Advanced Predictive Structural Health Monitoring in High-Rise Buildings Using Recurrent Neural Networks

This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 10; p. 3261
Main Authors Ghaffari, Abbas, Shahbazi, Yaser, Mokhtari Kashavar, Mohsen, Fotouhi, Mohammad, Pedrammehr, Siamak
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2024
Subjects
Online AccessGet full text
ISSN2075-5309
2075-5309
DOI10.3390/buildings14103261

Cover

Abstract This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R2 values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas.
AbstractList This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R2 values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas.
This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R[sup.2] values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas.
Audience Academic
Author Fotouhi, Mohammad
Shahbazi, Yaser
Mokhtari Kashavar, Mohsen
Ghaffari, Abbas
Pedrammehr, Siamak
Author_xml – sequence: 1
  givenname: Abbas
  surname: Ghaffari
  fullname: Ghaffari, Abbas
– sequence: 2
  givenname: Yaser
  surname: Shahbazi
  fullname: Shahbazi, Yaser
– sequence: 3
  givenname: Mohsen
  orcidid: 0000-0003-2157-4495
  surname: Mokhtari Kashavar
  fullname: Mokhtari Kashavar, Mohsen
– sequence: 4
  givenname: Mohammad
  surname: Fotouhi
  fullname: Fotouhi, Mohammad
– sequence: 5
  givenname: Siamak
  orcidid: 0000-0002-2974-1801
  surname: Pedrammehr
  fullname: Pedrammehr, Siamak
BookMark eNqFkU1P3DAQhiNEJSjwA7hF6jnUdpKNc9yitotEKaLlbM2Ox8HbYG9tB8S_r5e0qGql1j7Yej3POx9-Xew776goTjk7q-uevV1PdtTWDZE3nNViwfeKQ8G6tmpr1u__dj8oTmLcsLxkK0TbHBbDUj-AQ9LldSBtMdkHKr-kMGGaAozlimBMd-Un72zyIecorStXdrirbmyk8t2vzOVt3D3eEE4hkEvlFT3zV5QeffgWj4tXBsZIJz_Po-L2w_uv56vq8vPHi_PlZYWN4KnqUIPhAplhC0DeNBJRMzKy5kYgSOiYWJteNqh3YdxoKbpWt2R6g8REfVRczL7aw0Ztg72H8KQ8WPUs-DAoCMniSKpea2SEPZMcmh4N9MDWO9HIRS06nb3E7DW5LTw9wji-GHKmdpNXf00-Q29maBv894liUhs_BZd7VjUXbMGZbJocdTZHDZArsc74FADz1nRvMf-usVlfymzLczEyA90MYPAxBjIKbYJkvcugHf9ZEP-D_H8TPwBEo7zD
CitedBy_id crossref_primary_10_3390_buildings15071053
crossref_primary_10_3390_s25061914
crossref_primary_10_3390_infrastructures9120225
Cites_doi 10.1016/j.conbuildmat.2017.08.160
10.1109/ACCESS.2019.2958264
10.1016/0045-7949(92)90132-J
10.1016/j.jobe.2021.103764
10.1016/j.engstruct.2024.118778
10.1016/j.jobe.2024.110119
10.3390/infrastructures9020030
10.1016/j.jobe.2021.103796
10.1016/j.jweia.2021.104860
10.1016/j.autcon.2023.104885
10.3390/buildings14020458
10.1016/j.engstruct.2024.117947
10.1016/j.jobe.2022.105004
10.1080/00038628.2020.1753010
10.1177/1475921718804132
10.1016/j.autcon.2022.104249
10.1016/j.ymssp.2023.110535
10.3390/books978-3-7258-0226-5
10.1016/j.engstruct.2021.112405
10.1016/j.jobe.2021.103954
10.5194/gmd-7-1247-2014
10.1016/j.ymssp.2019.106600
10.1016/j.adhoc.2018.06.011
10.3390/buildings14092816
10.3354/cr030079
10.1016/j.buildenv.2006.07.007
10.1093/biomet/78.3.691
10.1016/j.strusafe.2022.102280
10.1088/0964-1726/10/3/317
10.1016/j.jweia.2017.01.008
10.1016/j.jobe.2024.110385
10.1016/j.istruc.2022.02.003
10.1016/j.ymssp.2022.109175
10.20944/preprints202308.1091.v1
10.3390/s24020386
10.1016/j.measurement.2021.110060
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
ADTOC
UNPAY
DOA
DOI 10.3390/buildings14103261
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database (subscription)
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_3bdc0ec9081a49cfa9a0b3bdcf86327d
10.3390/buildings14103261
A814116328
10_3390_buildings14103261
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c421t-7cdaf12c0f06ac1448ccd0ef831f2ca8a702bf984cdf12c1fd8275d5ef9fce023
IEDL.DBID BENPR
ISSN 2075-5309
IngestDate Tue Oct 14 19:08:35 EDT 2025
Sun Sep 07 11:02:43 EDT 2025
Fri Jul 25 11:59:18 EDT 2025
Mon Oct 20 16:52:24 EDT 2025
Thu Oct 16 04:43:48 EDT 2025
Thu Apr 24 22:59:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-7cdaf12c0f06ac1448ccd0ef831f2ca8a702bf984cdf12c1fd8275d5ef9fce023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2974-1801
0000-0003-2157-4495
OpenAccessLink https://www.proquest.com/docview/3120610844?pq-origsite=%requestingapplication%&accountid=15518
PQID 3120610844
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_3bdc0ec9081a49cfa9a0b3bdcf86327d
unpaywall_primary_10_3390_buildings14103261
proquest_journals_3120610844
gale_infotracacademiconefile_A814116328
crossref_citationtrail_10_3390_buildings14103261
crossref_primary_10_3390_buildings14103261
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zhou (ref_3) 2022; 46
Ayyildiz (ref_14) 2019; 82
Zhou (ref_25) 2024; 307
Giordano (ref_36) 2023; 100
Wu (ref_18) 1992; 42
ref_30
Sen (ref_32) 2021; 241
Zhou (ref_9) 2024; 95
ref_39
ref_38
Xu (ref_8) 2024; 318
Pezeshki (ref_15) 2023; 176
Zhang (ref_12) 2024; 31
Zhang (ref_11) 2022; 177
Ierimonti (ref_28) 2020; 139
Yang (ref_33) 2019; 7
Chai (ref_43) 2014; 7
Ay (ref_4) 2021; 64
Worden (ref_19) 2001; 10
Lin (ref_21) 2022; 220
Parisi (ref_26) 2022; 138
Cabboi (ref_27) 2017; 156
Mishra (ref_35) 2022; 48
ref_24
ref_23
Droz (ref_16) 2023; 200
ref_22
Ubertini (ref_29) 2022; 59
ref_20
Yu (ref_34) 2019; 18
ref_42
ref_41
ref_40
Willmott (ref_45) 2005; 30
ref_1
Ruggieri (ref_17) 2024; 96
Li (ref_10) 2017; 162
ref_2
Nagelkerke (ref_44) 1991; 78
Mousavi (ref_13) 2021; 185
Mostafavi (ref_31) 2023; 151
Astorga (ref_6) 2024; 314
(ref_5) 2007; 42
Nicoletti (ref_7) 2022; 46
Thai (ref_37) 2022; 38
References_xml – volume: 156
  start-page: 252
  year: 2017
  ident: ref_27
  article-title: From Continuous Vibration Monitoring to FEM-Based Damage Assessment: Application on a Stone-Masonry Tower
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.08.160
– volume: 7
  start-page: 182060
  year: 2019
  ident: ref_33
  article-title: Infrared Thermal Imaging-Based Crack Detection Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2958264
– volume: 42
  start-page: 649
  year: 1992
  ident: ref_18
  article-title: Use of Neural Networks in Detection of Structural Damage
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(92)90132-J
– volume: 46
  start-page: 103764
  year: 2022
  ident: ref_7
  article-title: Dynamic Monitoring of Buildings as a Diagnostic Tool during Construction Phases
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103764
– volume: 318
  start-page: 118778
  year: 2024
  ident: ref_8
  article-title: Dynamic Performance of a Supertall Building with an Active Tuned Mass Damper System during Super Typhoon Saola
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.118778
– volume: 95
  start-page: 110119
  year: 2024
  ident: ref_9
  article-title: Dynamic Behavior Monitoring of Twin Supertall Buildings during Super Typhoon Soksuri Using Social Sensing Data
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.110119
– ident: ref_1
  doi: 10.3390/infrastructures9020030
– volume: 46
  start-page: 103796
  year: 2022
  ident: ref_3
  article-title: Investigation of Time-Varying Structural Dynamic Properties of High-Rise Buildings under Typhoon Conditions
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103796
– volume: 220
  start-page: 104860
  year: 2022
  ident: ref_21
  article-title: Machine Learning-Enabled Estimation of Crosswind Load Effect on Tall Buildings
  publication-title: J. Wind. Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2021.104860
– volume: 151
  start-page: 104885
  year: 2023
  ident: ref_31
  article-title: Deep Learning-Based Active Noise Control on Construction Sites
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104885
– ident: ref_23
  doi: 10.3390/buildings14020458
– volume: 307
  start-page: 117947
  year: 2024
  ident: ref_25
  article-title: Displacement Estimation for a High-Rise Building during Super Typhoon Mangkhut Based on Field Measurements and Machine Learning
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2024.117947
– ident: ref_39
– ident: ref_40
– volume: 59
  start-page: 105004
  year: 2022
  ident: ref_29
  article-title: Real-Time Bayesian Damage Identification Enabled by Sparse PCE-Kriging Meta-Modelling for Continuous SHM of Large-Scale Civil Engineering Structures
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.105004
– volume: 176
  start-page: 89
  year: 2023
  ident: ref_15
  article-title: State of the Art in Structural Health Monitoring of Offshore and Marine Structures
  publication-title: Proc. Inst. Civ. Eng.-Marit. Eng.
– ident: ref_42
– volume: 64
  start-page: 212
  year: 2021
  ident: ref_4
  article-title: A Study on Main Architectural and Structural Design Considerations of Contemporary Supertall Buildings
  publication-title: Arch. Sci. Rev.
  doi: 10.1080/00038628.2020.1753010
– volume: 18
  start-page: 143
  year: 2019
  ident: ref_34
  article-title: A Novel Deep Learning-Based Method for Damage Identification of Smart Building Structures
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718804132
– volume: 138
  start-page: 104249
  year: 2022
  ident: ref_26
  article-title: Automated Location of Steel Truss Bridge Damage Using Machine Learning and Raw Strain Sensor Data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104249
– volume: 200
  start-page: 110535
  year: 2023
  ident: ref_16
  article-title: A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2023.110535
– ident: ref_2
  doi: 10.3390/books978-3-7258-0226-5
– volume: 241
  start-page: 112405
  year: 2021
  ident: ref_32
  article-title: Multi-Component Deconvolution Interferometry for Data-Driven Prediction of Seismic Structural Response
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2021.112405
– volume: 48
  start-page: 103954
  year: 2022
  ident: ref_35
  article-title: Structural Health Monitoring of Civil Engineering Structures by Using the Internet of Things: A Review
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2021.103954
– volume: 7
  start-page: 1247
  year: 2014
  ident: ref_43
  article-title: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature
  publication-title: Geosci. Model. Dev.
  doi: 10.5194/gmd-7-1247-2014
– volume: 139
  start-page: 106600
  year: 2020
  ident: ref_28
  article-title: An Innovative Continuous Bayesian Model Updating Method for Base-Isolated RC Buildings Using Vibration Monitoring Data
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2019.106600
– volume: 82
  start-page: 68
  year: 2019
  ident: ref_14
  article-title: Structure Health Monitoring Using Wireless Sensor Networks on Structural Elements
  publication-title: Ad. Hoc Netw.
  doi: 10.1016/j.adhoc.2018.06.011
– ident: ref_24
  doi: 10.3390/buildings14092816
– volume: 30
  start-page: 79
  year: 2005
  ident: ref_45
  article-title: Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 42
  start-page: 2667
  year: 2007
  ident: ref_5
  article-title: A Proposal for the Classification of Structural Systems of Tall Buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2006.07.007
– volume: 78
  start-page: 691
  year: 1991
  ident: ref_44
  article-title: A Note on a General Definition of the Coefficient of Determination
  publication-title: Biometrika
  doi: 10.1093/biomet/78.3.691
– ident: ref_41
– volume: 100
  start-page: 102280
  year: 2023
  ident: ref_36
  article-title: The Value of Monitoring a Structural Health Monitoring System
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2022.102280
– volume: 314
  start-page: 118368
  year: 2024
  ident: ref_6
  article-title: Exploring the Effective Implementation of Population-Based SHM in Existing Buildings
  publication-title: Part II Damage-Feature Classif. Decis.-Making. Eng. Struct.
– volume: 10
  start-page: 540
  year: 2001
  ident: ref_19
  article-title: Damage Identification Using Support Vector Machines
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/10/3/317
– ident: ref_38
– volume: 162
  start-page: 73
  year: 2017
  ident: ref_10
  article-title: Observation of Wind Fields over Different Terrains and Wind Effects on a Super-Tall Building during a Severe Typhoon and Verification of Wind Tunnel Predictions
  publication-title: J. Wind. Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.01.008
– volume: 96
  start-page: 110385
  year: 2024
  ident: ref_17
  article-title: Assessing the Dredging Vibrational Effects on Surrounding Structures: The Case of Port Nourishment in Bari
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2024.110385
– volume: 38
  start-page: 448
  year: 2022
  ident: ref_37
  article-title: Machine Learning for Structural Engineering: A State-of-the-Art Review
  publication-title: Structures
  doi: 10.1016/j.istruc.2022.02.003
– volume: 31
  start-page: 1
  year: 2024
  ident: ref_12
  article-title: The State-of-the-Art on Time-Frequency Signal Processing Techniques for High-Resolution Representation of Nonlinear Systems in Engineering
  publication-title: Arch. Comput. Methods Eng.
– ident: ref_20
– volume: 177
  start-page: 109175
  year: 2022
  ident: ref_11
  article-title: Vibration Feature Extraction Using Signal Processing Techniques for Structural Health Monitoring: A Review
  publication-title: Mech. Syst. Signal Process
  doi: 10.1016/j.ymssp.2022.109175
– ident: ref_22
  doi: 10.20944/preprints202308.1091.v1
– ident: ref_30
  doi: 10.3390/s24020386
– volume: 185
  start-page: 110060
  year: 2021
  ident: ref_13
  article-title: Damage Detection and Localization of a Steel Truss Bridge Model Subjected to Impact and White Noise Excitations Using Empirical Wavelet Transform Neural Network Approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110060
SSID ssj0000852254
Score 2.3571768
Snippet This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3261
SubjectTerms Accuracy
Algorithms
Automation
Bridges
Buildings
Datasets
Deep learning
Earthquakes
FEA
Finite element method
Fourier transforms
Genetic algorithms
Genetic diversity
High rise buildings
high-rise structure
Information management
Lateral displacement
Lateral loads
Long short-term memory
LSTM
Machine learning
Methods
Multiple objective analysis
Neural networks
optimization
Optimization techniques
Real time
Recurrent neural networks
RNN
Seismic engineering
Sensors
SHM
Skyscrapers
Structural health monitoring
Structural integrity
Tall buildings
Typhoons
Vertical loads
Vibration
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEB6KL9UHsVVx1ZY8FAqVxWw2u5t9vCuVo1ApVsG3kE0yohyreJbSf9-Zzd5xRagvfV0SdnbyTWZmM_kG4AO6SsYqEnhjgbmuS2STwlyagNqUIeJwK-3beT270l-vq-u1Vl9cE5bogZPiTssueBl9S67L6daja53s-CGaulRN4N1XmnYtmbpL1VcEVJ2OMUvK60-7scv0ggsbKWYp_nJEA1__8115C17_7B_c719uPl9zO2c7sD3Gi2KS5HwDr2L_FrbWWAR34WYynuOL74987MIbmPgx8MIyp4ZIN41Esl6eIm57wfUd-cXtIorpUmQxlA-IC_4Dz5xNgok7aP55qhRf7MHV2ZfLz7N87J-Qe62Kp7zxwWGhvERZO0-Zk_E-yIimLFB5Z1wjVYet0T7wsAKDUU0Vqogt-kjOfB82-vs-HoAItUFaBN10sdShqrrWoUQVVINRoZMZyKUyrR_JxbnHxdxSksH6t8_0n8Gn1ZSHxKzxr8FTXqHVQCbFHh4QVOwIFfsSVDL4yOtr2XRJOO_GGwj0iUyCZSeGXkfxqTIZHC8hYEebXtiyUBT8SKN1BicrWLws--H_kP0INhWFU6mM8Bg2CETxHYVDT937Afl_AMezDfk
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9yfdA--C2utpIHQVC2ZpPsbvbxWixF8CjVg_oUskmmFI-1uFfE_vWd2c0dpxU_XpcJ-ZpJfrOZ-Q1jL8GVIpYRlTcWkOtKAZkU5MIE0EaFCENW2odZdTTX70_L00QWTbkwG-_3Ct3xt20qDt1TPCJCDXR0tqoSYfeEbc1nx9PPVDwOr728VKIZXy1_3-6ne2eg5795CG-z25fdhfvx3S0WG7fM4b0xPqsfyAkpuOTL3uWy3fNXv1A3_tME7rO7CWvy6agcD9it2D1k2xsMhI_Y2TTFAPDjb_RkQ4cf_zhwyhIfBx-zlPho-dSEn3ecYkPyk_M-8v1Vt3wIPeAn9Pee-J44kX5g-9kYZd4_ZvPDd58OjvJUeyH3WhbLvPbBQSG9AFE5j16X8T6ICEYVIL0zrhayhcZoH0isgGBkXYYyQgM-IhB4wibd1y4-ZTxUBqJvdN1GpUNZto0DATLIGqIEJzImVjtjfSImp_oYC4sOCq2hvbGGGXu9bnIxsnL8SXiftnstSITawwfcJpvs06o2eIGjRITkdOPBNU609BFMpWQdMvaKlMWS2ePgvEvZCzhFItCyU4PdIbaVJmM7K32y6TzorSokAidhtM7Ym7WO_X3sz_5L-jm7IxFzjbGGO2yC2hJ3ETMt2xfJWq4B1tgYng
  priority: 102
  providerName: Unpaywall
Title Advanced Predictive Structural Health Monitoring in High-Rise Buildings Using Recurrent Neural Networks
URI https://www.proquest.com/docview/3120610844
https://doi.org/10.3390/buildings14103261
https://doaj.org/article/3bdc0ec9081a49cfa9a0b3bdcf86327d
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2075-5309
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000852254
  issn: 2075-5309
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_a9GHrw9gn89YFPQwGG6ayLNvywxjJaFYGMyFboHsysqQrheBkTUfpfz-dLWcdhe7RQrJl6e50uo_fAbxFnXGXOU-8LsFY5ikSS2HMlUWpUuuwy0r7VuWnS_n1LDvbg2rIhaGwykEmdoLarg3ZyI_TRPijhyspP21-xVQ1iryrQwkNHUor2I8dxNg-HAhCxhrBwfSkmi92VhevYHgClr17M_X3_eMmVJ_eUsCj12WSfw6oDsf_rrQ-hAe_242-udar1a3jaPYYHgU9kk36jX8Ce659Coe30AWfwfkk-PfZ_JLcMSTY2PcOL5awNlifgcR6rqYh7KJlFPcRLy62jk2HKbMurIAtyDJPWE6MAD38-KqPIN8-h-Xs5Mfn0zjUVYiNFMlVXBirMRGGI8-18TcqZYzlDlWaoDBa6YKLBksljaVuCVolisxmDks0zh_yL2DUrlv3EpjNFTpTyqJxqbRZ1pQaOQorCnQCNY-AD4tZmwA6TrUvVrW_fND613fWP4L3uyGbHnHjvs5T2qFdRwLL7hrWl-d14L06bazhfpZe-9GyNKhLzRtqRJWnorARvKP9rYml_eSMDpkJ_hcJHKueKP85r7cKFcHRQAJ14PVt_ZcyI_iwI4v_z_3V_S97DQ-FV6D6wMEjGHnycG-8AnTVjGFfzb6MA22POzOCf1pW88nPP9LBDeM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHCiHqk81LW19aFWpVYTjOBvngKrdFrQUWKEtSNxSx_YgpFV2S6gQf66_rTOJs6VCoieukZ1M7HnaM98w9g5MJnzmkXl9ArEapEAiBbHQDpROnYe2Ku1wMhifqG-n2ekK-93XwlBaZa8TW0Xt5pbOyLfSRKLpEVqpz4ufMXWNotvVvoWGCa0V3HYLMRYKO_b99RWGcM323lfc7_dS7u4cfxnHoctAbJVMLuPcOgOJtALEwFiML7S1TnjQaQLSGm1yISsotLKOhiXgtMwzl3kowPoW-ABNwJpKVYHB39poZ3I0XZ7yoEODAqO669Q0LcRWFbpdN5Rgib5T8o9BbPsG3LYOG2z9V70w11dmNrth_nYfsYfBb-XDjtEesxVfP2EbN9AMn7KzYcgn4EcXdP1DipR_b_FpCduDdxVPvNMiNIWf15zyTOLpeeP5qCeZt2kMfEo3AYQdxQlABOdPuoz15hk7uZcVfs5W63ntXzDuBhq8LVRe-VS5LKsKAwKkkzl4CUZETPSLWdoAck69NmYlBju0_uWt9Y_Yx-WURYfwcdfgEe3QciCBc7cP5hdnZZD1Mq2cFUgleltGFRZMYURFD0EPUpm7iH2g_S1JhSBx1oRKCPxFAuMqhxo_h36y1BHb7FmgDLqlKf9KQsQ-Ldni_7S_vPtlb9n6-PjwoDzYm-y_Yg8kOm9d0uImW0VW8a_R-bqs3gQO5-zHfQvVHxVMSZQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgE9VDxFaAEfQEigaB3HSZwDQlvK0lJYVYVKvRnH9lSVVtmlKar61_h1zOSxFFUqp14jO3HG87Jn5hvGXoLNRMgCMm9IIFZ5CiRSEAvtQenUB2ir0r5O851D9fkoO1phv4daGEqrHHRiq6j93NEd-ShNJJoeoZUaQZ8Wsb89eb_4GVMHKYq0Du00OhbZCxfneHxr3u1u416_knLy8fuHnbjvMBA7JZOzuHDeQiKdAJFbh2cL7ZwXAXSagHRW20LICkqtnKdhCXgti8xnAUpwoQU9QPV_qyAUd6pSn3xa3u-gK4OiorpAapqWYlT1fa4bSq1Eryn5xxS2HQOu2oU1dudXvbAX53Y2u2T4JvfYeu-x8nHHYvfZSqgfsLVLOIYP2fG4zyTg-6cU-CEVyr-1yLSE6sG7Wife6Q-awk9qThkm8cFJE_jWsGTeJjDwA4oBEGoUJ-gQnD_tctWbR-zwRuj7mK3W8zo8YdznGoIrVVGFVPksq0oLAqSXBQQJVkRMDMQ0roc3py4bM4PHHKK_uUL_iL1ZTll02B7XDd6iHVoOJFju9sH89Nj0Um7SyjuBq0Q_y6rSgS2tqOgh6DyVhY_Ya9pfQ8oDF-dsXwOBv0gwXGas8XPoIUsdsc2BBUyvVRrzVwYi9nbJFv9f-9PrX_aC3UZRMl92p3sb7K5Er63LVtxkq8gp4Rl6XWfV85a9Oftx0_L0BzH6Ry4
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9yfdA--C2utpIHQVC2ZpPsbvbxWixF8CjVg_oUskmmFI-1uFfE_vWd2c0dpxU_XpcJ-ZpJfrOZ-Q1jL8GVIpYRlTcWkOtKAZkU5MIE0EaFCENW2odZdTTX70_L00QWTbkwG-_3Ct3xt20qDt1TPCJCDXR0tqoSYfeEbc1nx9PPVDwOr728VKIZXy1_3-6ne2eg5795CG-z25fdhfvx3S0WG7fM4b0xPqsfyAkpuOTL3uWy3fNXv1A3_tME7rO7CWvy6agcD9it2D1k2xsMhI_Y2TTFAPDjb_RkQ4cf_zhwyhIfBx-zlPho-dSEn3ecYkPyk_M-8v1Vt3wIPeAn9Pee-J44kX5g-9kYZd4_ZvPDd58OjvJUeyH3WhbLvPbBQSG9AFE5j16X8T6ICEYVIL0zrhayhcZoH0isgGBkXYYyQgM-IhB4wibd1y4-ZTxUBqJvdN1GpUNZto0DATLIGqIEJzImVjtjfSImp_oYC4sOCq2hvbGGGXu9bnIxsnL8SXiftnstSITawwfcJpvs06o2eIGjRITkdOPBNU609BFMpWQdMvaKlMWS2ePgvEvZCzhFItCyU4PdIbaVJmM7K32y6TzorSokAidhtM7Ym7WO_X3sz_5L-jm7IxFzjbGGO2yC2hJ3ETMt2xfJWq4B1tgYng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Predictive+Structural+Health+Monitoring+in+High-Rise+Buildings+Using+Recurrent+Neural+Networks&rft.jtitle=Buildings+%28Basel%29&rft.au=Ghaffari%2C+Abbas&rft.au=Shahbazi%2C+Yaser&rft.au=Mokhtari+Kashavar%2C+Mohsen&rft.au=Fotouhi%2C+Mohammad&rft.date=2024-10-01&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=10&rft.spage=3261&rft_id=info:doi/10.3390%2Fbuildings14103261&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_buildings14103261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon