Advances in and the Applicability of Machine Learning-Based Screening and Early Detection Approaches for Cancer: A Primer

Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condit...

Full description

Saved in:
Bibliographic Details
Published inCancers Vol. 14; no. 3; p. 623
Main Authors Benning, Leo, Peintner, Andreas, Peintner, Lukas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.01.2022
MDPI
Subjects
Online AccessGet full text
ISSN2072-6694
2072-6694
DOI10.3390/cancers14030623

Cover

Abstract Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care.
AbstractList Simple SummaryNon-communicable diseases in general, and cancer in particular, contribute greatly to the global burden of disease. Although significant advances have been made to address this burden, cancer is still among the top drivers of mortality, second only to cardiovascular diseases. Consensus has been established that a key factor to reduce the burden of disease from cancer is to improve screening for and the early detection of such conditions. To date, however, most approaches in this field relied on established screening methods, such as a clinical examination, radiographic imaging, tissue staining or biochemical markers. Yet, with the advances of information technology, new data-driven screening and diagnostic tools have been developed. This article provides a brief overview of the theoretical foundations of these data-driven approaches, highlights the promising use cases and underscores the challenges and limitations that come with the introduction of these approaches to the clinical field.AbstractDespite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care.
Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care.Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care.
Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and other efforts to improve early detection were initiated to cover the populations at a particular risk for developing a specific malignant condition. These diagnostic approaches have, so far, mostly relied on conventional diagnostic methods and have made little use of the vast amounts of clinical and diagnostic data that are routinely being collected along the diagnostic pathway. Practitioners have lacked the tools to handle this ever-increasing flood of data. Only recently, the clinical field has opened up more for the opportunities that come with the systematic utilisation of high-dimensional computational data analysis. We aim to introduce the reader to the theoretical background of machine learning (ML) and elaborate on the established and potential use cases of ML algorithms in screening and early detection. Furthermore, we assess and comment on the relevant challenges and misconceptions of the applicability of ML-based diagnostic approaches. Lastly, we emphasise the need for a clear regulatory framework to responsibly introduce ML-based diagnostics in clinical practice and routine care.
Author Benning, Leo
Peintner, Andreas
Peintner, Lukas
AuthorAffiliation 3 Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany
1 Health Care Supply Research and Data Mining Working Group, Emergency Department, University Medical Center Freiburg, 79106 Freiburg, Germany; leo.benning@uniklinik-freiburg.de
2 Databases and Information Systems, Department of Computer Science, Leopold-Franzens University of Innsbruck, 6020 Innsbruck, Austria; andreas.peintner@uibk.ac.at
AuthorAffiliation_xml – name: 1 Health Care Supply Research and Data Mining Working Group, Emergency Department, University Medical Center Freiburg, 79106 Freiburg, Germany; leo.benning@uniklinik-freiburg.de
– name: 3 Institute of Molecular Medicine and Cell Research, Albert Ludwigs University of Freiburg, 79085 Freiburg, Germany
– name: 2 Databases and Information Systems, Department of Computer Science, Leopold-Franzens University of Innsbruck, 6020 Innsbruck, Austria; andreas.peintner@uibk.ac.at
Author_xml – sequence: 1
  givenname: Leo
  orcidid: 0000-0002-8429-9702
  surname: Benning
  fullname: Benning, Leo
– sequence: 2
  givenname: Andreas
  surname: Peintner
  fullname: Peintner, Andreas
– sequence: 3
  givenname: Lukas
  orcidid: 0000-0002-0445-1445
  surname: Peintner
  fullname: Peintner, Lukas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35158890$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1UREvpmRuyxIVLqD9iJ-aAtCzlQ1oEEnCOHHvSdZW1Uzspyn-P0y1QVkJiLrbl93t6M_MYHfngAaGnlLzkXJFzo72BmGhJOJGMP0AnjFSskFKVR_fux-gspSuSi3NayeoROuaCirpW5ATNK3uz2CTsPNbe4nELeDUMvTO6db0bZxw6_EmbrfOAN6Cjd_6yeKMTWPzVRIDlfUte6NjP-C2MYEYX_OISQwazdxciXt-mfYVX-Et0O4hP0MNO9wnO7s5T9P3dxbf1h2Lz-f3H9WpTmJLRsVCqzaU7WtetlMJq4KyjStrSKlPXlpW0rEEI2wopLTESKmIJlYxQkbvl_BSRve_kBz3_0H3fDDmAjnNDSbMMsjkYZEZe75FhandgDfgx6j9Y0K75-8e7bXMZbpq65rzkKhu8uDOI4XqCNDY7lwz0vfYQptQwyRQRijKWpc8PpFdhij5PZFFVgsu8x6x6dj_R7yi_FpkF53uBiSGlCN1_NCkOCONGvWwut-T6f3I_AXnwxBQ
CitedBy_id crossref_primary_10_1038_s41587_023_02051_9
crossref_primary_10_3389_fendo_2022_1011492
crossref_primary_10_3390_cancers14071819
crossref_primary_10_1002_1878_0261_13222
crossref_primary_10_1109_ACCESS_2025_3538566
crossref_primary_10_3934_mbe_2023457
crossref_primary_10_1007_s12672_025_02111_3
crossref_primary_10_1007_s11042_024_19510_3
crossref_primary_10_3390_cancers15041065
crossref_primary_10_3389_fbioe_2024_1456354
crossref_primary_10_1021_acsmaterialsau_3c00046
crossref_primary_10_3389_fonc_2024_1477166
crossref_primary_10_3390_cancers15030843
Cites_doi 10.3322/caac.21652
10.1186/s12864-019-5489-4
10.3390/cancers13123047
10.1016/j.cmpb.2020.105584
10.1016/S0140-6736(19)30037-6
10.1109/ICASSP.2013.6638947
10.1109/TBME.2016.2613502
10.1186/s12911-020-01225-8
10.1016/j.acra.2019.09.017
10.1007/s10278-017-0009-z
10.1371/journal.pmed.1002730
10.1109/ICASSP.2019.8683352
10.1109/CVPR.2015.7298594
10.18653/v1/D18-1302
10.1117/12.2266335
10.1038/s41598-020-67960-0
10.1038/s41591-019-0583-3
10.1186/s12874-018-0482-1
10.1109/TPAMI.2016.2646371
10.1117/1.JMI.3.3.034501
10.1109/ICPR48806.2021.9412236
10.1038/nature21056
10.1016/S0140-6736(20)30925-9
10.1016/S2214-109X(18)30411-X
10.1016/S1470-2045(09)70145-7
10.1038/nrclinonc.2016.50
10.1002/mp.13361
10.1093/bioinformatics/btw427
10.1292/jvms.12-0233
10.3322/caac.21556
10.1038/nature14539
10.1016/j.icte.2020.04.009
10.1109/ICCV.2015.510
10.3390/cancers11091235
10.1016/j.media.2016.10.004
10.1109/BIBM.2015.7359868
10.1007/978-3-319-24574-4_28
10.1088/1361-6560/aa82ec
10.1038/s41389-019-0157-8
10.1016/j.neucom.2019.07.080
10.1038/s41746-018-0048-y
10.1038/s41467-019-13825-8
10.1016/j.tibtech.2017.10.012
10.1016/j.compmedimag.2016.11.004
10.1162/neco.1997.9.8.1735
10.1016/S2589-7500(21)00208-9
10.1109/CVPR.2015.7298965
10.1109/CVPR.2018.00175
10.1109/CVPR.2016.90
10.1038/nbt.3300
10.1016/j.ajpath.2019.05.007
10.1016/j.eururo.2013.12.062
10.1161/CIRCULATIONAHA.114.014508
10.1109/ICIP.2016.7532834
10.1109/ISBI.2017.7950686
10.3322/caac.21660
10.1093/oso/9780198538493.001.0001
10.1371/journal.pone.0195816
10.3115/v1/D14-1179
10.1001/jamainternmed.2015.5231
10.3390/biom10101460
10.1142/9789813235533_0031
10.1145/3065386
10.1038/s41416-020-01122-x
10.1038/s42003-020-0973-6
10.1200/JCO.2021.39.15_suppl.10577
10.1016/j.ophtha.2018.11.016
10.1126/science.aaw4399
10.1371/journal.pcbi.1006076
10.1038/s41598-020-61588-w
10.1001/jama.2019.10306
10.1016/j.csbj.2014.11.005
10.3390/cancers12030603
10.1109/EMBC.2016.7590782
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
3V.
7T5
7TO
7XB
8FE
8FH
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
GUQSH
H94
HCIFZ
LK8
M2O
M7P
MBDVC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/cancers14030623
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
Biological Sciences
ProQuest Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Research Library Prep
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2072-6694
ExternalDocumentID 10.3390/cancers14030623
PMC8833439
35158890
10_3390_cancers14030623
Genre Journal Article
Review
GroupedDBID ---
53G
5VS
8FE
8FH
8G5
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
CCPQU
CITATION
DIK
DWQXO
E3Z
EBD
ESX
GNUQQ
GUQSH
GX1
HCIFZ
HYE
IAO
IHR
ITC
KQ8
LK8
M2O
M48
M7P
MODMG
M~E
OK1
P6G
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RPM
TUS
NPM
3V.
7T5
7TO
7XB
8FK
H94
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ADRAZ
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c421t-99bbbbaf188b665dae32f196d4d9c88d24148e55db566d0c6e70d016201517633
IEDL.DBID M48
ISSN 2072-6694
IngestDate Sun Oct 26 01:26:40 EDT 2025
Tue Sep 30 16:37:25 EDT 2025
Fri Sep 05 12:48:13 EDT 2025
Fri Jul 25 12:00:23 EDT 2025
Mon Jul 21 05:45:48 EDT 2025
Thu Oct 16 04:43:46 EDT 2025
Thu Apr 24 22:59:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
CNN
DNN
cancer diagnostics
machine learning
high throughput
artificial intelligence
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-99bbbbaf188b665dae32f196d4d9c88d24148e55db566d0c6e70d016201517633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-0445-1445
0000-0002-8429-9702
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/cancers14030623
PMID 35158890
PQID 2627536072
PQPubID 2032421
ParticipantIDs unpaywall_primary_10_3390_cancers14030623
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8833439
proquest_miscellaneous_2629059122
proquest_journals_2627536072
pubmed_primary_35158890
crossref_primary_10_3390_cancers14030623
crossref_citationtrail_10_3390_cancers14030623
PublicationCentury 2000
PublicationDate 20220126
PublicationDateYYYYMMDD 2022-01-26
PublicationDate_xml – month: 1
  year: 2022
  text: 20220126
  day: 26
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Cancers
PublicationTitleAlternate Cancers (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Han (ref_48) 2017; 62
Courtiol (ref_65) 2019; 25
ref_91
Han (ref_58) 2020; 196
ref_12
ref_56
ref_55
Weller (ref_9) 2009; 10
ref_52
Elmore (ref_3) 2021; 71
ref_19
ref_18
ref_17
ref_16
ref_15
Collins (ref_80) 2015; 131
Loeb (ref_10) 2014; 65
Krizhevsky (ref_14) 2017; 60
Dou (ref_59) 2017; 64
ref_61
ref_60
Heo (ref_67) 2013; 75
Kocarnik (ref_4) 2021; 39
Shieh (ref_8) 2016; 13
ref_25
ref_24
ref_68
ref_23
Benning (ref_43) 2020; 10
ref_21
ref_20
ref_63
Collins (ref_82) 2019; 393
ref_62
Yabroff (ref_5) 2019; 69
ref_29
ref_28
Echle (ref_66) 2021; 124
ref_27
ref_26
Sayres (ref_74) 2019; 126
Lai (ref_64) 2020; 10
ref_71
LeCun (ref_22) 2015; 521
Yang (ref_44) 2019; 366
Vaka (ref_45) 2020; 6
Korfiatis (ref_57) 2017; 30
ref_34
Wang (ref_36) 2019; 189
ref_78
ref_77
Kourou (ref_13) 2015; 13
ref_32
ref_76
Ghassemi (ref_89) 2021; 3
ref_31
ref_75
ref_30
Hintze (ref_88) 2018; 2
Lagies (ref_11) 2020; 3
ref_39
Sung (ref_7) 2021; 71
Jiao (ref_53) 2020; 11
ref_37
Wang (ref_51) 2017; 57
Esteva (ref_72) 2017; 542
Hua (ref_50) 2015; 8
Alipanahi (ref_69) 2015; 33
Lehman (ref_73) 2015; 175
Vos (ref_2) 2020; 396
Kamnitsas (ref_38) 2017; 36
Harvey (ref_87) 2020; 27
ref_83
Hochreiter (ref_33) 1997; 9
Shah (ref_79) 2019; 322
Huynh (ref_40) 2016; 3
Shi (ref_35) 2017; 39
Byra (ref_49) 2019; 46
ref_47
ref_46
Peccoud (ref_90) 2018; 36
ref_42
ref_86
ref_41
Cao (ref_6) 2018; 6
ref_84
ref_1
Gao (ref_54) 2019; 8
Finlayson (ref_85) 2019; 363
Keane (ref_81) 2018; 1
Singh (ref_70) 2016; 32
References_xml – volume: 71
  start-page: 107
  year: 2021
  ident: ref_3
  article-title: Blueprint for cancer research: Critical gaps and opportunities
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21652
– ident: ref_71
  doi: 10.1186/s12864-019-5489-4
– ident: ref_55
  doi: 10.3390/cancers13123047
– volume: 196
  start-page: 105584
  year: 2020
  ident: ref_58
  article-title: Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105584
– ident: ref_26
– volume: 393
  start-page: 1577
  year: 2019
  ident: ref_82
  article-title: Reporting of artificial intelligence prediction models
  publication-title: Lancet
  doi: 10.1016/S0140-6736(19)30037-6
– ident: ref_32
  doi: 10.1109/ICASSP.2013.6638947
– volume: 64
  start-page: 1558
  year: 2017
  ident: ref_59
  article-title: Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613502
– ident: ref_68
– ident: ref_84
– ident: ref_16
– ident: ref_63
  doi: 10.1186/s12911-020-01225-8
– volume: 27
  start-page: 58
  year: 2020
  ident: ref_87
  article-title: How the FDA Regulates AI
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2019.09.017
– ident: ref_1
– volume: 30
  start-page: 622
  year: 2017
  ident: ref_57
  article-title: Residual Deep Convolutional Neural Network Predicts MGMT Methylation Status
  publication-title: J. Digit. Imaging
  doi: 10.1007/s10278-017-0009-z
– volume: 2
  start-page: 145
  year: 2018
  ident: ref_88
  article-title: Comparing the benefits of pseudonymisation and anonymisation under the GDPR
  publication-title: J. Data Prot. Priv.
– ident: ref_56
  doi: 10.1371/journal.pmed.1002730
– ident: ref_46
  doi: 10.1109/ICASSP.2019.8683352
– ident: ref_27
  doi: 10.1109/CVPR.2015.7298594
– ident: ref_78
  doi: 10.18653/v1/D18-1302
– volume: 8
  start-page: 2015
  year: 2015
  ident: ref_50
  article-title: Computer-aided classification of lung nodules on computed tomography images via deep learning technique
  publication-title: OncoTargets Ther.
– ident: ref_39
  doi: 10.1117/12.2266335
– volume: 10
  start-page: 11071
  year: 2020
  ident: ref_43
  article-title: Automated spheroid generation, drug application and efficacy screening using a deep learning classification: A feasibility study
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-67960-0
– volume: 25
  start-page: 1519
  year: 2019
  ident: ref_65
  article-title: Deep learning-based classification of mesothelioma improves prediction of patient outcome
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0583-3
– ident: ref_61
  doi: 10.1186/s12874-018-0482-1
– volume: 39
  start-page: 2298
  year: 2017
  ident: ref_35
  article-title: An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2646371
– volume: 3
  start-page: 034501
  year: 2016
  ident: ref_40
  article-title: Digital mammographic tumor classification using transfer learning from deep convolutional neural networks
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.3.3.034501
– ident: ref_83
  doi: 10.1109/ICPR48806.2021.9412236
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_72
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 396
  start-page: 1204
  year: 2020
  ident: ref_2
  article-title: Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30925-9
– volume: 6
  start-page: e1288
  year: 2018
  ident: ref_6
  article-title: Effect on longevity of one-third reduction in premature mortality from non-communicable diseases by 2030: A global analysis of the Sustainable Development Goal health target
  publication-title: Lancet Glob. Health
  doi: 10.1016/S2214-109X(18)30411-X
– volume: 10
  start-page: 693
  year: 2009
  ident: ref_9
  article-title: Uptake in cancer screening programmes
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(09)70145-7
– volume: 13
  start-page: 550
  year: 2016
  ident: ref_8
  article-title: Population-based screening for cancer: Hope and hype
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2016.50
– volume: 46
  start-page: 746
  year: 2019
  ident: ref_49
  article-title: Breast mass classification in sonography with transfer learning using a deep convolutional neural network and color conversion
  publication-title: Med. Phys.
  doi: 10.1002/mp.13361
– volume: 32
  start-page: i639
  year: 2016
  ident: ref_70
  article-title: DeepChrome: Deep-learning for predicting gene expression from histone modifications
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw427
– volume: 75
  start-page: 299
  year: 2013
  ident: ref_67
  article-title: Canonical Wnt signaling pathway plays an essential role in N-methyl-N-nitrosurea induced gastric tumorigenesis of mice
  publication-title: J. Vet. Med. Sci.
  doi: 10.1292/jvms.12-0233
– ident: ref_20
– volume: 69
  start-page: 166
  year: 2019
  ident: ref_5
  article-title: Minimizing the burden of cancer in the United States: Goals for a high-performing health care system
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21556
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_22
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_28
– volume: 6
  start-page: 320
  year: 2020
  ident: ref_45
  article-title: Breast cancer detection by leveraging Machine Learning
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.04.009
– ident: ref_29
  doi: 10.1109/ICCV.2015.510
– ident: ref_25
  doi: 10.3390/cancers11091235
– ident: ref_76
– volume: 36
  start-page: 61
  year: 2017
  ident: ref_38
  article-title: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.10.004
– ident: ref_41
  doi: 10.1109/BIBM.2015.7359868
– ident: ref_31
  doi: 10.1007/978-3-319-24574-4_28
– volume: 62
  start-page: 7714
  year: 2017
  ident: ref_48
  article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa82ec
– ident: ref_86
– volume: 8
  start-page: 44
  year: 2019
  ident: ref_54
  article-title: DeepCC: A novel deep learning-based framework for cancer molecular subtype classification
  publication-title: Oncogenesis
  doi: 10.1038/s41389-019-0157-8
– volume: 366
  start-page: 46
  year: 2019
  ident: ref_44
  article-title: EMS-Net: Ensemble of Multiscale Convolutional Neural Networks for Classification of Breast Cancer Histology Images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.080
– volume: 1
  start-page: 40
  year: 2018
  ident: ref_81
  article-title: With an eye to AI and autonomous diagnosis
  publication-title: NPJ Digit. Med.
  doi: 10.1038/s41746-018-0048-y
– volume: 11
  start-page: 728
  year: 2020
  ident: ref_53
  article-title: A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13825-8
– volume: 36
  start-page: 4
  year: 2018
  ident: ref_90
  article-title: Cyberbiosecurity: From Naive Trust to Risk Awareness
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2017.10.012
– ident: ref_18
– volume: 57
  start-page: 10
  year: 2017
  ident: ref_51
  article-title: Lung nodule classification using deep feature fusion in chest radiography
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2016.11.004
– ident: ref_21
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_33
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 3
  start-page: e745
  year: 2021
  ident: ref_89
  article-title: The false hope of current approaches to explainable artificial intelligence in health care
  publication-title: Lancet Digit. Health
  doi: 10.1016/S2589-7500(21)00208-9
– ident: ref_30
  doi: 10.1109/CVPR.2015.7298965
– ident: ref_77
  doi: 10.1109/CVPR.2018.00175
– ident: ref_17
  doi: 10.1109/CVPR.2016.90
– ident: ref_75
– volume: 33
  start-page: 831
  year: 2015
  ident: ref_69
  article-title: Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3300
– volume: 189
  start-page: 1686
  year: 2019
  ident: ref_36
  article-title: Pathology Image Analysis Using Segmentation Deep Learning Algorithms
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2019.05.007
– volume: 65
  start-page: 1046
  year: 2014
  ident: ref_10
  article-title: Overdiagnosis and Overtreatment of Prostate Cancer
  publication-title: Eur. Urol.
  doi: 10.1016/j.eururo.2013.12.062
– volume: 131
  start-page: 211
  year: 2015
  ident: ref_80
  article-title: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.014508
– ident: ref_12
– ident: ref_47
  doi: 10.1109/ICIP.2016.7532834
– ident: ref_52
  doi: 10.1109/ISBI.2017.7950686
– volume: 71
  start-page: 209
  year: 2021
  ident: ref_7
  article-title: Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21660
– ident: ref_23
  doi: 10.1093/oso/9780198538493.001.0001
– ident: ref_42
  doi: 10.1371/journal.pone.0195816
– ident: ref_34
  doi: 10.3115/v1/D14-1179
– volume: 175
  start-page: 1828
  year: 2015
  ident: ref_73
  article-title: Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection
  publication-title: JAMA Intern. Med.
  doi: 10.1001/jamainternmed.2015.5231
– ident: ref_15
– ident: ref_62
  doi: 10.3390/biom10101460
– ident: ref_91
– ident: ref_19
  doi: 10.1142/9789813235533_0031
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_14
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– volume: 124
  start-page: 686
  year: 2021
  ident: ref_66
  article-title: Deep learning in cancer pathology: A new generation of clinical biomarkers
  publication-title: Brit. J. Cancer
  doi: 10.1038/s41416-020-01122-x
– volume: 3
  start-page: 246
  year: 2020
  ident: ref_11
  article-title: Cells grown in three-dimensional spheroids mirror in vivo metabolic response of epithelial cells
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-0973-6
– volume: 39
  start-page: 10577
  year: 2021
  ident: ref_4
  article-title: The global burden of 29 cancer groups from 2010 to 2019: A systematic analysis for the Global Burden of Disease study 2019
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2021.39.15_suppl.10577
– volume: 126
  start-page: 552
  year: 2019
  ident: ref_74
  article-title: Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.11.016
– volume: 363
  start-page: 1287
  year: 2019
  ident: ref_85
  article-title: Adversarial attacks on medical machine learning
  publication-title: Science
  doi: 10.1126/science.aaw4399
– ident: ref_60
  doi: 10.1371/journal.pcbi.1006076
– volume: 10
  start-page: 4679
  year: 2020
  ident: ref_64
  article-title: Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61588-w
– volume: 322
  start-page: 1351
  year: 2019
  ident: ref_79
  article-title: Making Machine Learning Models Clinically Useful
  publication-title: JAMA
  doi: 10.1001/jama.2019.10306
– volume: 13
  start-page: 8
  year: 2015
  ident: ref_13
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– ident: ref_24
  doi: 10.3390/cancers12030603
– ident: ref_37
  doi: 10.1109/EMBC.2016.7590782
SSID ssj0000331767
Score 2.3436391
SecondaryResourceType review_article
Snippet Despite the efforts of the past decades, cancer is still among the key drivers of global mortality. To increase the detection rates, screening programs and...
Simple SummaryNon-communicable diseases in general, and cancer in particular, contribute greatly to the global burden of disease. Although significant advances...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 623
SubjectTerms Artificial intelligence
Biochemical markers
Breast cancer
Cancer
Cardiovascular diseases
Cellular biology
Computer applications
Deep learning
Disease
Learning algorithms
Machine learning
Medical screening
Mortality
Neural networks
Prostate cancer
Review
Skin cancer
Trends
SummonAdditionalLinks – databaseName: ProQuest Central (New)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3daxQxEB_qFdQX8bOuVonggz7E7iXZ3K4gcq0tRehR1ELflmSTaOHYO-8Duf_emeyHnkXdh4UlH0uSSeaXzOQ3AC-tT1PvlOEuc44rJzy3psi4DTbgdFIkSORtMdGnF-rjZXa5A5PuLgy5VXZrYlyo3ayiM_IDQXS6Uqcj8X7-nVPUKLKudiE0TBtawb2LFGM3YFcQM9YAdg-PJ-ef-lOXVKK-1KOG40fifv-gos5dLIm2LtVCbquna5jzuuvkrXU9N5sfZjr9TS-d3IU7LaBk40YC7sGOr-_DzbPWZP4ANuPGyr9kVzUztWOI-Ni4MVtHx9gNmwV2Fn0qPWvpVr_yQ9Rujn2uyC0Hv2PJSIbMPvhVdN-qqZZ4HwvrRujLjmIb37IxO6eYAYuHcHFy_OXolLfxFnilxHDFi8LiY8Iwz63WmTNeioAz1ClXVHnuUNmr3GeZs4gBXVppP0odQkbEEBn2qpSPYFDPav8YmCKWH4QHwWupjCiMDNY6q00QJuArgTddN5dVS0ZOMTGmJW5KaFzKP8YlgVd9gXnDw_H3rPvduJXthFyWv8QngRd9Mk4lso-Y2s_WMU-BaHMoMM9eM8z9vyTivjwv0gRGWwLQZyCa7u2U-upbpOumcM4I-xJ43YvK_5rw5N9NeAq3Bd3CSIdc6H0YrBZr_wyx0co-bwX-J7QUEko
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVQJwEvY3wHBjISD_DgJrEdN-EFZYNpQto0CSqNp8iO7VFRpVWbbup-PdeOG9FNCEEeIkW5zpfvtY_tk3MReqtMkhjNJdGZ1oRraoiSRUaUVRbCiTtHcmyLU3E85l_Os_Mw4bYMtEoYik98I02TESVCFDxOecxi6KnjubYfL8NMEiB95kZYDJrgHZEBFh-gnfHpWfndZZTblO30fBiM7ePafcjF0knUJYKy7a7oFr68TZO8t2rmcn0lp9Pf-qCjB6jaPH1HPfk5XLVqWF_fEHb8_9fbQ7sBnuKy86eH6I5pHqG7J2EB_jFalx1nYIknDZaNxoAfcdktgnua7RrPLD7xDE2Dg3jrBTmAvlLjr7Uj-cCxL-mllfEn03oyWOOu4v_ugmsDkMaH_it-wCU-cxkIFk_Q-Ojzt8NjErI3kJrTtCVFoWCTNs1zJUSmpWHUQrxrros6zzVAB56bLNMKEKVOamFGiQYACogkS6HVY0_RoJk15jnC3GkGAdiwRjAuaSGZVUorIS2VFnYRGm4qsqqDtLnLsDGtYIjjar66UfMRetcXmHeqHn823d94RhXCe1lRp-3MBNRfhN70pyEw3WqLbMxs5W0KwK4pBZtnnSP192KAIvO8SCI02nKx3sCJfm-faSY_vPi3Sw4NIDJC73tn_NsrvPgH25foPnU_eCQpoWIfDdrFyrwC2NWq1yG2fgFhHir1
  priority: 102
  providerName: Unpaywall
Title Advances in and the Applicability of Machine Learning-Based Screening and Early Detection Approaches for Cancer: A Primer
URI https://www.ncbi.nlm.nih.gov/pubmed/35158890
https://www.proquest.com/docview/2627536072
https://www.proquest.com/docview/2629059122
https://pubmed.ncbi.nlm.nih.gov/PMC8833439
https://www.mdpi.com/2072-6694/14/3/623/pdf?version=1643338332
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: DIK
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: RPM
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-6694
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2072-6694
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000331767
  issn: 2072-6694
  databaseCode: M48
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9sC7Uv0vp5Wo8IPuhD6m7243aFItvaWoQ7DvXgfFqSTaKFI1fvA73_3pns3ra1FcF9WNjNF0lmMr-QyW8AXioTBEbHkutEax5rYbiSecKVVRbVKSZBIm-LQXo2ij-Ok_FlOKBmAOe3bu0ontRoNjn49WP1DhX-kHacuGV_U9H4zObEPBegNd-ALTRTOcVx6DdY3y_LEZrKtFfT-9xWbge2I7TuWUbr81UjdQN53nSgvLt0F3L1U04mV6zT6S7ca2AlK2o52IM7xt2H7X5zcP4AVkV91j9n545JpxniPlbUh9fePXbFppb1vWelYQ3p6jd-hDZOs88VOefgty_pKZHZe7PwTlyOavG3srBuBMDs2Hf3LSvYkCIHzB7C6PTky_EZb6Iu8CoW4YLnucJH2jDLVJomWppIWNRTHeu8yjKNJj_OTJJohUhQB1VqeoFG4IhIIsEBjqJHsOmmzjwBFhPXD4IEa9IoliKXkVVKq1RaIS2-OnCwHuayaijJKTLGpMStCU1R-ccUdeBVW-CiZuP4e9b99byVa6kqBXEyR2nQw6ZftMmoUHRKIp2ZLn2eHDFnKDDP43qa27bW8tGB3jUBaDMQWff1FHf-3ZN2U1BnBH8deN2Kyr-68PS_W3kGO4KuaQQhF-k-bC5mS_McwdNCdWHr6GQw_NSFjQ_jsOtVBP-NBsPi6288VyEx
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VVqK8IG5SChgJJHgIdWzHmyBVaHtpS7urClqpb8GOHVpplV32ULV_jt_G2DlgqYCn5iFS5COyZ-z5bI-_AXitLaXWCBWa2JhQGGZDrdI41IUucDgJp0jO22Ige2fi03l8vgI_mrswzq2ymRP9RG1Gudsj32KOTpdL2mEfx99DFzXKna42ITRUHVrBbHuKsfpix5FdXOESbrp9uIfyfsPYwf7pbi-sowyEuWDRLExTjY8qoiTRUsZGWc4K1EsjTJoniUETJxIbx0Yj8jE0l7ZDDQIltJxxhKOTY723YE1wkeLib21nf3Dyud3loRzts-xUnEKcp3Qrd8KcTB1NHpWML5vDaxj3uqvm-rwcq8WVGg5_s4MH9-BuDWBJt9K4-7Biywdwu18f0T-ERbfyKpiSy5Ko0hBEmKRbHZN7R9wFGRWk7304LanpXb-FO2hNDfmSOzcg_PYlPfky2bMz7y5Wulr8_S-sG6E22fVt_EC65MTFKJg8grMb6fnHsFqOSvsUiHCsQghHCiu5UCxVvNDaaKkKpgp8BfC-6eYsr8nPXQyOYYaLICeX7A-5BPC2LTCueD_-nnWzkVtWTwDT7Je6BvCqTcah685jVGlHc58nRXQbMczzpBJz-y-OODNJUhpAZ0kB2gyOFnw5pby88PTgLnw0wswA3rWq8r8mbPy7CS9hvXfaP86ODwdHz-AOczdAaBQyuQmrs8ncPkdcNtMvauUn8PWmx9tPg6VOTA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJg1eEN8EBhgJJHgwdezETZAm1K2rNsaqCpi0t2DHNkyq0tIPTf0X-as4O06gTMDT8hApiuPIuTvfz7nz7xB6oQylRieS6FRrkmhmiJJ5SpRVFswpcYrksi2G4vA0eX-Wnm2gH81eGJdW2cyJfqLWk9L9I-8wR6fLBe2yjg1pEaP-4N30O3EVpFyktSmnIUOZBb3r6cbCJo9js7qA5dx896gPsn_J2ODg8_4hCRUHSJmweEHyXMEhbZxlSohUS8OZBR3Vic7LLNPg7pLMpKlWgII0LYXpUg2gCbxoGoOlcuj3GtpywS-YJLb2Doajj-0fH8rBV4tuzS_EeU47pRPsbO4o86hgfN01XsK7l9M2ry-rqVxdyPH4N584uIVuBjCLe7X23UYbprqDtk9CuP4uWvXqDIM5Pq-wrDQGtIl7dcjcJ-Wu8MTiE5_PaXCgev1K9sCzavypdClBcO2f9ETMuG8WPnWscr34vWDQN8BuvO_H-Bb38MjVK5jdQ6dX8uXvo81qUpmHCCeOYQigiTWCJ5LlklultBLSMmnhFKE3zWcuykCE7upxjAtYEDm5FH_IJUKv2gemNQfI35vuNHIrwmQwL36pboSet7fBjF1sRlZmsvRtckC6MYM2D2oxt-_igDmzLKcR6q4pQNvAUYSv36nOv3mqcFdKGiBnhF63qvK_ITz69xCeoW2wu-LD0fD4MbrB3GYQGhMmdtDmYrY0TwCiLdTToPsYfblqc_sJ2khSew
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVQJwEvY3wHBjISD_DgJrEdN-EFZYNpQto0CSqNp8iO7VFRpVWbbup-PdeOG9FNCEEeIkW5zpfvtY_tk3MReqtMkhjNJdGZ1oRraoiSRUaUVRbCiTtHcmyLU3E85l_Os_Mw4bYMtEoYik98I02TESVCFDxOecxi6KnjubYfL8NMEiB95kZYDJrgHZEBFh-gnfHpWfndZZTblO30fBiM7ePafcjF0knUJYKy7a7oFr68TZO8t2rmcn0lp9Pf-qCjB6jaPH1HPfk5XLVqWF_fEHb8_9fbQ7sBnuKy86eH6I5pHqG7J2EB_jFalx1nYIknDZaNxoAfcdktgnua7RrPLD7xDE2Dg3jrBTmAvlLjr7Uj-cCxL-mllfEn03oyWOOu4v_ugmsDkMaH_it-wCU-cxkIFk_Q-Ojzt8NjErI3kJrTtCVFoWCTNs1zJUSmpWHUQrxrros6zzVAB56bLNMKEKVOamFGiQYACogkS6HVY0_RoJk15jnC3GkGAdiwRjAuaSGZVUorIS2VFnYRGm4qsqqDtLnLsDGtYIjjar66UfMRetcXmHeqHn823d94RhXCe1lRp-3MBNRfhN70pyEw3WqLbMxs5W0KwK4pBZtnnSP192KAIvO8SCI02nKx3sCJfm-faSY_vPi3Sw4NIDJC73tn_NsrvPgH25foPnU_eCQpoWIfDdrFyrwC2NWq1yG2fgFhHir1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+and+the+Applicability+of+Machine+Learning-Based+Screening+and+Early+Detection+Approaches+for+Cancer%3A+A+Primer&rft.jtitle=Cancers&rft.au=Benning%2C+Leo&rft.au=Peintner%2C+Andreas&rft.au=Peintner%2C+Lukas&rft.date=2022-01-26&rft.pub=MDPI&rft.eissn=2072-6694&rft.volume=14&rft.issue=3&rft_id=info:doi/10.3390%2Fcancers14030623&rft_id=info%3Apmid%2F35158890&rft.externalDocID=PMC8833439
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6694&client=summon