The Horn Conjecture for Sums of Compact Selfadjoint Operators
We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Ho...
        Saved in:
      
    
          | Published in | American journal of mathematics Vol. 131; no. 6; pp. 1543 - 1567 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Baltimore, MD
          Johns Hopkins University Press
    
        01.12.2009
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0002-9327 1080-6377 1080-6377  | 
| DOI | 10.1353/ajm.0.0085 | 
Cover
| Abstract | We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and$B^{(k)} $are specified. A special case is the requirement that$B^{(1)} + B^{(2)} + ... + B^{(m)} $be positive of rank at most ρ ≥ 1. | 
    
|---|---|
| AbstractList | We determine the possible nonzero eigenvalues of compact selfadjoint
operators $A$, $B^{(1)}$, $B^{(2)}$, $\dots$, $B^{(m)}$ with the property
that $A=B^{(1)}+B^{(2)}+\cdots+B^{(m)}$. When all these operators are
positive, the eigenvalues were known to be subject to certain inequalities
which extend Horn's inequalities from the finite-dimensional case when
$m=2$. We find the proper extension of the Horn inequalities and show that
they, along with their reverse analogues, provide a complete
characterization. Our results also allow us to discuss the more general
situation where only some of the eigenvalues of the operators $A$ and
$B^{(k)}$ are specified. A special case is the requirement that
$B^{(1)}+B^{(2)}+\cdots+B^{(m)}$ be positive of rank at most $\rho\ge1$. We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} + B^{(2)} + ... + B^{(m)} $. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and$B^{(k)} $are specified. A special case is the requirement that$B^{(1)} + B^{(2)} + ... + B^{(m)} $be positive of rank at most ρ ≥ 1. We determine the possible nonzero eigenvalues of compact selfadjoint operators A, B^sup (1)^, B^sup (2)^, . . ., B^sup (m)^ with the property that A = B^sup (1)^ + B^sup (2)^ + . . . + B^sup (m)^. When all these operators are positive, the eigenvalues were known to be subject to certain inequalities which extend Horn's inequalities from the finite-dimensional case when m = 2. We find the proper extension of the Horn inequalities and show that they, along with their reverse analogues, provide a complete characterization. Our results also allow us to discuss the more general situation where only some of the eigenvalues of the operators A and B^sup (k)^ are specified. A special case is the requirement that B^sup (1)^ + B^sup (2)^ + . . . + B^sup (m)^ be positive of rank at most ρ ≥ 1. [PUBLICATION ABSTRACT]  | 
    
| Author | Timotin, D. Li, W. S. Bercovici, H.  | 
    
| Author_xml | – sequence: 1 givenname: H. surname: Bercovici fullname: Bercovici, H. – sequence: 2 givenname: W. S. surname: Li fullname: Li, W. S. – sequence: 3 givenname: D. surname: Timotin fullname: Timotin, D.  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22235503$$DView record in Pascal Francis | 
    
| BookMark | eNptkUtLAzEUhYNUsD427oVBcCNMvUkmjy5cSFErFLqorkPMJDhDZ1KTzMJ_b4ZKBXEVbvjOvYdzTtGk971F6BLDDFNG73TbzWAGINkRmmKQUHIqxARNAYCUc0rECTqNsc0jCCBTdP_6YYulD32x8H1rTRqCLZwPxWboYuFd_u522qRiY7dO161v-lSsdzbo5EM8R8dOb6O9-HnP0NvT4-tiWa7Wzy-Lh1VpKoJTaYTA2DjtmHYA2lhGLX8nYBl2tcbSMW5lXRvQlRSmNoJUpJZuLmopRMUFPUPX-7274D8HG5Nq_RD6fFIRyhkmwHmGbn4gHY3euqB700S1C02nw5cihFDGgGbuds-Z4GMM1h0QDGpMUeUUFagxxQzDH9g0SafG9ynoZvu_pDqYHRPthmh__Wa7klC1GcsZu4E5z13QKsuu9rI25mgPniqgUjJO6DeEpY_N | 
    
| CODEN | AJMAAN | 
    
| CitedBy_id | crossref_primary_10_1016_j_bulsci_2014_10_002 crossref_primary_10_1016_j_neucom_2020_01_086 crossref_primary_10_1080_03081087_2012_731204 crossref_primary_10_1016_j_jfa_2011_11_011 crossref_primary_10_1007_s00020_014_2180_7  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright 2009 The Johns Hopkins University Press Copyright © 2008 The Johns Hopkins University Press. 2015 INIST-CNRS Copyright Johns Hopkins University Press Dec 2009  | 
    
| Copyright_xml | – notice: Copyright 2009 The Johns Hopkins University Press – notice: Copyright © 2008 The Johns Hopkins University Press. – notice: 2015 INIST-CNRS – notice: Copyright Johns Hopkins University Press Dec 2009  | 
    
| DBID | AAYXX CITATION IQODW 7XB 8AF 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L6V M2O M2P M7S MBDVC P5Z P62 PADUT PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0X  | 
    
| DOI | 10.1353/ajm.0.0085 | 
    
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (purchase pre-March 2016) STEM Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Research Library China ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic SIRS Editorial  | 
    
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SIRS Editorial ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Research Library China ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Research Library Prep  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 1080-6377 | 
    
| EndPage | 1567 | 
    
| ExternalDocumentID | 1923182471 22235503 10_1353_ajm_0_0085 365823_S1080637709600034 40388562  | 
    
| Genre | Feature | 
    
| GroupedDBID | -~X 0R~ 23M 2AX 4.4 5GY 5VS 6J9 706 709 70B 8AF 8FE 8FG 8FW AAGGK AAHKB AAHKG AAMZP AAVNP AAWIL AAXGD AAYOK ABAWQ ABBHK ABECW ABEZY ABFAN ABJCF ABPFR ABPPZ ABPQH ABXSQ ABYWD ACDWB ACGFO ACGOD ACHIS ACHJO ACIWK ACMTB ACNCT ACTMH ACUBG ACYXD ADFRT ADHJG ADODI ADPSH ADTUW ADULT ADWTG AEHYH AENEX AERNI AEUPB AFKRA AFNCV AFVYC AFXHP AGLNM AIHAF AIHXW ALMA_UNASSIGNED_HOLDINGS ALRMG AMBIC AMVHM ANBFE AOQIW ARAPS AZQEC BENPR BGLVJ BKOMP BPHCQ CAG CCPQU COF CS3 D0L DQDLB DSRWC DWQXO EBS ECEWR EJD FEDTE FOMLG FVMVE GNUQQ GUQSH H13 HCIFZ HQ6 HVGLF H~9 IPSME JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K6V K7- L6V L7B LU7 M2O M2P M7S MBR MBU MSI MUA MUP MUS N9A O9- OK1 P-O P2P P62 PADUT PHGZM PHGZT PQQKQ PRG PROAC PTHSS RC9 ROL S0X SA0 TN5 VQG WH7 YF5 3V. 692 6OB AAFWJ AAYJJ ABCQX ABEFU ABTAH ABYAD ACMKW ACTWD ADACV AELPN AGHSJ AHJEN AI. AS~ BES BKUOZ F20 HGD IAO IEA IGS IOF ITC JSODD KQ8 MVM NHB RNS VH1 VOH YYP ZCG ZY4 AAYXX AFQQW CITATION PAQYV PQGLB PUEGO IQODW 7XB JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U  | 
    
| ID | FETCH-LOGICAL-c421t-c7711cfaf5af00ace53e6b20e51fda18f56e8ddc0a487cdc7242d8f97d8774673 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0002-9327 1080-6377  | 
    
| IngestDate | Fri Jul 25 19:10:14 EDT 2025 Mon Jul 21 09:14:05 EDT 2025 Wed Oct 01 02:55:21 EDT 2025 Thu Apr 24 23:13:43 EDT 2025 Thu Jul 04 04:49:31 EDT 2024 Thu Jul 03 21:13:40 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | Compact operator Eigenvalue Mathematics Rank Self adjoint operator Positive operator Inequality  | 
    
| Language | English | 
    
| License | CC BY 4.0 | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c421t-c7711cfaf5af00ace53e6b20e51fda18f56e8ddc0a487cdc7242d8f97d8774673 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14  | 
    
| PQID | 236512066 | 
    
| PQPubID | 41735 | 
    
| PageCount | 25 | 
    
| ParticipantIDs | proquest_journals_236512066 pascalfrancis_primary_22235503 crossref_primary_10_1353_ajm_0_0085 crossref_citationtrail_10_1353_ajm_0_0085 projectmuse_journals_365823_S1080637709600034 jstor_primary_40388562  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2009-12-01 | 
    
| PublicationDateYYYYMMDD | 2009-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2009 text: 2009-12-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | Baltimore, MD | 
    
| PublicationPlace_xml | – name: Baltimore, MD – name: Baltimore  | 
    
| PublicationTitle | American journal of mathematics | 
    
| PublicationYear | 2009 | 
    
| Publisher | Johns Hopkins University Press | 
    
| Publisher_xml | – name: Johns Hopkins University Press | 
    
| SSID | ssj0000702 | 
    
| Score | 1.8576981 | 
    
| Snippet | We determine the possible nonzero eigenvalues of compact selfadjoint operators A,$B^{(1)} $,$B^{(2)} $, ...,$B^{(m)} $with the roperty that$A = B^{(1)} +... We determine the possible nonzero eigenvalues of compact selfadjoint operators $A$, $B^{(1)}$, $B^{(2)}$, $\dots$, $B^{(m)}$ with the property that... We determine the possible nonzero eigenvalues of compact selfadjoint operators A, B^sup (1)^, B^sup (2)^, . . ., B^sup (m)^ with the property that A = B^sup...  | 
    
| SourceID | proquest pascalfrancis crossref projectmuse jstor  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1543 | 
    
| SubjectTerms | Adjoints Cardinality Decreasing sequences Eigenvalues Exact sciences and technology General mathematics General, history and biography Integers Linear algebra Mathematical analysis Mathematical problems Mathematical sequences Mathematical vectors Mathematics Matrices Nonlinear algebraic and transcendental equations Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Operator theory Sciences and techniques of general use Theorems  | 
    
| Title | The Horn Conjecture for Sums of Compact Selfadjoint Operators | 
    
| URI | https://www.jstor.org/stable/40388562 https://muse.jhu.edu/article/365823 https://www.proquest.com/docview/236512066  | 
    
| Volume | 131 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1080-6377 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: AMVHM dateStart: 19960201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1080-6377 dateEnd: 20200831 omitProxy: true ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: BENPR dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1080-6377 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000702 issn: 0002-9327 databaseCode: 8FG dateStart: 20030201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEB21yQUOiK8KU4hWggsHU9vr9doHhEywCRW2IydBvVn74T0gSEuT_n92HNttBeJqz2lmPPNmd_wewFtBWSuMZq6kFr6FzChXatm6SidKRLFJYolHA0UZLTbh-QW7OIJi-BcG1yqHmtgVan2p8Iz8LKCR7U22QX68-u2iaBRerg4KGqJXVtAfOoaxY5gGSIw1gemnrFzWt6WZe8GAhy1w4T1fKWX0TPz49R63vFBU-U6HOiwp4sak2FmnmYPaxf2Dkr_KeNeb8sfwqAeVJD1kwRM4ardP4WExMrLungEKKpFFVZdkXpUocbKpM2InQGLL6opUuX1cLNP5mqyyb3n6-bz6Wq5JtczqdF3Vq-ewybP1fOH20gmuCgN_7yrOfV8ZYZgwnidUy2gbycBrmW-08GPDojbWWnnCDixKK247tbaR4TrmKEBCT2Cyvdy2L4AIL7GgSYehVEnoKy79JDFC2DHPeMII6cC7wV2N6nnFUd7iZ9NdljHaWNc2SEIaMwfejLZXBzaNf1qddF4fTUKkrLFAzYHZvTCMBghy7KhFHXDvxKXpP8ddY3MnDmizwoXKiHKOcxsy8zhwOkTu1njMtJf_fXsKD4JeS8LzX8Fkf33TvrYAZS9ncBznX2YwTYvvi2LWJ-EfnK3hSA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEB2V9gAcEF8VplBWAg4cTG2v12sfKhRSR0mb2JHjSL2Z9X4cEKSFBCF-HP-NWcd2W4G49WqPLHlmvPNmPfsewBtBmRZGMbemCN9CZqRbq1q7UiVSRLFJ4tpuDcyyaLwMT8_Z-Q787s7C2LHKbk1sFmp1Ie0e-VFAI6xNWCA_XH5zrWiU_bnaKWiIVllBHTcMY-25jjP96yd2cOvjyQmG-20QjNJyOHZbkQFXhoG_cSXnvi-NMEwYzxNSM6qjOvA0840SfmxYpGOlpCcQ2kslOdY0he_AVcytVAfF596BvZCGCfZ-ex_TbF5clQLuBR3-RqDEW35UyuiR-Pz1vZ0qsyLO1yridijSTmiKNQbJbNU1bm7M_FU2mlo4eggPWhBLBtusewQ7evUY7s96Btj1E7ACTmScFxkZ5pmVVFkWKcGOk-AyviD5CC_P5oNhSRbpdDQ4Oc0nWUnyeVoMyrxYPIXlrXhxH3ZXFyv9DIjwEgRpKgxrmYS-5LWfJEYIbCuNJ4yoHXjXuauSLY-5ldP4UjU_5xit0LWVJT2NmQOve9vLLXvHP632G6_3JqGlyEFg6MDhjTD0BhZUYWtHHXCvxaVqP_91hbkaB7Ra2AHOiHJu-0TLBOTAQRe5K-M-s5__9-4ruDsuZ9NqOsnODuBe0OpYeP4L2N18_6FfIjja1IdtChL4dNtZ_wdC1B0h | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiE4IF4VplAsAQcOJrbX67UPCEVJTNI2cZSH1JtZ7-OAIC0kCPHT-HfM-NVWIG692iPLmhnvfLOe_T6A15JxI63mXskQvkXcKq_UpfGUTpWME5smJW0NTGfxeB0dn_GzPfjdnoWhscp2TawWan2uaI-8F7IYaxMWyJ5tpiLmw-zDxTePBKToR2urplFnyIn59RO7t-37yRBD_SYMs9FqMPYagQFPRWGw85QQQaCstFxa35fKcGbiMvQND6yWQWJ5bBKtlS8R1iutBNYzje8vdCJIpoPhc2_BbUEk7nRIPft4WQSEH7bIGyGSaJhRGWc9-fnrO5onI_nmK7WwHoek2Uy5xfDYWlfj-pbMXwWjqoLZA7jfwFe3X-fbQ9gzm0dwb9pxv24fA0k3ueN8MXMH-YzEVNaLkYu9posL-NLNM7w8nfcHK3c5Os36w-N8Mlu5-Xy06K_yxfIJrG_EhwewvznfmKfgSj9FeKajqFRpFChRBmlqpcSG0vrSytKBt627CtUwmJOQxpei-i3HWYGuLYjuNOEOvOpsL2rejn9aHVRe70wiIsdBSOjA0bUwdAYEp7CpYw54V-JSNB_-tsAsTUJWLGl0M2ZCUIdIHEAOHLaRuzTucvrZf---hDuY68XpZHZyCHfDRsDCD57D_u77D_MCUdGuPKryz4VPN53wfwBfGxq7 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Horn+conjecture+for+sums+of+compact+selfadjoint+operators&rft.jtitle=American+journal+of+mathematics&rft.au=Bercovici%2C+H&rft.au=Li%2C+W.+S&rft.au=Timotin%2C+D&rft.date=2009-12-01&rft.pub=Johns+Hopkins+University+Press&rft.issn=0002-9327&rft.eissn=1080-6377&rft.volume=131&rft.issue=6&rft.spage=1543&rft.epage=1567&rft_id=info:doi/10.1353%2Fajm.0.0085&rft.externalDocID=365823_S1080637709600034 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9327&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9327&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9327&client=summon |