Sustained Release of Doxorubicin through Semi-Interpenetrating Polymer Network-Stabilized Micelles
Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of...
Saved in:
Published in | Macromolecular research Vol. 31; no. 11; pp. 1105 - 1111 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Polymer Society of Korea
01.11.2023
Springer Springer Nature B.V 한국고분자학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-5032 2092-7673 |
DOI | 10.1007/s13233-023-00191-0 |
Cover
Abstract | Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents.
Graphical Abstract
This study involved the fabrication of semi-interpenetrating polymer network (sIPN)-stabilized micelles using an FDAapproved surfactant and loading anti-cancer drug inside. The stability of the resulting stabilized micelle and the prolonged release of the drug, doxorubicin, were evaluated. The findings underscore the potential of sIPN-stabilized micelles as an effective drug delivery platform, capable of providing sustained release and improving therapeutic outcomes for anticancer drugs. |
---|---|
AbstractList | Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents.
Graphical Abstract
This study involved the fabrication of semi-interpenetrating polymer network (sIPN)-stabilized micelles using an FDAapproved surfactant and loading anti-cancer drug inside. The stability of the resulting stabilized micelle and the prolonged release of the drug, doxorubicin, were evaluated. The findings underscore the potential of sIPN-stabilized micelles as an effective drug delivery platform, capable of providing sustained release and improving therapeutic outcomes for anticancer drugs. Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. KCI Citation Count: 0 Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. Graphical |
Audience | Academic |
Author | Li, Chen Jo, Min-Hee Kwak, Minseok Hwang, Juyoung Park, Sun Joo |
Author_xml | – sequence: 1 givenname: Juyoung surname: Hwang fullname: Hwang, Juyoung organization: Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Department of Chemistry, Pukyong National University – sequence: 2 givenname: Min-Hee surname: Jo fullname: Jo, Min-Hee organization: Department of Chemistry, Pukyong National University – sequence: 3 givenname: Chen surname: Li fullname: Li, Chen organization: School of Materials Science and Engineering, Guangdong Province, Dongguan University of Technology, Songshan Lake – sequence: 4 givenname: Sun Joo surname: Park fullname: Park, Sun Joo organization: Department of Chemistry, Pukyong National University – sequence: 5 givenname: Minseok orcidid: 0000-0002-0480-1804 surname: Kwak fullname: Kwak, Minseok email: mkwak@pukyong.ac.kr organization: Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Department of Chemistry, Pukyong National University, Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003016023$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kdFrFDEQxoNU8Fr9B3xa8E3YOkl2N5vHo2o9qFp69Tns5ibb9PaSM8li619vrisUpZQQBobvN3wz3zE5ct4hIW8pnFIA8SFSzjgvgeUPVNISXpAFA8lK0Qh-RBa0lm1ZA2evyHGMtwAN5ZQuSL-eYuqsw01xhSN2EQtvio_-zoept9q6It0EPw03xRp3tly5hGGPDlPoknVDcenH-x2G4humXz5sy3Xqejva33neV6txHDG-Ji9NN0Z887eekB-fP12ffSkvvp-vzpYXpa4YTaVoqak16xsAbaQwmmlZ61Zw2mwaJjTUWrRNTUH3Ejasq1rBqgY4SsOYyKudkPfzXBeM2mqrfGcf6uDVNqjl1fVK0XyBpmEH8btZvA_-54QxqVs_BZf9KdZK4LJtRfWoGroRlXXG5731zkatlkJwqGuoZFadPqHKb5NPpnNQxub-P0A7Azr4GAMapW3K9_Qug3bMLtUhVTWnqnKq6iFVdfDN_kP3we66cP88xGcoZrEbMDwu-wz1B6_Ps_Q |
CitedBy_id | crossref_primary_10_1007_s13233_023_00209_7 crossref_primary_10_1002_marc_202400480 crossref_primary_10_1007_s10924_024_03439_7 |
Cites_doi | 10.1007/s12039-018-1446-z 10.1002/advs.202200872 10.1186/s13045-021-01096-0 10.1038/s41419-021-03614-x 10.2174/092986709788803312 10.3389/fbioe.2021.705886 10.3390/pharmaceutics12030264 10.3390/pharmaceutics15030893 10.1016/j.biopha.2021.112373 10.1021/acs.nanolett.0c00495 10.1038/s41551-018-0234-x 10.1016/j.jiec.2019.08.001 10.3389/fonc.2023.1183059 10.1038/s41392-017-0004-3 10.1186/s12951-022-01458-x 10.3389/fbioe.2021.781982 10.1038/s41578-020-00269-6 10.1371/journal.pone.0049277 10.1039/D2RA07863E 10.1186/s12951-018-0392-8 10.1360/042004-71 10.1038/s41573-020-0090-8 10.1371/journal.pone.0185654 10.1016/j.bcp.2010.07.036 10.1111/jphp.12539 10.1016/j.jiec.2019.01.007 10.3389/fonc.2023.1027254 10.1039/c1sm05708a 10.3390/mi13101632 10.3390/cells12040659 10.1080/15421406.2019.1651052 10.3390/molecules26195905 10.3389/fonc.2022.960317 10.1186/s12951-021-01062-5 10.1007/s13233-022-0087-8 10.1111/j.2042-7158.2012.01567.x 10.1016/j.biopha.2016.11.121 10.1038/s41551-021-00698-w 10.3390/molecules23040826 10.3390/ma3021420 10.1007/s13233-019-7100-x |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. COPYRIGHT 2023 Springer |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: COPYRIGHT 2023 Springer |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s13233-023-00191-0 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2092-7673 |
EndPage | 1111 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10326620 A773055049 10_1007_s13233_023_00191_0 |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: NRF-2022R1A5A8023404; RS-2023-00241311 funderid: http://dx.doi.org/10.13039/501100003725 |
GroupedDBID | -EM .UV 06D 0R~ 0VY 1N0 203 2JY 2KG 2VQ 3-Y 30V 4.4 406 408 40D 53G 5GY 67Z 8N- 8UJ 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HZ~ I0C IAO IHR IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MZR NPVJJ NQJWS NU0 O9- O9J P9N PT4 R9I RIG RLLFE ROL RSV S1Z S27 S3B SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7U Z7V Z7X Z7Y ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR CITATION AEIIB 85H AAFGU AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC SQXTU Z5O Z7R Z7S |
ID | FETCH-LOGICAL-c421t-781f5c2b600cf97fc2c95c87316d627c05c786510cb90d2a48724603e9f227503 |
IEDL.DBID | AGYKE |
ISSN | 1598-5032 |
IngestDate | Fri Feb 23 03:15:40 EST 2024 Wed Sep 17 23:58:00 EDT 2025 Tue Jun 17 22:01:27 EDT 2025 Tue Jun 10 21:02:49 EDT 2025 Thu Apr 24 23:01:39 EDT 2025 Tue Jul 29 01:58:51 EDT 2025 Fri Feb 21 02:41:44 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Drug efficacy Chemotherapy Hydrophobic drugs Drug delivery system HeLa cell |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c421t-781f5c2b600cf97fc2c95c87316d627c05c786510cb90d2a48724603e9f227503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0480-1804 |
PQID | 2890398874 |
PQPubID | 2044280 |
PageCount | 7 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10326620 proquest_journals_2890398874 gale_infotracmisc_A773055049 gale_infotracacademiconefile_A773055049 crossref_citationtrail_10_1007_s13233_023_00191_0 crossref_primary_10_1007_s13233_023_00191_0 springer_journals_10_1007_s13233_023_00191_0 |
PublicationCentury | 2000 |
PublicationDate | 2023-11-01 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Macromolecular research |
PublicationTitleAbbrev | Macromol. Res |
PublicationYear | 2023 |
Publisher | The Polymer Society of Korea Springer Springer Nature B.V 한국고분자학회 |
Publisher_xml | – name: The Polymer Society of Korea – name: Springer – name: Springer Nature B.V – name: 한국고분자학회 |
References | MitchellMJNat. Rev. Drug Discov.2021201011:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-833277608 GonçalvesCPereiraPGamaMMaterials20103142010.3390/ma30214205513474 TilsedCMFront. Oncol.2022121:CAS:528:DC%2BB3sXhsVWmsr%2FK10.3389/fonc.2022.960317359655199372369 MeredithAMDassCRJ. Pharm. Pharmacol.2016687291:CAS:528:DC%2BC28XktlKms7Y%3D10.1111/jphp.1253926989862 ChengZJ. Hematol. Oncol.2021148510.1186/s13045-021-01096-0340591008165984 TacarOSriamornsakPDassCRJ. Pharm. Pharmacol.2013651571:CAS:528:DC%2BC3sXhslGitb4%3D10.1111/j.2042-7158.2012.01567.x23278683 HwangJMacromol. Res.2019276571:CAS:528:DC%2BC1MXosFSms7w%3D10.1007/s13233-019-7100-x C.Y. Zhao et al., Molecules. 23, 826 (2018). ZhuBZhangHYuLBiomed. Pharmacother.2017865471:CAS:528:DC%2BC28XitFOhs7nJ10.1016/j.biopha.2016.11.12128024291 LeeMKPharmaceutics2020122641:CAS:528:DC%2BB3cXhtleqtrzE10.3390/pharmaceutics12030264321831857151102 SenapatiSSignal Transduct. Target. Ther.20183710.1038/s41392-017-0004-3295602835854578 WangDZhangXXuBFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.781982348692938640247 ParkJSMacromol. Res.2022308111:CAS:528:DC%2BB38XhvVSgtr%2FJ10.1007/s13233-022-0087-8 NirmalaMJRSC Adv.20231386061:CAS:528:DC%2BB3sXltlGksrs%3D10.1039/D2RA07863E3692630410013677 OktaviaLJ. Ind. Eng. Chem.201973871:CAS:528:DC%2BC1MXivFSltLo%3D10.1016/j.jiec.2019.01.007 Y. Xie et al., Front. Oncol. 13, 1027254 (2023) SoeriawidjajaBFMol. Cryst. Liquid Cryst.2019687531:CAS:528:DC%2BC1MXitVSqu7vN10.1080/15421406.2019.1651052 ChristidiEBrunhamLRCell Death Discov.2021123391:CAS:528:DC%2BB3MXht1CjsL%2FE10.1038/s41419-021-03614-x GaoJGeWLiJSci. China, Ser. B: Chem.2005484701:CAS:528:DC%2BD2MXht1yks7nK10.1360/042004-71 AlossKHamarPPharmaceutics2023158931:CAS:528:DC%2BB3sXnsVCgtb8%3D10.3390/pharmaceutics150308933698675410054554 KciukMCells2023126591:CAS:528:DC%2BB3sXkvV2isLk%3D10.3390/cells12040659368313269954613 BienSBiochem. Pharmacol.20108014661:CAS:528:DC%2BC3cXht1WltrbJ10.1016/j.bcp.2010.07.03620709028 BaiXMicromachines202213163210.3390/mi13101632 ParkSHAdv. Sci.2022910.1002/advs.202200872 KangMJ. Ind. Eng. Chem.2019802391:CAS:528:DC%2BC1MXhs1eks77O10.1016/j.jiec.2019.08.001 ManzariMTNat. Rev. Mater.202163511:CAS:528:DC%2BB3MXht1eqtbjK10.1038/s41578-020-00269-6349505128691416 PatraJKJ. Nanobiotechnol.2018167110.1186/s12951-018-0392-8 LuYNat. Biomed. Eng201823181:CAS:528:DC%2BC1MXhtFensr7O10.1038/s41551-018-0234-x309364556553490 U. Anand et al., Genes Dis. 10, 1367 (2022). LinJPLoS ONE201271:CAS:528:DC%2BC38Xhslehsb7F10.1371/journal.pone.0049277231451403492268 LagesEBBiomed. Pharmacother.20211441:CAS:528:DC%2BB38Xkt1Wgu7c%3D10.1016/j.biopha.2021.11237334794238 ChenZJNano Lett.20202041771:CAS:528:DC%2BB3cXpsFGmtLk%3D10.1021/acs.nanolett.0c0049532431154 VargasonAMAnselmoACMitragotriSNat. Biomed. Eng2021595110.1038/s41551-021-00698-w33795852 WangHJ. Nanobiotechnol.2021193221:CAS:528:DC%2BB38Xjs1yntb4%3D10.1186/s12951-021-01062-5 XieYFront. Oncol.20231310272541:CAS:528:DC%2BB3sXhsVGht73K10.3389/fonc.2023.1027254368603099969147 FukudaAPLoS ONE20171210.1371/journal.pone.0185654289539365617225 SoodAKAggarwalMJ. Chem. Sci.201813011:CAS:528:DC%2BC1cXmsFyqurs%3D10.1007/s12039-018-1446-z PalazzesiFCalvaresiMZerbettoFSoft Matter2011791481:CAS:528:DC%2BC3MXhtFyqu7rN10.1039/c1sm05708a HwangJJ. Nanobiotechnol.2022202451:CAS:528:DC%2BB38Xhs1Knt7vF10.1186/s12951-022-01458-x NakhaeiPFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.705886345682988459376 AdepuSRamakrishnaSMolecules20212659051:CAS:528:DC%2BB3MXitlCltLzN10.3390/molecules26195905346414478512302 CarvalhoCCurr. Med. Chem.20091632671:CAS:528:DC%2BD1MXpvVymsro%3D10.2174/09298670978880331219548866 X Bai (191_CR6) 2022; 13 EB Lages (191_CR17) 2021; 144 C Gonçalves (191_CR22) 2010; 3 J Hwang (191_CR26) 2019; 27 AK Sood (191_CR28) 2018; 130 CM Tilsed (191_CR3) 2022; 12 AM Meredith (191_CR12) 2016; 68 J Hwang (191_CR37) 2022; 20 J Gao (191_CR30) 2005; 48 SH Park (191_CR35) 2022; 9 B Zhu (191_CR15) 2017; 86 L Oktavia (191_CR33) 2019; 73 BF Soeriawidjaja (191_CR32) 2019; 687 191_CR34 C Carvalho (191_CR9) 2009; 16 P Nakhaei (191_CR39) 2021; 9 JK Patra (191_CR21) 2018; 16 MJ Nirmala (191_CR23) 2023; 13 191_CR1 191_CR2 ZJ Chen (191_CR19) 2020; 20 S Bien (191_CR42) 2010; 80 F Palazzesi (191_CR29) 2011; 7 M Kciuk (191_CR11) 2023; 12 AM Vargason (191_CR25) 2021; 5 K Aloss (191_CR16) 2023; 15 H Wang (191_CR5) 2021; 19 Z Cheng (191_CR4) 2021; 14 MT Manzari (191_CR8) 2021; 6 Y Lu (191_CR27) 2018; 2 S Senapati (191_CR24) 2018; 3 D Wang (191_CR18) 2021; 9 A Fukuda (191_CR13) 2017; 12 MK Lee (191_CR40) 2020; 12 O Tacar (191_CR10) 2013; 65 E Christidi (191_CR41) 2021; 12 S Adepu (191_CR7) 2021; 26 J Lin (191_CR14) 2012; 7 MJ Mitchell (191_CR20) 2021; 20 JS Park (191_CR38) 2022; 30 M Kang (191_CR31) 2019; 80 Y Xie (191_CR36) 2023; 13 |
References_xml | – reference: LeeMKPharmaceutics2020122641:CAS:528:DC%2BB3cXhtleqtrzE10.3390/pharmaceutics12030264321831857151102 – reference: PatraJKJ. Nanobiotechnol.2018167110.1186/s12951-018-0392-8 – reference: VargasonAMAnselmoACMitragotriSNat. Biomed. Eng2021595110.1038/s41551-021-00698-w33795852 – reference: ChenZJNano Lett.20202041771:CAS:528:DC%2BB3cXpsFGmtLk%3D10.1021/acs.nanolett.0c0049532431154 – reference: ZhuBZhangHYuLBiomed. Pharmacother.2017865471:CAS:528:DC%2BC28XitFOhs7nJ10.1016/j.biopha.2016.11.12128024291 – reference: SenapatiSSignal Transduct. Target. Ther.20183710.1038/s41392-017-0004-3295602835854578 – reference: ChristidiEBrunhamLRCell Death Discov.2021123391:CAS:528:DC%2BB3MXht1CjsL%2FE10.1038/s41419-021-03614-x – reference: LagesEBBiomed. Pharmacother.20211441:CAS:528:DC%2BB38Xkt1Wgu7c%3D10.1016/j.biopha.2021.11237334794238 – reference: HwangJJ. Nanobiotechnol.2022202451:CAS:528:DC%2BB38Xhs1Knt7vF10.1186/s12951-022-01458-x – reference: AlossKHamarPPharmaceutics2023158931:CAS:528:DC%2BB3sXnsVCgtb8%3D10.3390/pharmaceutics150308933698675410054554 – reference: NakhaeiPFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.705886345682988459376 – reference: WangHJ. Nanobiotechnol.2021193221:CAS:528:DC%2BB38Xjs1yntb4%3D10.1186/s12951-021-01062-5 – reference: PalazzesiFCalvaresiMZerbettoFSoft Matter2011791481:CAS:528:DC%2BC3MXhtFyqu7rN10.1039/c1sm05708a – reference: CarvalhoCCurr. Med. Chem.20091632671:CAS:528:DC%2BD1MXpvVymsro%3D10.2174/09298670978880331219548866 – reference: OktaviaLJ. Ind. Eng. Chem.201973871:CAS:528:DC%2BC1MXivFSltLo%3D10.1016/j.jiec.2019.01.007 – reference: BaiXMicromachines202213163210.3390/mi13101632 – reference: SoodAKAggarwalMJ. Chem. Sci.201813011:CAS:528:DC%2BC1cXmsFyqurs%3D10.1007/s12039-018-1446-z – reference: KangMJ. Ind. Eng. Chem.2019802391:CAS:528:DC%2BC1MXhs1eks77O10.1016/j.jiec.2019.08.001 – reference: MitchellMJNat. Rev. Drug Discov.2021201011:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-833277608 – reference: TilsedCMFront. Oncol.2022121:CAS:528:DC%2BB3sXhsVWmsr%2FK10.3389/fonc.2022.960317359655199372369 – reference: GonçalvesCPereiraPGamaMMaterials20103142010.3390/ma30214205513474 – reference: SoeriawidjajaBFMol. Cryst. Liquid Cryst.2019687531:CAS:528:DC%2BC1MXitVSqu7vN10.1080/15421406.2019.1651052 – reference: FukudaAPLoS ONE20171210.1371/journal.pone.0185654289539365617225 – reference: KciukMCells2023126591:CAS:528:DC%2BB3sXkvV2isLk%3D10.3390/cells12040659368313269954613 – reference: LinJPLoS ONE201271:CAS:528:DC%2BC38Xhslehsb7F10.1371/journal.pone.0049277231451403492268 – reference: U. Anand et al., Genes Dis. 10, 1367 (2022). – reference: LuYNat. Biomed. Eng201823181:CAS:528:DC%2BC1MXhtFensr7O10.1038/s41551-018-0234-x309364556553490 – reference: TacarOSriamornsakPDassCRJ. Pharm. Pharmacol.2013651571:CAS:528:DC%2BC3sXhslGitb4%3D10.1111/j.2042-7158.2012.01567.x23278683 – reference: AdepuSRamakrishnaSMolecules20212659051:CAS:528:DC%2BB3MXitlCltLzN10.3390/molecules26195905346414478512302 – reference: WangDZhangXXuBFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.781982348692938640247 – reference: GaoJGeWLiJSci. China, Ser. B: Chem.2005484701:CAS:528:DC%2BD2MXht1yks7nK10.1360/042004-71 – reference: Y. Xie et al., Front. Oncol. 13, 1027254 (2023) – reference: ChengZJ. Hematol. Oncol.2021148510.1186/s13045-021-01096-0340591008165984 – reference: NirmalaMJRSC Adv.20231386061:CAS:528:DC%2BB3sXltlGksrs%3D10.1039/D2RA07863E3692630410013677 – reference: XieYFront. Oncol.20231310272541:CAS:528:DC%2BB3sXhsVGht73K10.3389/fonc.2023.1027254368603099969147 – reference: ParkJSMacromol. Res.2022308111:CAS:528:DC%2BB38XhvVSgtr%2FJ10.1007/s13233-022-0087-8 – reference: BienSBiochem. Pharmacol.20108014661:CAS:528:DC%2BC3cXht1WltrbJ10.1016/j.bcp.2010.07.03620709028 – reference: MeredithAMDassCRJ. Pharm. Pharmacol.2016687291:CAS:528:DC%2BC28XktlKms7Y%3D10.1111/jphp.1253926989862 – reference: C.Y. Zhao et al., Molecules. 23, 826 (2018). – reference: HwangJMacromol. Res.2019276571:CAS:528:DC%2BC1MXosFSms7w%3D10.1007/s13233-019-7100-x – reference: ManzariMTNat. Rev. Mater.202163511:CAS:528:DC%2BB3MXht1eqtbjK10.1038/s41578-020-00269-6349505128691416 – reference: ParkSHAdv. Sci.2022910.1002/advs.202200872 – volume: 130 start-page: 1 year: 2018 ident: 191_CR28 publication-title: J. Chem. Sci. doi: 10.1007/s12039-018-1446-z – volume: 9 year: 2022 ident: 191_CR35 publication-title: Adv. Sci. doi: 10.1002/advs.202200872 – volume: 14 start-page: 85 year: 2021 ident: 191_CR4 publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-021-01096-0 – volume: 12 start-page: 339 year: 2021 ident: 191_CR41 publication-title: Cell Death Discov. doi: 10.1038/s41419-021-03614-x – volume: 16 start-page: 3267 year: 2009 ident: 191_CR9 publication-title: Curr. Med. Chem. doi: 10.2174/092986709788803312 – volume: 9 year: 2021 ident: 191_CR39 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.705886 – volume: 12 start-page: 264 year: 2020 ident: 191_CR40 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12030264 – volume: 15 start-page: 893 year: 2023 ident: 191_CR16 publication-title: Pharmaceutics doi: 10.3390/pharmaceutics15030893 – volume: 144 year: 2021 ident: 191_CR17 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2021.112373 – volume: 20 start-page: 4177 year: 2020 ident: 191_CR19 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00495 – volume: 2 start-page: 318 year: 2018 ident: 191_CR27 publication-title: Nat. Biomed. Eng doi: 10.1038/s41551-018-0234-x – volume: 80 start-page: 239 year: 2019 ident: 191_CR31 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.08.001 – ident: 191_CR34 doi: 10.3389/fonc.2023.1183059 – volume: 3 start-page: 7 year: 2018 ident: 191_CR24 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-017-0004-3 – volume: 20 start-page: 245 year: 2022 ident: 191_CR37 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-022-01458-x – volume: 9 year: 2021 ident: 191_CR18 publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2021.781982 – volume: 6 start-page: 351 year: 2021 ident: 191_CR8 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-00269-6 – volume: 7 year: 2012 ident: 191_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0049277 – volume: 13 start-page: 8606 year: 2023 ident: 191_CR23 publication-title: RSC Adv. doi: 10.1039/D2RA07863E – volume: 16 start-page: 71 year: 2018 ident: 191_CR21 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-018-0392-8 – ident: 191_CR1 – volume: 48 start-page: 470 year: 2005 ident: 191_CR30 publication-title: Sci. China, Ser. B: Chem. doi: 10.1360/042004-71 – volume: 20 start-page: 101 year: 2021 ident: 191_CR20 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 – volume: 12 year: 2017 ident: 191_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0185654 – volume: 80 start-page: 1466 year: 2010 ident: 191_CR42 publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2010.07.036 – volume: 68 start-page: 729 year: 2016 ident: 191_CR12 publication-title: J. Pharm. Pharmacol. doi: 10.1111/jphp.12539 – volume: 73 start-page: 87 year: 2019 ident: 191_CR33 publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2019.01.007 – volume: 13 start-page: 1027254 year: 2023 ident: 191_CR36 publication-title: Front. Oncol. doi: 10.3389/fonc.2023.1027254 – volume: 7 start-page: 9148 year: 2011 ident: 191_CR29 publication-title: Soft Matter doi: 10.1039/c1sm05708a – volume: 13 start-page: 1632 year: 2022 ident: 191_CR6 publication-title: Micromachines doi: 10.3390/mi13101632 – volume: 12 start-page: 659 year: 2023 ident: 191_CR11 publication-title: Cells doi: 10.3390/cells12040659 – volume: 687 start-page: 53 year: 2019 ident: 191_CR32 publication-title: Mol. Cryst. Liquid Cryst. doi: 10.1080/15421406.2019.1651052 – volume: 26 start-page: 5905 year: 2021 ident: 191_CR7 publication-title: Molecules doi: 10.3390/molecules26195905 – volume: 12 year: 2022 ident: 191_CR3 publication-title: Front. Oncol. doi: 10.3389/fonc.2022.960317 – volume: 19 start-page: 322 year: 2021 ident: 191_CR5 publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-021-01062-5 – volume: 30 start-page: 811 year: 2022 ident: 191_CR38 publication-title: Macromol. Res. doi: 10.1007/s13233-022-0087-8 – volume: 65 start-page: 157 year: 2013 ident: 191_CR10 publication-title: J. Pharm. Pharmacol. doi: 10.1111/j.2042-7158.2012.01567.x – volume: 86 start-page: 547 year: 2017 ident: 191_CR15 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.11.121 – volume: 5 start-page: 951 year: 2021 ident: 191_CR25 publication-title: Nat. Biomed. Eng doi: 10.1038/s41551-021-00698-w – ident: 191_CR2 doi: 10.3390/molecules23040826 – volume: 3 start-page: 1420 year: 2010 ident: 191_CR22 publication-title: Materials doi: 10.3390/ma3021420 – volume: 27 start-page: 657 year: 2019 ident: 191_CR26 publication-title: Macromol. Res. doi: 10.1007/s13233-019-7100-x |
SSID | ssj0061311 |
Score | 2.3398454 |
Snippet | Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated... |
SourceID | nrf proquest gale crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1105 |
SubjectTerms | Anticancer properties Apoptosis Cancer Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Chemotherapy Complex Fluids and Microfluidics Doxorubicin Drug delivery systems Drugs Flow cytometry Health aspects Interpenetrating networks Micelles Nanochemistry Nanotechnology Necrosis Pharmacology Physical Chemistry Polyimide resins Polymer industry Polymer Sciences Polymers Side effects Sodium dodecylbenzenesulfonate Soft and Granular Matter Stability analysis Structural stability Sustained release System effectiveness Vehicles 고분자공학 |
Title | Sustained Release of Doxorubicin through Semi-Interpenetrating Polymer Network-Stabilized Micelles |
URI | https://link.springer.com/article/10.1007/s13233-023-00191-0 https://www.proquest.com/docview/2890398874 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003016023 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Macromolecular Research, 2023, 31(11), , pp.1105-1111 |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2092-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: AFBBN dateStart: 20020201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2092-7673 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: AGYKE dateStart: 20020101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2092-7673 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061311 issn: 1598-5032 databaseCode: U2A dateStart: 20020201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-864P2wWq19PQsCwo-6JZk8_149MOqtIj1oD4tyWS3lKuJ5O5A-9c7k2w8r6jQh5DAbjab3dn5YGZ-A_DKGpvlXhlKIpdChgEmknheKU2SWhuqAiPLHt3Ts_hkGn64iC5cUti8j3bvXZItp14luwUqYJ8jXaSXkBE8gI2IDZQhbEzeff141HPgmCFkWpzULJWRFyiXLPP3UdYEkmPLg6qxayrnLS9pK3yOt2DaT7uLOZntLxfFPt7cQnS86389godOGxWTjnwewz1TbcP9g74I3DZs_oFX-ASK8y7dypTiM4krEoCituKw_lE3y4Jd9MKV_RHnNILsAhqJmbbQvNWl-FRf__xmGnHWxZ5L0nQ5NveGxju9al0I86cwPT76cnAiXZEGiaHyFzJJfRuhKkhxQpslFhVmEaZcEKuMVYJehEka08nHgmhA5WQgqTD2ApNZxdjywQ4Mq7oyuyCsjwazPCr83IYmiImVZLSbGNBjmcTlCPx-pzQ6BHMupHGtV9jLvJaa1lK3a6m9Ebz5_c73Dr_jv71fMwFoPtw0MuYuR4HmxzBZepIkjJBGVtUIxms9aVtwrfklkZCe4ZVm_G6-X9Z61miyUt5rBjGMY0WfG_ckph3rmGv2_AYZ8f5wBG97ilk1_3vyz-7W_Tk8UEx0bV7lGIaLZmlekIK1KPbcedqDwVRNfgGitxg7 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7mHwMGAw0VEgEkg8gKfEcb4eq7HRsbVCbJXGkxVf7GnqSFDaSrC_nnPiUDoB0h6iRLLjOPb5PnR3vwN4Y7TJcr8QjMhFMRFiwojnFUwnqTGCK4yM9eiOJ_FoKj5dRBcuKWzeRbt3LsmGU6-S3UIeWp8jXaSXkBG8AZsiSFPRg83hx68nhx0Hji2ETIOTmqUs8kPukmX-PsqaQHJseaOszZrKectL2gifo4cw7abdxpzM9pcLtY83txAd7_pfj2DbaaPesCWfx3BPlzuwddAVgduBB3_gFT4BddamW-nC-0LiigSgVxnvQ_WjqpfKuug9V_bHO6MRWBvQSMy0geYtL73P1fXPb7r2Jm3sOSNN18bm3tB446vGhTB_CtOjw_ODEXNFGhgKHixYkgYmQq5IcUKTJQY5ZhGmtiBWEfME_QiTNKaTj4pogOdkIHER-6HODLfY8uEu9Mqq1M_AMwFqzPJIBbkROoyJlWS0mxjSY5HERR-CbqckOgRzW0jjWq6wl-1aSlpL2ayl9Pvw7vc731v8jv_2fmsJQNrDTSNj7nIUaH4WJksOk8QipJFV1YfBWk_aFlxrfk0kJGd4JS1-t71fVnJWS7JSjqUFMYxjTp8bdCQmHeuYS-v5DTPi_aIP7zuKWTX_e_J7d-v-CrZG5-NTeXo8OXkO97klwCbHcgC9Rb3UL0jZWqiX7mz9AmPrGkM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9ugh8PQ6fidVcNKPigYW2SJu3jZdtlU3cZzgt7C-1pMsZmO7o7UP96z-mHd1em4ENpIWkacnK-enJ-h7G3wYcsj0otcLsUQiuwAmVeKbxNQ9CygCRQRPdwZvbn-uNJcnIji7897T6EJLucBkJpqhbbl2XYXia-Kako_ogX2ijoEK-xuxp1NblfczkZZLEhMJkWMTVLRRIp2afN3D7GimrqBfRa1YQV4_OPeGmrhqaP2EZvP_JJR_DH7I6vNtn9naFs2yZ7eANh8AkrjrsEKV_yL6hgUGXxOvDd-nvdXBcUVOd9oR5-jCOI7ggiir8WTLc65Uf1xY9vvuGz7rS4QNuUTtP-xPEOz9qf_ldP2Xy693VnX_RlFQRoGS-ETeOQgCzQ1IGQ2QASsgRSKmFVGmkhSsCmBnkVCqSazNGlkdpEymdBEhq8esbWq7ryzxkPMXjI8qSI86C9Msj8Ga46KHwsrSlHLB5W1EGPOU6lLy7cEi2ZqOCQCq6lgotG7P3vdy47xI1_9n5HhHLEjjgy5H1WAc6PgK3cxFrCNEM_aMTGKz2RLLDS_AZJ7c7hzBHiNt1Pa3feOPQrDhzBDhoj8XPjYSu4ntmvHMVqVYbSWo_Yh2F7LJv_PvkX_9f9Nbt3tDt1nw9mn7bYA6p73yVFjtn6orn2L9E6WhSvWgb4BbbZAZs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+Release+of+Doxorubicin+through+Semi-Interpenetrating+Polymer+Network-Stabilized+Micelles&rft.jtitle=Macromolecular+research&rft.au=Hwang%2C+Juyoung&rft.au=Jo%2C+Min-Hee&rft.au=Li%2C+Chen&rft.au=Park%2C+Sun+Joo&rft.date=2023-11-01&rft.pub=The+Polymer+Society+of+Korea&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=31&rft.issue=11&rft.spage=1105&rft.epage=1111&rft_id=info:doi/10.1007%2Fs13233-023-00191-0&rft.externalDocID=10_1007_s13233_023_00191_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon |