A cascade hybrid PSO feed-forward neural network model of a biomass gasification plant for covering the energy demand in an AC microgrid
•The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance. Agriculture and forestry crop residues represent more than hal...
Saved in:
| Published in | Energy conversion and management Vol. 232; p. 113896 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
15.03.2021
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 1879-2227 |
| DOI | 10.1016/j.enconman.2021.113896 |
Cover
| Abstract | •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance.
Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand. |
|---|---|
| AbstractList | •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance.
Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand. Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand. |
| ArticleNumber | 113896 |
| Author | Chiñas-Palacios, Cristian Hurtado-Pérez, Elias Aguila-Leon, Jesus Vargas-Salgado, Carlos |
| Author_xml | – sequence: 1 givenname: Cristian surname: Chiñas-Palacios fullname: Chiñas-Palacios, Cristian organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain – sequence: 2 givenname: Carlos surname: Vargas-Salgado fullname: Vargas-Salgado, Carlos organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain – sequence: 3 givenname: Jesus surname: Aguila-Leon fullname: Aguila-Leon, Jesus organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain – sequence: 4 givenname: Elias surname: Hurtado-Pérez fullname: Hurtado-Pérez, Elias organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain |
| BookMark | eNqNkE1v1DAQhi1UJLaFv4BG4sIli-1knUTiwGrFl1SpSMDZmtiTrZfEXuykq_0H_GxcApdeymkOft7xvM8lu_DBE2MvBV8LLtSbw5q8CX5Ev5ZcirUQZdOqJ2wlmrotpJT1BVtx0aqiaXn1jF2mdOCclxuuVuzXFgwmg5bg9txFZ-HL1xvoiWzRh3jCaMHTHHHIYzqF-APGYGmA0ANC58KIKcEek-udwckFD8cB_QQ5DCbcUXR-D9MtAXmK-zNYyndacB7Qw3YHozMx7PO_z9nTHodEL_7OK_b9w_tvu0_F9c3Hz7vtdWEqKaZcoSXiyhrVWCM7UVnEWnBOXd3VVdkLUg2pMr_VyvJNl8mSm4b6RnQVUl1esXrZO_sjnk84DPoY3YjxrAXX90L1Qf8Tqu-F6kVoTr5ekscYfs6UJj26ZGjIfSnMScuNrEpei5Zn9NUD9BDm6HOvTPGqEa1sqky9XaisIKVIvTZu-iNxiuiGx-9RD-L_XeTdEqTs-c5R1Mm4TJJ1kcykbXCPrfgNIp7Gkw |
| CitedBy_id | crossref_primary_10_1016_j_est_2022_104774 crossref_primary_10_3390_electronics12091981 crossref_primary_10_3390_electronics13193880 crossref_primary_10_3390_en16031483 crossref_primary_10_1016_j_fuel_2021_122966 crossref_primary_10_1007_s11440_021_01358_8 crossref_primary_10_1016_j_est_2022_104591 crossref_primary_10_1109_OJPEL_2025_3526929 crossref_primary_10_3390_fluids7070248 crossref_primary_10_3233_JIFS_210603 crossref_primary_10_1016_j_biombioe_2023_106869 crossref_primary_10_1115_1_4066059 crossref_primary_10_1016_j_eswa_2022_118700 crossref_primary_10_1080_15567036_2022_2075059 crossref_primary_10_61435_ijred_2024_60119 crossref_primary_10_1007_s41742_022_00460_3 crossref_primary_10_1016_j_enconman_2022_115920 crossref_primary_10_1016_j_energy_2022_124027 crossref_primary_10_3390_en14164845 crossref_primary_10_1016_j_eswa_2022_119336 crossref_primary_10_1016_j_simpa_2024_100675 crossref_primary_10_1016_j_joei_2022_08_012 crossref_primary_10_1016_j_ijhydene_2022_04_077 crossref_primary_10_1109_ACCESS_2023_3236836 crossref_primary_10_1016_j_apenergy_2023_122448 crossref_primary_10_1515_ijcre_2024_0001 crossref_primary_10_3390_su14063136 crossref_primary_10_3390_pr11082313 crossref_primary_10_1021_acsomega_4c04649 crossref_primary_10_1016_j_jechem_2024_07_045 crossref_primary_10_1016_j_egyai_2025_100488 crossref_primary_10_1016_j_biortech_2022_128076 crossref_primary_10_1016_j_seta_2024_104154 crossref_primary_10_1016_j_egyr_2022_10_284 crossref_primary_10_1016_j_fuel_2023_128563 crossref_primary_10_3390_en16196896 crossref_primary_10_1016_j_est_2024_111536 crossref_primary_10_1080_15567036_2023_2176569 crossref_primary_10_1038_s41598_024_80424_z crossref_primary_10_1016_j_epsr_2025_111462 crossref_primary_10_3389_fenrg_2024_1488718 crossref_primary_10_3390_biomimetics7020083 crossref_primary_10_1007_s13399_022_02342_2 crossref_primary_10_1016_j_measurement_2021_110566 crossref_primary_10_1016_j_rser_2021_111902 crossref_primary_10_1016_j_enbuild_2024_114191 crossref_primary_10_1016_j_energy_2021_122633 |
| Cites_doi | 10.3390/en12060964 10.1016/j.ijhydene.2013.06.138 10.1016/j.apenergy.2019.114191 10.1109/ICEETS.2016.7583879 10.1016/j.enconman.2020.113116 10.1109/GTDAsia.2019.8716010 10.1109/SASG.2017.8356516 10.1016/j.apenergy.2017.12.037 10.1016/j.swevo.2020.100718 10.1016/j.solener.2019.06.050 10.1016/j.rser.2017.08.059 10.1016/j.apenergy.2019.113353 10.1016/j.engappai.2020.103894 10.1016/j.fuel.2017.05.006 10.1063/1.5066264 10.1016/j.ijhydene.2016.04.034 10.1016/B978-0-444-63428-3.50008-4 10.1016/j.rser.2019.109426 10.1016/j.energy.2019.01.011 10.1002/2050-7038.12617 10.1016/j.enconman.2019.02.044 10.1631/jzus.2005.A0528 10.1016/j.energy.2019.116189 10.1016/j.renene.2020.05.095 10.1007/s40820-020-0373-y 10.1016/j.energy.2018.01.030 10.1016/j.enconman.2018.02.062 10.1016/j.jclepro.2019.05.374 10.1016/j.renene.2018.07.142 10.1177/0144598717716282 10.3390/su13031061 10.1080/10916466.2018.1560321 10.1016/j.asoc.2019.105903 10.18186/journal-of-thermal-engineering.433806 10.1016/j.renene.2015.08.030 10.1109/ICEET48479.2020.9048222 10.1162/EVCO_r_00180 10.1109/TEVC.2004.826069 10.1016/j.scitotenv.2019.03.268 10.1016/j.jiec.2015.08.021 10.1016/j.energy.2014.01.042 10.1016/j.apenergy.2015.05.097 10.1016/j.enconman.2019.05.015 10.1109/IJCNN.2018.8489533 10.1016/j.heliyon.2019.e02474 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Science Ltd. Mar 15, 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Mar 15, 2021 |
| DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.enconman.2021.113896 |
| DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aerospace Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Forestry |
| EISSN | 1879-2227 |
| ExternalDocumentID | 10.1016/j.enconman.2021.113896 10_1016_j_enconman_2021_113896 S019689042100073X |
| GeographicLocations | Spain |
| GeographicLocations_xml | – name: Spain |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ ~HD 7ST 7TB 8FD AGCQF C1K FR3 H8D KR7 L7M SOI 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c421t-899ee06dc68dc2b14daa7100eb7b743f1e68e63dc276d05b6dc30c8ef81b4ae73 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 1879-2227 |
| IngestDate | Sun Oct 26 04:11:25 EDT 2025 Thu Oct 02 05:32:05 EDT 2025 Wed Aug 13 05:09:23 EDT 2025 Thu Oct 09 00:17:34 EDT 2025 Thu Apr 24 22:50:52 EDT 2025 Fri Feb 23 02:45:38 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Artificial Neural Network model AC microgrid Particle swarm optimization Syngas genset |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-899ee06dc68dc2b14daa7100eb7b743f1e68e63dc276d05b6dc30c8ef81b4ae73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S019689042100073X |
| PQID | 2504819284 |
| PQPubID | 2047472 |
| ParticipantIDs | unpaywall_primary_10_1016_j_enconman_2021_113896 proquest_miscellaneous_2524307190 proquest_journals_2504819284 crossref_citationtrail_10_1016_j_enconman_2021_113896 crossref_primary_10_1016_j_enconman_2021_113896 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_113896 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Lopez-Garcia TB, Ruiz-Cruz R, Sanchez EN. Real-time battery bank charge-discharge using neural sliding mode control. In: Proceedings of the international joint conference on neural networks, vol. 2018-July, 2018. doi: 10.1109/IJCNN.2018.8489533. Ye (b0195) 2019; 37 Danish MSS, Matayoshi H, Howlader HR, Chakraborty S, Mandal P, Senjyu T. Microgrid planning and design: resilience to sustainability. In: 2019 IEEE PES GTD grand international conference and exposition Asia, GTD Asia 2019; 2019. p. 253–258. doi: 10.1109/GTDAsia.2019.8716010. Hurtado, Peñalvo-López, Pérez-Navarro, Vargas, Alfonso (b0215) 2015; 155 Sandeep V, Bala Murali Krishna V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. In: 2016 International conference on energy efficient technologies for sustainability, ICEETS 2016; 2016. p. 917–921. doi: 10.1109/ICEETS.2016.7583879. Lopez-Garcia, Coronado-Mendoza, Domínguez-Navarro (b0160) 2020; 95 Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25 (1): 2017; 1–54. MIT Press Journals. doi: 10.1162/EVCO_r_00180. Pérez-Navarro (b0045) 2016; 86 Alfonso-solar, Vargas-Salgado, Sánchez-díaz, Hurtado-pérez (b0205) 2020; 12 Hurtado, Peñalvo-López, Pérez-Navarro, Vargas, Alfonso (b0050) 2015; 155 Yang, Cho, Zhang, Zhang, Wu (b0150) 2018; 164 Hossain, Ayodele, Cheng, Khan (b0185) 2016; 41 Ayodele, Cheng (b0230) 2015; 32 Chettibi, Mellit (b0165) 2018; 147 Mallick D, Mahanta P, Moholkar VS. Co-gasification of coal and biomass blends: chemistry and engineering. Fuel Elsevier Ltd 204: 2017; 106–128. doi: 10.1016/j.fuel.2017.05.006. Cerone, Zimbardi, Contuzzi, Baleta, Cerinski, Skvorčinskienė (b0115) 2020; 221 Shahbaz (b0140) 2019; 132 Bukar, Tan, Lau (b0055) 2019; 188 Aguila-Leon J, Chiñas-Palacios C, Garcia EXM, Vargas-Salgado C. A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. Int Trans Electr Energy Syst n/a (n/a): 2020; e12617. doi: 10.1002/2050-7038.12617. Slabov, Kopyl, Soares dos Santos, Kholkin (b0035) 2020; 12 Alsulami WA, Sreerama Kumar R. Artificial neural network based load flow solution of Saudi national grid. In: 2017 Saudi Arabia smart grid conference, SASG 2017; 2018. p. 1–7. doi: 10.1109/SASG.2017.8356516. Chettibi, Mellit, Sulligoi, Massi Pavan (b0170) 2018; 9 Heydari A, Astiaso Garcia D, Keynia F, Bisegna F, De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl Energy 251: 2019; 113353. doi: 10.1016/j.apenergy.2019.113353. Aziz MS, Khan MA, Khan A, Nawaz F, Imran M, Siddique A. Rural electrification through an optimized off-grid microgrid based on biogas. Solar Hydro Power 2020. doi: 10.1109/ICEET48479.2020.9048222. van den Bergh, Engelbrecht (b0240) 2004; 8 Aydinli, Caglar, Pekol, Karaci (b0200) 2017; 35 Piotrowski, Napiorkowski, Piotrowska (b0255) 2020; 58 Taghavi, Gharehghani, Nejad, Mirsalim (b0145) 2019; 195 Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci Total Environ 670: 2019; 1075–1083. doi: 10.1016/j.scitotenv.2019.03.268. Leonori S, Paschero M, Frattale Mascioli FM, Rizzi A. Optimization strategies for microgrid energy management systems by Genetic Algorithms. Appl Soft Comput J 86: 2020; 105903. doi: 10.1016/j.asoc.2019.105903. Ramalingam, Ezhumalai, Govindasamy (b0005) 2019 Griffin, Darsey (b0225) 2013; 38 Ren J, Cao JP, Zhao XY, Yang FL, Wei XY. “Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116: 2019; 109426. Elsevier Ltd. doi: 10.1016/j.rser.2019.109426. Gitano-Briggs, Kean (b0075) 2016 Ribó-Pérez, Bastida-Molina, Gómez-Navarro, Hurtado-Pérez (b0110) 2020; 157 Vargas-Salgado C, Hurtado-Pérez E, Alfonso-Solar D, Malmquist A. Empirical design, construction , and experimental test of a small – scale bubbling fluidized bed reactor. Sustain 13 (3): 2021; 1–23. [Online]. Available: https://www.mdpi.com/2071-1050/13/3/1061 . Vargas-Salgado, Aguila-Leon, Chiñas-Palacios, Hurtado-Perez (b0220) 2019; 5 Zhang LP, Yu HJ, Hu SX. Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 6 A (6): 2005; 528–534. doi: 10.1631/jzus.2005.A0528. Bajwa AA, Mokhlis H, Mekhilef S, Mubin M. Enhancing power system resilience leveraging microgrids: a review. J Renew Sustain Energy 11 (3): 2019; 35503. American Institute of Physics Inc. doi: 10.1063/1.5066264. Acevedo-Arenas (b0085) 2019; 186 Martins, Felgueiras, Smitkova, Caetano (b0020) 2019; 12 Carneiro (b0030) 2020; 260 Kan, Zhou, Yang, Zhai, Wang (b0095) 2018; 212 Cedola L, Tallini A. Development of an Innovative Microgrid: 2MSG−Micro Mobile Smart Grid. Angeline, Jayakumar, Asirvatham, Wongwises (b0190) 2018; 4 Aguila-Leon, Chinas-Palacios, Vargas-Salgado, Hurtado-Perez, Garcia (b0235) 2020 Hanif I, Faraz Raza SM, Gago-de-Santos P, Abbas Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: some empirical evidence. Energy 171: 2019; 493–501. doi: 10.1016/j.energy.2019.01.011. Salah A, Hanel L, Beirow M, Scheffknecht G. Modelling SER biomass gasification using dynamic neural networks, vol. 38. Elsevier Masson SAS; 2016. Ou, Hong (b0125) 2014; 66 Rodríguez-Monroy C, Mármol-Acitores G, Nilsson-Cifuentes G. Electricity generation in Chile using non-conventional renewable energy sources – a focus on biomass. Renew Sustain Energy Rev 81: 2018; 937–945. Elsevier Ltd. doi: 10.1016/j.rser.2017.08.059. Gaete-Morales, Gallego-Schmid, Stamford, Azapagic (b0025) 2019; 232 Cerone (10.1016/j.enconman.2021.113896_b0115) 2020; 221 10.1016/j.enconman.2021.113896_b0120 Shahbaz (10.1016/j.enconman.2021.113896_b0140) 2019; 132 Ribó-Pérez (10.1016/j.enconman.2021.113896_b0110) 2020; 157 10.1016/j.enconman.2021.113896_b0245 Taghavi (10.1016/j.enconman.2021.113896_b0145) 2019; 195 Ramalingam (10.1016/j.enconman.2021.113896_b0005) 2019 10.1016/j.enconman.2021.113896_b0080 Carneiro (10.1016/j.enconman.2021.113896_b0030) 2020; 260 10.1016/j.enconman.2021.113896_b0040 Ou (10.1016/j.enconman.2021.113896_b0125) 2014; 66 Martins (10.1016/j.enconman.2021.113896_b0020) 2019; 12 Hurtado (10.1016/j.enconman.2021.113896_b0215) 2015; 155 Pérez-Navarro (10.1016/j.enconman.2021.113896_b0045) 2016; 86 10.1016/j.enconman.2021.113896_b0210 10.1016/j.enconman.2021.113896_b0010 10.1016/j.enconman.2021.113896_b0175 10.1016/j.enconman.2021.113896_b0135 10.1016/j.enconman.2021.113896_b0015 Gaete-Morales (10.1016/j.enconman.2021.113896_b0025) 2019; 232 10.1016/j.enconman.2021.113896_b0090 10.1016/j.enconman.2021.113896_b0250 Bukar (10.1016/j.enconman.2021.113896_b0055) 2019; 188 10.1016/j.enconman.2021.113896_b0130 Chettibi (10.1016/j.enconman.2021.113896_b0170) 2018; 9 Griffin (10.1016/j.enconman.2021.113896_b0225) 2013; 38 Ye (10.1016/j.enconman.2021.113896_b0195) 2019; 37 Aydinli (10.1016/j.enconman.2021.113896_b0200) 2017; 35 10.1016/j.enconman.2021.113896_b0100 Vargas-Salgado (10.1016/j.enconman.2021.113896_b0220) 2019; 5 10.1016/j.enconman.2021.113896_b0065 10.1016/j.enconman.2021.113896_b0105 10.1016/j.enconman.2021.113896_b0180 10.1016/j.enconman.2021.113896_b0060 Gitano-Briggs (10.1016/j.enconman.2021.113896_b0075) 2016 Piotrowski (10.1016/j.enconman.2021.113896_b0255) 2020; 58 Acevedo-Arenas (10.1016/j.enconman.2021.113896_b0085) 2019; 186 Hurtado (10.1016/j.enconman.2021.113896_b0050) 2015; 155 Ayodele (10.1016/j.enconman.2021.113896_b0230) 2015; 32 Chettibi (10.1016/j.enconman.2021.113896_b0165) 2018; 147 Yang (10.1016/j.enconman.2021.113896_b0150) 2018; 164 Slabov (10.1016/j.enconman.2021.113896_b0035) 2020; 12 10.1016/j.enconman.2021.113896_b0155 Kan (10.1016/j.enconman.2021.113896_b0095) 2018; 212 Angeline (10.1016/j.enconman.2021.113896_b0190) 2018; 4 Hossain (10.1016/j.enconman.2021.113896_b0185) 2016; 41 Aguila-Leon (10.1016/j.enconman.2021.113896_b0235) 2020 van den Bergh (10.1016/j.enconman.2021.113896_b0240) 2004; 8 10.1016/j.enconman.2021.113896_b0070 Lopez-Garcia (10.1016/j.enconman.2021.113896_b0160) 2020; 95 Alfonso-solar (10.1016/j.enconman.2021.113896_b0205) 2020; 12 |
| References_xml | – reference: Salah A, Hanel L, Beirow M, Scheffknecht G. Modelling SER biomass gasification using dynamic neural networks, vol. 38. Elsevier Masson SAS; 2016. – volume: 260 start-page: 114191 year: 2020 ident: b0030 article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review publication-title: Appl Energy – volume: 9 start-page: 1667 year: 2018 end-page: 1679 ident: b0170 article-title: Adaptive neural network-based control of a hybrid AC/DC Microgrid publication-title: IEEE Trans Smart Grid – reference: Leonori S, Paschero M, Frattale Mascioli FM, Rizzi A. Optimization strategies for microgrid energy management systems by Genetic Algorithms. Appl Soft Comput J 86: 2020; 105903. doi: 10.1016/j.asoc.2019.105903. – reference: Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci Total Environ 670: 2019; 1075–1083. doi: 10.1016/j.scitotenv.2019.03.268. – year: 2016 ident: b0075 article-title: Genset optimization for biomass syngas operation publication-title: Renew Energy Util Syst Integr – start-page: 1 year: 2020 end-page: 6 ident: b0235 article-title: “Optimal PID parameters tunning for a DC-DC boost converter: a performance comparative using grey wolf optimizer publication-title: Particle Swarm Optim Genet Algorithms – volume: 186 start-page: 241 year: 2019 end-page: 257 ident: b0085 article-title: MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response publication-title: Energy Convers Manag – volume: 155 year: 2015 ident: b0050 article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones publication-title: Appl Energy – reference: Sandeep V, Bala Murali Krishna V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. In: 2016 International conference on energy efficient technologies for sustainability, ICEETS 2016; 2016. p. 917–921. doi: 10.1109/ICEETS.2016.7583879. – volume: 147 start-page: 239 year: 2018 end-page: 262 ident: b0165 article-title: Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system publication-title: Energy – volume: 12 start-page: 1 year: 2020 end-page: 11 ident: b0205 article-title: Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings publication-title: Sustain – volume: 188 start-page: 685 year: 2019 end-page: 696 ident: b0055 article-title: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm publication-title: Sol Energy – volume: 157 start-page: 874 year: 2020 end-page: 887 ident: b0110 article-title: Hybrid assessment for a hybrid microgrid: a novel methodology to critically analyse generation technologies for hybrid microgrids publication-title: Renew Energy – reference: Aziz MS, Khan MA, Khan A, Nawaz F, Imran M, Siddique A. Rural electrification through an optimized off-grid microgrid based on biogas. Solar Hydro Power 2020. doi: 10.1109/ICEET48479.2020.9048222. – reference: Bajwa AA, Mokhlis H, Mekhilef S, Mubin M. Enhancing power system resilience leveraging microgrids: a review. J Renew Sustain Energy 11 (3): 2019; 35503. American Institute of Physics Inc. doi: 10.1063/1.5066264. – reference: Danish MSS, Matayoshi H, Howlader HR, Chakraborty S, Mandal P, Senjyu T. Microgrid planning and design: resilience to sustainability. In: 2019 IEEE PES GTD grand international conference and exposition Asia, GTD Asia 2019; 2019. p. 253–258. doi: 10.1109/GTDAsia.2019.8716010. – reference: Mallick D, Mahanta P, Moholkar VS. Co-gasification of coal and biomass blends: chemistry and engineering. Fuel Elsevier Ltd 204: 2017; 106–128. doi: 10.1016/j.fuel.2017.05.006. – reference: Hanif I, Faraz Raza SM, Gago-de-Santos P, Abbas Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: some empirical evidence. Energy 171: 2019; 493–501. doi: 10.1016/j.energy.2019.01.011. – volume: 32 start-page: 246 year: 2015 end-page: 258 ident: b0230 article-title: Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design publication-title: J Ind Eng Chem – year: 2019 ident: b0005 article-title: Syngas: derived from biodiesel and its influence on CI engine publication-title: Energy – volume: 4 start-page: 2149 year: 2018 end-page: 2168 ident: b0190 article-title: Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique publication-title: J Therm Eng – volume: 212 start-page: 210 year: 2018 end-page: 222 ident: b0095 article-title: An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine publication-title: Appl Energy – volume: 37 start-page: 629 year: 2019 end-page: 632 ident: b0195 article-title: Artificial neural network modeling of methanol production from syngas publication-title: Pet Sci Technol – reference: Lopez-Garcia TB, Ruiz-Cruz R, Sanchez EN. Real-time battery bank charge-discharge using neural sliding mode control. In: Proceedings of the international joint conference on neural networks, vol. 2018-July, 2018. doi: 10.1109/IJCNN.2018.8489533. – volume: 164 start-page: 15 year: 2018 end-page: 26 ident: b0150 article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Energy Convers Manag – reference: Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25 (1): 2017; 1–54. MIT Press Journals. doi: 10.1162/EVCO_r_00180. – volume: 132 start-page: 243 year: 2019 end-page: 254 ident: b0140 article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO publication-title: Renew Energy – volume: 66 start-page: 314 year: 2014 end-page: 323 ident: b0125 article-title: Dynamic operation and control of microgrid hybrid power systems publication-title: Energy – volume: 41 start-page: 11119 year: 2016 end-page: 11130 ident: b0185 article-title: Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts publication-title: Int J Hydrogen Energy – volume: 58 year: 2020 ident: b0255 article-title: Population size in particle swarm optimization publication-title: Swarm Evol Comput – reference: Alsulami WA, Sreerama Kumar R. Artificial neural network based load flow solution of Saudi national grid. In: 2017 Saudi Arabia smart grid conference, SASG 2017; 2018. p. 1–7. doi: 10.1109/SASG.2017.8356516. – volume: 35 start-page: 698 year: 2017 end-page: 712 ident: b0200 article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network publication-title: Energy Explor Exploit – volume: 221 year: 2020 ident: b0115 article-title: Experimental investigation of syngas composition variation along updraft fixed bed gasifier publication-title: Energy Convers Manag – volume: 195 start-page: 57 year: 2019 end-page: 69 ident: b0145 article-title: Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach publication-title: Energy Convers Manag – reference: Vargas-Salgado C, Hurtado-Pérez E, Alfonso-Solar D, Malmquist A. Empirical design, construction , and experimental test of a small – scale bubbling fluidized bed reactor. Sustain 13 (3): 2021; 1–23. [Online]. Available: https://www.mdpi.com/2071-1050/13/3/1061 . – volume: 86 start-page: 384 year: 2016 end-page: 391 ident: b0045 article-title: Experimental verification of hybrid renewable systems as feasible energy sources publication-title: Renew Energy – volume: 155 start-page: 308 year: 2015 end-page: 314 ident: b0215 article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones publication-title: Appl Energy – volume: 12 start-page: 1 year: 2020 end-page: 18 ident: b0035 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: Nano-Micro Lett – reference: Cedola L, Tallini A. Development of an Innovative Microgrid: 2MSG−Micro Mobile Smart Grid. – volume: 12 start-page: 964 year: 2019 ident: b0020 article-title: Analysis of fossil fuel energy consumption and environmental impacts in european countries publication-title: Energies – reference: Heydari A, Astiaso Garcia D, Keynia F, Bisegna F, De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl Energy 251: 2019; 113353. doi: 10.1016/j.apenergy.2019.113353. – volume: 5 year: 2019 ident: b0220 article-title: Low-cost web-based supervisory control and data acquisition system for a microgrid testbed: a case study in design and implementation for academic and research applications publication-title: Heliyon – volume: 8 start-page: 225 year: 2004 end-page: 239 ident: b0240 article-title: A cooperative approach to participle swam optimization publication-title: IEEE Trans Evol Comput – volume: 232 start-page: 1499 year: 2019 end-page: 1512 ident: b0025 article-title: Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period publication-title: J Clean Prod – reference: Rodríguez-Monroy C, Mármol-Acitores G, Nilsson-Cifuentes G. Electricity generation in Chile using non-conventional renewable energy sources – a focus on biomass. Renew Sustain Energy Rev 81: 2018; 937–945. Elsevier Ltd. doi: 10.1016/j.rser.2017.08.059. – reference: Zhang LP, Yu HJ, Hu SX. Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 6 A (6): 2005; 528–534. doi: 10.1631/jzus.2005.A0528. – volume: 95 year: 2020 ident: b0160 article-title: Artificial neural networks in microgrids: a review publication-title: Eng Appl Artif Intell – reference: Ren J, Cao JP, Zhao XY, Yang FL, Wei XY. “Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116: 2019; 109426. Elsevier Ltd. doi: 10.1016/j.rser.2019.109426. – volume: 38 start-page: 11920 year: 2013 end-page: 11929 ident: b0225 article-title: Artificial neural network prediction indicators of density functional theory metal hydride models publication-title: Int J Hydrogen Energy – reference: Aguila-Leon J, Chiñas-Palacios C, Garcia EXM, Vargas-Salgado C. A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. Int Trans Electr Energy Syst n/a (n/a): 2020; e12617. doi: 10.1002/2050-7038.12617. – volume: 12 start-page: 964 issue: 6 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0020 article-title: Analysis of fossil fuel energy consumption and environmental impacts in european countries publication-title: Energies doi: 10.3390/en12060964 – volume: 38 start-page: 11920 issue: 27 year: 2013 ident: 10.1016/j.enconman.2021.113896_b0225 article-title: Artificial neural network prediction indicators of density functional theory metal hydride models publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.06.138 – volume: 260 start-page: 114191 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0030 article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114191 – ident: 10.1016/j.enconman.2021.113896_b0130 doi: 10.1109/ICEETS.2016.7583879 – volume: 221 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0115 article-title: Experimental investigation of syngas composition variation along updraft fixed bed gasifier publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113116 – ident: 10.1016/j.enconman.2021.113896_b0040 doi: 10.1109/GTDAsia.2019.8716010 – ident: 10.1016/j.enconman.2021.113896_b0135 doi: 10.1109/SASG.2017.8356516 – volume: 212 start-page: 210 year: 2018 ident: 10.1016/j.enconman.2021.113896_b0095 article-title: An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.12.037 – volume: 58 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0255 article-title: Population size in particle swarm optimization publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100718 – volume: 188 start-page: 685 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0055 article-title: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm publication-title: Sol Energy doi: 10.1016/j.solener.2019.06.050 – ident: 10.1016/j.enconman.2021.113896_b0080 doi: 10.1016/j.rser.2017.08.059 – year: 2016 ident: 10.1016/j.enconman.2021.113896_b0075 article-title: Genset optimization for biomass syngas operation publication-title: Renew Energy Util Syst Integr – ident: 10.1016/j.enconman.2021.113896_b0155 doi: 10.1016/j.apenergy.2019.113353 – ident: 10.1016/j.enconman.2021.113896_b0105 – volume: 95 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0160 article-title: Artificial neural networks in microgrids: a review publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103894 – start-page: 1 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0235 article-title: “Optimal PID parameters tunning for a DC-DC boost converter: a performance comparative using grey wolf optimizer publication-title: Particle Swarm Optim Genet Algorithms – ident: 10.1016/j.enconman.2021.113896_b0010 doi: 10.1016/j.fuel.2017.05.006 – ident: 10.1016/j.enconman.2021.113896_b0100 doi: 10.1063/1.5066264 – volume: 41 start-page: 11119 issue: 26 year: 2016 ident: 10.1016/j.enconman.2021.113896_b0185 article-title: Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.04.034 – ident: 10.1016/j.enconman.2021.113896_b0180 doi: 10.1016/B978-0-444-63428-3.50008-4 – ident: 10.1016/j.enconman.2021.113896_b0120 doi: 10.1016/j.rser.2019.109426 – ident: 10.1016/j.enconman.2021.113896_b0015 doi: 10.1016/j.energy.2019.01.011 – ident: 10.1016/j.enconman.2021.113896_b0065 doi: 10.1002/2050-7038.12617 – volume: 186 start-page: 241 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0085 article-title: MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.02.044 – ident: 10.1016/j.enconman.2021.113896_b0245 doi: 10.1631/jzus.2005.A0528 – year: 2019 ident: 10.1016/j.enconman.2021.113896_b0005 article-title: Syngas: derived from biodiesel and its influence on CI engine publication-title: Energy doi: 10.1016/j.energy.2019.116189 – volume: 157 start-page: 874 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0110 article-title: Hybrid assessment for a hybrid microgrid: a novel methodology to critically analyse generation technologies for hybrid microgrids publication-title: Renew Energy doi: 10.1016/j.renene.2020.05.095 – volume: 12 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0035 article-title: Natural and eco-friendly materials for triboelectric energy harvesting publication-title: Nano-Micro Lett doi: 10.1007/s40820-020-0373-y – volume: 147 start-page: 239 year: 2018 ident: 10.1016/j.enconman.2021.113896_b0165 article-title: Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system publication-title: Energy doi: 10.1016/j.energy.2018.01.030 – volume: 164 start-page: 15 issue: February year: 2018 ident: 10.1016/j.enconman.2021.113896_b0150 article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.02.062 – volume: 232 start-page: 1499 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0025 article-title: Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.05.374 – volume: 132 start-page: 243 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0140 article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO publication-title: Renew Energy doi: 10.1016/j.renene.2018.07.142 – volume: 35 start-page: 698 issue: 6 year: 2017 ident: 10.1016/j.enconman.2021.113896_b0200 article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network publication-title: Energy Explor Exploit doi: 10.1177/0144598717716282 – volume: 12 start-page: 1 issue: 21 year: 2020 ident: 10.1016/j.enconman.2021.113896_b0205 article-title: Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings publication-title: Sustain – ident: 10.1016/j.enconman.2021.113896_b0210 doi: 10.3390/su13031061 – volume: 37 start-page: 629 issue: 6 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0195 article-title: Artificial neural network modeling of methanol production from syngas publication-title: Pet Sci Technol doi: 10.1080/10916466.2018.1560321 – volume: 9 start-page: 1667 issue: 3 year: 2018 ident: 10.1016/j.enconman.2021.113896_b0170 article-title: Adaptive neural network-based control of a hybrid AC/DC Microgrid publication-title: IEEE Trans Smart Grid – ident: 10.1016/j.enconman.2021.113896_b0060 doi: 10.1016/j.asoc.2019.105903 – volume: 4 start-page: 2149 issue: 4 year: 2018 ident: 10.1016/j.enconman.2021.113896_b0190 article-title: Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique publication-title: J Therm Eng doi: 10.18186/journal-of-thermal-engineering.433806 – volume: 86 start-page: 384 year: 2016 ident: 10.1016/j.enconman.2021.113896_b0045 article-title: Experimental verification of hybrid renewable systems as feasible energy sources publication-title: Renew Energy doi: 10.1016/j.renene.2015.08.030 – ident: 10.1016/j.enconman.2021.113896_b0090 doi: 10.1109/ICEET48479.2020.9048222 – ident: 10.1016/j.enconman.2021.113896_b0250 doi: 10.1162/EVCO_r_00180 – volume: 8 start-page: 225 issue: 3 year: 2004 ident: 10.1016/j.enconman.2021.113896_b0240 article-title: A cooperative approach to participle swam optimization publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2004.826069 – ident: 10.1016/j.enconman.2021.113896_b0070 doi: 10.1016/j.scitotenv.2019.03.268 – volume: 32 start-page: 246 year: 2015 ident: 10.1016/j.enconman.2021.113896_b0230 article-title: Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2015.08.021 – volume: 66 start-page: 314 year: 2014 ident: 10.1016/j.enconman.2021.113896_b0125 article-title: Dynamic operation and control of microgrid hybrid power systems publication-title: Energy doi: 10.1016/j.energy.2014.01.042 – volume: 155 start-page: 308 year: 2015 ident: 10.1016/j.enconman.2021.113896_b0215 article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.097 – volume: 195 start-page: 57 issue: April year: 2019 ident: 10.1016/j.enconman.2021.113896_b0145 article-title: Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.05.015 – ident: 10.1016/j.enconman.2021.113896_b0175 doi: 10.1109/IJCNN.2018.8489533 – volume: 155 year: 2015 ident: 10.1016/j.enconman.2021.113896_b0050 article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.05.097 – volume: 5 issue: 9 year: 2019 ident: 10.1016/j.enconman.2021.113896_b0220 article-title: Low-cost web-based supervisory control and data acquisition system for a microgrid testbed: a case study in design and implementation for academic and research applications publication-title: Heliyon doi: 10.1016/j.heliyon.2019.e02474 |
| SSID | ssj0003506 |
| Score | 2.5535595 |
| Snippet | •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation... Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 113896 |
| SubjectTerms | AC microgrid administrative management Agricultural wastes Algorithms Artificial Neural Network model Artificial neural networks Back propagation Back propagation networks biogasification Biomass computer software Crop residues Demand Distributed generation electricity generation Energy Energy demand Energy resources Energy sources Forestry forests Gasification model validation Neural networks Particle swarm optimization Plant propagation power generation Propagation Regression analysis Residues Rural areas Rural communities Spain Syngas genset Synthesis gas |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98EYNFDRIXJ34sV6vj1FEVVWiVCqRwmm1Xq9LSrqJSCJUfgE_mxk_ohQhFcTR9o7t9Y5nv9F-8y3Auzi2lP0bGzibUIKSxjbIK5MEJhVRaUzk4jpR_HAmTybidJpO92Dc1cIwrbKN_U1Mr6N1e2bYfs3hcjYbXrCyi8rJ6aJ6vWl6D_ZlSoC8B_uTs_PR56ZQWgbchtMuleUBV37u1AlfDVgt0l8bVkKNI97gRLF8_5-nqB0Ien_jl-bmu5nPd2aj40dQdv1oSChfB5t1MbA_fpN4_M-OPoaHLVrFUdPuCew5_xQOdjQMn8HPEVqzYpY9frnh8i88v_iIFU2KAeFh5uQia2bSXXzDOMd68x1cVGiQi_8JveOlWTFlqfYSXM5ptJGM0TK_lJ6ChFLR1VWKWDr6jiXOPBqPozFeM6Pwkp77HCbH7z-NT4J2e4fAUlfWNC65c6EsrVSljYtIkG-w1pArsoJwTRU5qZxM6FomyzAtqGUSWuUqQtrCuCx5AT2_8O4QUIZlRolZboVUIrEsep8QslEER4QQNu9D2o2otq32OW_BMdcdye1Kd56g2RN04wl9GG7tlo36x50Weecw-tbwapqi7rQ96jxMt5FkpVlijkXrlOjD2-1ligG8sGO8W2y4TSwoVhO260O49cy_fOOX_27yCh7wEVPxovQIeutvG_easNm6eNP-e78A-mY4PQ priority: 102 providerName: Unpaywall |
| Title | A cascade hybrid PSO feed-forward neural network model of a biomass gasification plant for covering the energy demand in an AC microgrid |
| URI | https://dx.doi.org/10.1016/j.enconman.2021.113896 https://www.proquest.com/docview/2504819284 https://www.proquest.com/docview/2524307190 https://www.sciencedirect.com/science/article/pii/S019689042100073X |
| UnpaywallVersion | publishedVersion |
| Volume | 232 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4heqAcqhZaEaBokHo18WP9OlpRUWhFQKKR0tNqvV5DUNhEJFHFhXN_dmf8CEGqBBIny_aud72zj2-133wD8M33Ne3-lXaMDmiDEvraSUsVOCoUXqGUZ_xqo3g-iPpD8WMUjjag1_rCMK2ymfvrOb2arZsn3aY1u7PxuHvFyi5JSp3Oq86bRuzBLmKOYnDy-ETzCMIqviYndjj1mpfw7QlrRdo7xTqovsfhTRIW7___ArUGQLeWdqYe_qjJZG0tOv0IHxoQiVldz0-wYewObK9JC-7C3wy1mjP5HW8e2CsLL68usKS1yiGYylRZZClL-oqtieBYxcTBaYkK2SefQDVeqzkziSrj4WxCRkDKjJppn1QKEnhEUzkPYmHoBwscW1QWsx7eMdHvmsr9DMPT7796faeJuuBoasoFNVJqjBsVOkoK7eeeIJOxBJDJ45zgRumZKDFRQO_iqHDDnFIGrk5MSQBYKBMHX2DTTq3ZA4zcIqb9UqpFlIhAsxZ9QIAjIZQghNBpB8K2qaVuJMk5MsZEttyzW9maSLKJZG2iDnRX-Wa1KMeLOdLWkvJZ95K0cryY97A1vWwG-Fyy8htrySWiA8er1zQ0-bxFWTNdchpf0BRKkKsD7qrLvLLG-2-o8QG85zumynnhIWwu7pfmK2GnRX5UDY4jeJed_ewP6DocXGa__wFkiRrx |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5ROFAOqC1UDVA6lbgu2Yf3dYwiUHhXAqTcLK_XS4OCE5FEiAtnfjYz-wiphEQlrmt77fX48Y32m28A9nxfk_evtGN0QA5K6GsnLVTgqFB4uVKe8UtH8ew86l2L437YX4JuEwvDtMr67K_O9PK0rp-069lsjweD9iUruyQpLTqv_N_U_wQr1FfMHtj-0yvPIwjLBJtc2-HqC2HCt_ssFmnvFAuh-h7nN0lYvf_tG2oBga7O7Fg9PqjhcOEyOvwC6zWKxE410K-wZOw3WFvQFtyA5w5qNWH2O_595LAs_HN5gQVdVg7hVObKImtZ0ltsxQTHMikOjgpUyEH5hKrxRk2YSlRaD8dDsgJSY9TM-6RekNAjmjJ6EHNDH5jjwKKy2OniHTP9bqjfTbg-PLjq9pw67YKjaS6nNEmpMW6U6yjJtZ95gmzGGkAmizPCG4VnosREAZXFUe6GGdUMXJ2YghCwUCYOvsOyHVnzAzBy85gcplSLKBGBZjH6gBBHQjBBCKHTFoTNVEtda5JzaoyhbMhnt7IxkWQTycpELWjP240rVY53W6SNJeU_60vS1fFu253G9LLe4RPJ0m8sJpeIFvyeF9Pe5B8uyprRjOv4gs5QwlwtcOdL5j9HvPWBEf-C1d7V2ak8PTo_2YbPXMK8OS_cgeXp_cz8JCA1zXbLjfIC6Rca1g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98EYNFDRIXJ34sV6vj1FEVVWiVCqRwmm1Xq9LSrqJSCJUfgE_mxk_ohQhFcTR9o7t9Y5nv9F-8y3Auzi2lP0bGzibUIKSxjbIK5MEJhVRaUzk4jpR_HAmTybidJpO92Dc1cIwrbKN_U1Mr6N1e2bYfs3hcjYbXrCyi8rJ6aJ6vWl6D_ZlSoC8B_uTs_PR56ZQWgbchtMuleUBV37u1AlfDVgt0l8bVkKNI97gRLF8_5-nqB0Ien_jl-bmu5nPd2aj40dQdv1oSChfB5t1MbA_fpN4_M-OPoaHLVrFUdPuCew5_xQOdjQMn8HPEVqzYpY9frnh8i88v_iIFU2KAeFh5uQia2bSXXzDOMd68x1cVGiQi_8JveOlWTFlqfYSXM5ptJGM0TK_lJ6ChFLR1VWKWDr6jiXOPBqPozFeM6Pwkp77HCbH7z-NT4J2e4fAUlfWNC65c6EsrVSljYtIkG-w1pArsoJwTRU5qZxM6FomyzAtqGUSWuUqQtrCuCx5AT2_8O4QUIZlRolZboVUIrEsep8QslEER4QQNu9D2o2otq32OW_BMdcdye1Kd56g2RN04wl9GG7tlo36x50Weecw-tbwapqi7rQ96jxMt5FkpVlijkXrlOjD2-1ligG8sGO8W2y4TSwoVhO260O49cy_fOOX_27yCh7wEVPxovQIeutvG_easNm6eNP-e78A-mY4PQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascade+hybrid+PSO+feed-forward+neural+network+model+of+a+biomass+gasification+plant+for+covering+the+energy+demand+in+an+AC+microgrid&rft.jtitle=Energy+conversion+and+management&rft.au=Chi%C3%B1as-Palacios%2C+Cristian&rft.au=Vargas-Salgado%2C+Carlos&rft.au=Aguila-Leon%2C+Jesus&rft.au=Hurtado-P%C3%A9rez%2C+Elias&rft.date=2021-03-15&rft.issn=0196-8904&rft.volume=232+p.113896-&rft_id=info:doi/10.1016%2Fj.enconman.2021.113896&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |