Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence

Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners respons...

Full description

Saved in:
Bibliographic Details
Published inScience & justice Vol. 65; no. 4; p. 101255
Main Authors Jang, Moonsoo, Carriquiry, Alicia, Park, Soyoung
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 01.07.2025
Subjects
Online AccessGet full text
ISSN1355-0306
1876-4452
1876-4452
DOI10.1016/j.scijus.2025.101255

Cover

Abstract Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. •Shoe-MS is a deep-learning-based shoeprint analysis algorithm using a Siamese net.•Evaluated on comparably clean (DB1) and degraded (DB2) footwear impression.•Shoe-MS outperformed other methods, especially on degraded and noisy condition.•Fine-tuning improved performance on task-specific and challenging conditions.•Future work targets generalizability, partial prints, and broader shoe datasets.
AbstractList Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.
AbstractQuantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.
Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm's performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality.
Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of sources and classification of items in evidence are critical. Emerging deep learning approaches can become useful tools for examiners responsible for pattern recognition and analysis. This paper explores the Shoe-MS algorithm, a deep learning-based framework specifically designed for forensic footwear analysis where the input consists of two paired images, and the output is an estimated similarity score that takes on a value between zero and one. We implement Shoe-MS on two different databases that permit assessing the algorithm’s performance for source identification and for the classification of degraded images. Our experimental results demonstrate that the Shoe-MS algorithm achieves high performance across both tasks, highlighting its potential for forensic footwear analysis. No algorithm can substitute examiners, but Shoe-MS produces reliable similarity scores and can help examiners make probabilistic, reproducible, and repeatable assessments. Initial findings suggest that Shoe-MS can be a valuable tool for examiners evaluating pattern evidence, especially when crime scene images are not of the highest quality. •Shoe-MS is a deep-learning-based shoeprint analysis algorithm using a Siamese net.•Evaluated on comparably clean (DB1) and degraded (DB2) footwear impression.•Shoe-MS outperformed other methods, especially on degraded and noisy condition.•Fine-tuning improved performance on task-specific and challenging conditions.•Future work targets generalizability, partial prints, and broader shoe datasets.
ArticleNumber 101255
Author Carriquiry, Alicia
Jang, Moonsoo
Park, Soyoung
Author_xml – sequence: 1
  givenname: Moonsoo
  orcidid: 0009-0002-3431-1424
  surname: Jang
  fullname: Jang, Moonsoo
  organization: Department of Statistics, Pusan National University, Republic of Korea
– sequence: 2
  givenname: Alicia
  surname: Carriquiry
  fullname: Carriquiry, Alicia
  organization: Department of Statistics, Iowa State University, United States of America
– sequence: 3
  givenname: Soyoung
  orcidid: 0000-0002-8833-3971
  surname: Park
  fullname: Park, Soyoung
  email: soyoung@pusan.ac.kr
  organization: Department of Statistics, Pusan National University, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40480703$$D View this record in MEDLINE/PubMed
BookMark eNqVkU1r3DAQhkVJab76D0rRsRdvRrLlj1IKIaRJISWHzV3I8ngtVyttJTuw_74yTnsroScNwzOvmGfOyYnzDgn5wGDDgJVX4yZqM85xw4GLpcWFeEPOWF2VWVEIfpLqXIgMcihPyXmMI4CoWAnvyGkBRQ0V5GdE37pBOW3cjvY-oItG0zh4PATjJqqcssdo4md6fThYo9VkvKO-p9OAdJuw7MeWKrvzwUzDnk6e6kFZi263BOKz6dBpvCRve2Ujvn95L8jTt9unm_vs4fHu-831Q6YLzqas59DwFnjX1oKjaOuGV6LJK-wr3jPQSnHVlXWd-kypNu_KpuqRq7YCZD3PL8inNfYQ_K8Z4yT3Jmq0Vjn0c5Q5Z2XZiLysEvrxBZ3bPXYybbtX4Sj_eElAsQI6-BgD9n8RBnLRL0e56peLfrnqT2Nf1zFMaz4bDAu0KOhMQD3Jzpv_DdDWuCTe_sQjxtHPIZ0kSiYjlyC3y4WXA3MBAHmzBHz5d8Dr__8Ga6e4ng
Cites_doi 10.1093/lpr/mgy008
10.1186/1471-2105-12-77
10.1002/sam.11449
10.1111/1556-4029.14802
10.1109/CVPR.2016.90
10.1016/j.forsciint.2017.02.030
10.1109/ICCV.2017.514
10.1111/1556-4029.14658
10.1016/j.forsciint.2016.06.012
10.2307/2531595
10.1109/ICCV.2017.74
10.1111/1556-4029.12089
10.1016/j.dib.2020.105508
10.1073/pnas.1712161115
10.1016/j.forsciint.2021.111126
10.1002/sam.11636
10.1016/j.jksuci.2022.03.024
10.1016/j.forsciint.2017.11.038
ContentType Journal Article
Copyright 2025 The Authors
The Authors
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.scijus.2025.101255
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Social Welfare & Social Work
Law
EISSN 1876-4452
EndPage 101255
ExternalDocumentID 40480703
10_1016_j_scijus_2025_101255
S1355030625000395
1_s2_0_S1355030625000395
Genre Journal Article
GrantInformation_xml – fundername: Center for Statistics and Applications in Forensic Evidence (CSAFE), United States
  funderid: http://dx.doi.org/10.13039/100014725
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2021R1C1C100711111
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID ---
--K
--M
-RU
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3O-
4.4
457
4G.
53G
5RE
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABGSF
ABJNI
ABMAC
ABMMH
ABMZM
ABUDA
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFS
ACIEU
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AFZHZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJSZI
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
ROL
RPZ
SCB
SDF
SDG
SEL
SES
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TN5
Z5R
ZHY
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c421t-f2092b02db852e5b89275937ef72f10caa2ad6888921aab3d697fe2ab70e1f23
IEDL.DBID .~1
ISSN 1355-0306
1876-4452
IngestDate Thu Oct 02 22:37:06 EDT 2025
Mon Jul 21 05:51:23 EDT 2025
Wed Oct 01 05:50:26 EDT 2025
Sat Aug 09 17:31:41 EDT 2025
Fri Aug 01 03:32:49 EDT 2025
Tue Oct 14 19:31:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Deep learning
Shoe-MS algorithm
Pattern evidence
Shoeprint
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2025 The Authors. Published by Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-f2092b02db852e5b89275937ef72f10caa2ad6888921aab3d697fe2ab70e1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0002-3431-1424
0000-0002-8833-3971
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1355030625000395
PMID 40480703
PQID 3216695367
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_3216695367
pubmed_primary_40480703
crossref_primary_10_1016_j_scijus_2025_101255
elsevier_sciencedirect_doi_10_1016_j_scijus_2025_101255
elsevier_clinicalkeyesjournals_1_s2_0_S1355030625000395
elsevier_clinicalkey_doi_10_1016_j_scijus_2025_101255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Science & justice
PublicationTitleAlternate Sci Justice
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hasegawa, Tabbone (b27) 2012
Park, Carriquiry (b11) 2020; 13
Jang, Park, Carriquiry (b15) 2023; 16
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Hicklin, McVicker, Parks, LeMay, Richetelli, Smith, Buscaglia, Perlman, Peters, Eckenrode (b35) 2022; 339
Bell, Sah, Albright, Gates, Denton, Casadevall (b7) 2018; 115
Park, Carriquiry (b30) 2020; 30
Takita, Aoki, Sasaki, Higuchi, Kobayashi (b19) 2003; 86
Gueham, Bouridane, Crookes (b8) 2007; vol. 4
Richetelli, Lee, Lasky, Gump, Speir (b18) 2017; 275
Ito, Nakajima, Kobayashi, Aoki, Higuchi (b20) 2004; 87
Damary, Mandel, Wiesner, Yekutieli, Shor, Spiegelman (b3) 2018; 283
DeLong, DeLong, Clarke-Pearson (b32) 1988
Venkatasubramanian, Hegde, Padi, Iyer, Herman (b13) 2021; 66
Drozdzal, Vorontsov, Chartrand, Kadoury, Pal (b24) 2016
Di Stefano, Mattoccia, Mola (b16) 2003
Gueham, Bouridane, Crookes (b9) 2008
Simonyan, Zisserman (b21) 2014
Speir (b31) 2021
Park, Carriquiry (b12) 2022; 331
Kong, Supancic, Ramanan, Fowlkes (b14) 2017
Speir, Richetelli, Fagert, Hite, Bodziak (b2) 2016; 266
Hassan, Wang, Pang, Wang, Li, Zhou, Xu (b25) 2022; 34
Committee on Identifying the Needs of the Forensic Sciences Community and National Research Council (US). Committee on Science and Law Policy and Global Affairs and Committee on Science and Law and Committee on Applied and Theoretical Statistics (b6) 2009
Venkatasubramanian, Hegde, Lund, Iyer, Herman (b17) 2021; 66
Robin, Turck, Hainard, Tiberti, Lisacek, Sanchez, Müller (b33) 2011; 12
Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao, Image super-resolution using dense skip connections, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4799–4807.
Scientific Working Group for Shoeprint and Tire Tread Evidence (SWGTREAD) (b4) 2013
Deng, Dong, Socher, Li, Li, Fei-Fei (b26) 2009
Koch, Zemel, Salakhutdinov (b29) 2015; vol. 2
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
Ommen, Saunders (b1) 2018; 17
Gueham, Bouridane, Crookes, Nibouche (b10) 2008
Holdren, Lander, Press, Savitz, Austin, Chyba (b5) 2016
Wei, Li, Gwo (b28) 2013; 58
Hasegawa (10.1016/j.scijus.2025.101255_b27) 2012
Park (10.1016/j.scijus.2025.101255_b12) 2022; 331
Hicklin (10.1016/j.scijus.2025.101255_b35) 2022; 339
Gueham (10.1016/j.scijus.2025.101255_b10) 2008
Speir (10.1016/j.scijus.2025.101255_b2) 2016; 266
Robin (10.1016/j.scijus.2025.101255_b33) 2011; 12
Ommen (10.1016/j.scijus.2025.101255_b1) 2018; 17
Richetelli (10.1016/j.scijus.2025.101255_b18) 2017; 275
Di Stefano (10.1016/j.scijus.2025.101255_b16) 2003
DeLong (10.1016/j.scijus.2025.101255_b32) 1988
10.1016/j.scijus.2025.101255_b34
Scientific Working Group for Shoeprint and Tire Tread Evidence (SWGTREAD) (10.1016/j.scijus.2025.101255_b4) 2013
Gueham (10.1016/j.scijus.2025.101255_b8) 2007; vol. 4
Holdren (10.1016/j.scijus.2025.101255_b5) 2016
Takita (10.1016/j.scijus.2025.101255_b19) 2003; 86
Kong (10.1016/j.scijus.2025.101255_b14) 2017
Committee on Identifying the Needs of the Forensic Sciences Community and National Research Council (US). Committee on Science and Law Policy and Global Affairs and Committee on Science and Law and Committee on Applied and Theoretical Statistics (10.1016/j.scijus.2025.101255_b6) 2009
Venkatasubramanian (10.1016/j.scijus.2025.101255_b13) 2021; 66
Drozdzal (10.1016/j.scijus.2025.101255_b24) 2016
Jang (10.1016/j.scijus.2025.101255_b15) 2023; 16
Venkatasubramanian (10.1016/j.scijus.2025.101255_b17) 2021; 66
Ito (10.1016/j.scijus.2025.101255_b20) 2004; 87
Deng (10.1016/j.scijus.2025.101255_b26) 2009
Simonyan (10.1016/j.scijus.2025.101255_b21) 2014
Damary (10.1016/j.scijus.2025.101255_b3) 2018; 283
Koch (10.1016/j.scijus.2025.101255_b29) 2015; vol. 2
Gueham (10.1016/j.scijus.2025.101255_b9) 2008
Park (10.1016/j.scijus.2025.101255_b11) 2020; 13
Speir (10.1016/j.scijus.2025.101255_b31) 2021
Bell (10.1016/j.scijus.2025.101255_b7) 2018; 115
10.1016/j.scijus.2025.101255_b22
10.1016/j.scijus.2025.101255_b23
Park (10.1016/j.scijus.2025.101255_b30) 2020; 30
Wei (10.1016/j.scijus.2025.101255_b28) 2013; 58
Hassan (10.1016/j.scijus.2025.101255_b25) 2022; 34
References_xml – volume: 339
  year: 2022
  ident: b35
  article-title: Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions
  publication-title: Forensic Sci. Int.
– year: 2009
  ident: b6
  article-title: Strengthening Forensic Science in the United States: a Path Forward
– volume: 16
  start-page: 511
  year: 2023
  end-page: 527
  ident: b15
  article-title: A finely tuned deep transfer learning algorithm to compare outsole images
  publication-title: Stat. Anal. Data Min.: ASA Data Sci. J.
– reference: Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: vol. 4
  start-page: IV
  year: 2007
  end-page: 441
  ident: b8
  article-title: Automatic recognition of partial shoeprints based on phase-only correlation
  publication-title: 2007 IEEE International Conference on Image Processing
– volume: 86
  start-page: 1925
  year: 2003
  end-page: 1934
  ident: b19
  article-title: High-accuracy subpixel image registration based on phase-only correlation
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– start-page: 675
  year: 2012
  end-page: 683
  ident: b27
  article-title: A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset
  publication-title: Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, SSPR&SPR 2012, Hiroshima, Japan, November 7-9, 2012. Proceedings
– reference: Tong Tong, Gen Li, Xiejie Liu, Qinquan Gao, Image super-resolution using dense skip connections, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 4799–4807.
– volume: 34
  start-page: 2743
  year: 2022
  end-page: 2757
  ident: b25
  article-title: IPAS-Net: A deep-learning model for generating high-fidelity shoeprints from low-quality images with no natural references
  publication-title: J. King Saud University- Comput. Inf. Sci.
– volume: 12
  start-page: 1
  year: 2011
  end-page: 8
  ident: b33
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 115
  start-page: 4541
  year: 2018
  end-page: 4544
  ident: b7
  article-title: A call for more science in forensic science
  publication-title: Proc. Natl. Acad. Sci.
– volume: 66
  start-page: 2232
  year: 2021
  end-page: 2251
  ident: b17
  article-title: Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system
  publication-title: J. Forensic Sci.
– reference: Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, Dhruv Batra, Grad-cam: Visual explanations from deep networks via gradient-based localization, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 618–626.
– start-page: 179
  year: 2016
  end-page: 187
  ident: b24
  article-title: The importance of skip connections in biomedical image segmentation
  publication-title: International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis
– start-page: 248
  year: 2009
  end-page: 255
  ident: b26
  article-title: Imagenet: A large-scale hierarchical image database
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 87
  start-page: 682
  year: 2004
  end-page: 691
  ident: b20
  article-title: A fingerprint matching algorithm using phase-only correlation
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– year: 2013
  ident: b4
  article-title: Standard for terminology used for forensic footwear and tire impression evidence
– year: 2014
  ident: b21
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2021
  ident: b31
  article-title: Crime scene shoe impression data set
– year: 2017
  ident: b14
  article-title: Cross-domain forensic shoeprint matching
– volume: 58
  start-page: 625
  year: 2013
  end-page: 630
  ident: b28
  article-title: The use of scale-invariance feature transform approach to recognize and retrieve incomplete shoeprints
  publication-title: J. Forensic Sci.
– start-page: 322
  year: 2003
  end-page: 327
  ident: b16
  article-title: An efficient algorithm for exhaustive template matching based on normalized cross correlation
  publication-title: 12th International Conference on Image Analysis and Processing, 2003. Proceedings
– volume: 283
  start-page: 173
  year: 2018
  end-page: 179
  ident: b3
  article-title: Dependence among randomly acquired characteristics on shoeprints and their features
  publication-title: Forensic Sci. Int.
– start-page: 1
  year: 2008
  end-page: 4
  ident: b9
  article-title: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science
  publication-title: 2008 19th International Conference on Pattern Recognition
– volume: 275
  start-page: 102
  year: 2017
  end-page: 109
  ident: b18
  article-title: Classification of footwear outsole patterns using Fourier transform and local interest points
  publication-title: Forensic Sci. Int.
– volume: 30
  year: 2020
  ident: b30
  article-title: A database of two-dimensional images of footwear outsole impressions
  publication-title: Data Brief
– volume: 17
  start-page: 179
  year: 2018
  end-page: 197
  ident: b1
  article-title: Building a unified statistical framework for the forensic identification of source problems
  publication-title: Law, Probab. Risk
– start-page: 837
  year: 1988
  end-page: 845
  ident: b32
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– volume: 331
  year: 2022
  ident: b12
  article-title: The effect of image descriptors on the performance of classifiers of footwear outsole image pairs
  publication-title: Forensic Sci. Int.
– year: 2016
  ident: b5
  article-title: Forensic science in criminal courts: ensuring scientific validity of feature-comparison methods
– volume: vol. 2
  year: 2015
  ident: b29
  article-title: Siamese neural networks for one-shot image recognition
  publication-title: ICML Deep Learning Workshop
– start-page: 487
  year: 2008
  end-page: 491
  ident: b10
  article-title: Automatic recognition of shoeprints using Fourier-Mellin transform
  publication-title: 2008 NASA/ESA Conference on Adaptive Hardware and Systems
– volume: 13
  start-page: 188
  year: 2020
  end-page: 199
  ident: b11
  article-title: An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature
  publication-title: Stat. Anal. Data Min.: ASA Data Sci. J.
– volume: 66
  start-page: 890
  year: 2021
  end-page: 909
  ident: b13
  article-title: Comparing footwear impressions that are close non-matches using correlation-based approaches
  publication-title: J. Forensic Sci.
– volume: 266
  start-page: 399
  year: 2016
  end-page: 411
  ident: b2
  article-title: Quantifying randomly acquired characteristics on outsoles in terms of shape and position
  publication-title: Forensic Sci. Int.
– start-page: 487
  year: 2008
  ident: 10.1016/j.scijus.2025.101255_b10
  article-title: Automatic recognition of shoeprints using Fourier-Mellin transform
– start-page: 322
  year: 2003
  ident: 10.1016/j.scijus.2025.101255_b16
  article-title: An efficient algorithm for exhaustive template matching based on normalized cross correlation
– year: 2013
  ident: 10.1016/j.scijus.2025.101255_b4
– start-page: 675
  year: 2012
  ident: 10.1016/j.scijus.2025.101255_b27
  article-title: A local adaptation of the histogram radon transform descriptor: An application to a shoe print dataset
– volume: 87
  start-page: 682
  issue: 3
  year: 2004
  ident: 10.1016/j.scijus.2025.101255_b20
  article-title: A fingerprint matching algorithm using phase-only correlation
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 17
  start-page: 179
  issue: 2
  year: 2018
  ident: 10.1016/j.scijus.2025.101255_b1
  article-title: Building a unified statistical framework for the forensic identification of source problems
  publication-title: Law, Probab. Risk
  doi: 10.1093/lpr/mgy008
– year: 2014
  ident: 10.1016/j.scijus.2025.101255_b21
– volume: 12
  start-page: 1
  year: 2011
  ident: 10.1016/j.scijus.2025.101255_b33
  article-title: pROC: an open-source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-77
– volume: 339
  year: 2022
  ident: 10.1016/j.scijus.2025.101255_b35
  article-title: Accuracy, reproducibility, and repeatability of forensic footwear examiner decisions
  publication-title: Forensic Sci. Int.
– volume: 13
  start-page: 188
  issue: 2
  year: 2020
  ident: 10.1016/j.scijus.2025.101255_b11
  article-title: An algorithm to compare two-dimensional footwear outsole images using maximum cliques and speeded-up robust feature
  publication-title: Stat. Anal. Data Min.: ASA Data Sci. J.
  doi: 10.1002/sam.11449
– volume: 66
  start-page: 2232
  issue: 6
  year: 2021
  ident: 10.1016/j.scijus.2025.101255_b17
  article-title: Quantitative evaluation of footwear evidence: Initial workflow for an end-to-end system
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.14802
– ident: 10.1016/j.scijus.2025.101255_b22
  doi: 10.1109/CVPR.2016.90
– volume: vol. 4
  start-page: IV
  year: 2007
  ident: 10.1016/j.scijus.2025.101255_b8
  article-title: Automatic recognition of partial shoeprints based on phase-only correlation
– volume: 275
  start-page: 102
  year: 2017
  ident: 10.1016/j.scijus.2025.101255_b18
  article-title: Classification of footwear outsole patterns using Fourier transform and local interest points
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.02.030
– year: 2017
  ident: 10.1016/j.scijus.2025.101255_b14
– ident: 10.1016/j.scijus.2025.101255_b23
  doi: 10.1109/ICCV.2017.514
– start-page: 1
  year: 2008
  ident: 10.1016/j.scijus.2025.101255_b9
  article-title: Automatic classification of partial shoeprints using advanced correlation filters for use in forensic science
– volume: 66
  start-page: 890
  issue: 3
  year: 2021
  ident: 10.1016/j.scijus.2025.101255_b13
  article-title: Comparing footwear impressions that are close non-matches using correlation-based approaches
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.14658
– volume: 266
  start-page: 399
  year: 2016
  ident: 10.1016/j.scijus.2025.101255_b2
  article-title: Quantifying randomly acquired characteristics on outsoles in terms of shape and position
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2016.06.012
– start-page: 837
  year: 1988
  ident: 10.1016/j.scijus.2025.101255_b32
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– ident: 10.1016/j.scijus.2025.101255_b34
  doi: 10.1109/ICCV.2017.74
– volume: 86
  start-page: 1925
  issue: 8
  year: 2003
  ident: 10.1016/j.scijus.2025.101255_b19
  article-title: High-accuracy subpixel image registration based on phase-only correlation
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– start-page: 248
  year: 2009
  ident: 10.1016/j.scijus.2025.101255_b26
  article-title: Imagenet: A large-scale hierarchical image database
– volume: 58
  start-page: 625
  issue: 3
  year: 2013
  ident: 10.1016/j.scijus.2025.101255_b28
  article-title: The use of scale-invariance feature transform approach to recognize and retrieve incomplete shoeprints
  publication-title: J. Forensic Sci.
  doi: 10.1111/1556-4029.12089
– volume: 30
  year: 2020
  ident: 10.1016/j.scijus.2025.101255_b30
  article-title: A database of two-dimensional images of footwear outsole impressions
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105508
– volume: 115
  start-page: 4541
  issue: 18
  year: 2018
  ident: 10.1016/j.scijus.2025.101255_b7
  article-title: A call for more science in forensic science
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1712161115
– volume: 331
  year: 2022
  ident: 10.1016/j.scijus.2025.101255_b12
  article-title: The effect of image descriptors on the performance of classifiers of footwear outsole image pairs
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2021.111126
– year: 2021
  ident: 10.1016/j.scijus.2025.101255_b31
– volume: 16
  start-page: 511
  issue: 6
  year: 2023
  ident: 10.1016/j.scijus.2025.101255_b15
  article-title: A finely tuned deep transfer learning algorithm to compare outsole images
  publication-title: Stat. Anal. Data Min.: ASA Data Sci. J.
  doi: 10.1002/sam.11636
– volume: vol. 2
  year: 2015
  ident: 10.1016/j.scijus.2025.101255_b29
  article-title: Siamese neural networks for one-shot image recognition
– year: 2009
  ident: 10.1016/j.scijus.2025.101255_b6
– volume: 34
  start-page: 2743
  issue: 6
  year: 2022
  ident: 10.1016/j.scijus.2025.101255_b25
  article-title: IPAS-Net: A deep-learning model for generating high-fidelity shoeprints from low-quality images with no natural references
  publication-title: J. King Saud University- Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2022.03.024
– start-page: 179
  year: 2016
  ident: 10.1016/j.scijus.2025.101255_b24
  article-title: The importance of skip connections in biomedical image segmentation
– volume: 283
  start-page: 173
  year: 2018
  ident: 10.1016/j.scijus.2025.101255_b3
  article-title: Dependence among randomly acquired characteristics on shoeprints and their features
  publication-title: Forensic Sci. Int.
  doi: 10.1016/j.forsciint.2017.11.038
– year: 2016
  ident: 10.1016/j.scijus.2025.101255_b5
SSID ssj0057160
Score 2.3668718
Snippet Quantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate identification of...
AbstractQuantitative assessment of pattern evidence is a challenging task, particularly in the context of forensic investigations where the accurate...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 101255
SubjectTerms Algorithms
Databases, Factual
Deep Learning
Forensic Sciences - methods
Humans
Image Processing, Computer-Assisted
Pathology
Pattern evidence
Pattern Recognition, Automated
Shoe-MS algorithm
Shoeprint
Shoes
Title Enhancing forensic shoeprint analysis: Application of the Shoe-MS algorithm to challenging evidence
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1355030625000395
https://www.clinicalkey.es/playcontent/1-s2.0-S1355030625000395
https://dx.doi.org/10.1016/j.scijus.2025.101255
https://www.ncbi.nlm.nih.gov/pubmed/40480703
https://www.proquest.com/docview/3216695367
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1876-4452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057160
  issn: 1355-0306
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1876-4452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057160
  issn: 1355-0306
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1876-4452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057160
  issn: 1355-0306
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1876-4452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057160
  issn: 1355-0306
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1876-4452
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057160
  issn: 1355-0306
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKuXBBUF4LpTIS4hbWmcRxwm1VtVoe7WWL6M2yE7u7pSTVbipu_HZmYqeAKAJxSyzbSTxPx_PNMPbSZbXK0RAnyqQ-ycsCRcrhVS1saVXlUR8SOPnouJh_zN-dytMttj9iYSisMur-oNMHbR1bpnE1p5er1XSRoqkkjxfkgDAloHmeK6pi8PrbdZiHxP1AQApLmVDvET43xHjhvOdXlLQbJDUBAf5uNk9_cj8HM3R4j92N_iOfhVe8z7Zcu8NufTBfd9hugNryT-7Cm7Xjr_jY0K0_P2D1Qbuk5BrtGUdHleLWa75Zdo7-7PXcxOQkb_jsx5E27zxHB5EvsFtytODm4qxbr_rlF953vI5lWGhCF2uTPmQnhwcn-_MkllhI6hzSPvEgKrACGltKcNKWFSiJHovzCnwqamPANAXukitIjbFZU1TKOzBWCaQoZI_Ydtu17gnjtE8SHsqyoSJ_Dix6ItZKZAUr0gbyCUvGhdWXIZGGHiPMznUghCZC6ECICZPj6usRJIpqTaOm_8s4ddM4t4myudGp3oAW-jf--XnkLyz4D898MbKHRumkIxfTug47ZZAWBZ2Qqwl7HPjm-uvzAc4vsqf__dxn7A7dhejhXbbdr6_cc_SRers3CMEeuz17-35-_B0rgw6r
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe2cYALgvGxwgAjIW6hzkscJ9ymaVOBdpcWsZtlJ87aMZKpzcSNv533YmeAGAJxixzbSfy-4_d7ZuyVS0qVoiGOlInrKM0zFCmHV6WwuVVFjfqQwMmzk2zyMX1_Kk-32OGAhaG0yqD7vU7vtXVoGYfVHF-uVuN5jKaSPF6QPcJUbrNbqQRFEdibb9d5HhIDAg8VljKi7gN-rk_ywonPr6hqN0hqAkL83Wyf_uR_9nbo-B67GxxIfuDf8T7bcs0u256ar7ts32Nt-Sd3UZu146_50NCuPz9g5VGzpOoazRlHT5US10u-WbaOfu113ITqJG_5wY89bd7WHD1EPsdu0WzOzcVZu151yy-8a3kZzmGhCV04nPQhWxwfLQ4nUThjISpTiLuoBlGAFVDZXIKTNi9ASXRZXK2gjkVpDJgqwzC5gNgYm1RZoWoHxiqBJIXkEdtp2sbtMU6Bkqghzys65c-BRVfEWom8YEVcQTpi0bCw-tJX0tBDitm59oTQRAjtCTFiclh9PaBEUa9pVPV_GaduGuc2QTg3OtYb0EL_xkA_j_yFB__hmS8H9tAonrTnYhrXYqcE4iyjLXI1Yo8931x_fdrj-UXy5L-f-4LdnixmUz19d_LhKbtDd3wq8T7b6dZX7hk6TJ193gvEd0-3EEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+forensic+shoeprint+analysis%3A+Application+of+the+Shoe-MS+algorithm+to+challenging+evidence&rft.jtitle=Science+%26+justice&rft.au=Jang%2C+Moonsoo&rft.au=Carriquiry%2C+Alicia&rft.au=Park%2C+Soyoung&rft.date=2025-07-01&rft.issn=1355-0306&rft.volume=65&rft.issue=4&rft.spage=101255&rft.epage=101255&rft_id=info:doi/10.1016%2Fj.scijus.2025.101255&rft.externalDBID=ECK1-s2.0-S1355030625000395&rft.externalDocID=1_s2_0_S1355030625000395
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F13550306%2FS1355030625X00046%2Fcov150h.gif