Independent component analysis based on marginal density estimation using weighted Parzen windows

This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so a...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 21; no. 7; pp. 914 - 924
Main Authors Wu, Jiann-Ming, Chen, Meng-Hong, Lin, Zheng-Han
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.09.2008
Elsevier Science
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
DOI10.1016/j.neunet.2008.01.005

Cover

Abstract This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback–Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms.
AbstractList This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback–Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms.
This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback-Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms.This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback-Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms.
Author Chen, Meng-Hong
Wu, Jiann-Ming
Lin, Zheng-Han
Author_xml – sequence: 1
  givenname: Jiann-Ming
  surname: Wu
  fullname: Wu, Jiann-Ming
  email: jmwu@mail.ndhu.edu.tw
– sequence: 2
  givenname: Meng-Hong
  surname: Chen
  fullname: Chen, Meng-Hong
– sequence: 3
  givenname: Zheng-Han
  surname: Lin
  fullname: Lin, Zheng-Han
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20755184$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18539428$$D View this record in MEDLINE/PubMed
BookMark eNqFkV-P1CAUxYnZjTu7-g2M6Yu-tV4obcEHE7Pxzyab6IM-Ewq3I5OWjkCdjJ9eZmd0k31weQACv3Mu3HNJzvzskZAXFCoKtH2zqTwuHlPFAEQFtAJonpAVFZ0sWSfYGVmBkHXZgoALchnjBgBaweun5IKKppaciRXRN97iFvPkU2HmaZuL5J32etxHF4teR7TF7ItJh7XLp0Umo0v7AmNyk04u3y3R-XWxQ7f-kTL9VYff6Iud83bexWfkfNBjxOen9Yp8__jh2_Xn8vbLp5vr97el4YymspctgO1qK2HoAbhpOtEaLikDbAY6iF7q1miQYDqBnFkUjQWJlHeICEN9RV4ffbdh_rnk16nJRYPjqD3OS1StbHjdMv4oSCWneXQZfHkCl35Cq7Yhfzjs1d_uZeDVCdDR6HEI2hsX_3EMuqah4lCRHzkT5hgDDvdWoA5hqo06hqkOYSqgKoeZZW8fyIxLdx1PQbvxMfG7oxhzz385DCoah96gdQFNUnZ2_zf4A70pvgg
CitedBy_id crossref_primary_10_1016_j_neucom_2014_01_031
Cites_doi 10.1109/72.761722
10.1214/aoms/1177704472
10.1109/10.841326
10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
10.1109/TNN.2003.820667
10.1103/PhysRevLett.81.5461
10.1109/10.900244
10.1162/089976699300016458
10.1073/pnas.94.20.10979
10.1016/S0893-6080(02)00018-7
10.1162/089976699300016863
10.1016/0893-6080(95)00111-5
10.1109/5.720250
10.1016/j.neuroimage.2004.03.027
10.1109/34.494647
10.1049/el:20020738
10.1162/089976603762553004
10.1162/neco.1995.7.6.1129
10.1162/neco.1997.9.7.1483
10.1162/089976699300016566
10.1109/TPAMI.2003.1233899
ContentType Journal Article
Copyright 2008 Elsevier Ltd
2008 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Ltd
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1016/j.neunet.2008.01.005
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
Neurosciences Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1879-2782
EndPage 924
ExternalDocumentID 18539428
20755184
10_1016_j_neunet_2008_01_005
S0893608008000713
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AGCQF
AGRNS
BNPGV
IQODW
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c421t-b9600d73d90fb004c5786c49120e5f1f8b9a6ca090c78e42de85d09e147eee0f3
IEDL.DBID AIKHN
ISSN 0893-6080
IngestDate Sun Sep 28 05:13:24 EDT 2025
Sun Sep 28 08:47:50 EDT 2025
Mon Jul 21 06:06:19 EDT 2025
Mon Jul 21 09:12:14 EDT 2025
Wed Oct 01 02:07:47 EDT 2025
Thu Apr 24 23:10:35 EDT 2025
Fri Feb 23 02:29:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Density estimation
Kullback–Leibler divergence
Mean field annealing
Potts encoding
Blind source separation
Entropy
Weighted Parzen window
Independent factor analysis
Signal mixing
Divergence
Density measurement
Signal estimation
Kullback-Leibler divergence
Gradient descent
Accuracy
Multidimensional analysis
Coding
Facies
Electrocardiography
Work
Gradient method
Annealing
Independent component analysis
Interactive system
Descent method
Observation
Signal processing
Numerical simulation
Reliability
EM algorithm
Event evoked potential
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-b9600d73d90fb004c5786c49120e5f1f8b9a6ca090c78e42de85d09e147eee0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18539428
PQID 19411117
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_69543624
proquest_miscellaneous_19411117
pubmed_primary_18539428
pascalfrancis_primary_20755184
crossref_primary_10_1016_j_neunet_2008_01_005
crossref_citationtrail_10_1016_j_neunet_2008_01_005
elsevier_sciencedirect_doi_10_1016_j_neunet_2008_01_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-09-01
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: 2008-09-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2008
Publisher Elsevier Ltd
Elsevier Science
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science
References Wu, Lin (b24) 2002; 15
Hyvärinen, Oja (b12) 1997; 9
Boscolo, Pan, Roychowdhury (b6) 2004; 15
Himberg, Hyvarinen, Esposito (b10) 2004; 22
Wu, Chiu (b23) 2001; 12
Amari, Cichocki, Yang (b1) 1996; 8
Lin, Yin (b14) 2002; 38
Cardoso (b8) 1999; 11
Liou, Wu (b15) 1996; 9
Rattray, Saad, Amari (b21) 1998; 81
Hyvärinen (b11) 1999; 10
Makeig, Jung, Bell (b16) 1997; 94
Basak, Amari (b4) 1999; 11
Attias (b2) 1999; 11
Girolami, He (b9) 2003; 25
Verbeek, Vlassis, Krőse (b22) 2003; 15
Zarzoso, Nandi (b25) 2001; 48
Cardoso (b7) 1998; 86
Bell, Sejnowski (b5) 1995; 7
Parzen (b19) 1962; 33
Lathauwer, Moor, Vandewalle (b13) 2000; 47
Mansuripur (b17) 1987
Babich, Camps (b3) 1996; 18
McKeown, Makeig, Brown, Jung, Kindermann, Bell (b18) 1998; 6
Peterson, Söderberg (b20) 1989; 1
Wu (10.1016/j.neunet.2008.01.005_b23) 2001; 12
Verbeek (10.1016/j.neunet.2008.01.005_b22) 2003; 15
Attias (10.1016/j.neunet.2008.01.005_b2) 1999; 11
Makeig (10.1016/j.neunet.2008.01.005_b16) 1997; 94
Cardoso (10.1016/j.neunet.2008.01.005_b8) 1999; 11
McKeown (10.1016/j.neunet.2008.01.005_b18) 1998; 6
Peterson (10.1016/j.neunet.2008.01.005_b20) 1989; 1
Zarzoso (10.1016/j.neunet.2008.01.005_b25) 2001; 48
Hyvärinen (10.1016/j.neunet.2008.01.005_b11) 1999; 10
Girolami (10.1016/j.neunet.2008.01.005_b9) 2003; 25
Himberg (10.1016/j.neunet.2008.01.005_b10) 2004; 22
Bell (10.1016/j.neunet.2008.01.005_b5) 1995; 7
Cardoso (10.1016/j.neunet.2008.01.005_b7) 1998; 86
Parzen (10.1016/j.neunet.2008.01.005_b19) 1962; 33
Rattray (10.1016/j.neunet.2008.01.005_b21) 1998; 81
Mansuripur (10.1016/j.neunet.2008.01.005_b17) 1987
Lin (10.1016/j.neunet.2008.01.005_b14) 2002; 38
Liou (10.1016/j.neunet.2008.01.005_b15) 1996; 9
Amari (10.1016/j.neunet.2008.01.005_b1) 1996; 8
Basak (10.1016/j.neunet.2008.01.005_b4) 1999; 11
Wu (10.1016/j.neunet.2008.01.005_b24) 2002; 15
Lathauwer (10.1016/j.neunet.2008.01.005_b13) 2000; 47
Hyvärinen (10.1016/j.neunet.2008.01.005_b12) 1997; 9
Babich (10.1016/j.neunet.2008.01.005_b3) 1996; 18
Boscolo (10.1016/j.neunet.2008.01.005_b6) 2004; 15
References_xml – volume: 25
  start-page: 1253
  year: 2003
  end-page: 1264
  ident: b9
  article-title: Probability density estimation from optimally condensed data samples
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 33
  start-page: 1065
  year: 1962
  end-page: 1076
  ident: b19
  article-title: On estimation of a probability density function and mode
  publication-title: Annals of Mathematics and Statistics
– volume: 10
  start-page: 626
  year: 1999
  end-page: 634
  ident: b11
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
– volume: 15
  start-page: 469
  year: 2003
  end-page: 485
  ident: b22
  article-title: Efficient greedy learning of Gaussian mixture models
  publication-title: Neural Computation
– volume: 22
  start-page: 1214
  year: 2004
  end-page: 1222
  ident: b10
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
– volume: 38
  start-page: 1092
  year: 2002
  end-page: 1094
  ident: b14
  article-title: Blind source separation applied to image cryptosystems with dual encryption
  publication-title: Electronics Letters
– year: 1987
  ident: b17
  article-title: Introduction to information theory
– volume: 11
  start-page: 157
  year: 1999
  end-page: 192
  ident: b8
  article-title: High-order contrasts for independent component analysis
  publication-title: Neural Computation
– volume: 9
  start-page: 671
  year: 1996
  end-page: 684
  ident: b15
  article-title: Self-organization using potts models
  publication-title: Neural Networks
– volume: 11
  start-page: 1011
  year: 1999
  end-page: 1034
  ident: b4
  article-title: Blind separation of a mixture of uniformly distributed source signal: A novel approach
  publication-title: Neural Computation
– volume: 6
  start-page: 1
  year: 1998
  end-page: 31
  ident: b18
  article-title: Analysis of fMRI data by blind separation into independent components
  publication-title: Human Brain Mapping
– volume: 7
  start-page: 1129
  year: 1995
  end-page: 1159
  ident: b5
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
– volume: 15
  start-page: 337
  year: 2002
  end-page: 347
  ident: b24
  article-title: Learning generative models of natural images
  publication-title: Neural Networks
– volume: 18
  start-page: 567
  year: 1996
  end-page: 570
  ident: b3
  article-title: Weighted Parzen windows for pattern classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 47
  year: 2000
  ident: b13
  article-title: Fetal electrocardiogram extraction by blind source subspace separation
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 94
  start-page: 10979
  year: 1997
  end-page: 10984
  ident: b16
  article-title: Blind separation of auditory event-related brain responses into independent components
  publication-title: Proceesings of the National Academy of Sciences of the United States of America
– volume: 11
  start-page: 803
  year: 1999
  end-page: 851
  ident: b2
  article-title: Independent factor analysis
  publication-title: Neural Computation
– volume: 48
  year: 2001
  ident: b25
  article-title: Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 1
  year: 1989
  ident: b20
  article-title: A new method for mapping optimization problems onto neural network
  publication-title: International Journal of Neural Systems
– volume: 86
  year: 1998
  ident: b7
  article-title: Blind signal separation: Statistical principles
  publication-title: Proceedings of the IEEE
– volume: 15
  start-page: 55
  year: 2004
  end-page: 65
  ident: b6
  article-title: Independent component analysis based on nonparametric density estimation
  publication-title: IEEE Transactions on Neural Networks
– volume: 9
  start-page: 1483
  year: 1997
  end-page: 1492
  ident: b12
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Computation
– volume: 8
  start-page: 757
  year: 1996
  end-page: 763
  ident: b1
  article-title: A new learning algorithm for blind signal separation
  publication-title: Advances in Neural Information Processing Systems
– volume: 81
  start-page: 5461
  year: 1998
  end-page: 5464
  ident: b21
  article-title: Natural gradient descent for on-line learning
  publication-title: Physical Review Letters
– volume: 12
  year: 2001
  ident: b23
  article-title: Independent component analysis using Potts models
  publication-title: IEEE Transactions on Neural Networks
– volume: 10
  start-page: 626
  year: 1999
  ident: 10.1016/j.neunet.2008.01.005_b11
  article-title: Fast and robust fixed-point algorithms for independent component analysis
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.761722
– volume: 33
  start-page: 1065
  year: 1962
  ident: 10.1016/j.neunet.2008.01.005_b19
  article-title: On estimation of a probability density function and mode
  publication-title: Annals of Mathematics and Statistics
  doi: 10.1214/aoms/1177704472
– volume: 47
  issue: 5
  year: 2000
  ident: 10.1016/j.neunet.2008.01.005_b13
  article-title: Fetal electrocardiogram extraction by blind source subspace separation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.841326
– volume: 6
  start-page: 1
  year: 1998
  ident: 10.1016/j.neunet.2008.01.005_b18
  article-title: Analysis of fMRI data by blind separation into independent components
  publication-title: Human Brain Mapping
  doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1
– volume: 15
  start-page: 55
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2008.01.005_b6
  article-title: Independent component analysis based on nonparametric density estimation
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2003.820667
– volume: 81
  start-page: 5461
  issue: 24
  year: 1998
  ident: 10.1016/j.neunet.2008.01.005_b21
  article-title: Natural gradient descent for on-line learning
  publication-title: Physical Review Letters
  doi: 10.1103/PhysRevLett.81.5461
– volume: 48
  issue: 1
  year: 2001
  ident: 10.1016/j.neunet.2008.01.005_b25
  article-title: Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.900244
– volume: 11
  start-page: 803
  issue: 4
  year: 1999
  ident: 10.1016/j.neunet.2008.01.005_b2
  article-title: Independent factor analysis
  publication-title: Neural Computation
  doi: 10.1162/089976699300016458
– volume: 94
  start-page: 10979
  issue: 20
  year: 1997
  ident: 10.1016/j.neunet.2008.01.005_b16
  article-title: Blind separation of auditory event-related brain responses into independent components
  publication-title: Proceesings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.94.20.10979
– year: 1987
  ident: 10.1016/j.neunet.2008.01.005_b17
– volume: 15
  start-page: 337
  issue: 3
  year: 2002
  ident: 10.1016/j.neunet.2008.01.005_b24
  article-title: Learning generative models of natural images
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(02)00018-7
– volume: 11
  start-page: 157
  year: 1999
  ident: 10.1016/j.neunet.2008.01.005_b8
  article-title: High-order contrasts for independent component analysis
  publication-title: Neural Computation
  doi: 10.1162/089976699300016863
– volume: 9
  start-page: 671
  issue: 4
  year: 1996
  ident: 10.1016/j.neunet.2008.01.005_b15
  article-title: Self-organization using potts models
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(95)00111-5
– volume: 86
  issue: 10
  year: 1998
  ident: 10.1016/j.neunet.2008.01.005_b7
  article-title: Blind signal separation: Statistical principles
  publication-title: Proceedings of the IEEE
  doi: 10.1109/5.720250
– volume: 1
  issue: 3
  year: 1989
  ident: 10.1016/j.neunet.2008.01.005_b20
  article-title: A new method for mapping optimization problems onto neural network
  publication-title: International Journal of Neural Systems
– volume: 22
  start-page: 1214
  issue: 3
  year: 2004
  ident: 10.1016/j.neunet.2008.01.005_b10
  article-title: Validating the independent components of neuroimaging time series via clustering and visualization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.03.027
– volume: 12
  issue: 2
  year: 2001
  ident: 10.1016/j.neunet.2008.01.005_b23
  article-title: Independent component analysis using Potts models
  publication-title: IEEE Transactions on Neural Networks
– volume: 18
  start-page: 567
  issue: 5
  year: 1996
  ident: 10.1016/j.neunet.2008.01.005_b3
  article-title: Weighted Parzen windows for pattern classification
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.494647
– volume: 38
  start-page: 1092
  issue: 19
  year: 2002
  ident: 10.1016/j.neunet.2008.01.005_b14
  article-title: Blind source separation applied to image cryptosystems with dual encryption
  publication-title: Electronics Letters
  doi: 10.1049/el:20020738
– volume: 15
  start-page: 469
  year: 2003
  ident: 10.1016/j.neunet.2008.01.005_b22
  article-title: Efficient greedy learning of Gaussian mixture models
  publication-title: Neural Computation
  doi: 10.1162/089976603762553004
– volume: 7
  start-page: 1129
  year: 1995
  ident: 10.1016/j.neunet.2008.01.005_b5
  article-title: An information-maximization approach to blind separation and blind deconvolution
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.6.1129
– volume: 9
  start-page: 1483
  year: 1997
  ident: 10.1016/j.neunet.2008.01.005_b12
  article-title: A fast fixed-point algorithm for independent component analysis
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.7.1483
– volume: 8
  start-page: 757
  year: 1996
  ident: 10.1016/j.neunet.2008.01.005_b1
  article-title: A new learning algorithm for blind signal separation
  publication-title: Advances in Neural Information Processing Systems
– volume: 11
  start-page: 1011
  issue: 4
  year: 1999
  ident: 10.1016/j.neunet.2008.01.005_b4
  article-title: Blind separation of a mixture of uniformly distributed source signal: A novel approach
  publication-title: Neural Computation
  doi: 10.1162/089976699300016566
– volume: 25
  start-page: 1253
  issue: 10
  year: 2003
  ident: 10.1016/j.neunet.2008.01.005_b9
  article-title: Probability density estimation from optimally condensed data samples
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2003.1233899
SSID ssj0006843
Score 1.9013135
Snippet This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 914
SubjectTerms Algorithms
Applied sciences
Biological and medical sciences
Blind source separation
Coding, codes
Computer Simulation
Computerized, statistical medical data processing and models in biomedicine
Density estimation
Detection, estimation, filtering, equalization, prediction
Electrocardiography - methods
Electroencephalography - methods
Entropy
Evoked Potentials - physiology
Exact sciences and technology
Humans
Independent factor analysis
Information, signal and communications theory
Kullback–Leibler divergence
Mean field annealing
Medical management aid. Diagnosis aid
Medical sciences
Miscellaneous
Nonlinear Dynamics
Potts encoding
Principal Component Analysis
Signal and communications theory
Signal processing
Signal Processing, Computer-Assisted
Signal, noise
Statistics, Nonparametric
Telecommunications and information theory
Weighted Parzen window
Title Independent component analysis based on marginal density estimation using weighted Parzen windows
URI https://dx.doi.org/10.1016/j.neunet.2008.01.005
https://www.ncbi.nlm.nih.gov/pubmed/18539428
https://www.proquest.com/docview/19411117
https://www.proquest.com/docview/69543624
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006843
  issn: 0893-6080
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaVQ2vSVbh9bHXpVVrJlWzqG0LBpaSi0gdyMLI1LSuNddr0syaG_vSNb3hJICPRmzMiWNZ6ZT_Y3MwAfnXRGZYni0ruUE76tubUV8spLhRIL4XXIRv56ls_O1eeL7GIHjodcmECrjL6_9-mdt45npnE1p4vLy-l3QaE2D4BHd4Ey3YU9ij9aj2Dv6PTL7GzrkHPdk-dInocBQwZdR_NqcN3gQKqUhyL0sbs7Qj1e2BWtW903vLgfkXaR6WQfnkRIyY76WT-DHWyew9OhXQOL1vsC7Om25W3LApV83oQjG8uSsBDQPJs37Mouu2ZZzAd2e3vNQiWOPsWRBZ78T7bpPqiS9De7vMGGbWhnP9-sXsL5yacfxzMeOyxwpxLZ8or2L8IXqTeiDvbryH5zp4xMBGa1rHVlbO6sMMIVGlXiUWdeGJSqQERRp69g1NBkXwMzScjKTWvrCGJJgyY1ta1MhjY1Vud6DOmwqqWL5cdDF4zf5cAz-1X2uoidMWVJuhgD345a9OU3HpAvBoWVt16jkiLEAyMnt_S7vV1CoCqjffAYPgwKL8kEw38V2-B8vSqlUSHwFPdL5CZThBToGgf9m_LvYQguGTKRN_898bfwaOCwCPkORu1yje8JKLXVBHYP_8hJNIe_SOYUsQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFqpaukDupSHD1zN2onz8LFCoKU8VAmQuFmOPamoILvazWrVHvrbO07sRUggpN6iaBw7Ho_nm-QbDyH7Vlgls0Qy4WzKEN_WzJgKWOWEBAEFd6XPRj6_yEfX8vtNdrNCDmMujKdVhr2_39O73TrcGYbZHE5ub4eXHF1t7gFP2TnK9BVZw14LH4Ed_H3geeRlT51DaebFY_5cR_JqYN5ApFSKA-6r2D3tn95OzAxnre7LXTyPRzu_dLxO3gVASb_1Y_5AVqD5SN7HYg002O4nYk6WBW9b6onk48ZfmXAoCfXuzNFxQ-_NtCuVRZ3ntre_qT-Ho09wpJ4l_5Muus-pKP3DTP9AQxcY148Xs8_k-vjo6nDEQn0FZmUiWlZh9MJdkTrFa2-9Fq03t1KJhENWi7qslMmt4YrbogSZOCgzxxUIWQAAr9MNstrgYL8QqhKfk5vWxiLAEgpUqmpTqQxMqkyZlwOSxlnVNhw-7mtg3OnIMvule12EuphCoy4GhC1bTfrDN16QL6LC9KNFpNE_vNBy95F-l90lCKkyjIIHZC8qXKMB-r8qpoHxfKaFkt7tFM9L5CqTiBPwGZv9Snl4GQRLCg1k678Hvkdej67Oz_TZycXpV_Imslm42Car7XQOOwiZ2mq3M4l_nagVeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+based+on+marginal+density+estimation+using+weighted+Parzen+windows&rft.jtitle=Neural+networks&rft.au=Wu%2C+Jiann-Ming&rft.au=Chen%2C+Meng-Hong&rft.au=Lin%2C+Zheng-Han&rft.date=2008-09-01&rft.issn=0893-6080&rft.volume=21&rft.issue=7&rft.spage=914&rft.epage=924&rft_id=info:doi/10.1016%2Fj.neunet.2008.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2008_01_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon