Independent component analysis based on marginal density estimation using weighted Parzen windows
This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so a...
Saved in:
| Published in | Neural networks Vol. 21; no. 7; pp. 914 - 924 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.09.2008
Elsevier Science |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 |
| DOI | 10.1016/j.neunet.2008.01.005 |
Cover
| Abstract | This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback–Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms. |
|---|---|
| AbstractList | This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback–Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms. This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback-Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms.This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search for an effective demixing matrix as well as weighted Parzen window (WPW) representations for marginal densities of independent components so as to express a factorial joint density for high dimensional observations. Following the linear mixture assumption, independent component analysis is mathematically translated to minimizing the Kullback-Leibler (KL) divergence of independent components. By using Potts encoding, we express the KL divergence in an approximating form, which is shown to be tractable with respect to the WPW parameters as well as the demixing matrix and can be minimized by two interactive dynamic modules derived by the annealed expectation-maximization method and the natural gradient descent method, respectively. By numerical simulations, we test the proposed ICA algorithm with observations separately sampled from linear mixtures of independent sources and real world signals, including fetal electrocardiograms, mixed facial images and event-related potentials, extensively showing its accuracy and reliability for independent component analysis in comparison with some other popular ICA algorithms. |
| Author | Chen, Meng-Hong Wu, Jiann-Ming Lin, Zheng-Han |
| Author_xml | – sequence: 1 givenname: Jiann-Ming surname: Wu fullname: Wu, Jiann-Ming email: jmwu@mail.ndhu.edu.tw – sequence: 2 givenname: Meng-Hong surname: Chen fullname: Chen, Meng-Hong – sequence: 3 givenname: Zheng-Han surname: Lin fullname: Lin, Zheng-Han |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20755184$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18539428$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkV-P1CAUxYnZjTu7-g2M6Yu-tV4obcEHE7Pxzyab6IM-Ewq3I5OWjkCdjJ9eZmd0k31weQACv3Mu3HNJzvzskZAXFCoKtH2zqTwuHlPFAEQFtAJonpAVFZ0sWSfYGVmBkHXZgoALchnjBgBaweun5IKKppaciRXRN97iFvPkU2HmaZuL5J32etxHF4teR7TF7ItJh7XLp0Umo0v7AmNyk04u3y3R-XWxQ7f-kTL9VYff6Iud83bexWfkfNBjxOen9Yp8__jh2_Xn8vbLp5vr97el4YymspctgO1qK2HoAbhpOtEaLikDbAY6iF7q1miQYDqBnFkUjQWJlHeICEN9RV4ffbdh_rnk16nJRYPjqD3OS1StbHjdMv4oSCWneXQZfHkCl35Cq7Yhfzjs1d_uZeDVCdDR6HEI2hsX_3EMuqah4lCRHzkT5hgDDvdWoA5hqo06hqkOYSqgKoeZZW8fyIxLdx1PQbvxMfG7oxhzz385DCoah96gdQFNUnZ2_zf4A70pvgg |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2014_01_031 |
| Cites_doi | 10.1109/72.761722 10.1214/aoms/1177704472 10.1109/10.841326 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 10.1109/TNN.2003.820667 10.1103/PhysRevLett.81.5461 10.1109/10.900244 10.1162/089976699300016458 10.1073/pnas.94.20.10979 10.1016/S0893-6080(02)00018-7 10.1162/089976699300016863 10.1016/0893-6080(95)00111-5 10.1109/5.720250 10.1016/j.neuroimage.2004.03.027 10.1109/34.494647 10.1049/el:20020738 10.1162/089976603762553004 10.1162/neco.1995.7.6.1129 10.1162/neco.1997.9.7.1483 10.1162/089976699300016566 10.1109/TPAMI.2003.1233899 |
| ContentType | Journal Article |
| Copyright | 2008 Elsevier Ltd 2008 INIST-CNRS |
| Copyright_xml | – notice: 2008 Elsevier Ltd – notice: 2008 INIST-CNRS |
| DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7TK 7X8 |
| DOI | 10.1016/j.neunet.2008.01.005 |
| DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Neurosciences Abstracts MEDLINE - Academic |
| DatabaseTitleList | Neurosciences Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1879-2782 |
| EndPage | 924 |
| ExternalDocumentID | 18539428 20755184 10_1016_j_neunet_2008_01_005 S0893608008000713 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AGCQF AGRNS BNPGV IQODW SSH CGR CUY CVF ECM EIF NPM 7TK 7X8 |
| ID | FETCH-LOGICAL-c421t-b9600d73d90fb004c5786c49120e5f1f8b9a6ca090c78e42de85d09e147eee0f3 |
| IEDL.DBID | AIKHN |
| ISSN | 0893-6080 |
| IngestDate | Sun Sep 28 05:13:24 EDT 2025 Sun Sep 28 08:47:50 EDT 2025 Mon Jul 21 06:06:19 EDT 2025 Mon Jul 21 09:12:14 EDT 2025 Wed Oct 01 02:07:47 EDT 2025 Thu Apr 24 23:10:35 EDT 2025 Fri Feb 23 02:29:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Density estimation Kullback–Leibler divergence Mean field annealing Potts encoding Blind source separation Entropy Weighted Parzen window Independent factor analysis Signal mixing Divergence Density measurement Signal estimation Kullback-Leibler divergence Gradient descent Accuracy Multidimensional analysis Coding Facies Electrocardiography Work Gradient method Annealing Independent component analysis Interactive system Descent method Observation Signal processing Numerical simulation Reliability EM algorithm Event evoked potential |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-b9600d73d90fb004c5786c49120e5f1f8b9a6ca090c78e42de85d09e147eee0f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 18539428 |
| PQID | 19411117 |
| PQPubID | 23462 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_69543624 proquest_miscellaneous_19411117 pubmed_primary_18539428 pascalfrancis_primary_20755184 crossref_primary_10_1016_j_neunet_2008_01_005 crossref_citationtrail_10_1016_j_neunet_2008_01_005 elsevier_sciencedirect_doi_10_1016_j_neunet_2008_01_005 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-09-01 |
| PublicationDateYYYYMMDD | 2008-09-01 |
| PublicationDate_xml | – month: 09 year: 2008 text: 2008-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford – name: United States |
| PublicationTitle | Neural networks |
| PublicationTitleAlternate | Neural Netw |
| PublicationYear | 2008 |
| Publisher | Elsevier Ltd Elsevier Science |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science |
| References | Wu, Lin (b24) 2002; 15 Hyvärinen, Oja (b12) 1997; 9 Boscolo, Pan, Roychowdhury (b6) 2004; 15 Himberg, Hyvarinen, Esposito (b10) 2004; 22 Wu, Chiu (b23) 2001; 12 Amari, Cichocki, Yang (b1) 1996; 8 Lin, Yin (b14) 2002; 38 Cardoso (b8) 1999; 11 Liou, Wu (b15) 1996; 9 Rattray, Saad, Amari (b21) 1998; 81 Hyvärinen (b11) 1999; 10 Makeig, Jung, Bell (b16) 1997; 94 Basak, Amari (b4) 1999; 11 Attias (b2) 1999; 11 Girolami, He (b9) 2003; 25 Verbeek, Vlassis, Krőse (b22) 2003; 15 Zarzoso, Nandi (b25) 2001; 48 Cardoso (b7) 1998; 86 Bell, Sejnowski (b5) 1995; 7 Parzen (b19) 1962; 33 Lathauwer, Moor, Vandewalle (b13) 2000; 47 Mansuripur (b17) 1987 Babich, Camps (b3) 1996; 18 McKeown, Makeig, Brown, Jung, Kindermann, Bell (b18) 1998; 6 Peterson, Söderberg (b20) 1989; 1 Wu (10.1016/j.neunet.2008.01.005_b23) 2001; 12 Verbeek (10.1016/j.neunet.2008.01.005_b22) 2003; 15 Attias (10.1016/j.neunet.2008.01.005_b2) 1999; 11 Makeig (10.1016/j.neunet.2008.01.005_b16) 1997; 94 Cardoso (10.1016/j.neunet.2008.01.005_b8) 1999; 11 McKeown (10.1016/j.neunet.2008.01.005_b18) 1998; 6 Peterson (10.1016/j.neunet.2008.01.005_b20) 1989; 1 Zarzoso (10.1016/j.neunet.2008.01.005_b25) 2001; 48 Hyvärinen (10.1016/j.neunet.2008.01.005_b11) 1999; 10 Girolami (10.1016/j.neunet.2008.01.005_b9) 2003; 25 Himberg (10.1016/j.neunet.2008.01.005_b10) 2004; 22 Bell (10.1016/j.neunet.2008.01.005_b5) 1995; 7 Cardoso (10.1016/j.neunet.2008.01.005_b7) 1998; 86 Parzen (10.1016/j.neunet.2008.01.005_b19) 1962; 33 Rattray (10.1016/j.neunet.2008.01.005_b21) 1998; 81 Mansuripur (10.1016/j.neunet.2008.01.005_b17) 1987 Lin (10.1016/j.neunet.2008.01.005_b14) 2002; 38 Liou (10.1016/j.neunet.2008.01.005_b15) 1996; 9 Amari (10.1016/j.neunet.2008.01.005_b1) 1996; 8 Basak (10.1016/j.neunet.2008.01.005_b4) 1999; 11 Wu (10.1016/j.neunet.2008.01.005_b24) 2002; 15 Lathauwer (10.1016/j.neunet.2008.01.005_b13) 2000; 47 Hyvärinen (10.1016/j.neunet.2008.01.005_b12) 1997; 9 Babich (10.1016/j.neunet.2008.01.005_b3) 1996; 18 Boscolo (10.1016/j.neunet.2008.01.005_b6) 2004; 15 |
| References_xml | – volume: 25 start-page: 1253 year: 2003 end-page: 1264 ident: b9 article-title: Probability density estimation from optimally condensed data samples publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 33 start-page: 1065 year: 1962 end-page: 1076 ident: b19 article-title: On estimation of a probability density function and mode publication-title: Annals of Mathematics and Statistics – volume: 10 start-page: 626 year: 1999 end-page: 634 ident: b11 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks – volume: 15 start-page: 469 year: 2003 end-page: 485 ident: b22 article-title: Efficient greedy learning of Gaussian mixture models publication-title: Neural Computation – volume: 22 start-page: 1214 year: 2004 end-page: 1222 ident: b10 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage – volume: 38 start-page: 1092 year: 2002 end-page: 1094 ident: b14 article-title: Blind source separation applied to image cryptosystems with dual encryption publication-title: Electronics Letters – year: 1987 ident: b17 article-title: Introduction to information theory – volume: 11 start-page: 157 year: 1999 end-page: 192 ident: b8 article-title: High-order contrasts for independent component analysis publication-title: Neural Computation – volume: 9 start-page: 671 year: 1996 end-page: 684 ident: b15 article-title: Self-organization using potts models publication-title: Neural Networks – volume: 11 start-page: 1011 year: 1999 end-page: 1034 ident: b4 article-title: Blind separation of a mixture of uniformly distributed source signal: A novel approach publication-title: Neural Computation – volume: 6 start-page: 1 year: 1998 end-page: 31 ident: b18 article-title: Analysis of fMRI data by blind separation into independent components publication-title: Human Brain Mapping – volume: 7 start-page: 1129 year: 1995 end-page: 1159 ident: b5 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation – volume: 15 start-page: 337 year: 2002 end-page: 347 ident: b24 article-title: Learning generative models of natural images publication-title: Neural Networks – volume: 18 start-page: 567 year: 1996 end-page: 570 ident: b3 article-title: Weighted Parzen windows for pattern classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 47 year: 2000 ident: b13 article-title: Fetal electrocardiogram extraction by blind source subspace separation publication-title: IEEE Transactions on Biomedical Engineering – volume: 94 start-page: 10979 year: 1997 end-page: 10984 ident: b16 article-title: Blind separation of auditory event-related brain responses into independent components publication-title: Proceesings of the National Academy of Sciences of the United States of America – volume: 11 start-page: 803 year: 1999 end-page: 851 ident: b2 article-title: Independent factor analysis publication-title: Neural Computation – volume: 48 year: 2001 ident: b25 article-title: Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation publication-title: IEEE Transactions on Biomedical Engineering – volume: 1 year: 1989 ident: b20 article-title: A new method for mapping optimization problems onto neural network publication-title: International Journal of Neural Systems – volume: 86 year: 1998 ident: b7 article-title: Blind signal separation: Statistical principles publication-title: Proceedings of the IEEE – volume: 15 start-page: 55 year: 2004 end-page: 65 ident: b6 article-title: Independent component analysis based on nonparametric density estimation publication-title: IEEE Transactions on Neural Networks – volume: 9 start-page: 1483 year: 1997 end-page: 1492 ident: b12 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation – volume: 8 start-page: 757 year: 1996 end-page: 763 ident: b1 article-title: A new learning algorithm for blind signal separation publication-title: Advances in Neural Information Processing Systems – volume: 81 start-page: 5461 year: 1998 end-page: 5464 ident: b21 article-title: Natural gradient descent for on-line learning publication-title: Physical Review Letters – volume: 12 year: 2001 ident: b23 article-title: Independent component analysis using Potts models publication-title: IEEE Transactions on Neural Networks – volume: 10 start-page: 626 year: 1999 ident: 10.1016/j.neunet.2008.01.005_b11 article-title: Fast and robust fixed-point algorithms for independent component analysis publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.761722 – volume: 33 start-page: 1065 year: 1962 ident: 10.1016/j.neunet.2008.01.005_b19 article-title: On estimation of a probability density function and mode publication-title: Annals of Mathematics and Statistics doi: 10.1214/aoms/1177704472 – volume: 47 issue: 5 year: 2000 ident: 10.1016/j.neunet.2008.01.005_b13 article-title: Fetal electrocardiogram extraction by blind source subspace separation publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.841326 – volume: 6 start-page: 1 year: 1998 ident: 10.1016/j.neunet.2008.01.005_b18 article-title: Analysis of fMRI data by blind separation into independent components publication-title: Human Brain Mapping doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1 – volume: 15 start-page: 55 issue: 1 year: 2004 ident: 10.1016/j.neunet.2008.01.005_b6 article-title: Independent component analysis based on nonparametric density estimation publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2003.820667 – volume: 81 start-page: 5461 issue: 24 year: 1998 ident: 10.1016/j.neunet.2008.01.005_b21 article-title: Natural gradient descent for on-line learning publication-title: Physical Review Letters doi: 10.1103/PhysRevLett.81.5461 – volume: 48 issue: 1 year: 2001 ident: 10.1016/j.neunet.2008.01.005_b25 article-title: Noninvasive fetal electrocardiogram extraction: Blind separation versus adaptive noise cancellation publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.900244 – volume: 11 start-page: 803 issue: 4 year: 1999 ident: 10.1016/j.neunet.2008.01.005_b2 article-title: Independent factor analysis publication-title: Neural Computation doi: 10.1162/089976699300016458 – volume: 94 start-page: 10979 issue: 20 year: 1997 ident: 10.1016/j.neunet.2008.01.005_b16 article-title: Blind separation of auditory event-related brain responses into independent components publication-title: Proceesings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.94.20.10979 – year: 1987 ident: 10.1016/j.neunet.2008.01.005_b17 – volume: 15 start-page: 337 issue: 3 year: 2002 ident: 10.1016/j.neunet.2008.01.005_b24 article-title: Learning generative models of natural images publication-title: Neural Networks doi: 10.1016/S0893-6080(02)00018-7 – volume: 11 start-page: 157 year: 1999 ident: 10.1016/j.neunet.2008.01.005_b8 article-title: High-order contrasts for independent component analysis publication-title: Neural Computation doi: 10.1162/089976699300016863 – volume: 9 start-page: 671 issue: 4 year: 1996 ident: 10.1016/j.neunet.2008.01.005_b15 article-title: Self-organization using potts models publication-title: Neural Networks doi: 10.1016/0893-6080(95)00111-5 – volume: 86 issue: 10 year: 1998 ident: 10.1016/j.neunet.2008.01.005_b7 article-title: Blind signal separation: Statistical principles publication-title: Proceedings of the IEEE doi: 10.1109/5.720250 – volume: 1 issue: 3 year: 1989 ident: 10.1016/j.neunet.2008.01.005_b20 article-title: A new method for mapping optimization problems onto neural network publication-title: International Journal of Neural Systems – volume: 22 start-page: 1214 issue: 3 year: 2004 ident: 10.1016/j.neunet.2008.01.005_b10 article-title: Validating the independent components of neuroimaging time series via clustering and visualization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.03.027 – volume: 12 issue: 2 year: 2001 ident: 10.1016/j.neunet.2008.01.005_b23 article-title: Independent component analysis using Potts models publication-title: IEEE Transactions on Neural Networks – volume: 18 start-page: 567 issue: 5 year: 1996 ident: 10.1016/j.neunet.2008.01.005_b3 article-title: Weighted Parzen windows for pattern classification publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.494647 – volume: 38 start-page: 1092 issue: 19 year: 2002 ident: 10.1016/j.neunet.2008.01.005_b14 article-title: Blind source separation applied to image cryptosystems with dual encryption publication-title: Electronics Letters doi: 10.1049/el:20020738 – volume: 15 start-page: 469 year: 2003 ident: 10.1016/j.neunet.2008.01.005_b22 article-title: Efficient greedy learning of Gaussian mixture models publication-title: Neural Computation doi: 10.1162/089976603762553004 – volume: 7 start-page: 1129 year: 1995 ident: 10.1016/j.neunet.2008.01.005_b5 article-title: An information-maximization approach to blind separation and blind deconvolution publication-title: Neural Computation doi: 10.1162/neco.1995.7.6.1129 – volume: 9 start-page: 1483 year: 1997 ident: 10.1016/j.neunet.2008.01.005_b12 article-title: A fast fixed-point algorithm for independent component analysis publication-title: Neural Computation doi: 10.1162/neco.1997.9.7.1483 – volume: 8 start-page: 757 year: 1996 ident: 10.1016/j.neunet.2008.01.005_b1 article-title: A new learning algorithm for blind signal separation publication-title: Advances in Neural Information Processing Systems – volume: 11 start-page: 1011 issue: 4 year: 1999 ident: 10.1016/j.neunet.2008.01.005_b4 article-title: Blind separation of a mixture of uniformly distributed source signal: A novel approach publication-title: Neural Computation doi: 10.1162/089976699300016566 – volume: 25 start-page: 1253 issue: 10 year: 2003 ident: 10.1016/j.neunet.2008.01.005_b9 article-title: Probability density estimation from optimally condensed data samples publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2003.1233899 |
| SSID | ssj0006843 |
| Score | 1.9013135 |
| Snippet | This work proposes a novel algorithm for independent component analysis (ICA) based on marginal density estimation. The proposed ICA algorithm aims to search... |
| SourceID | proquest pubmed pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 914 |
| SubjectTerms | Algorithms Applied sciences Biological and medical sciences Blind source separation Coding, codes Computer Simulation Computerized, statistical medical data processing and models in biomedicine Density estimation Detection, estimation, filtering, equalization, prediction Electrocardiography - methods Electroencephalography - methods Entropy Evoked Potentials - physiology Exact sciences and technology Humans Independent factor analysis Information, signal and communications theory Kullback–Leibler divergence Mean field annealing Medical management aid. Diagnosis aid Medical sciences Miscellaneous Nonlinear Dynamics Potts encoding Principal Component Analysis Signal and communications theory Signal processing Signal Processing, Computer-Assisted Signal, noise Statistics, Nonparametric Telecommunications and information theory Weighted Parzen window |
| Title | Independent component analysis based on marginal density estimation using weighted Parzen windows |
| URI | https://dx.doi.org/10.1016/j.neunet.2008.01.005 https://www.ncbi.nlm.nih.gov/pubmed/18539428 https://www.proquest.com/docview/19411117 https://www.proquest.com/docview/69543624 |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006843 issn: 0893-6080 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaVQ2vSVbh9bHXpVVrJlWzqG0LBpaSi0gdyMLI1LSuNddr0syaG_vSNb3hJICPRmzMiWNZ6ZT_Y3MwAfnXRGZYni0ruUE76tubUV8spLhRIL4XXIRv56ls_O1eeL7GIHjodcmECrjL6_9-mdt45npnE1p4vLy-l3QaE2D4BHd4Ey3YU9ij9aj2Dv6PTL7GzrkHPdk-dInocBQwZdR_NqcN3gQKqUhyL0sbs7Qj1e2BWtW903vLgfkXaR6WQfnkRIyY76WT-DHWyew9OhXQOL1vsC7Om25W3LApV83oQjG8uSsBDQPJs37Mouu2ZZzAd2e3vNQiWOPsWRBZ78T7bpPqiS9De7vMGGbWhnP9-sXsL5yacfxzMeOyxwpxLZ8or2L8IXqTeiDvbryH5zp4xMBGa1rHVlbO6sMMIVGlXiUWdeGJSqQERRp69g1NBkXwMzScjKTWvrCGJJgyY1ta1MhjY1Vud6DOmwqqWL5cdDF4zf5cAz-1X2uoidMWVJuhgD345a9OU3HpAvBoWVt16jkiLEAyMnt_S7vV1CoCqjffAYPgwKL8kEw38V2-B8vSqlUSHwFPdL5CZThBToGgf9m_LvYQguGTKRN_898bfwaOCwCPkORu1yje8JKLXVBHYP_8hJNIe_SOYUsQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHFqpaukDupSHD1zN2onz8LFCoKU8VAmQuFmOPamoILvazWrVHvrbO07sRUggpN6iaBw7Ho_nm-QbDyH7Vlgls0Qy4WzKEN_WzJgKWOWEBAEFd6XPRj6_yEfX8vtNdrNCDmMujKdVhr2_39O73TrcGYbZHE5ub4eXHF1t7gFP2TnK9BVZw14LH4Ed_H3geeRlT51DaebFY_5cR_JqYN5ApFSKA-6r2D3tn95OzAxnre7LXTyPRzu_dLxO3gVASb_1Y_5AVqD5SN7HYg002O4nYk6WBW9b6onk48ZfmXAoCfXuzNFxQ-_NtCuVRZ3ntre_qT-Ho09wpJ4l_5Muus-pKP3DTP9AQxcY148Xs8_k-vjo6nDEQn0FZmUiWlZh9MJdkTrFa2-9Fq03t1KJhENWi7qslMmt4YrbogSZOCgzxxUIWQAAr9MNstrgYL8QqhKfk5vWxiLAEgpUqmpTqQxMqkyZlwOSxlnVNhw-7mtg3OnIMvule12EuphCoy4GhC1bTfrDN16QL6LC9KNFpNE_vNBy95F-l90lCKkyjIIHZC8qXKMB-r8qpoHxfKaFkt7tFM9L5CqTiBPwGZv9Snl4GQRLCg1k678Hvkdej67Oz_TZycXpV_Imslm42Car7XQOOwiZ2mq3M4l_nagVeQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Independent+component+analysis+based+on+marginal+density+estimation+using+weighted+Parzen+windows&rft.jtitle=Neural+networks&rft.au=Wu%2C+Jiann-Ming&rft.au=Chen%2C+Meng-Hong&rft.au=Lin%2C+Zheng-Han&rft.date=2008-09-01&rft.issn=0893-6080&rft.volume=21&rft.issue=7&rft.spage=914&rft.epage=924&rft_id=info:doi/10.1016%2Fj.neunet.2008.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neunet_2008_01_005 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |