Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models

To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elici...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 377; no. 6606; p. eabq0839
Main Authors Cohen, Alexander A., van Doremalen, Neeltje, Greaney, Allison J., Andersen, Hanne, Sharma, Ankur, Starr, Tyler N., Keeffe, Jennifer R., Fan, Chengcheng, Schulz, Jonathan E., Gnanapragasam, Priyanthi N. P., Kakutani, Leesa M., West, Anthony P., Saturday, Greg, Lee, Yu E., Gao, Han, Jette, Claudia A., Lewis, Mark G., Tan, Tiong K., Townsend, Alain R., Bloom, Jesse D., Munster, Vincent J., Bjorkman, Pamela J.
Format Journal Article
LanguageEnglish
Published United States The American Association for the Advancement of Science 05.08.2022
American Association for the Advancement of Science
Subjects
Online AccessGet full text
ISSN0036-8075
1095-9203
1095-9203
DOI10.1126/science.abq0839

Cover

Abstract To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. The COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen et al . developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VV A mosaic sarbecovirus nanoparticle protects against SARS-2 and SARS-1, whereas a SARS-2 nanoparticle only protects against SARS-2.
AbstractList To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. The COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen et al . developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VV A mosaic sarbecovirus nanoparticle protects against SARS-2 and SARS-1, whereas a SARS-2 nanoparticle only protects against SARS-2.
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded, rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicrons and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
A mosaic approach to protectionThe COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen et al. developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VVINTRODUCTIONTwo animal coronaviruses from the severe acute respiratory syndrome (SARS)–like betacoronavirus (sarbecovirus) lineage, SARS coronavirus (SARS-CoV) and SARS-CoV-2, have caused epidemics or pandemics in humans in the past 20 years. SARS-CoV-2 triggered the COVID-19 pandemic that has been ongoing for more than 2 years despite rapid development of effective vaccines. Unfortunately, new SARS-CoV-2 variants, including multiple heavily mutated Omicron variants, have prolonged the COVID-19 pandemic. In addition, the discovery of diverse sarbecoviruses in bats raises the possibility of another coronavirus pandemic. Hence, there is an urgent need to develop vaccines and therapeutics to protect against both SARS-CoV-2 variants and zoonotic sarbecoviruses with the potential to infect humans.RATIONALETo combat future SARS-CoV-2 variants and spillovers of sarbecoviruses threatening global health, we designed nanoparticles that present 60 randomly arranged spike receptor-binding domains (RBDs) derived from the spike trimers of eight different sarbecoviruses (mosaic-8 RBD nanoparticles) to elicit antibodies against conserved and relatively occluded—rather than variable, immunodominant, and exposed—epitopes. The probability of two adjacent RBDs being the same is low for mosaic-8 RBD nanoparticles, a feature chosen to favor interactions with B cells whose bivalent receptors can cross-link between adjacent RBDs to use avidity effects to favor recognition of conserved, but sterically occluded, RBD epitopes. By contrast, nanoparticles that present 60 copies of SARS-CoV-2 RBDs (homotypic RBD nanoparticles) are theoretically more likely to engage B cells with receptors that recognize immunodominant and sterically accessible, but less conserved, RBD epitopes.RESULTSWe compared immune responses elicited by mosaic-8 (SARS-CoV-2 RBD plus seven animal sarbecoviruses RBDs) and homotypic (only SARS-CoV-2 RBDs) nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not represented with an RBD on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization produced antisera that showed equivalent neutralization of SARS-CoV-2 variants, including Omicron variants, and protected from both SARS-CoV-2 and SARS-CoV challenges in mice and nonhuman primates (NHPs), whereas homotypic SARS-CoV-2 immunization protected from SARS-CoV-2 challenge but not from SARS-CoV challenge in mice. Epitope mapping of polyclonal antisera by using deep mutational scanning of RBDs demonstrated targeting of conserved epitopes after immunization with mosaic-8 RBD nanoparticles, in contrast with targeting of variable epitopes after homotypic SARS-CoV-2 RBD nanoparticle immunization, which supports the hypothesized mechanism by which mosaic RBD nanoparticle immunization can overcome immunodominance effects to direct production of antibodies against conserved RBD epitopes. Given the recent plethora of SARS-CoV-2 variants that may be arising at least in part because of antibody pressure, a relevant concern is whether more conserved RBD epitopes might be subject to substitutions that would render vaccines and/or monoclonal antibodies targeting these regions ineffective. This scenario seems unlikely because RBD regions conserved between sarbecoviruses and SARS-CoV-2 variants are generally involved in contacts with other regions of spike trimer and therefore less likely to tolerate selection-induced substitutions.CONCLUSIONTogether, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers—in particular, highlighting the potential for a mosaic nanoparticle approach to elicit more broadly protective antibody responses than those with homotypic nanoparticle approaches.
Author Lee, Yu E.
Sharma, Ankur
van Doremalen, Neeltje
Schulz, Jonathan E.
Fan, Chengcheng
Gnanapragasam, Priyanthi N. P.
Bloom, Jesse D.
West, Anthony P.
Keeffe, Jennifer R.
Starr, Tyler N.
Andersen, Hanne
Lewis, Mark G.
Jette, Claudia A.
Munster, Vincent J.
Kakutani, Leesa M.
Bjorkman, Pamela J.
Gao, Han
Cohen, Alexander A.
Saturday, Greg
Townsend, Alain R.
Greaney, Allison J.
Tan, Tiong K.
Author_xml – sequence: 1
  givenname: Alexander A.
  orcidid: 0000-0002-2818-656X
  surname: Cohen
  fullname: Cohen, Alexander A.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 2
  givenname: Neeltje
  orcidid: 0000-0003-4368-6359
  surname: van Doremalen
  fullname: van Doremalen, Neeltje
  organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
– sequence: 3
  givenname: Allison J.
  orcidid: 0000-0001-7202-3349
  surname: Greaney
  fullname: Greaney, Allison J.
  organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
– sequence: 4
  givenname: Hanne
  orcidid: 0000-0003-1103-9608
  surname: Andersen
  fullname: Andersen, Hanne
  organization: BIOQUAL, Rockville, MD, USA
– sequence: 5
  givenname: Ankur
  surname: Sharma
  fullname: Sharma, Ankur
  organization: BIOQUAL, Rockville, MD, USA
– sequence: 6
  givenname: Tyler N.
  orcidid: 0000-0001-6713-6904
  surname: Starr
  fullname: Starr, Tyler N.
  organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
– sequence: 7
  givenname: Jennifer R.
  orcidid: 0000-0002-5317-6398
  surname: Keeffe
  fullname: Keeffe, Jennifer R.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 8
  givenname: Chengcheng
  orcidid: 0000-0003-4213-5758
  surname: Fan
  fullname: Fan, Chengcheng
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 9
  givenname: Jonathan E.
  orcidid: 0000-0001-5462-5952
  surname: Schulz
  fullname: Schulz, Jonathan E.
  organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
– sequence: 10
  givenname: Priyanthi N. P.
  surname: Gnanapragasam
  fullname: Gnanapragasam, Priyanthi N. P.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 11
  givenname: Leesa M.
  orcidid: 0000-0003-3822-7449
  surname: Kakutani
  fullname: Kakutani, Leesa M.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 12
  givenname: Anthony P.
  orcidid: 0000-0003-4213-5184
  surname: West
  fullname: West, Anthony P.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 13
  givenname: Greg
  orcidid: 0000-0002-0803-6177
  surname: Saturday
  fullname: Saturday, Greg
  organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
– sequence: 14
  givenname: Yu E.
  orcidid: 0000-0001-5989-326X
  surname: Lee
  fullname: Lee, Yu E.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 15
  givenname: Han
  surname: Gao
  fullname: Gao, Han
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 16
  givenname: Claudia A.
  orcidid: 0000-0002-5085-8027
  surname: Jette
  fullname: Jette, Claudia A.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
– sequence: 17
  givenname: Mark G.
  orcidid: 0000-0001-7852-0135
  surname: Lewis
  fullname: Lewis, Mark G.
  organization: BIOQUAL, Rockville, MD, USA
– sequence: 18
  givenname: Tiong K.
  orcidid: 0000-0001-8746-8308
  surname: Tan
  fullname: Tan, Tiong K.
  organization: MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
– sequence: 19
  givenname: Alain R.
  surname: Townsend
  fullname: Townsend, Alain R.
  organization: MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK., Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK
– sequence: 20
  givenname: Jesse D.
  orcidid: 0000-0003-1267-3408
  surname: Bloom
  fullname: Bloom, Jesse D.
  organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Howard Hughes Medical Institute, Seattle, WA 98109, USA
– sequence: 21
  givenname: Vincent J.
  orcidid: 0000-0002-2288-3196
  surname: Munster
  fullname: Munster, Vincent J.
  organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA
– sequence: 22
  givenname: Pamela J.
  orcidid: 0000-0002-2277-3990
  surname: Bjorkman
  fullname: Bjorkman, Pamela J.
  organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35857620$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1r3DAQxUVJaTZpz70VQS-9OBlJtmVdCk36FUgIlPZYhCyPNwpaaSPZC_nvK5NtaAI9CTS_93gz74gchBiQkLcMThjj7Wm2DoPFE9PfQSfUC7JioJpKcRAHZAUg2qoD2RySo5xvAcpMiVfkUDRdI1sOK_L7KmbjLP1x9pkGE-LWpMlZj5luU5zQTtSsjQt5ovbGeI9hjbS_p4PbYcpIs0k92rhzac5F4wI1wW2Mp5s4oM-vycvR-Ixv9u8x-fX1y8_z79Xl9beL80-Xla05m6rG1qzpBXAcJVMDG3hvuBF86IYRmW2Xv1ayoVVj14_QYg1Q11wy2UuJIMUx-fjgu537DQ4Ww5SM19tUsqR7HY3TTyfB3eh13GnFpQChisGHvUGKdzPmSW9ctui9CRjnrHlbTip5p6Cg75-ht3FOoay3UJ0UnLHF8N2_iR6j_L18AU4fAJtizgnHR4SBXrrV-271vtuiaJ4prJvM5OKykvP_1f0BnrmtIA
CitedBy_id crossref_primary_10_1002_ange_202412294
crossref_primary_10_1007_s00284_024_03803_9
crossref_primary_10_3389_fimmu_2023_1123158
crossref_primary_10_4049_jimmunol_2300315
crossref_primary_10_1038_s41467_023_35949_8
crossref_primary_10_1016_j_antiviral_2024_105917
crossref_primary_10_1126_sciadv_adg0330
crossref_primary_10_1111_nyas_14960
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1002_bip_23563
crossref_primary_10_1039_D3CB00164D
crossref_primary_10_3390_ijms26052056
crossref_primary_10_1039_D3TB01659E
crossref_primary_10_1016_j_matt_2025_102006
crossref_primary_10_1016_j_cell_2024_07_052
crossref_primary_10_1016_j_celrep_2023_112266
crossref_primary_10_1016_j_ebiom_2023_104574
crossref_primary_10_3389_fimmu_2023_1135815
crossref_primary_10_3389_fpubh_2023_1229045
crossref_primary_10_1080_21645515_2023_2264594
crossref_primary_10_1038_s44298_024_00043_3
crossref_primary_10_3389_fimmu_2023_1130539
crossref_primary_10_3389_fimmu_2024_1392898
crossref_primary_10_3390_vaccines10091447
crossref_primary_10_1016_j_copbio_2022_102821
crossref_primary_10_1080_14760584_2024_2337051
crossref_primary_10_3389_fimmu_2023_1086035
crossref_primary_10_3390_vaccines12060588
crossref_primary_10_1172_JCI165034
crossref_primary_10_1016_j_ijbiomac_2024_134012
crossref_primary_10_1021_acsnano_2c08840
crossref_primary_10_3390_vaccines11030682
crossref_primary_10_1128_jvi_00376_24
crossref_primary_10_1146_annurev_chembioeng_101121_084508
crossref_primary_10_1038_s41467_024_45404_x
crossref_primary_10_1038_s41392_023_01724_w
crossref_primary_10_1038_s41467_023_44265_0
crossref_primary_10_1016_j_ebiom_2022_104341
crossref_primary_10_1016_j_xcrm_2023_101088
crossref_primary_10_1021_acsnano_4c07061
crossref_primary_10_1038_s41541_024_00924_x
crossref_primary_10_1002_jmv_28516
crossref_primary_10_1016_j_cell_2024_12_015
crossref_primary_10_1098_rsif_2023_0247
crossref_primary_10_3390_vaccines11111655
crossref_primary_10_3390_v16050803
crossref_primary_10_1128_mbio_03036_23
crossref_primary_10_1038_s41541_023_00792_x
crossref_primary_10_3390_v15091901
crossref_primary_10_1126_sciimmunol_ade0958
crossref_primary_10_7554_eLife_95708_3
crossref_primary_10_3389_fpls_2023_1275228
crossref_primary_10_1016_j_chom_2024_10_016
crossref_primary_10_2217_nnm_2023_0362
crossref_primary_10_1016_j_ymthe_2023_09_002
crossref_primary_10_1016_j_chom_2023_10_018
crossref_primary_10_1128_spectrum_04998_22
crossref_primary_10_1038_s41541_024_00954_5
crossref_primary_10_3389_fcimb_2024_1388222
crossref_primary_10_3390_vaccines10122035
crossref_primary_10_1016_j_ijbiomac_2022_12_006
crossref_primary_10_3390_vaccines10091545
crossref_primary_10_1038_s41541_022_00597_4
crossref_primary_10_1038_s41541_024_00806_2
crossref_primary_10_1016_j_banm_2024_10_007
crossref_primary_10_1093_abt_tbad024
crossref_primary_10_2217_nnm_2022_0316
crossref_primary_10_1097_COH_0000000000000821
crossref_primary_10_1016_j_xcrm_2024_101668
crossref_primary_10_1038_s41467_024_54916_5
crossref_primary_10_7554_eLife_95708
crossref_primary_10_1002_advs_202303366
crossref_primary_10_3390_vaccines12010037
crossref_primary_10_1073_pnas_2317367120
crossref_primary_10_1038_s41467_025_55824_y
crossref_primary_10_1016_j_jbc_2024_108072
crossref_primary_10_1016_j_isci_2024_110174
crossref_primary_10_1039_D4BM00827H
crossref_primary_10_1080_19420862_2022_2133666
crossref_primary_10_1038_s41467_024_44889_w
crossref_primary_10_1038_s41422_022_00746_3
crossref_primary_10_1038_s41467_024_44869_0
crossref_primary_10_1038_s41565_024_01655_9
crossref_primary_10_1016_j_vaccine_2024_01_036
crossref_primary_10_1016_j_celrep_2023_113553
crossref_primary_10_1016_j_celrep_2023_113552
crossref_primary_10_1007_s00281_023_00996_2
crossref_primary_10_3390_vaccines12010030
crossref_primary_10_3390_bios14020108
crossref_primary_10_1126_scitranslmed_adg7404
crossref_primary_10_1016_j_ijid_2024_107173
crossref_primary_10_1186_s12929_022_00853_8
crossref_primary_10_1038_s41564_023_01505_9
crossref_primary_10_1016_j_it_2023_03_002
crossref_primary_10_1038_s41467_024_50133_2
crossref_primary_10_3390_vaccines10071135
crossref_primary_10_1016_j_immuni_2022_10_019
crossref_primary_10_3390_v16030484
crossref_primary_10_1016_j_ejmech_2023_116000
crossref_primary_10_3390_vaccines10101655
crossref_primary_10_1016_j_cell_2024_07_025
crossref_primary_10_3390_bioengineering10020148
crossref_primary_10_1002_wnan_1880
crossref_primary_10_1126_sciadv_abq4149
crossref_primary_10_1016_j_vaccine_2024_05_028
crossref_primary_10_1038_s41541_023_00755_2
crossref_primary_10_3390_vaccines12060676
crossref_primary_10_1371_journal_ppat_1012383
crossref_primary_10_3390_v14092061
crossref_primary_10_1038_s41467_023_41342_2
crossref_primary_10_1016_j_cell_2023_04_024
crossref_primary_10_1016_j_celrep_2024_115036
crossref_primary_10_1038_s41467_024_45495_6
crossref_primary_10_1080_14760584_2023_2211153
crossref_primary_10_1002_anie_202412294
crossref_primary_10_1002_advs_202301034
crossref_primary_10_1016_j_chom_2023_07_004
crossref_primary_10_1038_s41541_024_00891_3
crossref_primary_10_1007_s00103_025_04024_6
crossref_primary_10_1016_j_chom_2023_05_017
crossref_primary_10_1371_journal_ppat_1012650
crossref_primary_10_1016_j_bbagen_2022_130288
crossref_primary_10_1016_j_isci_2022_105649
crossref_primary_10_3389_fcimb_2024_1406091
crossref_primary_10_1016_j_cell_2023_04_034
crossref_primary_10_1038_s41423_023_01116_8
crossref_primary_10_1038_s41541_024_00982_1
crossref_primary_10_1016_j_celrep_2023_112391
crossref_primary_10_1002_jmv_28172
crossref_primary_10_3390_v15030596
crossref_primary_10_1016_j_celrep_2024_114235
Cites_doi 10.1016/S2213-2600(21)00559-2
10.3390/v14010113
10.1038/s41591-021-01318-5
10.1016/j.celrep.2021.109760
10.1128/JVI.00964-21
10.1016/j.ijid.2021.11.009
10.1016/j.immuni.2020.11.015
10.1101/2021.12.05.471310
10.1073/pnas.1115485109
10.1038/s41590-018-0305-x
10.1038/s41586-020-2349-y
10.1038/s41467-021-26809-4
10.1126/science.abd0826
10.1016/j.cell.2020.09.037
10.1038/s41586-021-03594-0
10.1371/journal.pone.0247963
10.1016/j.cell.2021.09.015
10.1126/science.abc5902
10.1016/j.cell.2020.10.052
10.1038/s41586-020-2571-7
10.1021/acsnano.8b02805
10.1016/j.celrep.2022.110812
10.1128/JVI.02370-20
10.1038/s41467-021-21240-1
10.1038/s41586-020-2456-9
10.1016/j.cell.2020.10.043
10.1016/j.cell.2020.08.012
10.1038/s41586-022-04464-z
10.1038/s41590-020-0778-2
10.1016/j.chom.2021.02.003
10.1016/j.cell.2020.05.025
10.1126/science.abm3425
10.1056/NEJMoa2107659
10.1093/sysbio/syq010
10.3390/v13010132
10.1038/s41586-021-03324-6
10.1021/acsnano.0c08379
10.1146/annurev-micro-020518-115759
10.1016/j.chom.2020.11.007
10.21105/joss.02353
10.1038/s41423-021-00643-6
10.1126/science.abc7520
10.1016/j.celrep.2022.110515
10.1371/journal.ppat.1009897
10.1038/s41586-021-04388-0
10.1038/s41573-021-00163-y
10.1126/science.abf9302
10.1093/oxfordjournals.aje.a118408
10.1016/j.immuni.2021.10.019
10.1073/pnas.1909653116
10.3390/v12050513
10.1016/j.immuni.2020.10.023
10.1101/2022.06.28.497989
10.1088/1478-3975/4/3/004
10.21203/rs.3.rs-995273/v1
10.1038/s41591-020-0998-x
10.1084/jem.20211003
10.1016/j.immuni.2020.06.001
10.1161/HYPERTENSIONAHA.120.15256
10.1038/msb.2011.75
10.1016/j.cell.2021.06.008
10.1016/j.celrep.2021.110143
10.1038/srep19234
10.1038/s41586-021-03807-6
10.1016/j.cell.2021.02.032
10.1038/s41541-021-00393-6
10.1371/journal.ppat.1009195
10.1093/nar/gki370
10.1038/s41467-021-24435-8
10.1038/s41586-021-04386-2
10.1016/j.cell.2020.06.025
10.1101/2022.01.03.474825
10.1016/j.cell.2020.06.044
10.1016/j.cell.2021.03.052
10.1016/j.celrep.2022.111299
10.1038/s41586-020-2381-y
10.1038/s41467-020-20654-7
10.1038/s41564-021-00932-w
10.1021/acscentsci.0c01405
10.1038/s41586-020-2852-1
10.3389/fimmu.2020.02057
10.1126/science.abc6284
10.1038/s41564-020-0688-y
10.1073/pnas.1309215110
10.1038/s41586-020-2548-6
10.1126/science.abf6840
10.1126/scitranslmed.abh0755
10.1371/journal.ppat.1010248
ContentType Journal Article
Copyright Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors
Copyright_xml – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).
– notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.abq0839
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
Public Health
EISSN 1095-9203
ExternalDocumentID PMC9273039
35857620
10_1126_science_abq0839
Genre Journal Article
GrantInformation_xml – fundername: Wellcome Trust
– fundername: Howard Hughes Medical Institute
– fundername: NIH HHS
  grantid: U42 OD021458
– fundername: NIAID NIH HHS
  grantid: HHSN272201400006C
– fundername: Intramural NIH HHS
  grantid: ZIA AI001179
– fundername: NIH HHS
  grantid: S10 OD028685
– fundername: NIH HHS
  grantid: P40 OD012217
– fundername: NIAID NIH HHS
  grantid: R01 AI141707
– fundername: NIAID NIH HHS
  grantid: 75N93021C00015
– fundername: ;
– fundername: ;
  grantid: 1011770
– fundername: ;
  grantid: R01AI141707
– fundername: ;
  grantid: S10OD028685
– fundername: ;
  grantid: HHSN272201400006C
– fundername: ;
  grantid: INV-016575
– fundername: ;
  grantid: 1ZIAAI001179-01
– fundername: ;
  grantid: INV-004949
– fundername: ;
  grantid: 75N93021C00015
– fundername: ;
  grantid: INV-034638
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
08G
0R~
0WA
123
18M
2FS
2KS
2WC
2XV
34G
36B
39C
3R3
53G
5RE
66.
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAMNW
AANCE
AAWTO
AAYXX
ABCQX
ABDBF
ABDEX
ABDQB
ABEFU
ABIVO
ABJNI
ABOCM
ABPLY
ABPPZ
ABQIJ
ABTLG
ABWJO
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ACUHS
ADDRP
ADUKH
ADXHL
AEGBM
AENEX
AETEA
AFBNE
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ASPBG
AVWKF
BKF
BLC
C45
CITATION
CS3
DB2
DU5
EBS
EMOBN
F5P
FA8
FEDTE
HZ~
I.T
IAO
IEA
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPY
ISE
JCF
JLS
JSG
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OMK
OVD
P-O
P2P
PQQKQ
PZZ
RHI
RXW
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UKR
UMD
UNMZH
UQL
USG
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YK4
YKV
YNT
YOJ
YR2
YR5
YRY
YSQ
YV5
YWH
YYP
YZZ
ZCA
ZE2
~02
~G0
~KM
~ZZ
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c421t-5c415b302ef719d1d2ba2a32d8dfe1c619d1671d69f8bf06e400442717b77e073
ISSN 0036-8075
1095-9203
IngestDate Thu Aug 21 18:06:28 EDT 2025
Sat Sep 27 21:48:16 EDT 2025
Fri Jul 25 19:11:09 EDT 2025
Mon Jul 21 06:03:52 EDT 2025
Tue Jul 01 02:24:12 EDT 2025
Thu Apr 24 22:53:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6606
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c421t-5c415b302ef719d1d2ba2a32d8dfe1c619d1671d69f8bf06e400442717b77e073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA.
ORCID 0000-0001-6713-6904
0000-0003-4213-5758
0000-0002-0803-6177
0000-0001-8746-8308
0000-0001-5989-326X
0000-0003-4213-5184
0000-0002-5085-8027
0000-0001-7852-0135
0000-0002-2288-3196
0000-0002-2818-656X
0000-0002-2277-3990
0000-0002-5317-6398
0000-0003-1267-3408
0000-0001-7202-3349
0000-0003-1103-9608
0000-0003-3822-7449
0000-0001-5462-5952
0000-0003-4368-6359
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9273039
PMID 35857620
PQID 2698732119
PQPubID 1256
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9273039
proquest_miscellaneous_2692072890
proquest_journals_2698732119
pubmed_primary_35857620
crossref_primary_10_1126_science_abq0839
crossref_citationtrail_10_1126_science_abq0839
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-05
PublicationDateYYYYMMDD 2022-08-05
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2022
Publisher The American Association for the Advancement of Science
American Association for the Advancement of Science
Publisher_xml – name: The American Association for the Advancement of Science
– name: American Association for the Advancement of Science
References e_1_3_3_50_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_77_2
e_1_3_3_79_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_58_2
e_1_3_3_90_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_56_2
e_1_3_3_92_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_73_2
e_1_3_3_40_2
e_1_3_3_61_2
e_1_3_3_86_2
e_1_3_3_88_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_69_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_67_2
e_1_3_3_80_2
e_1_3_3_44_2
e_1_3_3_65_2
e_1_3_3_82_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_63_2
e_1_3_3_84_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_76_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
35378752 - bioRxiv. 2022 Mar 28:2022.03.25.485875. doi: 10.1101/2022.03.25.485875.
References_xml – ident: e_1_3_3_5_2
  doi: 10.1016/S2213-2600(21)00559-2
– ident: e_1_3_3_9_2
  doi: 10.3390/v14010113
– ident: e_1_3_3_3_2
  doi: 10.1038/s41591-021-01318-5
– ident: e_1_3_3_33_2
  doi: 10.1016/j.celrep.2021.109760
– ident: e_1_3_3_42_2
  doi: 10.1128/JVI.00964-21
– ident: e_1_3_3_2_2
  doi: 10.1016/j.ijid.2021.11.009
– ident: e_1_3_3_72_2
  doi: 10.1016/j.immuni.2020.11.015
– ident: e_1_3_3_86_2
  doi: 10.1101/2021.12.05.471310
– ident: e_1_3_3_39_2
  doi: 10.1073/pnas.1115485109
– ident: e_1_3_3_78_2
  doi: 10.1038/s41590-018-0305-x
– ident: e_1_3_3_76_2
– ident: e_1_3_3_28_2
  doi: 10.1038/s41586-020-2349-y
– ident: e_1_3_3_10_2
  doi: 10.1038/s41467-021-26809-4
– ident: e_1_3_3_45_2
  doi: 10.1126/science.abd0826
– ident: e_1_3_3_7_2
– ident: e_1_3_3_29_2
  doi: 10.1016/j.cell.2020.09.037
– ident: e_1_3_3_68_2
  doi: 10.1038/s41586-021-03594-0
– ident: e_1_3_3_83_2
  doi: 10.1371/journal.pone.0247963
– ident: e_1_3_3_79_2
  doi: 10.1016/j.cell.2021.09.015
– ident: e_1_3_3_17_2
  doi: 10.1126/science.abc5902
– ident: e_1_3_3_47_2
  doi: 10.1016/j.cell.2020.10.052
– ident: e_1_3_3_20_2
  doi: 10.1038/s41586-020-2571-7
– ident: e_1_3_3_81_2
  doi: 10.1021/acsnano.8b02805
– ident: e_1_3_3_66_2
  doi: 10.1016/j.celrep.2022.110812
– ident: e_1_3_3_50_2
  doi: 10.1128/JVI.02370-20
– ident: e_1_3_3_12_2
  doi: 10.1038/s41467-021-21240-1
– ident: e_1_3_3_21_2
  doi: 10.1038/s41586-020-2456-9
– ident: e_1_3_3_75_2
  doi: 10.1016/j.cell.2020.10.043
– ident: e_1_3_3_88_2
  doi: 10.1016/j.cell.2020.08.012
– ident: e_1_3_3_14_2
  doi: 10.1038/s41586-022-04464-z
– ident: e_1_3_3_44_2
  doi: 10.1038/s41590-020-0778-2
– ident: e_1_3_3_46_2
  doi: 10.1016/j.chom.2021.02.003
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2020.05.025
– ident: e_1_3_3_53_2
  doi: 10.1126/science.abm3425
– ident: e_1_3_3_70_2
  doi: 10.1056/NEJMoa2107659
– ident: e_1_3_3_91_2
  doi: 10.1093/sysbio/syq010
– ident: e_1_3_3_51_2
  doi: 10.3390/v13010132
– ident: e_1_3_3_13_2
– ident: e_1_3_3_30_2
  doi: 10.1038/s41586-021-03324-6
– ident: e_1_3_3_74_2
  doi: 10.1021/acsnano.0c08379
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev-micro-020518-115759
– ident: e_1_3_3_55_2
  doi: 10.1016/j.chom.2020.11.007
– ident: e_1_3_3_89_2
  doi: 10.21105/joss.02353
– ident: e_1_3_3_71_2
  doi: 10.1038/s41423-021-00643-6
– ident: e_1_3_3_24_2
  doi: 10.1126/science.abc7520
– ident: e_1_3_3_54_2
  doi: 10.1016/j.celrep.2022.110515
– ident: e_1_3_3_73_2
  doi: 10.1371/journal.ppat.1009897
– ident: e_1_3_3_6_2
  doi: 10.1038/s41586-021-04388-0
– ident: e_1_3_3_52_2
  doi: 10.1038/s41573-021-00163-y
– ident: e_1_3_3_63_2
  doi: 10.1126/science.abf9302
– ident: e_1_3_3_84_2
  doi: 10.1093/oxfordjournals.aje.a118408
– ident: e_1_3_3_34_2
  doi: 10.1016/j.immuni.2021.10.019
– ident: e_1_3_3_40_2
  doi: 10.1073/pnas.1909653116
– ident: e_1_3_3_85_2
  doi: 10.3390/v12050513
– ident: e_1_3_3_32_2
  doi: 10.1016/j.immuni.2020.10.023
– ident: e_1_3_3_80_2
  doi: 10.1101/2022.06.28.497989
– ident: e_1_3_3_36_2
  doi: 10.1088/1478-3975/4/3/004
– ident: e_1_3_3_59_2
  doi: 10.21203/rs.3.rs-995273/v1
– ident: e_1_3_3_23_2
  doi: 10.1038/s41591-020-0998-x
– ident: e_1_3_3_58_2
  doi: 10.1084/jem.20211003
– ident: e_1_3_3_25_2
  doi: 10.1016/j.immuni.2020.06.001
– ident: e_1_3_3_41_2
  doi: 10.1161/HYPERTENSIONAHA.120.15256
– ident: e_1_3_3_92_2
  doi: 10.1038/msb.2011.75
– ident: e_1_3_3_11_2
  doi: 10.1016/j.cell.2021.06.008
– ident: e_1_3_3_67_2
  doi: 10.1016/j.celrep.2021.110143
– ident: e_1_3_3_38_2
  doi: 10.1038/srep19234
– ident: e_1_3_3_62_2
  doi: 10.1038/s41586-021-03807-6
– ident: e_1_3_3_60_2
  doi: 10.1016/j.cell.2021.02.032
– ident: e_1_3_3_31_2
  doi: 10.1038/s41541-021-00393-6
– ident: e_1_3_3_43_2
  doi: 10.1371/journal.ppat.1009195
– ident: e_1_3_3_90_2
  doi: 10.1093/nar/gki370
– ident: e_1_3_3_61_2
  doi: 10.1038/s41467-021-24435-8
– ident: e_1_3_3_64_2
  doi: 10.1038/s41586-021-04386-2
– ident: e_1_3_3_82_2
  doi: 10.1016/j.cell.2020.06.025
– ident: e_1_3_3_65_2
  doi: 10.1101/2022.01.03.474825
– ident: e_1_3_3_19_2
  doi: 10.1016/j.cell.2020.06.044
– ident: e_1_3_3_4_2
  doi: 10.1016/j.cell.2021.03.052
– ident: e_1_3_3_57_2
  doi: 10.1016/j.celrep.2022.111299
– ident: e_1_3_3_22_2
  doi: 10.1038/s41586-020-2381-y
– ident: e_1_3_3_37_2
  doi: 10.1038/s41467-020-20654-7
– ident: e_1_3_3_8_2
  doi: 10.1038/s41564-021-00932-w
– ident: e_1_3_3_69_2
  doi: 10.1021/acscentsci.0c01405
– ident: e_1_3_3_27_2
  doi: 10.1038/s41586-020-2852-1
– ident: e_1_3_3_77_2
  doi: 10.3389/fimmu.2020.02057
– ident: e_1_3_3_48_2
  doi: 10.1126/science.abc6284
– ident: e_1_3_3_15_2
  doi: 10.1038/s41564-020-0688-y
– ident: e_1_3_3_87_2
  doi: 10.1073/pnas.1309215110
– ident: e_1_3_3_26_2
  doi: 10.1038/s41586-020-2548-6
– ident: e_1_3_3_35_2
  doi: 10.1126/science.abf6840
– ident: e_1_3_3_49_2
  doi: 10.1126/scitranslmed.abh0755
– ident: e_1_3_3_56_2
  doi: 10.1371/journal.ppat.1010248
– reference: 35378752 - bioRxiv. 2022 Mar 28:2022.03.25.485875. doi: 10.1101/2022.03.25.485875.
SSID ssj0009593
Score 2.6836605
Snippet To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses)...
A mosaic approach to protectionThe COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the...
To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage eabq0839
SubjectTerms Animal models
Animals
Antibodies
Antibodies, Neutralizing - immunology
Antibodies, Viral - immunology
Antisera
Avidity
Betacoronavirus - immunology
Binding
Coronavirus Infections - prevention & control
Coronaviruses
COVID-19
COVID-19 vaccines
Disease Models, Animal
Domains
Epitope mapping
Epitopes - chemistry
Epitopes - immunology
Epitopes - therapeutic use
Global health
Immunization
Immunodominance
Immunology
Lymphocytes B
Macaca
Mice
Microbio
Monoclonal antibodies
Mosaics
Nanoparticles
Nanoparticles - therapeutic use
Neutralization
Pandemics
Protein Domains - immunology
Public health
Receptors
Respiratory diseases
Sarbecovirus
SARS-CoV-2 - immunology
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus - immunology
Trimers
Vaccines
Viral diseases
Zoonoses - prevention & control
Zoonoses - virology
Title Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models
URI https://www.ncbi.nlm.nih.gov/pubmed/35857620
https://www.proquest.com/docview/2698732119
https://www.proquest.com/docview/2692072890
https://pubmed.ncbi.nlm.nih.gov/PMC9273039
Volume 377
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtfhYGMxMNQlCpxGjt5TClTNWl72qS9oMhOHOhUEmhSpPFX8Sdyjh0vGas0eIkqf6Rp7lffnf27O4Tes4jSiEee62eB2q0qYld4mXApldAqpcdztaF_ekaXF7OTy_ByNPrdYy1tGzHNft0ZV_I_UoU2kKuKkv0HydqbQgN8BvnCFSQM13vJ-LSquSLCzxdOyUtwfw3LzTHZFxz-BRz_ulHhvbpkirI285aKIZ2ab-DVVj9Xm23d0rIcXq6-qWgSVR2n7put3QoA5qg94ukJ1nIVE80o6AgGZlpvt8FGg9jAGieZdp0qlGpRbSQ8gx50JuW6ubLQU9sZhpyWrNdt7cQTOzlpo3T0vCUvDVvA7GeAK6z4F2F_jTYpkrWG0suypypKEi_or9uBqf-iAUppm7ngDpXQK2Ipp1z8AKMzvtF-3Yn_LaVoqYqtk0Roam6Qmhs8QHuEgbU2RnvJfDE_3pno2aST6gVqdc8wtIT-cm9us3R7Zs_5E_TY-Cs40cjaRyNZHqCHuoLp9QHaNyKu8ZFJYP7hKfqscYkBl3iAS2xwiQ0uscUlFtfY4BIPcYlXJda4xBqXz9DF8afzj0vXlPFwsxnxGzfMwEgUgUdkwfw493MiOOEByaO8kH5GVRtlfk7jIhKFR6VSKzPCfCYYk6CCnqNxWZXyJcIMtI0swGgNhTcreCxiX0QFByXJJQ9ZMEHT7pWmmclxr0qtrNMdYpygIzvhu07vsnvoYSej1KwBdUpoHLFAZUmcoHe2G1ZodewGf4lq244hHlMH-hP0QovUflcA3jqYI9DDBsK2A1T292FPufraZoGPwfHwgvjV_X_Ba_To5g93iMbNZivfgEndiLcGxX8AXyPVdw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+RBD+nanoparticles+protect+against+challenge+by+diverse+sarbecoviruses+in+animal+models&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cohen%2C+Alexander+A.&rft.au=van+Doremalen%2C+Neeltje&rft.au=Greaney%2C+Allison+J.&rft.au=Andersen%2C+Hanne&rft.date=2022-08-05&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6606&rft_id=info:doi/10.1126%2Fscience.abq0839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abq0839
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon