A cascade hybrid PSO feed-forward neural network model of a biomass gasification plant for covering the energy demand in an AC microgrid

•The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance. Agriculture and forestry crop residues represent more than hal...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 232; p. 113896
Main Authors Chiñas-Palacios, Cristian, Vargas-Salgado, Carlos, Aguila-Leon, Jesus, Hurtado-Pérez, Elias
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.03.2021
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
1879-2227
DOI10.1016/j.enconman.2021.113896

Cover

Abstract •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance. Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand.
AbstractList •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation systems.•The FF-PSO model proposed for the ANN-based model has the best performance. Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand.
Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used for power generation. Including Syngas Gensets into hybrid renewable microgrids for electricity generation is an interesting alternative, especially for rural communities where forest and agricultural waste are abundant. However, energy demand is not constant throughout the day. The variations in the energy demand provoke changes in both gasification plant efficiency and biomass consumption. This paper presents an Artificial Neural Network (ANN) based model hybridized with a Particle Swarm Optimization (PSO) algorithm for a Biomass Gasification Plant (BGP) that allows estimating the amount of biomass needed to produce the required syngas to meet the energy demand. The proposed model is compared with two traditional models of ANNs: Feed Forward Back Propagation (FF-BP) and Cascade Forward Propagation (CF-P). ANNs are trained in MATLAB software using a set of historical real data from a BGP located in the Distributed Energy Resources Laboratory of the Universitat Politècnica de València in Spain. The model performance is validated using the Mean Squared Error (MSE) and linear regression analysis. The results show that the proposed model performs 23.2% better in terms of MSE than de other models. The tunning parameters of the optimal PSO algorithm for this application were found. Finally, the model was validated to predict the necessary biomass and syngas to cover the energy demand.
ArticleNumber 113896
Author Chiñas-Palacios, Cristian
Hurtado-Pérez, Elias
Aguila-Leon, Jesus
Vargas-Salgado, Carlos
Author_xml – sequence: 1
  givenname: Cristian
  surname: Chiñas-Palacios
  fullname: Chiñas-Palacios, Cristian
  organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain
– sequence: 2
  givenname: Carlos
  surname: Vargas-Salgado
  fullname: Vargas-Salgado, Carlos
  organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain
– sequence: 3
  givenname: Jesus
  surname: Aguila-Leon
  fullname: Aguila-Leon, Jesus
  organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain
– sequence: 4
  givenname: Elias
  surname: Hurtado-Pérez
  fullname: Hurtado-Pérez, Elias
  organization: Instituto Universitario de Ingeniería Energética, Universitat Politècnica de València, València, Spain
BookMark eNqNkE1v1DAQhi1UJLaFv4BG4sIli-1knUTiwGrFl1SpSMDZmtiTrZfEXuykq_0H_GxcApdeymkOft7xvM8lu_DBE2MvBV8LLtSbw5q8CX5Ev5ZcirUQZdOqJ2wlmrotpJT1BVtx0aqiaXn1jF2mdOCclxuuVuzXFgwmg5bg9txFZ-HL1xvoiWzRh3jCaMHTHHHIYzqF-APGYGmA0ANC58KIKcEek-udwckFD8cB_QQ5DCbcUXR-D9MtAXmK-zNYyndacB7Qw3YHozMx7PO_z9nTHodEL_7OK_b9w_tvu0_F9c3Hz7vtdWEqKaZcoSXiyhrVWCM7UVnEWnBOXd3VVdkLUg2pMr_VyvJNl8mSm4b6RnQVUl1esXrZO_sjnk84DPoY3YjxrAXX90L1Qf8Tqu-F6kVoTr5ekscYfs6UJj26ZGjIfSnMScuNrEpei5Zn9NUD9BDm6HOvTPGqEa1sqky9XaisIKVIvTZu-iNxiuiGx-9RD-L_XeTdEqTs-c5R1Mm4TJJ1kcykbXCPrfgNIp7Gkw
CitedBy_id crossref_primary_10_1016_j_est_2022_104774
crossref_primary_10_3390_electronics12091981
crossref_primary_10_3390_electronics13193880
crossref_primary_10_3390_en16031483
crossref_primary_10_1016_j_fuel_2021_122966
crossref_primary_10_1007_s11440_021_01358_8
crossref_primary_10_1016_j_est_2022_104591
crossref_primary_10_1109_OJPEL_2025_3526929
crossref_primary_10_3390_fluids7070248
crossref_primary_10_3233_JIFS_210603
crossref_primary_10_1016_j_biombioe_2023_106869
crossref_primary_10_1115_1_4066059
crossref_primary_10_1016_j_eswa_2022_118700
crossref_primary_10_1080_15567036_2022_2075059
crossref_primary_10_61435_ijred_2024_60119
crossref_primary_10_1007_s41742_022_00460_3
crossref_primary_10_1016_j_enconman_2022_115920
crossref_primary_10_1016_j_energy_2022_124027
crossref_primary_10_3390_en14164845
crossref_primary_10_1016_j_eswa_2022_119336
crossref_primary_10_1016_j_simpa_2024_100675
crossref_primary_10_1016_j_joei_2022_08_012
crossref_primary_10_1016_j_ijhydene_2022_04_077
crossref_primary_10_1109_ACCESS_2023_3236836
crossref_primary_10_1016_j_apenergy_2023_122448
crossref_primary_10_1515_ijcre_2024_0001
crossref_primary_10_3390_su14063136
crossref_primary_10_3390_pr11082313
crossref_primary_10_1021_acsomega_4c04649
crossref_primary_10_1016_j_jechem_2024_07_045
crossref_primary_10_1016_j_egyai_2025_100488
crossref_primary_10_1016_j_biortech_2022_128076
crossref_primary_10_1016_j_seta_2024_104154
crossref_primary_10_1016_j_egyr_2022_10_284
crossref_primary_10_1016_j_fuel_2023_128563
crossref_primary_10_3390_en16196896
crossref_primary_10_1016_j_est_2024_111536
crossref_primary_10_1080_15567036_2023_2176569
crossref_primary_10_1038_s41598_024_80424_z
crossref_primary_10_1016_j_epsr_2025_111462
crossref_primary_10_3389_fenrg_2024_1488718
crossref_primary_10_3390_biomimetics7020083
crossref_primary_10_1007_s13399_022_02342_2
crossref_primary_10_1016_j_measurement_2021_110566
crossref_primary_10_1016_j_rser_2021_111902
crossref_primary_10_1016_j_enbuild_2024_114191
crossref_primary_10_1016_j_energy_2021_122633
Cites_doi 10.3390/en12060964
10.1016/j.ijhydene.2013.06.138
10.1016/j.apenergy.2019.114191
10.1109/ICEETS.2016.7583879
10.1016/j.enconman.2020.113116
10.1109/GTDAsia.2019.8716010
10.1109/SASG.2017.8356516
10.1016/j.apenergy.2017.12.037
10.1016/j.swevo.2020.100718
10.1016/j.solener.2019.06.050
10.1016/j.rser.2017.08.059
10.1016/j.apenergy.2019.113353
10.1016/j.engappai.2020.103894
10.1016/j.fuel.2017.05.006
10.1063/1.5066264
10.1016/j.ijhydene.2016.04.034
10.1016/B978-0-444-63428-3.50008-4
10.1016/j.rser.2019.109426
10.1016/j.energy.2019.01.011
10.1002/2050-7038.12617
10.1016/j.enconman.2019.02.044
10.1631/jzus.2005.A0528
10.1016/j.energy.2019.116189
10.1016/j.renene.2020.05.095
10.1007/s40820-020-0373-y
10.1016/j.energy.2018.01.030
10.1016/j.enconman.2018.02.062
10.1016/j.jclepro.2019.05.374
10.1016/j.renene.2018.07.142
10.1177/0144598717716282
10.3390/su13031061
10.1080/10916466.2018.1560321
10.1016/j.asoc.2019.105903
10.18186/journal-of-thermal-engineering.433806
10.1016/j.renene.2015.08.030
10.1109/ICEET48479.2020.9048222
10.1162/EVCO_r_00180
10.1109/TEVC.2004.826069
10.1016/j.scitotenv.2019.03.268
10.1016/j.jiec.2015.08.021
10.1016/j.energy.2014.01.042
10.1016/j.apenergy.2015.05.097
10.1016/j.enconman.2019.05.015
10.1109/IJCNN.2018.8489533
10.1016/j.heliyon.2019.e02474
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Mar 15, 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Mar 15, 2021
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.enconman.2021.113896
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Forestry
EISSN 1879-2227
ExternalDocumentID 10.1016/j.enconman.2021.113896
10_1016_j_enconman_2021_113896
S019689042100073X
GeographicLocations Spain
GeographicLocations_xml – name: Spain
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
~HD
7ST
7TB
8FD
AGCQF
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c421t-899ee06dc68dc2b14daa7100eb7b743f1e68e63dc276d05b6dc30c8ef81b4ae73
IEDL.DBID .~1
ISSN 0196-8904
1879-2227
IngestDate Sun Oct 26 04:11:25 EDT 2025
Thu Oct 02 05:32:05 EDT 2025
Wed Aug 13 05:09:23 EDT 2025
Thu Oct 09 00:17:34 EDT 2025
Thu Apr 24 22:50:52 EDT 2025
Fri Feb 23 02:45:38 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Artificial Neural Network model
AC microgrid
Particle swarm optimization
Syngas genset
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-899ee06dc68dc2b14daa7100eb7b743f1e68e63dc276d05b6dc30c8ef81b4ae73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/pii/S019689042100073X
PQID 2504819284
PQPubID 2047472
ParticipantIDs unpaywall_primary_10_1016_j_enconman_2021_113896
proquest_miscellaneous_2524307190
proquest_journals_2504819284
crossref_citationtrail_10_1016_j_enconman_2021_113896
crossref_primary_10_1016_j_enconman_2021_113896
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_113896
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Lopez-Garcia TB, Ruiz-Cruz R, Sanchez EN. Real-time battery bank charge-discharge using neural sliding mode control. In: Proceedings of the international joint conference on neural networks, vol. 2018-July, 2018. doi: 10.1109/IJCNN.2018.8489533.
Ye (b0195) 2019; 37
Danish MSS, Matayoshi H, Howlader HR, Chakraborty S, Mandal P, Senjyu T. Microgrid planning and design: resilience to sustainability. In: 2019 IEEE PES GTD grand international conference and exposition Asia, GTD Asia 2019; 2019. p. 253–258. doi: 10.1109/GTDAsia.2019.8716010.
Hurtado, Peñalvo-López, Pérez-Navarro, Vargas, Alfonso (b0215) 2015; 155
Sandeep V, Bala Murali Krishna V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. In: 2016 International conference on energy efficient technologies for sustainability, ICEETS 2016; 2016. p. 917–921. doi: 10.1109/ICEETS.2016.7583879.
Lopez-Garcia, Coronado-Mendoza, Domínguez-Navarro (b0160) 2020; 95
Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25 (1): 2017; 1–54. MIT Press Journals. doi: 10.1162/EVCO_r_00180.
Pérez-Navarro (b0045) 2016; 86
Alfonso-solar, Vargas-Salgado, Sánchez-díaz, Hurtado-pérez (b0205) 2020; 12
Hurtado, Peñalvo-López, Pérez-Navarro, Vargas, Alfonso (b0050) 2015; 155
Yang, Cho, Zhang, Zhang, Wu (b0150) 2018; 164
Hossain, Ayodele, Cheng, Khan (b0185) 2016; 41
Ayodele, Cheng (b0230) 2015; 32
Chettibi, Mellit (b0165) 2018; 147
Mallick D, Mahanta P, Moholkar VS. Co-gasification of coal and biomass blends: chemistry and engineering. Fuel Elsevier Ltd 204: 2017; 106–128. doi: 10.1016/j.fuel.2017.05.006.
Cerone, Zimbardi, Contuzzi, Baleta, Cerinski, Skvorčinskienė (b0115) 2020; 221
Shahbaz (b0140) 2019; 132
Bukar, Tan, Lau (b0055) 2019; 188
Aguila-Leon J, Chiñas-Palacios C, Garcia EXM, Vargas-Salgado C. A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. Int Trans Electr Energy Syst n/a (n/a): 2020; e12617. doi: 10.1002/2050-7038.12617.
Slabov, Kopyl, Soares dos Santos, Kholkin (b0035) 2020; 12
Alsulami WA, Sreerama Kumar R. Artificial neural network based load flow solution of Saudi national grid. In: 2017 Saudi Arabia smart grid conference, SASG 2017; 2018. p. 1–7. doi: 10.1109/SASG.2017.8356516.
Chettibi, Mellit, Sulligoi, Massi Pavan (b0170) 2018; 9
Heydari A, Astiaso Garcia D, Keynia F, Bisegna F, De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl Energy 251: 2019; 113353. doi: 10.1016/j.apenergy.2019.113353.
Aziz MS, Khan MA, Khan A, Nawaz F, Imran M, Siddique A. Rural electrification through an optimized off-grid microgrid based on biogas. Solar Hydro Power 2020. doi: 10.1109/ICEET48479.2020.9048222.
van den Bergh, Engelbrecht (b0240) 2004; 8
Aydinli, Caglar, Pekol, Karaci (b0200) 2017; 35
Piotrowski, Napiorkowski, Piotrowska (b0255) 2020; 58
Taghavi, Gharehghani, Nejad, Mirsalim (b0145) 2019; 195
Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci Total Environ 670: 2019; 1075–1083. doi: 10.1016/j.scitotenv.2019.03.268.
Leonori S, Paschero M, Frattale Mascioli FM, Rizzi A. Optimization strategies for microgrid energy management systems by Genetic Algorithms. Appl Soft Comput J 86: 2020; 105903. doi: 10.1016/j.asoc.2019.105903.
Ramalingam, Ezhumalai, Govindasamy (b0005) 2019
Griffin, Darsey (b0225) 2013; 38
Ren J, Cao JP, Zhao XY, Yang FL, Wei XY. “Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116: 2019; 109426. Elsevier Ltd. doi: 10.1016/j.rser.2019.109426.
Gitano-Briggs, Kean (b0075) 2016
Ribó-Pérez, Bastida-Molina, Gómez-Navarro, Hurtado-Pérez (b0110) 2020; 157
Vargas-Salgado C, Hurtado-Pérez E, Alfonso-Solar D, Malmquist A. Empirical design, construction , and experimental test of a small – scale bubbling fluidized bed reactor. Sustain 13 (3): 2021; 1–23. [Online]. Available: https://www.mdpi.com/2071-1050/13/3/1061 .
Vargas-Salgado, Aguila-Leon, Chiñas-Palacios, Hurtado-Perez (b0220) 2019; 5
Zhang LP, Yu HJ, Hu SX. Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 6 A (6): 2005; 528–534. doi: 10.1631/jzus.2005.A0528.
Bajwa AA, Mokhlis H, Mekhilef S, Mubin M. Enhancing power system resilience leveraging microgrids: a review. J Renew Sustain Energy 11 (3): 2019; 35503. American Institute of Physics Inc. doi: 10.1063/1.5066264.
Acevedo-Arenas (b0085) 2019; 186
Martins, Felgueiras, Smitkova, Caetano (b0020) 2019; 12
Carneiro (b0030) 2020; 260
Kan, Zhou, Yang, Zhai, Wang (b0095) 2018; 212
Cedola L, Tallini A. Development of an Innovative Microgrid: 2MSG−Micro Mobile Smart Grid.
Angeline, Jayakumar, Asirvatham, Wongwises (b0190) 2018; 4
Aguila-Leon, Chinas-Palacios, Vargas-Salgado, Hurtado-Perez, Garcia (b0235) 2020
Hanif I, Faraz Raza SM, Gago-de-Santos P, Abbas Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: some empirical evidence. Energy 171: 2019; 493–501. doi: 10.1016/j.energy.2019.01.011.
Salah A, Hanel L, Beirow M, Scheffknecht G. Modelling SER biomass gasification using dynamic neural networks, vol. 38. Elsevier Masson SAS; 2016.
Ou, Hong (b0125) 2014; 66
Rodríguez-Monroy C, Mármol-Acitores G, Nilsson-Cifuentes G. Electricity generation in Chile using non-conventional renewable energy sources – a focus on biomass. Renew Sustain Energy Rev 81: 2018; 937–945. Elsevier Ltd. doi: 10.1016/j.rser.2017.08.059.
Gaete-Morales, Gallego-Schmid, Stamford, Azapagic (b0025) 2019; 232
Cerone (10.1016/j.enconman.2021.113896_b0115) 2020; 221
10.1016/j.enconman.2021.113896_b0120
Shahbaz (10.1016/j.enconman.2021.113896_b0140) 2019; 132
Ribó-Pérez (10.1016/j.enconman.2021.113896_b0110) 2020; 157
10.1016/j.enconman.2021.113896_b0245
Taghavi (10.1016/j.enconman.2021.113896_b0145) 2019; 195
Ramalingam (10.1016/j.enconman.2021.113896_b0005) 2019
10.1016/j.enconman.2021.113896_b0080
Carneiro (10.1016/j.enconman.2021.113896_b0030) 2020; 260
10.1016/j.enconman.2021.113896_b0040
Ou (10.1016/j.enconman.2021.113896_b0125) 2014; 66
Martins (10.1016/j.enconman.2021.113896_b0020) 2019; 12
Hurtado (10.1016/j.enconman.2021.113896_b0215) 2015; 155
Pérez-Navarro (10.1016/j.enconman.2021.113896_b0045) 2016; 86
10.1016/j.enconman.2021.113896_b0210
10.1016/j.enconman.2021.113896_b0010
10.1016/j.enconman.2021.113896_b0175
10.1016/j.enconman.2021.113896_b0135
10.1016/j.enconman.2021.113896_b0015
Gaete-Morales (10.1016/j.enconman.2021.113896_b0025) 2019; 232
10.1016/j.enconman.2021.113896_b0090
10.1016/j.enconman.2021.113896_b0250
Bukar (10.1016/j.enconman.2021.113896_b0055) 2019; 188
10.1016/j.enconman.2021.113896_b0130
Chettibi (10.1016/j.enconman.2021.113896_b0170) 2018; 9
Griffin (10.1016/j.enconman.2021.113896_b0225) 2013; 38
Ye (10.1016/j.enconman.2021.113896_b0195) 2019; 37
Aydinli (10.1016/j.enconman.2021.113896_b0200) 2017; 35
10.1016/j.enconman.2021.113896_b0100
Vargas-Salgado (10.1016/j.enconman.2021.113896_b0220) 2019; 5
10.1016/j.enconman.2021.113896_b0065
10.1016/j.enconman.2021.113896_b0105
10.1016/j.enconman.2021.113896_b0180
10.1016/j.enconman.2021.113896_b0060
Gitano-Briggs (10.1016/j.enconman.2021.113896_b0075) 2016
Piotrowski (10.1016/j.enconman.2021.113896_b0255) 2020; 58
Acevedo-Arenas (10.1016/j.enconman.2021.113896_b0085) 2019; 186
Hurtado (10.1016/j.enconman.2021.113896_b0050) 2015; 155
Ayodele (10.1016/j.enconman.2021.113896_b0230) 2015; 32
Chettibi (10.1016/j.enconman.2021.113896_b0165) 2018; 147
Yang (10.1016/j.enconman.2021.113896_b0150) 2018; 164
Slabov (10.1016/j.enconman.2021.113896_b0035) 2020; 12
10.1016/j.enconman.2021.113896_b0155
Kan (10.1016/j.enconman.2021.113896_b0095) 2018; 212
Angeline (10.1016/j.enconman.2021.113896_b0190) 2018; 4
Hossain (10.1016/j.enconman.2021.113896_b0185) 2016; 41
Aguila-Leon (10.1016/j.enconman.2021.113896_b0235) 2020
van den Bergh (10.1016/j.enconman.2021.113896_b0240) 2004; 8
10.1016/j.enconman.2021.113896_b0070
Lopez-Garcia (10.1016/j.enconman.2021.113896_b0160) 2020; 95
Alfonso-solar (10.1016/j.enconman.2021.113896_b0205) 2020; 12
References_xml – reference: Salah A, Hanel L, Beirow M, Scheffknecht G. Modelling SER biomass gasification using dynamic neural networks, vol. 38. Elsevier Masson SAS; 2016.
– volume: 260
  start-page: 114191
  year: 2020
  ident: b0030
  article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review
  publication-title: Appl Energy
– volume: 9
  start-page: 1667
  year: 2018
  end-page: 1679
  ident: b0170
  article-title: Adaptive neural network-based control of a hybrid AC/DC Microgrid
  publication-title: IEEE Trans Smart Grid
– reference: Leonori S, Paschero M, Frattale Mascioli FM, Rizzi A. Optimization strategies for microgrid energy management systems by Genetic Algorithms. Appl Soft Comput J 86: 2020; 105903. doi: 10.1016/j.asoc.2019.105903.
– reference: Danish, Wang Z. Does biomass energy consumption help to control environmental pollution? Evidence from BRICS countries. Sci Total Environ 670: 2019; 1075–1083. doi: 10.1016/j.scitotenv.2019.03.268.
– year: 2016
  ident: b0075
  article-title: Genset optimization for biomass syngas operation
  publication-title: Renew Energy Util Syst Integr
– start-page: 1
  year: 2020
  end-page: 6
  ident: b0235
  article-title: “Optimal PID parameters tunning for a DC-DC boost converter: a performance comparative using grey wolf optimizer
  publication-title: Particle Swarm Optim Genet Algorithms
– volume: 186
  start-page: 241
  year: 2019
  end-page: 257
  ident: b0085
  article-title: MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response
  publication-title: Energy Convers Manag
– volume: 155
  year: 2015
  ident: b0050
  article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones
  publication-title: Appl Energy
– reference: Sandeep V, Bala Murali Krishna V, Namala KK, Rao DN. Grid connected wind power system driven by PMSG with MPPT technique using neural network compensator. In: 2016 International conference on energy efficient technologies for sustainability, ICEETS 2016; 2016. p. 917–921. doi: 10.1109/ICEETS.2016.7583879.
– volume: 147
  start-page: 239
  year: 2018
  end-page: 262
  ident: b0165
  article-title: Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system
  publication-title: Energy
– volume: 12
  start-page: 1
  year: 2020
  end-page: 11
  ident: b0205
  article-title: Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings
  publication-title: Sustain
– volume: 188
  start-page: 685
  year: 2019
  end-page: 696
  ident: b0055
  article-title: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm
  publication-title: Sol Energy
– volume: 157
  start-page: 874
  year: 2020
  end-page: 887
  ident: b0110
  article-title: Hybrid assessment for a hybrid microgrid: a novel methodology to critically analyse generation technologies for hybrid microgrids
  publication-title: Renew Energy
– reference: Aziz MS, Khan MA, Khan A, Nawaz F, Imran M, Siddique A. Rural electrification through an optimized off-grid microgrid based on biogas. Solar Hydro Power 2020. doi: 10.1109/ICEET48479.2020.9048222.
– reference: Bajwa AA, Mokhlis H, Mekhilef S, Mubin M. Enhancing power system resilience leveraging microgrids: a review. J Renew Sustain Energy 11 (3): 2019; 35503. American Institute of Physics Inc. doi: 10.1063/1.5066264.
– reference: Danish MSS, Matayoshi H, Howlader HR, Chakraborty S, Mandal P, Senjyu T. Microgrid planning and design: resilience to sustainability. In: 2019 IEEE PES GTD grand international conference and exposition Asia, GTD Asia 2019; 2019. p. 253–258. doi: 10.1109/GTDAsia.2019.8716010.
– reference: Mallick D, Mahanta P, Moholkar VS. Co-gasification of coal and biomass blends: chemistry and engineering. Fuel Elsevier Ltd 204: 2017; 106–128. doi: 10.1016/j.fuel.2017.05.006.
– reference: Hanif I, Faraz Raza SM, Gago-de-Santos P, Abbas Q. Fossil fuels, foreign direct investment, and economic growth have triggered CO2 emissions in emerging Asian economies: some empirical evidence. Energy 171: 2019; 493–501. doi: 10.1016/j.energy.2019.01.011.
– volume: 32
  start-page: 246
  year: 2015
  end-page: 258
  ident: b0230
  article-title: Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design
  publication-title: J Ind Eng Chem
– year: 2019
  ident: b0005
  article-title: Syngas: derived from biodiesel and its influence on CI engine
  publication-title: Energy
– volume: 4
  start-page: 2149
  year: 2018
  end-page: 2168
  ident: b0190
  article-title: Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique
  publication-title: J Therm Eng
– volume: 212
  start-page: 210
  year: 2018
  end-page: 222
  ident: b0095
  article-title: An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine
  publication-title: Appl Energy
– volume: 37
  start-page: 629
  year: 2019
  end-page: 632
  ident: b0195
  article-title: Artificial neural network modeling of methanol production from syngas
  publication-title: Pet Sci Technol
– reference: Lopez-Garcia TB, Ruiz-Cruz R, Sanchez EN. Real-time battery bank charge-discharge using neural sliding mode control. In: Proceedings of the international joint conference on neural networks, vol. 2018-July, 2018. doi: 10.1109/IJCNN.2018.8489533.
– volume: 164
  start-page: 15
  year: 2018
  end-page: 26
  ident: b0150
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers Manag
– reference: Bonyadi MR, Michalewicz Z. Particle swarm optimization for single objective continuous space problems: a review. Evol Comput 25 (1): 2017; 1–54. MIT Press Journals. doi: 10.1162/EVCO_r_00180.
– volume: 132
  start-page: 243
  year: 2019
  end-page: 254
  ident: b0140
  article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO
  publication-title: Renew Energy
– volume: 66
  start-page: 314
  year: 2014
  end-page: 323
  ident: b0125
  article-title: Dynamic operation and control of microgrid hybrid power systems
  publication-title: Energy
– volume: 41
  start-page: 11119
  year: 2016
  end-page: 11130
  ident: b0185
  article-title: Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts
  publication-title: Int J Hydrogen Energy
– volume: 58
  year: 2020
  ident: b0255
  article-title: Population size in particle swarm optimization
  publication-title: Swarm Evol Comput
– reference: Alsulami WA, Sreerama Kumar R. Artificial neural network based load flow solution of Saudi national grid. In: 2017 Saudi Arabia smart grid conference, SASG 2017; 2018. p. 1–7. doi: 10.1109/SASG.2017.8356516.
– volume: 35
  start-page: 698
  year: 2017
  end-page: 712
  ident: b0200
  article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network
  publication-title: Energy Explor Exploit
– volume: 221
  year: 2020
  ident: b0115
  article-title: Experimental investigation of syngas composition variation along updraft fixed bed gasifier
  publication-title: Energy Convers Manag
– volume: 195
  start-page: 57
  year: 2019
  end-page: 69
  ident: b0145
  article-title: Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach
  publication-title: Energy Convers Manag
– reference: Vargas-Salgado C, Hurtado-Pérez E, Alfonso-Solar D, Malmquist A. Empirical design, construction , and experimental test of a small – scale bubbling fluidized bed reactor. Sustain 13 (3): 2021; 1–23. [Online]. Available: https://www.mdpi.com/2071-1050/13/3/1061 .
– volume: 86
  start-page: 384
  year: 2016
  end-page: 391
  ident: b0045
  article-title: Experimental verification of hybrid renewable systems as feasible energy sources
  publication-title: Renew Energy
– volume: 155
  start-page: 308
  year: 2015
  end-page: 314
  ident: b0215
  article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones
  publication-title: Appl Energy
– volume: 12
  start-page: 1
  year: 2020
  end-page: 18
  ident: b0035
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: Nano-Micro Lett
– reference: Cedola L, Tallini A. Development of an Innovative Microgrid: 2MSG−Micro Mobile Smart Grid.
– volume: 12
  start-page: 964
  year: 2019
  ident: b0020
  article-title: Analysis of fossil fuel energy consumption and environmental impacts in european countries
  publication-title: Energies
– reference: Heydari A, Astiaso Garcia D, Keynia F, Bisegna F, De Santoli L. A novel composite neural network based method for wind and solar power forecasting in microgrids. Appl Energy 251: 2019; 113353. doi: 10.1016/j.apenergy.2019.113353.
– volume: 5
  year: 2019
  ident: b0220
  article-title: Low-cost web-based supervisory control and data acquisition system for a microgrid testbed: a case study in design and implementation for academic and research applications
  publication-title: Heliyon
– volume: 8
  start-page: 225
  year: 2004
  end-page: 239
  ident: b0240
  article-title: A cooperative approach to participle swam optimization
  publication-title: IEEE Trans Evol Comput
– volume: 232
  start-page: 1499
  year: 2019
  end-page: 1512
  ident: b0025
  article-title: Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period
  publication-title: J Clean Prod
– reference: Rodríguez-Monroy C, Mármol-Acitores G, Nilsson-Cifuentes G. Electricity generation in Chile using non-conventional renewable energy sources – a focus on biomass. Renew Sustain Energy Rev 81: 2018; 937–945. Elsevier Ltd. doi: 10.1016/j.rser.2017.08.059.
– reference: Zhang LP, Yu HJ, Hu SX. Optimal choice of parameters for particle swarm optimization. J Zhejiang Univ Sci 6 A (6): 2005; 528–534. doi: 10.1631/jzus.2005.A0528.
– volume: 95
  year: 2020
  ident: b0160
  article-title: Artificial neural networks in microgrids: a review
  publication-title: Eng Appl Artif Intell
– reference: Ren J, Cao JP, Zhao XY, Yang FL, Wei XY. “Recent advances in syngas production from biomass catalytic gasification: a critical review on reactors, catalysts, catalytic mechanisms and mathematical models. Renew Sustain Energy Rev 116: 2019; 109426. Elsevier Ltd. doi: 10.1016/j.rser.2019.109426.
– volume: 38
  start-page: 11920
  year: 2013
  end-page: 11929
  ident: b0225
  article-title: Artificial neural network prediction indicators of density functional theory metal hydride models
  publication-title: Int J Hydrogen Energy
– reference: Aguila-Leon J, Chiñas-Palacios C, Garcia EXM, Vargas-Salgado C. A multimicrogrid energy management model implementing an evolutionary game-theoretic approach. Int Trans Electr Energy Syst n/a (n/a): 2020; e12617. doi: 10.1002/2050-7038.12617.
– volume: 12
  start-page: 964
  issue: 6
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0020
  article-title: Analysis of fossil fuel energy consumption and environmental impacts in european countries
  publication-title: Energies
  doi: 10.3390/en12060964
– volume: 38
  start-page: 11920
  issue: 27
  year: 2013
  ident: 10.1016/j.enconman.2021.113896_b0225
  article-title: Artificial neural network prediction indicators of density functional theory metal hydride models
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.06.138
– volume: 260
  start-page: 114191
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0030
  article-title: Electromagnetic energy harvesting using magnetic levitation architectures: a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114191
– ident: 10.1016/j.enconman.2021.113896_b0130
  doi: 10.1109/ICEETS.2016.7583879
– volume: 221
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0115
  article-title: Experimental investigation of syngas composition variation along updraft fixed bed gasifier
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2020.113116
– ident: 10.1016/j.enconman.2021.113896_b0040
  doi: 10.1109/GTDAsia.2019.8716010
– ident: 10.1016/j.enconman.2021.113896_b0135
  doi: 10.1109/SASG.2017.8356516
– volume: 212
  start-page: 210
  year: 2018
  ident: 10.1016/j.enconman.2021.113896_b0095
  article-title: An investigation on utilization of biogas and syngas produced from biomass waste in premixed spark ignition engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.12.037
– volume: 58
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0255
  article-title: Population size in particle swarm optimization
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2020.100718
– volume: 188
  start-page: 685
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0055
  article-title: Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2019.06.050
– ident: 10.1016/j.enconman.2021.113896_b0080
  doi: 10.1016/j.rser.2017.08.059
– year: 2016
  ident: 10.1016/j.enconman.2021.113896_b0075
  article-title: Genset optimization for biomass syngas operation
  publication-title: Renew Energy Util Syst Integr
– ident: 10.1016/j.enconman.2021.113896_b0155
  doi: 10.1016/j.apenergy.2019.113353
– ident: 10.1016/j.enconman.2021.113896_b0105
– volume: 95
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0160
  article-title: Artificial neural networks in microgrids: a review
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103894
– start-page: 1
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0235
  article-title: “Optimal PID parameters tunning for a DC-DC boost converter: a performance comparative using grey wolf optimizer
  publication-title: Particle Swarm Optim Genet Algorithms
– ident: 10.1016/j.enconman.2021.113896_b0010
  doi: 10.1016/j.fuel.2017.05.006
– ident: 10.1016/j.enconman.2021.113896_b0100
  doi: 10.1063/1.5066264
– volume: 41
  start-page: 11119
  issue: 26
  year: 2016
  ident: 10.1016/j.enconman.2021.113896_b0185
  article-title: Artificial neural network modeling of hydrogen-rich syngas production from methane dry reforming over novel Ni/CaFe2O4 catalysts
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.04.034
– ident: 10.1016/j.enconman.2021.113896_b0180
  doi: 10.1016/B978-0-444-63428-3.50008-4
– ident: 10.1016/j.enconman.2021.113896_b0120
  doi: 10.1016/j.rser.2019.109426
– ident: 10.1016/j.enconman.2021.113896_b0015
  doi: 10.1016/j.energy.2019.01.011
– ident: 10.1016/j.enconman.2021.113896_b0065
  doi: 10.1002/2050-7038.12617
– volume: 186
  start-page: 241
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0085
  article-title: MPC for optimal dispatch of an AC-linked hybrid PV/wind/biomass/H2 system incorporating demand response
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.02.044
– ident: 10.1016/j.enconman.2021.113896_b0245
  doi: 10.1631/jzus.2005.A0528
– year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0005
  article-title: Syngas: derived from biodiesel and its influence on CI engine
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116189
– volume: 157
  start-page: 874
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0110
  article-title: Hybrid assessment for a hybrid microgrid: a novel methodology to critically analyse generation technologies for hybrid microgrids
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2020.05.095
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0035
  article-title: Natural and eco-friendly materials for triboelectric energy harvesting
  publication-title: Nano-Micro Lett
  doi: 10.1007/s40820-020-0373-y
– volume: 147
  start-page: 239
  year: 2018
  ident: 10.1016/j.enconman.2021.113896_b0165
  article-title: Intelligent control strategy for a grid connected PV/SOFC/BESS energy generation system
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.030
– volume: 164
  start-page: 15
  issue: February
  year: 2018
  ident: 10.1016/j.enconman.2021.113896_b0150
  article-title: Artificial neural network (ANN) based prediction and optimization of an organic Rankine cycle (ORC) for diesel engine waste heat recovery
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2018.02.062
– volume: 232
  start-page: 1499
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0025
  article-title: Life cycle environmental impacts of electricity from fossil fuels in Chile over a ten-year period
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.374
– volume: 132
  start-page: 243
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0140
  article-title: Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2018.07.142
– volume: 35
  start-page: 698
  issue: 6
  year: 2017
  ident: 10.1016/j.enconman.2021.113896_b0200
  article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network
  publication-title: Energy Explor Exploit
  doi: 10.1177/0144598717716282
– volume: 12
  start-page: 1
  issue: 21
  year: 2020
  ident: 10.1016/j.enconman.2021.113896_b0205
  article-title: Small-scale hybrid photovoltaic-biomass systems feasibility analysis for higher education buildings
  publication-title: Sustain
– ident: 10.1016/j.enconman.2021.113896_b0210
  doi: 10.3390/su13031061
– volume: 37
  start-page: 629
  issue: 6
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0195
  article-title: Artificial neural network modeling of methanol production from syngas
  publication-title: Pet Sci Technol
  doi: 10.1080/10916466.2018.1560321
– volume: 9
  start-page: 1667
  issue: 3
  year: 2018
  ident: 10.1016/j.enconman.2021.113896_b0170
  article-title: Adaptive neural network-based control of a hybrid AC/DC Microgrid
  publication-title: IEEE Trans Smart Grid
– ident: 10.1016/j.enconman.2021.113896_b0060
  doi: 10.1016/j.asoc.2019.105903
– volume: 4
  start-page: 2149
  issue: 4
  year: 2018
  ident: 10.1016/j.enconman.2021.113896_b0190
  article-title: Power generation from combusted ‘Syngas’ using hybrid thermoelectric generator and forecasting the performance with ANN technique
  publication-title: J Therm Eng
  doi: 10.18186/journal-of-thermal-engineering.433806
– volume: 86
  start-page: 384
  year: 2016
  ident: 10.1016/j.enconman.2021.113896_b0045
  article-title: Experimental verification of hybrid renewable systems as feasible energy sources
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.08.030
– ident: 10.1016/j.enconman.2021.113896_b0090
  doi: 10.1109/ICEET48479.2020.9048222
– ident: 10.1016/j.enconman.2021.113896_b0250
  doi: 10.1162/EVCO_r_00180
– volume: 8
  start-page: 225
  issue: 3
  year: 2004
  ident: 10.1016/j.enconman.2021.113896_b0240
  article-title: A cooperative approach to participle swam optimization
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2004.826069
– ident: 10.1016/j.enconman.2021.113896_b0070
  doi: 10.1016/j.scitotenv.2019.03.268
– volume: 32
  start-page: 246
  year: 2015
  ident: 10.1016/j.enconman.2021.113896_b0230
  article-title: Modelling and optimization of syngas production from methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks and Box-Behnken design
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2015.08.021
– volume: 66
  start-page: 314
  year: 2014
  ident: 10.1016/j.enconman.2021.113896_b0125
  article-title: Dynamic operation and control of microgrid hybrid power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.042
– volume: 155
  start-page: 308
  year: 2015
  ident: 10.1016/j.enconman.2021.113896_b0215
  article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.097
– volume: 195
  start-page: 57
  issue: April
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0145
  article-title: Developing a model to predict the start of combustion in HCCI engine using ANN-GA approach
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.05.015
– ident: 10.1016/j.enconman.2021.113896_b0175
  doi: 10.1109/IJCNN.2018.8489533
– volume: 155
  year: 2015
  ident: 10.1016/j.enconman.2021.113896_b0050
  article-title: Optimization of a hybrid renewable system for high feasibility application in non-connected zones
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.05.097
– volume: 5
  issue: 9
  year: 2019
  ident: 10.1016/j.enconman.2021.113896_b0220
  article-title: Low-cost web-based supervisory control and data acquisition system for a microgrid testbed: a case study in design and implementation for academic and research applications
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2019.e02474
SSID ssj0003506
Score 2.5535595
Snippet •The model estimates the biomass required to produce the syngas in a BFBGP.•The proposed FF-PSO algorithm showed to solve model dynamic Power Generation...
Agriculture and forestry crop residues represent more than half of the world's residual biomass; these residues turn into synthesis gas (syngas) and are used...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113896
SubjectTerms AC microgrid
administrative management
Agricultural wastes
Algorithms
Artificial Neural Network model
Artificial neural networks
Back propagation
Back propagation networks
biogasification
Biomass
computer software
Crop residues
Demand
Distributed generation
electricity generation
Energy
Energy demand
Energy resources
Energy sources
Forestry
forests
Gasification
model validation
Neural networks
Particle swarm optimization
Plant propagation
power generation
Propagation
Regression analysis
Residues
Rural areas
Rural communities
Spain
Syngas genset
Synthesis gas
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98EYNFDRIXJ34sV6vj1FEVVWiVCqRwmm1Xq9LSrqJSCJUfgE_mxk_ohQhFcTR9o7t9Y5nv9F-8y3Auzi2lP0bGzibUIKSxjbIK5MEJhVRaUzk4jpR_HAmTybidJpO92Dc1cIwrbKN_U1Mr6N1e2bYfs3hcjYbXrCyi8rJ6aJ6vWl6D_ZlSoC8B_uTs_PR56ZQWgbchtMuleUBV37u1AlfDVgt0l8bVkKNI97gRLF8_5-nqB0Ien_jl-bmu5nPd2aj40dQdv1oSChfB5t1MbA_fpN4_M-OPoaHLVrFUdPuCew5_xQOdjQMn8HPEVqzYpY9frnh8i88v_iIFU2KAeFh5uQia2bSXXzDOMd68x1cVGiQi_8JveOlWTFlqfYSXM5ptJGM0TK_lJ6ChFLR1VWKWDr6jiXOPBqPozFeM6Pwkp77HCbH7z-NT4J2e4fAUlfWNC65c6EsrVSljYtIkG-w1pArsoJwTRU5qZxM6FomyzAtqGUSWuUqQtrCuCx5AT2_8O4QUIZlRolZboVUIrEsep8QslEER4QQNu9D2o2otq32OW_BMdcdye1Kd56g2RN04wl9GG7tlo36x50Weecw-tbwapqi7rQ96jxMt5FkpVlijkXrlOjD2-1ligG8sGO8W2y4TSwoVhO260O49cy_fOOX_27yCh7wEVPxovQIeutvG_easNm6eNP-e78A-mY4PQ
  priority: 102
  providerName: Unpaywall
Title A cascade hybrid PSO feed-forward neural network model of a biomass gasification plant for covering the energy demand in an AC microgrid
URI https://dx.doi.org/10.1016/j.enconman.2021.113896
https://www.proquest.com/docview/2504819284
https://www.proquest.com/docview/2524307190
https://www.sciencedirect.com/science/article/pii/S019689042100073X
UnpaywallVersion publishedVersion
Volume 232
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB4heqAcqhZaEaBokHo18WP9OlpRUWhFQKKR0tNqvV5DUNhEJFHFhXN_dmf8CEGqBBIny_aud72zj2-133wD8M33Ne3-lXaMDmiDEvraSUsVOCoUXqGUZ_xqo3g-iPpD8WMUjjag1_rCMK2ymfvrOb2arZsn3aY1u7PxuHvFyi5JSp3Oq86bRuzBLmKOYnDy-ETzCMIqviYndjj1mpfw7QlrRdo7xTqovsfhTRIW7___ArUGQLeWdqYe_qjJZG0tOv0IHxoQiVldz0-wYewObK9JC-7C3wy1mjP5HW8e2CsLL68usKS1yiGYylRZZClL-oqtieBYxcTBaYkK2SefQDVeqzkziSrj4WxCRkDKjJppn1QKEnhEUzkPYmHoBwscW1QWsx7eMdHvmsr9DMPT7796faeJuuBoasoFNVJqjBsVOkoK7eeeIJOxBJDJ45zgRumZKDFRQO_iqHDDnFIGrk5MSQBYKBMHX2DTTq3ZA4zcIqb9UqpFlIhAsxZ9QIAjIZQghNBpB8K2qaVuJMk5MsZEttyzW9maSLKJZG2iDnRX-Wa1KMeLOdLWkvJZ95K0cryY97A1vWwG-Fyy8htrySWiA8er1zQ0-bxFWTNdchpf0BRKkKsD7qrLvLLG-2-o8QG85zumynnhIWwu7pfmK2GnRX5UDY4jeJed_ewP6DocXGa__wFkiRrx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB5ROFAOqC1UDVA6lbgu2Yf3dYwiUHhXAqTcLK_XS4OCE5FEiAtnfjYz-wiphEQlrmt77fX48Y32m28A9nxfk_evtGN0QA5K6GsnLVTgqFB4uVKe8UtH8ew86l2L437YX4JuEwvDtMr67K_O9PK0rp-069lsjweD9iUruyQpLTqv_N_U_wQr1FfMHtj-0yvPIwjLBJtc2-HqC2HCt_ssFmnvFAuh-h7nN0lYvf_tG2oBga7O7Fg9PqjhcOEyOvwC6zWKxE410K-wZOw3WFvQFtyA5w5qNWH2O_595LAs_HN5gQVdVg7hVObKImtZ0ltsxQTHMikOjgpUyEH5hKrxRk2YSlRaD8dDsgJSY9TM-6RekNAjmjJ6EHNDH5jjwKKy2OniHTP9bqjfTbg-PLjq9pw67YKjaS6nNEmpMW6U6yjJtZ95gmzGGkAmizPCG4VnosREAZXFUe6GGdUMXJ2YghCwUCYOvsOyHVnzAzBy85gcplSLKBGBZjH6gBBHQjBBCKHTFoTNVEtda5JzaoyhbMhnt7IxkWQTycpELWjP240rVY53W6SNJeU_60vS1fFu253G9LLe4RPJ0m8sJpeIFvyeF9Pe5B8uyprRjOv4gs5QwlwtcOdL5j9HvPWBEf-C1d7V2ak8PTo_2YbPXMK8OS_cgeXp_cz8JCA1zXbLjfIC6Rca1g
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AA98EYNFDRIXJ34sV6vj1FEVVWiVCqRwmm1Xq9LSrqJSCJUfgE_mxk_ohQhFcTR9o7t9Y5nv9F-8y3Auzi2lP0bGzibUIKSxjbIK5MEJhVRaUzk4jpR_HAmTybidJpO92Dc1cIwrbKN_U1Mr6N1e2bYfs3hcjYbXrCyi8rJ6aJ6vWl6D_ZlSoC8B_uTs_PR56ZQWgbchtMuleUBV37u1AlfDVgt0l8bVkKNI97gRLF8_5-nqB0Ien_jl-bmu5nPd2aj40dQdv1oSChfB5t1MbA_fpN4_M-OPoaHLVrFUdPuCew5_xQOdjQMn8HPEVqzYpY9frnh8i88v_iIFU2KAeFh5uQia2bSXXzDOMd68x1cVGiQi_8JveOlWTFlqfYSXM5ptJGM0TK_lJ6ChFLR1VWKWDr6jiXOPBqPozFeM6Pwkp77HCbH7z-NT4J2e4fAUlfWNC65c6EsrVSljYtIkG-w1pArsoJwTRU5qZxM6FomyzAtqGUSWuUqQtrCuCx5AT2_8O4QUIZlRolZboVUIrEsep8QslEER4QQNu9D2o2otq32OW_BMdcdye1Kd56g2RN04wl9GG7tlo36x50Weecw-tbwapqi7rQ96jxMt5FkpVlijkXrlOjD2-1ligG8sGO8W2y4TSwoVhO260O49cy_fOOX_27yCh7wEVPxovQIeutvG_easNm6eNP-e78A-mY4PQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cascade+hybrid+PSO+feed-forward+neural+network+model+of+a+biomass+gasification+plant+for+covering+the+energy+demand+in+an+AC+microgrid&rft.jtitle=Energy+conversion+and+management&rft.au=Chi%C3%B1as-Palacios%2C+Cristian&rft.au=Vargas-Salgado%2C+Carlos&rft.au=Aguila-Leon%2C+Jesus&rft.au=Hurtado-P%C3%A9rez%2C+Elias&rft.date=2021-03-15&rft.issn=0196-8904&rft.volume=232+p.113896-&rft_id=info:doi/10.1016%2Fj.enconman.2021.113896&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon