint matching – volume: 58 start-page: 625 year: 2013 end-page: 630 ident: b28 article-title: The use of scale-invariance feature transform approach to recognize and retrieve incomplete shoeprints publication-title: J. Forensic Sci. – start-page: 322 year: 2003 end-page: 327 ident: b16 article-title: An efficient algorithm for exhaustive template matching based on normalized cross correlation publication-title: 12th International Conference on Image Analysis and Processing, 2003. Proceedings – volume: 283 start-page: 173 year: 2018 end-page: 179 ident: b3 article-title: Dependence among randomly acquired characteristics on shoeprints and their features publication-title: Forensic Sci. Int. – start-page: 1 year: 2008 end-page: 4 ident: b9 article-title: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science publication-title: 2008 19th International Conference on Pattern Recognition – volume: 275 start-page: 102 year: 2017 end-page: 109 ident: b18 article-title: Classification of footwear outsole patterns using Fourier transform and local interest points publication-title: Forensic Sci. Int. – volume: 30 year: 2020 ident: b30 article-title: A database of two-dimensional images of footwear outsole impressions publication-title: Data Brief – volume: 17 start-page: 179 year: 2018 end-page: 197 ident: b1 article-title: Building a unified statistical framework for the forensic identification of source problems publication-title: Law, Probab. Risk – start-page: 837 year: 1988 end-page: 845 ident: b32 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – volume: 331 year: 2022 ident: b12 article-title: The effect of image descriptors on the performance of classifiers of footwear outsole image pairs publication-title: Forensic Sci. Int. – year: 2016 ident: b5 article-title: Forensic science in criminal courts: ensuring scientific validity of feature-comparison methods – volume: vol. 2 year: 2015 ident: b29 article-title: Siamese neural networks for one-shot image recognition publication-title: ICML Deep Learning Workshop – start-page: 487 year: 2008 end-page: 491 ident: b10 article-title: Automatic recognition of shoeprints using Fourier-Mellin transform publication-title: 2008 NASA/ESA Conference on Adaptive Hardware and Systems – volume: 13 start-page: 188 year: 2020 end-page: 199 ident: b11 article-title: An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature publication-title: Stat. Anal. Data Min.: ASA Data Sci. J. – volume: 66 start-page: 890 year: 2021 end-page: 909 ident: b13 article-title: Comparing footwear impressions that are close non-matches using correlation-based approaches publication-title: J. Forensic Sci. – volume: 266 start-page: 399 year: 2016 end-page: 411 ident: b2 article-title: Quantifying randomly acquired characteristics on outsoles in terms of shape and position publication-title: Forensic Sci. Int. – start-page: 487 year: 2008 ident: 10.1016/j.scijus.2025.101255_b10 article-title: Automatic recognition of shoeprints using Fourier-Mellin transform – start-page: 322 year: 2003 ident: 10.1016/j.scijus.2025.101255_b16 article-title: An efficient algorithm for exhaustive template matching based on normalized cross correlation – year: 2013 ident: 10.1016/j.scijus.2025.101255_b4 – start-page: 675 year: 2012 ident: 10.1016/j.scijus.2025.101255_b27 article-title: A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset – volume: 87 start-page: 682 issue: 3 year: 2004 ident: 10.1016/j.scijus.2025.101255_b20 article-title: A fingerprint matching algorithm using phase-only correlation publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – volume: 17 start-page: 179 issue: 2 year: 2018 ident: 10.1016/j.scijus.2025.101255_b1 article-title: Building a unified statistical framework for the forensic identification of source problems publication-title: Law, Probab. Risk doi: 10.1093/lpr/mgy008 – year: 2014 ident: 10.1016/j.scijus.2025.101255_b21 – volume: 12 start-page: 1 year: 2011 ident: 10.1016/j.scijus.2025.101255_b33 article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-12-77 – volume: 339 year: 2022 ident: 10.1016/j.scijus.2025.101255_b35 article-title: Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions publication-title: Forensic Sci. Int. – volume: 13 start-page: 188 issue: 2 year: 2020 ident: 10.1016/j.scijus.2025.101255_b11 article-title: An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature publication-title: Stat. Anal. Data Min.: ASA Data Sci. J. doi: 10.1002/sam.11449 – volume: 66 start-page: 2232 issue: 6 year: 2021 ident: 10.1016/j.scijus.2025.101255_b17 article-title: Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.14802 – ident: 10.1016/j.scijus.2025.101255_b22 doi: 10.1109/CVPR.2016.90 – volume: vol. 4 start-page: IV year: 2007 ident: 10.1016/j.scijus.2025.101255_b8 article-title: Automatic recognition of partial shoeprints based on phase-only correlation – volume: 275 start-page: 102 year: 2017 ident: 10.1016/j.scijus.2025.101255_b18 article-title: Classification of footwear outsole patterns using Fourier transform and local interest points publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2017.02.030 – year: 2017 ident: 10.1016/j.scijus.2025.101255_b14 – ident: 10.1016/j.scijus.2025.101255_b23 doi: 10.1109/ICCV.2017.514 – start-page: 1 year: 2008 ident: 10.1016/j.scijus.2025.101255_b9 article-title: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science – volume: 66 start-page: 890 issue: 3 year: 2021 ident: 10.1016/j.scijus.2025.101255_b13 article-title: Comparing footwear impressions that are close non-matches using correlation-based approaches publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.14658 – volume: 266 start-page: 399 year: 2016 ident: 10.1016/j.scijus.2025.101255_b2 article-title: Quantifying randomly acquired characteristics on outsoles in terms of shape and position publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2016.06.012 – start-page: 837 year: 1988 ident: 10.1016/j.scijus.2025.101255_b32 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – ident: 10.1016/j.scijus.2025.101255_b34 doi: 10.1109/ICCV.2017.74 – volume: 86 start-page: 1925 issue: 8 year: 2003 ident: 10.1016/j.scijus.2025.101255_b19 article-title: High-accuracy subpixel image registration based on phase-only correlation publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci. – start-page: 248 year: 2009 ident: 10.1016/j.scijus.2025.101255_b26 article-title: Imagenet: A large-scale hierarchical image database – volume: 58 start-page: 625 issue: 3 year: 2013 ident: 10.1016/j.scijus.2025.101255_b28 article-title: The use of scale-invariance feature transform approach to recognize and retrieve incomplete shoeprints publication-title: J. Forensic Sci. doi: 10.1111/1556-4029.12089 – volume: 30 year: 2020 ident: 10.1016/j.scijus.2025.101255_b30 article-title: A database of two-dimensional images of footwear outsole impressions publication-title: Data Brief doi: 10.1016/j.dib.2020.105508 – volume: 115 start-page: 4541 issue: 18 year: 2018 ident: 10.1016/j.scijus.2025.101255_b7 article-title: A call for more science in forensic science publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1712161115 – volume: 331 year: 2022 ident: 10.1016/j.scijus.2025.101255_b12 article-title: The effect of image descriptors on the performance of classifiers of footwear outsole image pairs publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2021.111126 – year: 2021 ident: 10.1016/j.scijus.2025.101255_b31 – volume: 16 start-page: 511 issue: 6 year: 2023 ident: 10.1016/j.scijus.2025.101255_b15 article-title: A finely tuned deep transfer learning algorithm to compare outsole images publication-title: Stat. Anal. Data Min.: ASA Data Sci. J. doi: 10.1002/sam.11636 – volume: vol. 2 year: 2015 ident: 10.1016/j.scijus.2025.101255_b29 article-title: Siamese neural networks for one-shot image recognition – year: 2009 ident: 10.1016/j.scijus.2025.101255_b6 – volume: 34 start-page: 2743 issue: 6 year: 2022 ident: 10.1016/j.scijus.2025.101255_b25 article-title: IPAS-Net: A deep-learning model for generating high-fidelity shoeprints from low-quality images with no natural references publication-title: J. King Saud University- Comput. Inf. Sci. doi: 10.1016/j.jksuci.2022.03.024 – start-page: 179 year: 2016 ident: 10.1016/j.scijus.2025.101255_b24 article-title: The importance of skip connections in biomedical image segmentation – volume: 283 start-page: 173 year: 2018 ident: 10.1016/j.scijus.2025.101255_b3 article-title: Dependence among randomly acquired characteristics on shoeprints and their features publication-title: Forensic Sci. Int. doi: 10.1016/j.forsciint.2017.11.038 – year: 2016 ident: 10.1016/j.scijus.2025.101255_b5 |
| SSID | ssj0057160 |
| Score | 2.3668718 |
| Snippet | Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of... AbstractQuantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 101255 |
| SubjectTerms | Algorithms Databases, Factual Deep Learning Forensic Sciences - methods Humans Image Processing, Computer-Assisted Pathology Pattern evidence Pattern Recognition, Automated Shoe-MS algorithm Shoeprint Shoes |
| Title | Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1355030625000395 https://www.clinicalkey.es/playcontent/1-s2.0-S1355030625000395 https://dx.doi.org/10.1016/j.scijus.2025.101255 https://www.ncbi.nlm.nih.gov/pubmed/40480703 https://www.proquest.com/docview/3216695367 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1876-4452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057160 issn: 1355-0306 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1876-4452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057160 issn: 1355-0306 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1876-4452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057160 issn: 1355-0306 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1876-4452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057160 issn: 1355-0306 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1876-4452 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057160 issn: 1355-0306 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBUF4LpTIS4hbWmcRxwm1VtVoe7WWL6M2yE7u7pSTVbipu_HZmYqeAKAJxSyzbSTxPx_PNMPbSZbXK0RAnyqQ-ycsCRcrhVS1saVXlUR8SOPnouJh_zN-dytMttj9iYSisMur-oNMHbR1bpnE1p5er1XSRoqkkjxfkgDAloHmeK6pi8PrbdZiHxP1AQApLmVDvET43xHjhvOdXlLQbJDUBAf5uNk9_cj8HM3R4j92N_iOfhVe8z7Zcu8NufTBfd9hugNryT-7Cm7Xjr_jY0K0_P2D1Qbuk5BrtGUdHleLWa75Zdo7-7PXcxOQkb_jsx5E27zxHB5EvsFtytODm4qxbr_rlF953vI5lWGhCF2uTPmQnhwcn-_MkllhI6hzSPvEgKrACGltKcNKWFSiJHovzCnwqamPANAXukitIjbFZU1TKOzBWCaQoZI_Ydtu17gnjtE8SHsqyoSJ_Dix6ItZKZAUr0gbyCUvGhdWXIZGGHiPMznUghCZC6ECICZPj6usRJIpqTaOm_8s4ddM4t4myudGp3oAW-jf--XnkLyz4D898MbKHRumkIxfTug47ZZAWBZ2Qqwl7HPjm-uvzAc4vsqf__dxn7A7dhejhXbbdr6_cc_SRers3CMEeuz17-35-_B0rgw6r |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2cYALgvGxwgAjIW6hzkscJ9ymaVOBdpcWsZtlJ87aMZKpzcSNv533YmeAGAJxixzbSfy-4_d7ZuyVS0qVoiGOlInrKM0zFCmHV6WwuVVFjfqQwMmzk2zyMX1_Kk-32OGAhaG0yqD7vU7vtXVoGYfVHF-uVuN5jKaSPF6QPcJUbrNbqQRFEdibb9d5HhIDAg8VljKi7gN-rk_ywonPr6hqN0hqAkL83Wyf_uR_9nbo-B67GxxIfuDf8T7bcs0u256ar7ts32Nt-Sd3UZu146_50NCuPz9g5VGzpOoazRlHT5US10u-WbaOfu113ITqJG_5wY89bd7WHD1EPsdu0WzOzcVZu151yy-8a3kZzmGhCV04nPQhWxwfLQ4nUThjISpTiLuoBlGAFVDZXIKTNi9ASXRZXK2gjkVpDJgqwzC5gNgYm1RZoWoHxiqBJIXkEdtp2sbtMU6Bkqghzys65c-BRVfEWom8YEVcQTpi0bCw-tJX0tBDitm59oTQRAjtCTFiclh9PaBEUa9pVPV_GaduGuc2QTg3OtYb0EL_xkA_j_yFB__hmS8H9tAonrTnYhrXYqcE4iyjLXI1Yo8931x_fdrj-UXy5L-f-4LdnixmUz19d_LhKbtDd3wq8T7b6dZX7hk6TJ193gvEd0-3EEA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+forensic+shoeprint+analysis%3A+Application+of+the+Shoe-MS+algorithm+to+challenging+evidence&rft.jtitle=Science+%26+justice&rft.au=Jang%2C+Moonsoo&rft.au=Carriquiry%2C+Alicia&rft.au=Park%2C+Soyoung&rft.date=2025-07-01&rft.issn=1355-0306&rft.volume=65&rft.issue=4&rft.spage=101255&rft.epage=101255&rft_id=info:doi/10.1016%2Fj.scijus.2025.101255&rft.externalDBID=ECK1-s2.0-S1355030625000395&rft.externalDocID=1_s2_0_S1355030625000395 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13550306%2FS1355030625X00046%2Fcov150h.gif |