Sustained Release of Doxorubicin through Semi-Interpenetrating Polymer Network-Stabilized Micelles

Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of...

Full description

Saved in:
Bibliographic Details
Published inMacromolecular research Vol. 31; no. 11; pp. 1105 - 1111
Main Authors Hwang, Juyoung, Jo, Min-Hee, Li, Chen, Park, Sun Joo, Kwak, Minseok
Format Journal Article
LanguageEnglish
Published Seoul The Polymer Society of Korea 01.11.2023
Springer
Springer Nature B.V
한국고분자학회
Subjects
Online AccessGet full text
ISSN1598-5032
2092-7673
DOI10.1007/s13233-023-00191-0

Cover

Abstract Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. Graphical Abstract This study involved the fabrication of semi-interpenetrating polymer network (sIPN)-stabilized micelles using an FDAapproved surfactant and loading anti-cancer drug inside. The stability of the resulting stabilized micelle and the prolonged release of the drug, doxorubicin, were evaluated. The findings underscore the potential of sIPN-stabilized micelles as an effective drug delivery platform, capable of providing sustained release and improving therapeutic outcomes for anticancer drugs.
AbstractList Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. Graphical Abstract This study involved the fabrication of semi-interpenetrating polymer network (sIPN)-stabilized micelles using an FDAapproved surfactant and loading anti-cancer drug inside. The stability of the resulting stabilized micelle and the prolonged release of the drug, doxorubicin, were evaluated. The findings underscore the potential of sIPN-stabilized micelles as an effective drug delivery platform, capable of providing sustained release and improving therapeutic outcomes for anticancer drugs.
Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents.
Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. KCI Citation Count: 0
Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated the potential of a micellar delivery system modified with semi-interpenetrating polymer networks (sIPN) to enhance the therapeutic efficacy of doxorubicin (Dox), a widely used chemotherapeutic agent. The sIPN-modified micelles were prepared by loading polymerizable tetraacrylate moiety into the core of sodium dodecyl benzene sulfonate (SDBS) micelles. To evaluate the stability of SDBS-micelle and SDBS-sIPN, we assessed the stability of the micellar structure under critical micelle temperature conditions. The results demonstrated that incorporating sIPN significantly enhanced the structural stability of the micelles, particularly in response to acrylate unit concentrations, leading to the 60 days continuous release of Dox. Furthermore, we examined the ability of SDBS-micelle-Dox and SDBS-sIPN-Dox to induce apoptosis and necrosis in HeLa cells. Annexin V/PI double staining and flow cytometry analysis revealed that SDBS-sIPN-Dox exhibited a sustained release profile of Dox, resulting in a reduced apoptotic response compared to free Dox and SDBS-micelle-Dox in the given time. These findings highlight the potential of the sIPN-modified micellar delivery system as an efficient drug delivery platform, enabling sustained release and minimizing adverse side effects associated with immediate drug release. The sustained release profile achieved through incorporation of sIPN structures holds great promise for improving the therapeutic outcomes of anticancer agents. Graphical
Audience Academic
Author Li, Chen
Jo, Min-Hee
Kwak, Minseok
Hwang, Juyoung
Park, Sun Joo
Author_xml – sequence: 1
  givenname: Juyoung
  surname: Hwang
  fullname: Hwang, Juyoung
  organization: Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Department of Chemistry, Pukyong National University
– sequence: 2
  givenname: Min-Hee
  surname: Jo
  fullname: Jo, Min-Hee
  organization: Department of Chemistry, Pukyong National University
– sequence: 3
  givenname: Chen
  surname: Li
  fullname: Li, Chen
  organization: School of Materials Science and Engineering, Guangdong Province, Dongguan University of Technology, Songshan Lake
– sequence: 4
  givenname: Sun Joo
  surname: Park
  fullname: Park, Sun Joo
  organization: Department of Chemistry, Pukyong National University
– sequence: 5
  givenname: Minseok
  orcidid: 0000-0002-0480-1804
  surname: Kwak
  fullname: Kwak, Minseok
  email: mkwak@pukyong.ac.kr
  organization: Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Smart Gym-Based Translational Research Center for Active Senior’s Healthcare, Pukyong National University, Department of Chemistry, Pukyong National University, Department of Chemistry and Industry 4.0 Convergence Bionics Engineering, Pukyong National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003016023$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kdFrFDEQxoNU8Fr9B3xa8E3YOkl2N5vHo2o9qFp69Tns5ibb9PaSM8li619vrisUpZQQBobvN3wz3zE5ct4hIW8pnFIA8SFSzjgvgeUPVNISXpAFA8lK0Qh-RBa0lm1ZA2evyHGMtwAN5ZQuSL-eYuqsw01xhSN2EQtvio_-zoept9q6It0EPw03xRp3tly5hGGPDlPoknVDcenH-x2G4humXz5sy3Xqejva33neV6txHDG-Ji9NN0Z887eekB-fP12ffSkvvp-vzpYXpa4YTaVoqak16xsAbaQwmmlZ61Zw2mwaJjTUWrRNTUH3Ejasq1rBqgY4SsOYyKudkPfzXBeM2mqrfGcf6uDVNqjl1fVK0XyBpmEH8btZvA_-54QxqVs_BZf9KdZK4LJtRfWoGroRlXXG5731zkatlkJwqGuoZFadPqHKb5NPpnNQxub-P0A7Azr4GAMapW3K9_Qug3bMLtUhVTWnqnKq6iFVdfDN_kP3we66cP88xGcoZrEbMDwu-wz1B6_Ps_Q
CitedBy_id crossref_primary_10_1007_s13233_023_00209_7
crossref_primary_10_1002_marc_202400480
crossref_primary_10_1007_s10924_024_03439_7
Cites_doi 10.1007/s12039-018-1446-z
10.1002/advs.202200872
10.1186/s13045-021-01096-0
10.1038/s41419-021-03614-x
10.2174/092986709788803312
10.3389/fbioe.2021.705886
10.3390/pharmaceutics12030264
10.3390/pharmaceutics15030893
10.1016/j.biopha.2021.112373
10.1021/acs.nanolett.0c00495
10.1038/s41551-018-0234-x
10.1016/j.jiec.2019.08.001
10.3389/fonc.2023.1183059
10.1038/s41392-017-0004-3
10.1186/s12951-022-01458-x
10.3389/fbioe.2021.781982
10.1038/s41578-020-00269-6
10.1371/journal.pone.0049277
10.1039/D2RA07863E
10.1186/s12951-018-0392-8
10.1360/042004-71
10.1038/s41573-020-0090-8
10.1371/journal.pone.0185654
10.1016/j.bcp.2010.07.036
10.1111/jphp.12539
10.1016/j.jiec.2019.01.007
10.3389/fonc.2023.1027254
10.1039/c1sm05708a
10.3390/mi13101632
10.3390/cells12040659
10.1080/15421406.2019.1651052
10.3390/molecules26195905
10.3389/fonc.2022.960317
10.1186/s12951-021-01062-5
10.1007/s13233-022-0087-8
10.1111/j.2042-7158.2012.01567.x
10.1016/j.biopha.2016.11.121
10.1038/s41551-021-00698-w
10.3390/molecules23040826
10.3390/ma3021420
10.1007/s13233-019-7100-x
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
COPYRIGHT 2023 Springer
Copyright_xml – notice: The Author(s), under exclusive licence to The Polymer Society of Korea 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: COPYRIGHT 2023 Springer
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s13233-023-00191-0
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList




DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2092-7673
EndPage 1111
ExternalDocumentID oai_kci_go_kr_ARTI_10326620
A773055049
10_1007_s13233_023_00191_0
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: NRF-2022R1A5A8023404; RS-2023-00241311
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID -EM
.UV
06D
0R~
0VY
1N0
203
2JY
2KG
2VQ
3-Y
30V
4.4
406
408
40D
53G
5GY
67Z
8N-
8UJ
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CAG
COF
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HZ~
I0C
IAO
IHR
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MZR
NPVJJ
NQJWS
NU0
O9-
O9J
P9N
PT4
R9I
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z7U
Z7V
Z7X
Z7Y
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
AEIIB
85H
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
SQXTU
Z5O
Z7R
Z7S
ID FETCH-LOGICAL-c421t-781f5c2b600cf97fc2c95c87316d627c05c786510cb90d2a48724603e9f227503
IEDL.DBID AGYKE
ISSN 1598-5032
IngestDate Fri Feb 23 03:15:40 EST 2024
Wed Sep 17 23:58:00 EDT 2025
Tue Jun 17 22:01:27 EDT 2025
Tue Jun 10 21:02:49 EDT 2025
Thu Apr 24 23:01:39 EDT 2025
Tue Jul 29 01:58:51 EDT 2025
Fri Feb 21 02:41:44 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Drug efficacy
Chemotherapy
Hydrophobic drugs
Drug delivery system
HeLa cell
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c421t-781f5c2b600cf97fc2c95c87316d627c05c786510cb90d2a48724603e9f227503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0480-1804
PQID 2890398874
PQPubID 2044280
PageCount 7
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10326620
proquest_journals_2890398874
gale_infotracmisc_A773055049
gale_infotracacademiconefile_A773055049
crossref_citationtrail_10_1007_s13233_023_00191_0
crossref_primary_10_1007_s13233_023_00191_0
springer_journals_10_1007_s13233_023_00191_0
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Macromolecular research
PublicationTitleAbbrev Macromol. Res
PublicationYear 2023
Publisher The Polymer Society of Korea
Springer
Springer Nature B.V
한국고분자학회
Publisher_xml – name: The Polymer Society of Korea
– name: Springer
– name: Springer Nature B.V
– name: 한국고분자학회
References MitchellMJNat. Rev. Drug Discov.2021201011:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-833277608
GonçalvesCPereiraPGamaMMaterials20103142010.3390/ma30214205513474
TilsedCMFront. Oncol.2022121:CAS:528:DC%2BB3sXhsVWmsr%2FK10.3389/fonc.2022.960317359655199372369
MeredithAMDassCRJ. Pharm. Pharmacol.2016687291:CAS:528:DC%2BC28XktlKms7Y%3D10.1111/jphp.1253926989862
ChengZJ. Hematol. Oncol.2021148510.1186/s13045-021-01096-0340591008165984
TacarOSriamornsakPDassCRJ. Pharm. Pharmacol.2013651571:CAS:528:DC%2BC3sXhslGitb4%3D10.1111/j.2042-7158.2012.01567.x23278683
HwangJMacromol. Res.2019276571:CAS:528:DC%2BC1MXosFSms7w%3D10.1007/s13233-019-7100-x
C.Y. Zhao et al., Molecules. 23, 826 (2018).
ZhuBZhangHYuLBiomed. Pharmacother.2017865471:CAS:528:DC%2BC28XitFOhs7nJ10.1016/j.biopha.2016.11.12128024291
LeeMKPharmaceutics2020122641:CAS:528:DC%2BB3cXhtleqtrzE10.3390/pharmaceutics12030264321831857151102
SenapatiSSignal Transduct. Target. Ther.20183710.1038/s41392-017-0004-3295602835854578
WangDZhangXXuBFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.781982348692938640247
ParkJSMacromol. Res.2022308111:CAS:528:DC%2BB38XhvVSgtr%2FJ10.1007/s13233-022-0087-8
NirmalaMJRSC Adv.20231386061:CAS:528:DC%2BB3sXltlGksrs%3D10.1039/D2RA07863E3692630410013677
OktaviaLJ. Ind. Eng. Chem.201973871:CAS:528:DC%2BC1MXivFSltLo%3D10.1016/j.jiec.2019.01.007
Y. Xie et al., Front. Oncol. 13, 1027254 (2023)
SoeriawidjajaBFMol. Cryst. Liquid Cryst.2019687531:CAS:528:DC%2BC1MXitVSqu7vN10.1080/15421406.2019.1651052
ChristidiEBrunhamLRCell Death Discov.2021123391:CAS:528:DC%2BB3MXht1CjsL%2FE10.1038/s41419-021-03614-x
GaoJGeWLiJSci. China, Ser. B: Chem.2005484701:CAS:528:DC%2BD2MXht1yks7nK10.1360/042004-71
AlossKHamarPPharmaceutics2023158931:CAS:528:DC%2BB3sXnsVCgtb8%3D10.3390/pharmaceutics150308933698675410054554
KciukMCells2023126591:CAS:528:DC%2BB3sXkvV2isLk%3D10.3390/cells12040659368313269954613
BienSBiochem. Pharmacol.20108014661:CAS:528:DC%2BC3cXht1WltrbJ10.1016/j.bcp.2010.07.03620709028
BaiXMicromachines202213163210.3390/mi13101632
ParkSHAdv. Sci.2022910.1002/advs.202200872
KangMJ. Ind. Eng. Chem.2019802391:CAS:528:DC%2BC1MXhs1eks77O10.1016/j.jiec.2019.08.001
ManzariMTNat. Rev. Mater.202163511:CAS:528:DC%2BB3MXht1eqtbjK10.1038/s41578-020-00269-6349505128691416
PatraJKJ. Nanobiotechnol.2018167110.1186/s12951-018-0392-8
LuYNat. Biomed. Eng201823181:CAS:528:DC%2BC1MXhtFensr7O10.1038/s41551-018-0234-x309364556553490
U. Anand et al., Genes Dis. 10, 1367 (2022).
LinJPLoS ONE201271:CAS:528:DC%2BC38Xhslehsb7F10.1371/journal.pone.0049277231451403492268
LagesEBBiomed. Pharmacother.20211441:CAS:528:DC%2BB38Xkt1Wgu7c%3D10.1016/j.biopha.2021.11237334794238
ChenZJNano Lett.20202041771:CAS:528:DC%2BB3cXpsFGmtLk%3D10.1021/acs.nanolett.0c0049532431154
VargasonAMAnselmoACMitragotriSNat. Biomed. Eng2021595110.1038/s41551-021-00698-w33795852
WangHJ. Nanobiotechnol.2021193221:CAS:528:DC%2BB38Xjs1yntb4%3D10.1186/s12951-021-01062-5
XieYFront. Oncol.20231310272541:CAS:528:DC%2BB3sXhsVGht73K10.3389/fonc.2023.1027254368603099969147
FukudaAPLoS ONE20171210.1371/journal.pone.0185654289539365617225
SoodAKAggarwalMJ. Chem. Sci.201813011:CAS:528:DC%2BC1cXmsFyqurs%3D10.1007/s12039-018-1446-z
PalazzesiFCalvaresiMZerbettoFSoft Matter2011791481:CAS:528:DC%2BC3MXhtFyqu7rN10.1039/c1sm05708a
HwangJJ. Nanobiotechnol.2022202451:CAS:528:DC%2BB38Xhs1Knt7vF10.1186/s12951-022-01458-x
NakhaeiPFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.705886345682988459376
AdepuSRamakrishnaSMolecules20212659051:CAS:528:DC%2BB3MXitlCltLzN10.3390/molecules26195905346414478512302
CarvalhoCCurr. Med. Chem.20091632671:CAS:528:DC%2BD1MXpvVymsro%3D10.2174/09298670978880331219548866
X Bai (191_CR6) 2022; 13
EB Lages (191_CR17) 2021; 144
C Gonçalves (191_CR22) 2010; 3
J Hwang (191_CR26) 2019; 27
AK Sood (191_CR28) 2018; 130
CM Tilsed (191_CR3) 2022; 12
AM Meredith (191_CR12) 2016; 68
J Hwang (191_CR37) 2022; 20
J Gao (191_CR30) 2005; 48
SH Park (191_CR35) 2022; 9
B Zhu (191_CR15) 2017; 86
L Oktavia (191_CR33) 2019; 73
BF Soeriawidjaja (191_CR32) 2019; 687
191_CR34
C Carvalho (191_CR9) 2009; 16
P Nakhaei (191_CR39) 2021; 9
JK Patra (191_CR21) 2018; 16
MJ Nirmala (191_CR23) 2023; 13
191_CR1
191_CR2
ZJ Chen (191_CR19) 2020; 20
S Bien (191_CR42) 2010; 80
F Palazzesi (191_CR29) 2011; 7
M Kciuk (191_CR11) 2023; 12
AM Vargason (191_CR25) 2021; 5
K Aloss (191_CR16) 2023; 15
H Wang (191_CR5) 2021; 19
Z Cheng (191_CR4) 2021; 14
MT Manzari (191_CR8) 2021; 6
Y Lu (191_CR27) 2018; 2
S Senapati (191_CR24) 2018; 3
D Wang (191_CR18) 2021; 9
A Fukuda (191_CR13) 2017; 12
MK Lee (191_CR40) 2020; 12
O Tacar (191_CR10) 2013; 65
E Christidi (191_CR41) 2021; 12
S Adepu (191_CR7) 2021; 26
J Lin (191_CR14) 2012; 7
MJ Mitchell (191_CR20) 2021; 20
JS Park (191_CR38) 2022; 30
M Kang (191_CR31) 2019; 80
Y Xie (191_CR36) 2023; 13
References_xml – reference: LeeMKPharmaceutics2020122641:CAS:528:DC%2BB3cXhtleqtrzE10.3390/pharmaceutics12030264321831857151102
– reference: PatraJKJ. Nanobiotechnol.2018167110.1186/s12951-018-0392-8
– reference: VargasonAMAnselmoACMitragotriSNat. Biomed. Eng2021595110.1038/s41551-021-00698-w33795852
– reference: ChenZJNano Lett.20202041771:CAS:528:DC%2BB3cXpsFGmtLk%3D10.1021/acs.nanolett.0c0049532431154
– reference: ZhuBZhangHYuLBiomed. Pharmacother.2017865471:CAS:528:DC%2BC28XitFOhs7nJ10.1016/j.biopha.2016.11.12128024291
– reference: SenapatiSSignal Transduct. Target. Ther.20183710.1038/s41392-017-0004-3295602835854578
– reference: ChristidiEBrunhamLRCell Death Discov.2021123391:CAS:528:DC%2BB3MXht1CjsL%2FE10.1038/s41419-021-03614-x
– reference: LagesEBBiomed. Pharmacother.20211441:CAS:528:DC%2BB38Xkt1Wgu7c%3D10.1016/j.biopha.2021.11237334794238
– reference: HwangJJ. Nanobiotechnol.2022202451:CAS:528:DC%2BB38Xhs1Knt7vF10.1186/s12951-022-01458-x
– reference: AlossKHamarPPharmaceutics2023158931:CAS:528:DC%2BB3sXnsVCgtb8%3D10.3390/pharmaceutics150308933698675410054554
– reference: NakhaeiPFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.705886345682988459376
– reference: WangHJ. Nanobiotechnol.2021193221:CAS:528:DC%2BB38Xjs1yntb4%3D10.1186/s12951-021-01062-5
– reference: PalazzesiFCalvaresiMZerbettoFSoft Matter2011791481:CAS:528:DC%2BC3MXhtFyqu7rN10.1039/c1sm05708a
– reference: CarvalhoCCurr. Med. Chem.20091632671:CAS:528:DC%2BD1MXpvVymsro%3D10.2174/09298670978880331219548866
– reference: OktaviaLJ. Ind. Eng. Chem.201973871:CAS:528:DC%2BC1MXivFSltLo%3D10.1016/j.jiec.2019.01.007
– reference: BaiXMicromachines202213163210.3390/mi13101632
– reference: SoodAKAggarwalMJ. Chem. Sci.201813011:CAS:528:DC%2BC1cXmsFyqurs%3D10.1007/s12039-018-1446-z
– reference: KangMJ. Ind. Eng. Chem.2019802391:CAS:528:DC%2BC1MXhs1eks77O10.1016/j.jiec.2019.08.001
– reference: MitchellMJNat. Rev. Drug Discov.2021201011:CAS:528:DC%2BB3cXisV2ntL3P10.1038/s41573-020-0090-833277608
– reference: TilsedCMFront. Oncol.2022121:CAS:528:DC%2BB3sXhsVWmsr%2FK10.3389/fonc.2022.960317359655199372369
– reference: GonçalvesCPereiraPGamaMMaterials20103142010.3390/ma30214205513474
– reference: SoeriawidjajaBFMol. Cryst. Liquid Cryst.2019687531:CAS:528:DC%2BC1MXitVSqu7vN10.1080/15421406.2019.1651052
– reference: FukudaAPLoS ONE20171210.1371/journal.pone.0185654289539365617225
– reference: KciukMCells2023126591:CAS:528:DC%2BB3sXkvV2isLk%3D10.3390/cells12040659368313269954613
– reference: LinJPLoS ONE201271:CAS:528:DC%2BC38Xhslehsb7F10.1371/journal.pone.0049277231451403492268
– reference: U. Anand et al., Genes Dis. 10, 1367 (2022).
– reference: LuYNat. Biomed. Eng201823181:CAS:528:DC%2BC1MXhtFensr7O10.1038/s41551-018-0234-x309364556553490
– reference: TacarOSriamornsakPDassCRJ. Pharm. Pharmacol.2013651571:CAS:528:DC%2BC3sXhslGitb4%3D10.1111/j.2042-7158.2012.01567.x23278683
– reference: AdepuSRamakrishnaSMolecules20212659051:CAS:528:DC%2BB3MXitlCltLzN10.3390/molecules26195905346414478512302
– reference: WangDZhangXXuBFront. Bioeng. Biotechnol.2021910.3389/fbioe.2021.781982348692938640247
– reference: GaoJGeWLiJSci. China, Ser. B: Chem.2005484701:CAS:528:DC%2BD2MXht1yks7nK10.1360/042004-71
– reference: Y. Xie et al., Front. Oncol. 13, 1027254 (2023)
– reference: ChengZJ. Hematol. Oncol.2021148510.1186/s13045-021-01096-0340591008165984
– reference: NirmalaMJRSC Adv.20231386061:CAS:528:DC%2BB3sXltlGksrs%3D10.1039/D2RA07863E3692630410013677
– reference: XieYFront. Oncol.20231310272541:CAS:528:DC%2BB3sXhsVGht73K10.3389/fonc.2023.1027254368603099969147
– reference: ParkJSMacromol. Res.2022308111:CAS:528:DC%2BB38XhvVSgtr%2FJ10.1007/s13233-022-0087-8
– reference: BienSBiochem. Pharmacol.20108014661:CAS:528:DC%2BC3cXht1WltrbJ10.1016/j.bcp.2010.07.03620709028
– reference: MeredithAMDassCRJ. Pharm. Pharmacol.2016687291:CAS:528:DC%2BC28XktlKms7Y%3D10.1111/jphp.1253926989862
– reference: C.Y. Zhao et al., Molecules. 23, 826 (2018).
– reference: HwangJMacromol. Res.2019276571:CAS:528:DC%2BC1MXosFSms7w%3D10.1007/s13233-019-7100-x
– reference: ManzariMTNat. Rev. Mater.202163511:CAS:528:DC%2BB3MXht1eqtbjK10.1038/s41578-020-00269-6349505128691416
– reference: ParkSHAdv. Sci.2022910.1002/advs.202200872
– volume: 130
  start-page: 1
  year: 2018
  ident: 191_CR28
  publication-title: J. Chem. Sci.
  doi: 10.1007/s12039-018-1446-z
– volume: 9
  year: 2022
  ident: 191_CR35
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200872
– volume: 14
  start-page: 85
  year: 2021
  ident: 191_CR4
  publication-title: J. Hematol. Oncol.
  doi: 10.1186/s13045-021-01096-0
– volume: 12
  start-page: 339
  year: 2021
  ident: 191_CR41
  publication-title: Cell Death Discov.
  doi: 10.1038/s41419-021-03614-x
– volume: 16
  start-page: 3267
  year: 2009
  ident: 191_CR9
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986709788803312
– volume: 9
  year: 2021
  ident: 191_CR39
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.705886
– volume: 12
  start-page: 264
  year: 2020
  ident: 191_CR40
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12030264
– volume: 15
  start-page: 893
  year: 2023
  ident: 191_CR16
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics15030893
– volume: 144
  year: 2021
  ident: 191_CR17
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2021.112373
– volume: 20
  start-page: 4177
  year: 2020
  ident: 191_CR19
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00495
– volume: 2
  start-page: 318
  year: 2018
  ident: 191_CR27
  publication-title: Nat. Biomed. Eng
  doi: 10.1038/s41551-018-0234-x
– volume: 80
  start-page: 239
  year: 2019
  ident: 191_CR31
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.08.001
– ident: 191_CR34
  doi: 10.3389/fonc.2023.1183059
– volume: 3
  start-page: 7
  year: 2018
  ident: 191_CR24
  publication-title: Signal Transduct. Target. Ther.
  doi: 10.1038/s41392-017-0004-3
– volume: 20
  start-page: 245
  year: 2022
  ident: 191_CR37
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-022-01458-x
– volume: 9
  year: 2021
  ident: 191_CR18
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2021.781982
– volume: 6
  start-page: 351
  year: 2021
  ident: 191_CR8
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-020-00269-6
– volume: 7
  year: 2012
  ident: 191_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0049277
– volume: 13
  start-page: 8606
  year: 2023
  ident: 191_CR23
  publication-title: RSC Adv.
  doi: 10.1039/D2RA07863E
– volume: 16
  start-page: 71
  year: 2018
  ident: 191_CR21
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-018-0392-8
– ident: 191_CR1
– volume: 48
  start-page: 470
  year: 2005
  ident: 191_CR30
  publication-title: Sci. China, Ser. B: Chem.
  doi: 10.1360/042004-71
– volume: 20
  start-page: 101
  year: 2021
  ident: 191_CR20
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-020-0090-8
– volume: 12
  year: 2017
  ident: 191_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0185654
– volume: 80
  start-page: 1466
  year: 2010
  ident: 191_CR42
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2010.07.036
– volume: 68
  start-page: 729
  year: 2016
  ident: 191_CR12
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/jphp.12539
– volume: 73
  start-page: 87
  year: 2019
  ident: 191_CR33
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2019.01.007
– volume: 13
  start-page: 1027254
  year: 2023
  ident: 191_CR36
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2023.1027254
– volume: 7
  start-page: 9148
  year: 2011
  ident: 191_CR29
  publication-title: Soft Matter
  doi: 10.1039/c1sm05708a
– volume: 13
  start-page: 1632
  year: 2022
  ident: 191_CR6
  publication-title: Micromachines
  doi: 10.3390/mi13101632
– volume: 12
  start-page: 659
  year: 2023
  ident: 191_CR11
  publication-title: Cells
  doi: 10.3390/cells12040659
– volume: 687
  start-page: 53
  year: 2019
  ident: 191_CR32
  publication-title: Mol. Cryst. Liquid Cryst.
  doi: 10.1080/15421406.2019.1651052
– volume: 26
  start-page: 5905
  year: 2021
  ident: 191_CR7
  publication-title: Molecules
  doi: 10.3390/molecules26195905
– volume: 12
  year: 2022
  ident: 191_CR3
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.960317
– volume: 19
  start-page: 322
  year: 2021
  ident: 191_CR5
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-021-01062-5
– volume: 30
  start-page: 811
  year: 2022
  ident: 191_CR38
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-022-0087-8
– volume: 65
  start-page: 157
  year: 2013
  ident: 191_CR10
  publication-title: J. Pharm. Pharmacol.
  doi: 10.1111/j.2042-7158.2012.01567.x
– volume: 86
  start-page: 547
  year: 2017
  ident: 191_CR15
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2016.11.121
– volume: 5
  start-page: 951
  year: 2021
  ident: 191_CR25
  publication-title: Nat. Biomed. Eng
  doi: 10.1038/s41551-021-00698-w
– ident: 191_CR2
  doi: 10.3390/molecules23040826
– volume: 3
  start-page: 1420
  year: 2010
  ident: 191_CR22
  publication-title: Materials
  doi: 10.3390/ma3021420
– volume: 27
  start-page: 657
  year: 2019
  ident: 191_CR26
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-019-7100-x
SSID ssj0061311
Score 2.3398454
Snippet Developing effective drug delivery systems plays an important role in improving the therapeutic outcomes of anticancer agents. In this study, we investigated...
SourceID nrf
proquest
gale
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1105
SubjectTerms Anticancer properties
Apoptosis
Cancer
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Chemotherapy
Complex Fluids and Microfluidics
Doxorubicin
Drug delivery systems
Drugs
Flow cytometry
Health aspects
Interpenetrating networks
Micelles
Nanochemistry
Nanotechnology
Necrosis
Pharmacology
Physical Chemistry
Polyimide resins
Polymer industry
Polymer Sciences
Polymers
Side effects
Sodium dodecylbenzenesulfonate
Soft and Granular Matter
Stability analysis
Structural stability
Sustained release
System effectiveness
Vehicles
고분자공학
Title Sustained Release of Doxorubicin through Semi-Interpenetrating Polymer Network-Stabilized Micelles
URI https://link.springer.com/article/10.1007/s13233-023-00191-0
https://www.proquest.com/docview/2890398874
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003016023
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Macromolecular Research, 2023, 31(11), , pp.1105-1111
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: AFBBN
  dateStart: 20020201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: AGYKE
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2092-7673
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061311
  issn: 1598-5032
  databaseCode: U2A
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB-864P2wWq19PQsCwo-6JZk8_149MOqtIj1oD4tyWS3lKuJ5O5A-9c7k2w8r6jQh5DAbjab3dn5YGZ-A_DKGpvlXhlKIpdChgEmknheKU2SWhuqAiPLHt3Ts_hkGn64iC5cUti8j3bvXZItp14luwUqYJ8jXaSXkBE8gI2IDZQhbEzeff141HPgmCFkWpzULJWRFyiXLPP3UdYEkmPLg6qxayrnLS9pK3yOt2DaT7uLOZntLxfFPt7cQnS86389godOGxWTjnwewz1TbcP9g74I3DZs_oFX-ASK8y7dypTiM4krEoCituKw_lE3y4Jd9MKV_RHnNILsAhqJmbbQvNWl-FRf__xmGnHWxZ5L0nQ5NveGxju9al0I86cwPT76cnAiXZEGiaHyFzJJfRuhKkhxQpslFhVmEaZcEKuMVYJehEka08nHgmhA5WQgqTD2ApNZxdjywQ4Mq7oyuyCsjwazPCr83IYmiImVZLSbGNBjmcTlCPx-pzQ6BHMupHGtV9jLvJaa1lK3a6m9Ebz5_c73Dr_jv71fMwFoPtw0MuYuR4HmxzBZepIkjJBGVtUIxms9aVtwrfklkZCe4ZVm_G6-X9Z61miyUt5rBjGMY0WfG_ckph3rmGv2_AYZ8f5wBG97ilk1_3vyz-7W_Tk8UEx0bV7lGIaLZmlekIK1KPbcedqDwVRNfgGitxg7
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-x7mHwMGAw0VEgEkg8gKfEcb4eq7HRsbVCbJXGkxVf7GnqSFDaSrC_nnPiUDoB0h6iRLLjOPb5PnR3vwN4Y7TJcr8QjMhFMRFiwojnFUwnqTGCK4yM9eiOJ_FoKj5dRBcuKWzeRbt3LsmGU6-S3UIeWp8jXaSXkBG8AZsiSFPRg83hx68nhx0Hji2ETIOTmqUs8kPukmX-PsqaQHJseaOszZrKectL2gifo4cw7abdxpzM9pcLtY83txAd7_pfj2DbaaPesCWfx3BPlzuwddAVgduBB3_gFT4BddamW-nC-0LiigSgVxnvQ_WjqpfKuug9V_bHO6MRWBvQSMy0geYtL73P1fXPb7r2Jm3sOSNN18bm3tB446vGhTB_CtOjw_ODEXNFGhgKHixYkgYmQq5IcUKTJQY5ZhGmtiBWEfME_QiTNKaTj4pogOdkIHER-6HODLfY8uEu9Mqq1M_AMwFqzPJIBbkROoyJlWS0mxjSY5HERR-CbqckOgRzW0jjWq6wl-1aSlpL2ayl9Pvw7vc731v8jv_2fmsJQNrDTSNj7nIUaH4WJksOk8QipJFV1YfBWk_aFlxrfk0kJGd4JS1-t71fVnJWS7JSjqUFMYxjTp8bdCQmHeuYS-v5DTPi_aIP7zuKWTX_e_J7d-v-CrZG5-NTeXo8OXkO97klwCbHcgC9Rb3UL0jZWqiX7mz9AmPrGkM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFA9ugh8PQ6fidVcNKPigYW2SJu3jZdtlU3cZzgt7C-1pMsZmO7o7UP96z-mHd1em4ENpIWkacnK-enJ-h7G3wYcsj0otcLsUQiuwAmVeKbxNQ9CygCRQRPdwZvbn-uNJcnIji7897T6EJLucBkJpqhbbl2XYXia-Kako_ogX2ijoEK-xuxp1NblfczkZZLEhMJkWMTVLRRIp2afN3D7GimrqBfRa1YQV4_OPeGmrhqaP2EZvP_JJR_DH7I6vNtn9naFs2yZ7eANh8AkrjrsEKV_yL6hgUGXxOvDd-nvdXBcUVOd9oR5-jCOI7ggiir8WTLc65Uf1xY9vvuGz7rS4QNuUTtP-xPEOz9qf_ldP2Xy693VnX_RlFQRoGS-ETeOQgCzQ1IGQ2QASsgRSKmFVGmkhSsCmBnkVCqSazNGlkdpEymdBEhq8esbWq7ryzxkPMXjI8qSI86C9Msj8Ga46KHwsrSlHLB5W1EGPOU6lLy7cEi2ZqOCQCq6lgotG7P3vdy47xI1_9n5HhHLEjjgy5H1WAc6PgK3cxFrCNEM_aMTGKz2RLLDS_AZJ7c7hzBHiNt1Pa3feOPQrDhzBDhoj8XPjYSu4ntmvHMVqVYbSWo_Yh2F7LJv_PvkX_9f9Nbt3tDt1nw9mn7bYA6p73yVFjtn6orn2L9E6WhSvWgb4BbbZAZs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sustained+Release+of+Doxorubicin+through+Semi-Interpenetrating+Polymer+Network-Stabilized+Micelles&rft.jtitle=Macromolecular+research&rft.au=Hwang%2C+Juyoung&rft.au=Jo%2C+Min-Hee&rft.au=Li%2C+Chen&rft.au=Park%2C+Sun+Joo&rft.date=2023-11-01&rft.pub=The+Polymer+Society+of+Korea&rft.issn=1598-5032&rft.eissn=2092-7673&rft.volume=31&rft.issue=11&rft.spage=1105&rft.epage=1111&rft_id=info:doi/10.1007%2Fs13233-023-00191-0&rft.externalDocID=10_1007_s13233_023_00191_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-5032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-5032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-5032&client=summon