Advanced Predictive Structural Health Monitoring in High-Rise Buildings Using Recurrent Neural Networks
This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and...
Saved in:
| Published in | Buildings (Basel) Vol. 14; no. 10; p. 3261 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2075-5309 2075-5309 |
| DOI | 10.3390/buildings14103261 |
Cover
| Abstract | This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R2 values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas. |
|---|---|
| AbstractList | This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R2 values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas. This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading conditions. The study combined finite element analysis (FEA), parametric modeling, and a multi-objective genetic algorithm to create a robust and diverse dataset of loading scenarios for developing a predictive ML model. The ML model was trained using a recurrent neural network (RNN) with Long Short-Term Memory (LSTM) layers. The developed model demonstrated high accuracy in predicting time series of vertical, lateral (X), and lateral (Y) displacements. The training and testing results showed Mean Squared Errors (MSE) of 0.1796 and 0.0033, respectively, with R[sup.2] values of 0.8416 and 0.9939. The model’s predictions differed by only 0.93% from the actual vertical displacement values and by 4.55% and 7.35% for lateral displacements in the Y and X directions, respectively. The results demonstrate the model’s high accuracy and generalization ability, making it a valuable tool for structural health monitoring (SHM) in high-rise buildings. This research highlights the potential of ML to provide real-time displacement predictions under various load conditions, offering practical applications for ensuring the structural integrity and safety of high-rise buildings, particularly in high-risk seismic areas. |
| Audience | Academic |
| Author | Fotouhi, Mohammad Shahbazi, Yaser Mokhtari Kashavar, Mohsen Ghaffari, Abbas Pedrammehr, Siamak |
| Author_xml | – sequence: 1 givenname: Abbas surname: Ghaffari fullname: Ghaffari, Abbas – sequence: 2 givenname: Yaser surname: Shahbazi fullname: Shahbazi, Yaser – sequence: 3 givenname: Mohsen orcidid: 0000-0003-2157-4495 surname: Mokhtari Kashavar fullname: Mokhtari Kashavar, Mohsen – sequence: 4 givenname: Mohammad surname: Fotouhi fullname: Fotouhi, Mohammad – sequence: 5 givenname: Siamak orcidid: 0000-0002-2974-1801 surname: Pedrammehr fullname: Pedrammehr, Siamak |
| BookMark | eNqFkU1P3DAQhiNEJSjwA7hF6jnUdpKNc9yitotEKaLlbM2Ox8HbYG9tB8S_r5e0qGql1j7Yej3POx9-Xew776goTjk7q-uevV1PdtTWDZE3nNViwfeKQ8G6tmpr1u__dj8oTmLcsLxkK0TbHBbDUj-AQ9LldSBtMdkHKr-kMGGaAozlimBMd-Un72zyIecorStXdrirbmyk8t2vzOVt3D3eEE4hkEvlFT3zV5QeffgWj4tXBsZIJz_Po-L2w_uv56vq8vPHi_PlZYWN4KnqUIPhAplhC0DeNBJRMzKy5kYgSOiYWJteNqh3YdxoKbpWt2R6g8REfVRczL7aw0Ztg72H8KQ8WPUs-DAoCMniSKpea2SEPZMcmh4N9MDWO9HIRS06nb3E7DW5LTw9wji-GHKmdpNXf00-Q29maBv894liUhs_BZd7VjUXbMGZbJocdTZHDZArsc74FADz1nRvMf-usVlfymzLczEyA90MYPAxBjIKbYJkvcugHf9ZEP-D_H8TPwBEo7zD |
| CitedBy_id | crossref_primary_10_3390_buildings15071053 crossref_primary_10_3390_s25061914 crossref_primary_10_3390_infrastructures9120225 |
| Cites_doi | 10.1016/j.conbuildmat.2017.08.160 10.1109/ACCESS.2019.2958264 10.1016/0045-7949(92)90132-J 10.1016/j.jobe.2021.103764 10.1016/j.engstruct.2024.118778 10.1016/j.jobe.2024.110119 10.3390/infrastructures9020030 10.1016/j.jobe.2021.103796 10.1016/j.jweia.2021.104860 10.1016/j.autcon.2023.104885 10.3390/buildings14020458 10.1016/j.engstruct.2024.117947 10.1016/j.jobe.2022.105004 10.1080/00038628.2020.1753010 10.1177/1475921718804132 10.1016/j.autcon.2022.104249 10.1016/j.ymssp.2023.110535 10.3390/books978-3-7258-0226-5 10.1016/j.engstruct.2021.112405 10.1016/j.jobe.2021.103954 10.5194/gmd-7-1247-2014 10.1016/j.ymssp.2019.106600 10.1016/j.adhoc.2018.06.011 10.3390/buildings14092816 10.3354/cr030079 10.1016/j.buildenv.2006.07.007 10.1093/biomet/78.3.691 10.1016/j.strusafe.2022.102280 10.1088/0964-1726/10/3/317 10.1016/j.jweia.2017.01.008 10.1016/j.jobe.2024.110385 10.1016/j.istruc.2022.02.003 10.1016/j.ymssp.2022.109175 10.20944/preprints202308.1091.v1 10.3390/s24020386 10.1016/j.measurement.2021.110060 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY ADTOC UNPAY DOA |
| DOI | 10.3390/buildings14103261 |
| DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database (subscription) Environmental Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2075-5309 |
| ExternalDocumentID | oai_doaj_org_article_3bdc0ec9081a49cfa9a0b3bdcf86327d 10.3390/buildings14103261 A814116328 10_3390_buildings14103261 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c421t-7cdaf12c0f06ac1448ccd0ef831f2ca8a702bf984cdf12c1fd8275d5ef9fce023 |
| IEDL.DBID | BENPR |
| ISSN | 2075-5309 |
| IngestDate | Tue Oct 14 19:08:35 EDT 2025 Sun Sep 07 11:02:43 EDT 2025 Fri Jul 25 11:59:18 EDT 2025 Mon Oct 20 16:52:24 EDT 2025 Thu Oct 16 04:43:48 EDT 2025 Thu Apr 24 22:59:54 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c421t-7cdaf12c0f06ac1448ccd0ef831f2ca8a702bf984cdf12c1fd8275d5ef9fce023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2974-1801 0000-0003-2157-4495 |
| OpenAccessLink | https://www.proquest.com/docview/3120610844?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3120610844 |
| PQPubID | 2032422 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3bdc0ec9081a49cfa9a0b3bdcf86327d unpaywall_primary_10_3390_buildings14103261 proquest_journals_3120610844 gale_infotracacademiconefile_A814116328 crossref_citationtrail_10_3390_buildings14103261 crossref_primary_10_3390_buildings14103261 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-01 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Buildings (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Zhou (ref_3) 2022; 46 Ayyildiz (ref_14) 2019; 82 Zhou (ref_25) 2024; 307 Giordano (ref_36) 2023; 100 Wu (ref_18) 1992; 42 ref_30 Sen (ref_32) 2021; 241 Zhou (ref_9) 2024; 95 ref_39 ref_38 Xu (ref_8) 2024; 318 Pezeshki (ref_15) 2023; 176 Zhang (ref_12) 2024; 31 Zhang (ref_11) 2022; 177 Ierimonti (ref_28) 2020; 139 Yang (ref_33) 2019; 7 Chai (ref_43) 2014; 7 Ay (ref_4) 2021; 64 Worden (ref_19) 2001; 10 Lin (ref_21) 2022; 220 Parisi (ref_26) 2022; 138 Cabboi (ref_27) 2017; 156 Mishra (ref_35) 2022; 48 ref_24 ref_23 Droz (ref_16) 2023; 200 ref_22 Ubertini (ref_29) 2022; 59 ref_20 Yu (ref_34) 2019; 18 ref_42 ref_41 ref_40 Willmott (ref_45) 2005; 30 ref_1 Ruggieri (ref_17) 2024; 96 Li (ref_10) 2017; 162 ref_2 Nagelkerke (ref_44) 1991; 78 Mousavi (ref_13) 2021; 185 Mostafavi (ref_31) 2023; 151 Astorga (ref_6) 2024; 314 (ref_5) 2007; 42 Nicoletti (ref_7) 2022; 46 Thai (ref_37) 2022; 38 |
| References_xml | – volume: 156 start-page: 252 year: 2017 ident: ref_27 article-title: From Continuous Vibration Monitoring to FEM-Based Damage Assessment: Application on a Stone-Masonry Tower publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.08.160 – volume: 7 start-page: 182060 year: 2019 ident: ref_33 article-title: Infrared Thermal Imaging-Based Crack Detection Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2958264 – volume: 42 start-page: 649 year: 1992 ident: ref_18 article-title: Use of Neural Networks in Detection of Structural Damage publication-title: Comput. Struct. doi: 10.1016/0045-7949(92)90132-J – volume: 46 start-page: 103764 year: 2022 ident: ref_7 article-title: Dynamic Monitoring of Buildings as a Diagnostic Tool during Construction Phases publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103764 – volume: 318 start-page: 118778 year: 2024 ident: ref_8 article-title: Dynamic Performance of a Supertall Building with an Active Tuned Mass Damper System during Super Typhoon Saola publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.118778 – volume: 95 start-page: 110119 year: 2024 ident: ref_9 article-title: Dynamic Behavior Monitoring of Twin Supertall Buildings during Super Typhoon Soksuri Using Social Sensing Data publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.110119 – ident: ref_1 doi: 10.3390/infrastructures9020030 – volume: 46 start-page: 103796 year: 2022 ident: ref_3 article-title: Investigation of Time-Varying Structural Dynamic Properties of High-Rise Buildings under Typhoon Conditions publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103796 – volume: 220 start-page: 104860 year: 2022 ident: ref_21 article-title: Machine Learning-Enabled Estimation of Crosswind Load Effect on Tall Buildings publication-title: J. Wind. Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2021.104860 – volume: 151 start-page: 104885 year: 2023 ident: ref_31 article-title: Deep Learning-Based Active Noise Control on Construction Sites publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104885 – ident: ref_23 doi: 10.3390/buildings14020458 – volume: 307 start-page: 117947 year: 2024 ident: ref_25 article-title: Displacement Estimation for a High-Rise Building during Super Typhoon Mangkhut Based on Field Measurements and Machine Learning publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.117947 – ident: ref_39 – ident: ref_40 – volume: 59 start-page: 105004 year: 2022 ident: ref_29 article-title: Real-Time Bayesian Damage Identification Enabled by Sparse PCE-Kriging Meta-Modelling for Continuous SHM of Large-Scale Civil Engineering Structures publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.105004 – volume: 176 start-page: 89 year: 2023 ident: ref_15 article-title: State of the Art in Structural Health Monitoring of Offshore and Marine Structures publication-title: Proc. Inst. Civ. Eng.-Marit. Eng. – ident: ref_42 – volume: 64 start-page: 212 year: 2021 ident: ref_4 article-title: A Study on Main Architectural and Structural Design Considerations of Contemporary Supertall Buildings publication-title: Arch. Sci. Rev. doi: 10.1080/00038628.2020.1753010 – volume: 18 start-page: 143 year: 2019 ident: ref_34 article-title: A Novel Deep Learning-Based Method for Damage Identification of Smart Building Structures publication-title: Struct. Health Monit. doi: 10.1177/1475921718804132 – volume: 138 start-page: 104249 year: 2022 ident: ref_26 article-title: Automated Location of Steel Truss Bridge Damage Using Machine Learning and Raw Strain Sensor Data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104249 – volume: 200 start-page: 110535 year: 2023 ident: ref_16 article-title: A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2023.110535 – ident: ref_2 doi: 10.3390/books978-3-7258-0226-5 – volume: 241 start-page: 112405 year: 2021 ident: ref_32 article-title: Multi-Component Deconvolution Interferometry for Data-Driven Prediction of Seismic Structural Response publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2021.112405 – volume: 48 start-page: 103954 year: 2022 ident: ref_35 article-title: Structural Health Monitoring of Civil Engineering Structures by Using the Internet of Things: A Review publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2021.103954 – volume: 7 start-page: 1247 year: 2014 ident: ref_43 article-title: Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature publication-title: Geosci. Model. Dev. doi: 10.5194/gmd-7-1247-2014 – volume: 139 start-page: 106600 year: 2020 ident: ref_28 article-title: An Innovative Continuous Bayesian Model Updating Method for Base-Isolated RC Buildings Using Vibration Monitoring Data publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2019.106600 – volume: 82 start-page: 68 year: 2019 ident: ref_14 article-title: Structure Health Monitoring Using Wireless Sensor Networks on Structural Elements publication-title: Ad. Hoc Netw. doi: 10.1016/j.adhoc.2018.06.011 – ident: ref_24 doi: 10.3390/buildings14092816 – volume: 30 start-page: 79 year: 2005 ident: ref_45 article-title: Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 42 start-page: 2667 year: 2007 ident: ref_5 article-title: A Proposal for the Classification of Structural Systems of Tall Buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.07.007 – volume: 78 start-page: 691 year: 1991 ident: ref_44 article-title: A Note on a General Definition of the Coefficient of Determination publication-title: Biometrika doi: 10.1093/biomet/78.3.691 – ident: ref_41 – volume: 100 start-page: 102280 year: 2023 ident: ref_36 article-title: The Value of Monitoring a Structural Health Monitoring System publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2022.102280 – volume: 314 start-page: 118368 year: 2024 ident: ref_6 article-title: Exploring the Effective Implementation of Population-Based SHM in Existing Buildings publication-title: Part II Damage-Feature Classif. Decis.-Making. Eng. Struct. – volume: 10 start-page: 540 year: 2001 ident: ref_19 article-title: Damage Identification Using Support Vector Machines publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/10/3/317 – ident: ref_38 – volume: 162 start-page: 73 year: 2017 ident: ref_10 article-title: Observation of Wind Fields over Different Terrains and Wind Effects on a Super-Tall Building during a Severe Typhoon and Verification of Wind Tunnel Predictions publication-title: J. Wind. Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2017.01.008 – volume: 96 start-page: 110385 year: 2024 ident: ref_17 article-title: Assessing the Dredging Vibrational Effects on Surrounding Structures: The Case of Port Nourishment in Bari publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2024.110385 – volume: 38 start-page: 448 year: 2022 ident: ref_37 article-title: Machine Learning for Structural Engineering: A State-of-the-Art Review publication-title: Structures doi: 10.1016/j.istruc.2022.02.003 – volume: 31 start-page: 1 year: 2024 ident: ref_12 article-title: The State-of-the-Art on Time-Frequency Signal Processing Techniques for High-Resolution Representation of Nonlinear Systems in Engineering publication-title: Arch. Comput. Methods Eng. – ident: ref_20 – volume: 177 start-page: 109175 year: 2022 ident: ref_11 article-title: Vibration Feature Extraction Using Signal Processing Techniques for Structural Health Monitoring: A Review publication-title: Mech. Syst. Signal Process doi: 10.1016/j.ymssp.2022.109175 – ident: ref_22 doi: 10.20944/preprints202308.1091.v1 – ident: ref_30 doi: 10.3390/s24020386 – volume: 185 start-page: 110060 year: 2021 ident: ref_13 article-title: Damage Detection and Localization of a Steel Truss Bridge Model Subjected to Impact and White Noise Excitations Using Empirical Wavelet Transform Neural Network Approach publication-title: Measurement doi: 10.1016/j.measurement.2021.110060 |
| SSID | ssj0000852254 |
| Score | 2.3571768 |
| Snippet | This study proposes a machine learning (ML) model to predict the displacement response of high-rise structures under various vertical and lateral loading... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3261 |
| SubjectTerms | Accuracy Algorithms Automation Bridges Buildings Datasets Deep learning Earthquakes FEA Finite element method Fourier transforms Genetic algorithms Genetic diversity High rise buildings high-rise structure Information management Lateral displacement Lateral loads Long short-term memory LSTM Machine learning Methods Multiple objective analysis Neural networks optimization Optimization techniques Real time Recurrent neural networks RNN Seismic engineering Sensors SHM Skyscrapers Structural health monitoring Structural integrity Tall buildings Typhoons Vertical loads Vibration Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RSxwxEB6KL9UHsVVx1ZY8FAqVxWw2u5t9vCuVo1ApVsG3kE0yohyreJbSf9-Zzd5xRagvfV0SdnbyTWZmM_kG4AO6SsYqEnhjgbmuS2STwlyagNqUIeJwK-3beT270l-vq-u1Vl9cE5bogZPiTssueBl9S67L6daja53s-CGaulRN4N1XmnYtmbpL1VcEVJ2OMUvK60-7scv0ggsbKWYp_nJEA1__8115C17_7B_c719uPl9zO2c7sD3Gi2KS5HwDr2L_FrbWWAR34WYynuOL74987MIbmPgx8MIyp4ZIN41Esl6eIm57wfUd-cXtIorpUmQxlA-IC_4Dz5xNgok7aP55qhRf7MHV2ZfLz7N87J-Qe62Kp7zxwWGhvERZO0-Zk_E-yIimLFB5Z1wjVYet0T7wsAKDUU0Vqogt-kjOfB82-vs-HoAItUFaBN10sdShqrrWoUQVVINRoZMZyKUyrR_JxbnHxdxSksH6t8_0n8Gn1ZSHxKzxr8FTXqHVQCbFHh4QVOwIFfsSVDL4yOtr2XRJOO_GGwj0iUyCZSeGXkfxqTIZHC8hYEebXtiyUBT8SKN1BicrWLws--H_kP0INhWFU6mM8Bg2CETxHYVDT937Afl_AMezDfk priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9yfdA--C2utpIHQVC2ZpPsbvbxWixF8CjVg_oUskmmFI-1uFfE_vWd2c0dpxU_XpcJ-ZpJfrOZ-Q1jL8GVIpYRlTcWkOtKAZkU5MIE0EaFCENW2odZdTTX70_L00QWTbkwG-_3Ct3xt20qDt1TPCJCDXR0tqoSYfeEbc1nx9PPVDwOr728VKIZXy1_3-6ne2eg5795CG-z25fdhfvx3S0WG7fM4b0xPqsfyAkpuOTL3uWy3fNXv1A3_tME7rO7CWvy6agcD9it2D1k2xsMhI_Y2TTFAPDjb_RkQ4cf_zhwyhIfBx-zlPho-dSEn3ecYkPyk_M-8v1Vt3wIPeAn9Pee-J44kX5g-9kYZd4_ZvPDd58OjvJUeyH3WhbLvPbBQSG9AFE5j16X8T6ICEYVIL0zrhayhcZoH0isgGBkXYYyQgM-IhB4wibd1y4-ZTxUBqJvdN1GpUNZto0DATLIGqIEJzImVjtjfSImp_oYC4sOCq2hvbGGGXu9bnIxsnL8SXiftnstSITawwfcJpvs06o2eIGjRITkdOPBNU609BFMpWQdMvaKlMWS2ePgvEvZCzhFItCyU4PdIbaVJmM7K32y6TzorSokAidhtM7Ym7WO_X3sz_5L-jm7IxFzjbGGO2yC2hJ3ETMt2xfJWq4B1tgYng priority: 102 providerName: Unpaywall |
| Title | Advanced Predictive Structural Health Monitoring in High-Rise Buildings Using Recurrent Neural Networks |
| URI | https://www.proquest.com/docview/3120610844 https://doi.org/10.3390/buildings14103261 https://doaj.org/article/3bdc0ec9081a49cfa9a0b3bdcf86327d |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2075-5309 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000852254 issn: 2075-5309 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_a9GHrw9gn89YFPQwGG6ayLNvywxjJaFYGMyFboHsysqQrheBkTUfpfz-dLWcdhe7RQrJl6e50uo_fAbxFnXGXOU-8LsFY5ikSS2HMlUWpUuuwy0r7VuWnS_n1LDvbg2rIhaGwykEmdoLarg3ZyI_TRPijhyspP21-xVQ1iryrQwkNHUor2I8dxNg-HAhCxhrBwfSkmi92VhevYHgClr17M_X3_eMmVJ_eUsCj12WSfw6oDsf_rrQ-hAe_242-udar1a3jaPYYHgU9kk36jX8Ce659Coe30AWfwfkk-PfZ_JLcMSTY2PcOL5awNlifgcR6rqYh7KJlFPcRLy62jk2HKbMurIAtyDJPWE6MAD38-KqPIN8-h-Xs5Mfn0zjUVYiNFMlVXBirMRGGI8-18TcqZYzlDlWaoDBa6YKLBksljaVuCVolisxmDks0zh_yL2DUrlv3EpjNFTpTyqJxqbRZ1pQaOQorCnQCNY-AD4tZmwA6TrUvVrW_fND613fWP4L3uyGbHnHjvs5T2qFdRwLL7hrWl-d14L06bazhfpZe-9GyNKhLzRtqRJWnorARvKP9rYml_eSMDpkJ_hcJHKueKP85r7cKFcHRQAJ14PVt_ZcyI_iwI4v_z_3V_S97DQ-FV6D6wMEjGHnycG-8AnTVjGFfzb6MA22POzOCf1pW88nPP9LBDeM |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHCiHqk81LW19aFWpVYTjOBvngKrdFrQUWKEtSNxSx_YgpFV2S6gQf66_rTOJs6VCoieukZ1M7HnaM98w9g5MJnzmkXl9ArEapEAiBbHQDpROnYe2Ku1wMhifqG-n2ekK-93XwlBaZa8TW0Xt5pbOyLfSRKLpEVqpz4ufMXWNotvVvoWGCa0V3HYLMRYKO_b99RWGcM323lfc7_dS7u4cfxnHoctAbJVMLuPcOgOJtALEwFiML7S1TnjQaQLSGm1yISsotLKOhiXgtMwzl3kowPoW-ABNwJpKVYHB39poZ3I0XZ7yoEODAqO669Q0LcRWFbpdN5Rgib5T8o9BbPsG3LYOG2z9V70w11dmNrth_nYfsYfBb-XDjtEesxVfP2EbN9AMn7KzYcgn4EcXdP1DipR_b_FpCduDdxVPvNMiNIWf15zyTOLpeeP5qCeZt2kMfEo3AYQdxQlABOdPuoz15hk7uZcVfs5W63ntXzDuBhq8LVRe-VS5LKsKAwKkkzl4CUZETPSLWdoAck69NmYlBju0_uWt9Y_Yx-WURYfwcdfgEe3QciCBc7cP5hdnZZD1Mq2cFUgleltGFRZMYURFD0EPUpm7iH2g_S1JhSBx1oRKCPxFAuMqhxo_h36y1BHb7FmgDLqlKf9KQsQ-Ldni_7S_vPtlb9n6-PjwoDzYm-y_Yg8kOm9d0uImW0VW8a_R-bqs3gQO5-zHfQvVHxVMSZQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgE9VDxFaAEfQEigaB3HSZwDQlvK0lJYVYVKvRnH9lSVVtmlKar61_h1zOSxFFUqp14jO3HG87Jn5hvGXoLNRMgCMm9IIFZ5CiRSEAvtQenUB2ir0r5O851D9fkoO1phv4daGEqrHHRiq6j93NEd-ShNJJoeoZUaQZ8Wsb89eb_4GVMHKYq0Du00OhbZCxfneHxr3u1u416_knLy8fuHnbjvMBA7JZOzuHDeQiKdAJFbh2cL7ZwXAXSagHRW20LICkqtnKdhCXgti8xnAUpwoQU9QPV_qyAUd6pSn3xa3u-gK4OiorpAapqWYlT1fa4bSq1Eryn5xxS2HQOu2oU1dudXvbAX53Y2u2T4JvfYeu-x8nHHYvfZSqgfsLVLOIYP2fG4zyTg-6cU-CEVyr-1yLSE6sG7Wife6Q-awk9qThkm8cFJE_jWsGTeJjDwA4oBEGoUJ-gQnD_tctWbR-zwRuj7mK3W8zo8YdznGoIrVVGFVPksq0oLAqSXBQQJVkRMDMQ0roc3py4bM4PHHKK_uUL_iL1ZTll02B7XDd6iHVoOJFju9sH89Nj0Um7SyjuBq0Q_y6rSgS2tqOgh6DyVhY_Ya9pfQ8oDF-dsXwOBv0gwXGas8XPoIUsdsc2BBUyvVRrzVwYi9nbJFv9f-9PrX_aC3UZRMl92p3sb7K5Er63LVtxkq8gp4Rl6XWfV85a9Oftx0_L0BzH6Ry4 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA9yfdA--C2utpIHQVC2ZpPsbvbxWixF8CjVg_oUskmmFI-1uFfE_vWd2c0dpxU_XpcJ-ZpJfrOZ-Q1jL8GVIpYRlTcWkOtKAZkU5MIE0EaFCENW2odZdTTX70_L00QWTbkwG-_3Ct3xt20qDt1TPCJCDXR0tqoSYfeEbc1nx9PPVDwOr728VKIZXy1_3-6ne2eg5795CG-z25fdhfvx3S0WG7fM4b0xPqsfyAkpuOTL3uWy3fNXv1A3_tME7rO7CWvy6agcD9it2D1k2xsMhI_Y2TTFAPDjb_RkQ4cf_zhwyhIfBx-zlPho-dSEn3ecYkPyk_M-8v1Vt3wIPeAn9Pee-J44kX5g-9kYZd4_ZvPDd58OjvJUeyH3WhbLvPbBQSG9AFE5j16X8T6ICEYVIL0zrhayhcZoH0isgGBkXYYyQgM-IhB4wibd1y4-ZTxUBqJvdN1GpUNZto0DATLIGqIEJzImVjtjfSImp_oYC4sOCq2hvbGGGXu9bnIxsnL8SXiftnstSITawwfcJpvs06o2eIGjRITkdOPBNU609BFMpWQdMvaKlMWS2ePgvEvZCzhFItCyU4PdIbaVJmM7K32y6TzorSokAidhtM7Ym7WO_X3sz_5L-jm7IxFzjbGGO2yC2hJ3ETMt2xfJWq4B1tgYng |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+Predictive+Structural+Health+Monitoring+in+High-Rise+Buildings+Using+Recurrent+Neural+Networks&rft.jtitle=Buildings+%28Basel%29&rft.au=Ghaffari%2C+Abbas&rft.au=Shahbazi%2C+Yaser&rft.au=Mokhtari+Kashavar%2C+Mohsen&rft.au=Fotouhi%2C+Mohammad&rft.date=2024-10-01&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=10&rft.spage=3261&rft_id=info:doi/10.3390%2Fbuildings14103261&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_buildings14103261 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |