The Horn Conjecture for Sums of Compact Selfadjoint Operators

We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Ho...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of mathematics Vol. 131; no. 6; pp. 1543 - 1567
Main Authors Bercovici, H., Li, W. S., Timotin, D.
Format Journal Article
LanguageEnglish
Published Baltimore, MD Johns Hopkins University Press 01.12.2009
Subjects
Online AccessGet full text
ISSN0002-9327
1080-6377
1080-6377
DOI10.1353/ajm.0.0085

Cover

Abstract We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and$B^{(k)} $are specified. A special case is the requirement that$B^{(1)} + B^{(2)} + ... + B^{(m)} $be positive of rank at most ρ ≥ 1.
AbstractList We determine the possible nonzero eigenvalues of compact selfadjoint operators $A$, $B^{(1)}$, $B^{(2)}$, $\dots$, $B^{(m)}$ with the property that $A=B^{(1)}+B^{(2)}+\cdots+B^{(m)}$. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when $m=2$. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators $A$ and $B^{(k)}$ are specified. A special case is the requirement that $B^{(1)}+B^{(2)}+\cdots+B^{(m)}$ be positive of rank at most $\rho\ge1$.
We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and$B^{(k)} $are specified. A special case is the requirement that$B^{(1)} + B^{(2)} + ... + B^{(m)} $be positive of rank at most ρ ≥ 1.
We determine the possible nonzero eigenvalues of compact selfadjoint operators A, B^sup (1)^, B^sup (2)^, . . ., B^sup (m)^ with the property that A = B^sup (1)^ + B^sup (2)^ + . . . + B^sup (m)^. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and B^sup (k)^ are specified. A special case is the requirement that B^sup (1)^ + B^sup (2)^ + . . . + B^sup (m)^ be positive of rank at most ρ ≥ 1. [PUBLICATION ABSTRACT]
Author Timotin, D.
Li, W. S.
Bercovici, H.
Author_xml – sequence: 1
  givenname: H.
  surname: Bercovici
  fullname: Bercovici, H.
– sequence: 2
  givenname: W. S.
  surname: Li
  fullname: Li, W. S.
– sequence: 3
  givenname: D.
  surname: Timotin
  fullname: Timotin, D.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22235503$$DView record in Pascal Francis
BookMark eNptkUtLAzEUhYNUsD427oVBcCNMvUkmjy5cSFErFLqorkPMJDhDZ1KTzMJ_b4ZKBXEVbvjOvYdzTtGk971F6BLDDFNG73TbzWAGINkRmmKQUHIqxARNAYCUc0rECTqNsc0jCCBTdP_6YYulD32x8H1rTRqCLZwPxWboYuFd_u522qRiY7dO161v-lSsdzbo5EM8R8dOb6O9-HnP0NvT4-tiWa7Wzy-Lh1VpKoJTaYTA2DjtmHYA2lhGLX8nYBl2tcbSMW5lXRvQlRSmNoJUpJZuLmopRMUFPUPX-7274D8HG5Nq_RD6fFIRyhkmwHmGbn4gHY3euqB700S1C02nw5cihFDGgGbuds-Z4GMM1h0QDGpMUeUUFagxxQzDH9g0SafG9ynoZvu_pDqYHRPthmh__Wa7klC1GcsZu4E5z13QKsuu9rI25mgPniqgUjJO6DeEpY_N
CODEN AJMAAN
CitedBy_id crossref_primary_10_1016_j_bulsci_2014_10_002
crossref_primary_10_1016_j_neucom_2020_01_086
crossref_primary_10_1080_03081087_2012_731204
crossref_primary_10_1016_j_jfa_2011_11_011
crossref_primary_10_1007_s00020_014_2180_7
ContentType Journal Article
Copyright Copyright 2009 The Johns Hopkins University Press
Copyright © 2008 The Johns Hopkins University Press.
2015 INIST-CNRS
Copyright Johns Hopkins University Press Dec 2009
Copyright_xml – notice: Copyright 2009 The Johns Hopkins University Press
– notice: Copyright © 2008 The Johns Hopkins University Press.
– notice: 2015 INIST-CNRS
– notice: Copyright Johns Hopkins University Press Dec 2009
DBID AAYXX
CITATION
IQODW
7XB
8AF
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L6V
M2O
M2P
M7S
MBDVC
P5Z
P62
PADUT
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0X
DOI 10.1353/ajm.0.0085
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (purchase pre-March 2016)
STEM Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Research Library China
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
SIRS Editorial
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SIRS Editorial
ProQuest Computer Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Research Library China
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1080-6377
EndPage 1567
ExternalDocumentID 1923182471
22235503
10_1353_ajm_0_0085
365823_S1080637709600034
40388562
Genre Feature
GroupedDBID -~X
0R~
23M
2AX
4.4
5GY
5VS
6J9
706
709
70B
8AF
8FE
8FG
8FW
AAGGK
AAHKB
AAHKG
AAMZP
AAVNP
AAWIL
AAXGD
AAYOK
ABAWQ
ABBHK
ABECW
ABEZY
ABFAN
ABJCF
ABPFR
ABPPZ
ABPQH
ABXSQ
ABYWD
ACDWB
ACGFO
ACGOD
ACHIS
ACHJO
ACIWK
ACMTB
ACNCT
ACTMH
ACUBG
ACYXD
ADFRT
ADHJG
ADODI
ADPSH
ADTUW
ADULT
ADWTG
AEHYH
AENEX
AERNI
AEUPB
AFKRA
AFNCV
AFVYC
AFXHP
AGLNM
AIHAF
AIHXW
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AMBIC
AMVHM
ANBFE
AOQIW
ARAPS
AZQEC
BENPR
BGLVJ
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
D0L
DQDLB
DSRWC
DWQXO
EBS
ECEWR
EJD
FEDTE
FOMLG
FVMVE
GNUQQ
GUQSH
H13
HCIFZ
HQ6
HVGLF
H~9
IPSME
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K6V
K7-
L6V
L7B
LU7
M2O
M2P
M7S
MBR
MBU
MSI
MUA
MUP
MUS
N9A
O9-
OK1
P-O
P2P
P62
PADUT
PHGZM
PHGZT
PQQKQ
PRG
PROAC
PTHSS
RC9
ROL
S0X
SA0
TN5
VQG
WH7
YF5
3V.
692
6OB
AAFWJ
AAYJJ
ABCQX
ABEFU
ABTAH
ABYAD
ACMKW
ACTWD
ADACV
AELPN
AGHSJ
AHJEN
AI.
AS~
BES
BKUOZ
F20
HGD
IAO
IEA
IGS
IOF
ITC
JSODD
KQ8
MVM
NHB
RNS
VH1
VOH
YYP
ZCG
ZY4
AAYXX
AFQQW
CITATION
PAQYV
PQGLB
PUEGO
IQODW
7XB
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c421t-c7711cfaf5af00ace53e6b20e51fda18f56e8ddc0a487cdc7242d8f97d8774673
IEDL.DBID BENPR
ISSN 0002-9327
1080-6377
IngestDate Fri Jul 25 19:10:14 EDT 2025
Mon Jul 21 09:14:05 EDT 2025
Wed Oct 01 02:55:21 EDT 2025
Thu Apr 24 23:13:43 EDT 2025
Thu Jul 04 04:49:31 EDT 2024
Thu Jul 03 21:13:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Compact operator
Eigenvalue
Mathematics
Rank
Self adjoint operator
Positive operator
Inequality
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-c7711cfaf5af00ace53e6b20e51fda18f56e8ddc0a487cdc7242d8f97d8774673
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 236512066
PQPubID 41735
PageCount 25
ParticipantIDs proquest_journals_236512066
pascalfrancis_primary_22235503
crossref_primary_10_1353_ajm_0_0085
crossref_citationtrail_10_1353_ajm_0_0085
projectmuse_journals_365823_S1080637709600034
jstor_primary_40388562
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-12-01
PublicationDateYYYYMMDD 2009-12-01
PublicationDate_xml – month: 12
  year: 2009
  text: 2009-12-01
  day: 01
PublicationDecade 2000
PublicationPlace Baltimore, MD
PublicationPlace_xml – name: Baltimore, MD
– name: Baltimore
PublicationTitle American journal of mathematics
PublicationYear 2009
Publisher Johns Hopkins University Press
Publisher_xml – name: Johns Hopkins University Press
SSID ssj0000702
Score 1.8576981
Snippet We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} +...
We determine the possible nonzero eigenvalues of compact selfadjoint operators $A$, $B^{(1)}$, $B^{(2)}$, $\dots$, $B^{(m)}$ with the property that...
We determine the possible nonzero eigenvalues of compact selfadjoint operators A, B^sup (1)^, B^sup (2)^, . . ., B^sup (m)^ with the property that A = B^sup...
SourceID proquest
pascalfrancis
crossref
projectmuse
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1543
SubjectTerms Adjoints
Cardinality
Decreasing sequences
Eigenvalues
Exact sciences and technology
General mathematics
General, history and biography
Integers
Linear algebra
Mathematical analysis
Mathematical problems
Mathematical sequences
Mathematical vectors
Mathematics
Matrices
Nonlinear algebraic and transcendental equations
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Operator theory
Sciences and techniques of general use
Theorems
Title The Horn Conjecture for Sums of Compact Selfadjoint Operators
URI https://www.jstor.org/stable/40388562
https://muse.jhu.edu/article/365823
https://www.proquest.com/docview/236512066
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: AMVHM
  dateStart: 19960201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1080-6377
  dateEnd: 20200831
  omitProxy: true
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: BENPR
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1080-6377
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000702
  issn: 0002-9327
  databaseCode: 8FG
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB21yQUOiK8KU4hWggsHU9vr9doHhEywCRW2IydBvVn74T0gSEuT_n92HNttBeJqz2lmPPNmd_wewFtBWSuMZq6kFr6FzChXatm6SidKRLFJYolHA0UZLTbh-QW7OIJi-BcG1yqHmtgVan2p8Iz8LKCR7U22QX68-u2iaBRerg4KGqJXVtAfOoaxY5gGSIw1gemnrFzWt6WZe8GAhy1w4T1fKWX0TPz49R63vFBU-U6HOiwp4sak2FmnmYPaxf2Dkr_KeNeb8sfwqAeVJD1kwRM4ardP4WExMrLungEKKpFFVZdkXpUocbKpM2InQGLL6opUuX1cLNP5mqyyb3n6-bz6Wq5JtczqdF3Vq-ewybP1fOH20gmuCgN_7yrOfV8ZYZgwnidUy2gbycBrmW-08GPDojbWWnnCDixKK247tbaR4TrmKEBCT2Cyvdy2L4AIL7GgSYehVEnoKy79JDFC2DHPeMII6cC7wV2N6nnFUd7iZ9NdljHaWNc2SEIaMwfejLZXBzaNf1qddF4fTUKkrLFAzYHZvTCMBghy7KhFHXDvxKXpP8ddY3MnDmizwoXKiHKOcxsy8zhwOkTu1njMtJf_fXsKD4JeS8LzX8Fkf33TvrYAZS9ncBznX2YwTYvvi2LWJ-EfnK3hSA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gAcEF8VplBWAg4cTG2v12sfKhRSR0mb2JHjSL2Z9X4cEKSFBCF-HP-NWcd2W4G49WqPLHlmvPNmPfsewBtBmRZGMbemCN9CZqRbq1q7UiVSRLFJ4tpuDcyyaLwMT8_Z-Q787s7C2LHKbk1sFmp1Ie0e-VFAI6xNWCA_XH5zrWiU_bnaKWiIVllBHTcMY-25jjP96yd2cOvjyQmG-20QjNJyOHZbkQFXhoG_cSXnvi-NMEwYzxNSM6qjOvA0840SfmxYpGOlpCcQ2kslOdY0he_AVcytVAfF596BvZCGCfZ-ex_TbF5clQLuBR3-RqDEW35UyuiR-Pz1vZ0qsyLO1yridijSTmiKNQbJbNU1bm7M_FU2mlo4eggPWhBLBtusewQ7evUY7s96Btj1E7ACTmScFxkZ5pmVVFkWKcGOk-AyviD5CC_P5oNhSRbpdDQ4Oc0nWUnyeVoMyrxYPIXlrXhxH3ZXFyv9DIjwEgRpKgxrmYS-5LWfJEYIbCuNJ4yoHXjXuauSLY-5ldP4UjU_5xit0LWVJT2NmQOve9vLLXvHP632G6_3JqGlyEFg6MDhjTD0BhZUYWtHHXCvxaVqP_91hbkaB7Ra2AHOiHJu-0TLBOTAQRe5K-M-s5__9-4ruDsuZ9NqOsnODuBe0OpYeP4L2N18_6FfIjja1IdtChL4dNtZ_wdC1B0h
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IF4VplAsAQcOJrbX67UPCEVJTNI2cZSH1JtZ7-OAIC0kCPHT-HfM-NVWIG692iPLmhnvfLOe_T6A15JxI63mXskQvkXcKq_UpfGUTpWME5smJW0NTGfxeB0dn_GzPfjdnoWhscp2TawWan2uaI-8F7IYaxMWyJ5tpiLmw-zDxTePBKToR2urplFnyIn59RO7t-37yRBD_SYMs9FqMPYagQFPRWGw85QQQaCstFxa35fKcGbiMvQND6yWQWJ5bBKtlS8R1iutBNYzje8vdCJIpoPhc2_BbUEk7nRIPft4WQSEH7bIGyGSaJhRGWc9-fnrO5onI_nmK7WwHoek2Uy5xfDYWlfj-pbMXwWjqoLZA7jfwFe3X-fbQ9gzm0dwb9pxv24fA0k3ueN8MXMH-YzEVNaLkYu9posL-NLNM7w8nfcHK3c5Os36w-N8Mlu5-Xy06K_yxfIJrG_EhwewvznfmKfgSj9FeKajqFRpFChRBmlqpcSG0vrSytKBt627CtUwmJOQxpei-i3HWYGuLYjuNOEOvOpsL2rejn9aHVRe70wiIsdBSOjA0bUwdAYEp7CpYw54V-JSNB_-tsAsTUJWLGl0M2ZCUIdIHEAOHLaRuzTucvrZf---hDuY68XpZHZyCHfDRsDCD57D_u77D_MCUdGuPKryz4VPN53wfwBfGxq7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Horn+conjecture+for+sums+of+compact+selfadjoint+operators&rft.jtitle=American+journal+of+mathematics&rft.au=Bercovici%2C+H&rft.au=Li%2C+W.+S&rft.au=Timotin%2C+D&rft.date=2009-12-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=131&rft.issue=6&rft.spage=1543&rft.epage=1567&rft_id=info:doi/10.1353%2Fajm.0.0085&rft.externalDocID=365823_S1080637709600034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon