Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models
To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elici...
Saved in:
Published in | Science (American Association for the Advancement of Science) Vol. 377; no. 6606; p. eabq0839 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
The American Association for the Advancement of Science
05.08.2022
American Association for the Advancement of Science |
Subjects | |
Online Access | Get full text |
ISSN | 0036-8075 1095-9203 1095-9203 |
DOI | 10.1126/science.abq0839 |
Cover
Abstract | To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
The COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen
et al
. developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VV
A mosaic sarbecovirus nanoparticle protects against SARS-2 and SARS-1, whereas a SARS-2 nanoparticle only protects against SARS-2. |
---|---|
AbstractList | To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.
The COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen
et al
. developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VV
A mosaic sarbecovirus nanoparticle protects against SARS-2 and SARS-1, whereas a SARS-2 nanoparticle only protects against SARS-2. To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers.To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles that present randomly arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants, including Omicrons, and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles presenting randomly-arranged sarbecovirus spike receptor-binding domains (RBDs) to elicit antibodies against epitopes that are conserved and relatively occluded, rather than variable, immunodominant, and exposed. We compared immune responses elicited by mosaic-8 (SARS-CoV-2 and seven animal sarbecoviruses) and homotypic (only SARS-CoV-2) RBD-nanoparticles in mice and macaques, observing stronger responses elicited by mosaic-8 to mismatched (not on nanoparticles) strains including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization showed equivalent neutralization of SARS-CoV-2 variants including Omicrons and protected from SARS-CoV-2 and SARS-CoV challenges, whereas homotypic SARS-CoV-2 immunization protected only from SARS-CoV-2 challenge. Epitope mapping demonstrated increased targeting of conserved epitopes after mosaic-8 immunization. Together, these results suggest mosaic-8 RBD-nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers. A mosaic approach to protectionThe COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the vaccines developed against earlier lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, there is continued risk of spillovers of other animal sarbecoviruses into humans. There is thus a need for vaccines that will give broader protection. Cohen et al. developed mosaic nanoparticles that display the receptor-binding domains (RBDs) from SARS-CoV-2 and seven other animal sarbecoviruses. Mosaic nanoparticles protected against both SARS-CoV-2 and SARS-CoV challenges in animal models even though the SARS-CoV RBD was not present on the mosaic-8 RBD nanoparticles. By contrast, a homotypic SARS-CoV-2 RBD nanoparticle (presenting only SARS-CoV-2 RBDs) only protected against a SARS-CoV-2 challenge. —VVINTRODUCTIONTwo animal coronaviruses from the severe acute respiratory syndrome (SARS)–like betacoronavirus (sarbecovirus) lineage, SARS coronavirus (SARS-CoV) and SARS-CoV-2, have caused epidemics or pandemics in humans in the past 20 years. SARS-CoV-2 triggered the COVID-19 pandemic that has been ongoing for more than 2 years despite rapid development of effective vaccines. Unfortunately, new SARS-CoV-2 variants, including multiple heavily mutated Omicron variants, have prolonged the COVID-19 pandemic. In addition, the discovery of diverse sarbecoviruses in bats raises the possibility of another coronavirus pandemic. Hence, there is an urgent need to develop vaccines and therapeutics to protect against both SARS-CoV-2 variants and zoonotic sarbecoviruses with the potential to infect humans.RATIONALETo combat future SARS-CoV-2 variants and spillovers of sarbecoviruses threatening global health, we designed nanoparticles that present 60 randomly arranged spike receptor-binding domains (RBDs) derived from the spike trimers of eight different sarbecoviruses (mosaic-8 RBD nanoparticles) to elicit antibodies against conserved and relatively occluded—rather than variable, immunodominant, and exposed—epitopes. The probability of two adjacent RBDs being the same is low for mosaic-8 RBD nanoparticles, a feature chosen to favor interactions with B cells whose bivalent receptors can cross-link between adjacent RBDs to use avidity effects to favor recognition of conserved, but sterically occluded, RBD epitopes. By contrast, nanoparticles that present 60 copies of SARS-CoV-2 RBDs (homotypic RBD nanoparticles) are theoretically more likely to engage B cells with receptors that recognize immunodominant and sterically accessible, but less conserved, RBD epitopes.RESULTSWe compared immune responses elicited by mosaic-8 (SARS-CoV-2 RBD plus seven animal sarbecoviruses RBDs) and homotypic (only SARS-CoV-2 RBDs) nanoparticles in mice and macaques and observed stronger responses elicited by mosaic-8 to mismatched (not represented with an RBD on nanoparticles) strains, including SARS-CoV and animal sarbecoviruses. Mosaic-8 immunization produced antisera that showed equivalent neutralization of SARS-CoV-2 variants, including Omicron variants, and protected from both SARS-CoV-2 and SARS-CoV challenges in mice and nonhuman primates (NHPs), whereas homotypic SARS-CoV-2 immunization protected from SARS-CoV-2 challenge but not from SARS-CoV challenge in mice. Epitope mapping of polyclonal antisera by using deep mutational scanning of RBDs demonstrated targeting of conserved epitopes after immunization with mosaic-8 RBD nanoparticles, in contrast with targeting of variable epitopes after homotypic SARS-CoV-2 RBD nanoparticle immunization, which supports the hypothesized mechanism by which mosaic RBD nanoparticle immunization can overcome immunodominance effects to direct production of antibodies against conserved RBD epitopes. Given the recent plethora of SARS-CoV-2 variants that may be arising at least in part because of antibody pressure, a relevant concern is whether more conserved RBD epitopes might be subject to substitutions that would render vaccines and/or monoclonal antibodies targeting these regions ineffective. This scenario seems unlikely because RBD regions conserved between sarbecoviruses and SARS-CoV-2 variants are generally involved in contacts with other regions of spike trimer and therefore less likely to tolerate selection-induced substitutions.CONCLUSIONTogether, these results suggest that mosaic-8 RBD nanoparticles could protect against SARS-CoV-2 variants and future sarbecovirus spillovers—in particular, highlighting the potential for a mosaic nanoparticle approach to elicit more broadly protective antibody responses than those with homotypic nanoparticle approaches. |
Author | Lee, Yu E. Sharma, Ankur van Doremalen, Neeltje Schulz, Jonathan E. Fan, Chengcheng Gnanapragasam, Priyanthi N. P. Bloom, Jesse D. West, Anthony P. Keeffe, Jennifer R. Starr, Tyler N. Andersen, Hanne Lewis, Mark G. Jette, Claudia A. Munster, Vincent J. Kakutani, Leesa M. Bjorkman, Pamela J. Gao, Han Cohen, Alexander A. Saturday, Greg Townsend, Alain R. Greaney, Allison J. Tan, Tiong K. |
Author_xml | – sequence: 1 givenname: Alexander A. orcidid: 0000-0002-2818-656X surname: Cohen fullname: Cohen, Alexander A. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 2 givenname: Neeltje orcidid: 0000-0003-4368-6359 surname: van Doremalen fullname: van Doremalen, Neeltje organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA – sequence: 3 givenname: Allison J. orcidid: 0000-0001-7202-3349 surname: Greaney fullname: Greaney, Allison J. organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA – sequence: 4 givenname: Hanne orcidid: 0000-0003-1103-9608 surname: Andersen fullname: Andersen, Hanne organization: BIOQUAL, Rockville, MD, USA – sequence: 5 givenname: Ankur surname: Sharma fullname: Sharma, Ankur organization: BIOQUAL, Rockville, MD, USA – sequence: 6 givenname: Tyler N. orcidid: 0000-0001-6713-6904 surname: Starr fullname: Starr, Tyler N. organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Department of Genome Sciences and Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA – sequence: 7 givenname: Jennifer R. orcidid: 0000-0002-5317-6398 surname: Keeffe fullname: Keeffe, Jennifer R. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 8 givenname: Chengcheng orcidid: 0000-0003-4213-5758 surname: Fan fullname: Fan, Chengcheng organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 9 givenname: Jonathan E. orcidid: 0000-0001-5462-5952 surname: Schulz fullname: Schulz, Jonathan E. organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA – sequence: 10 givenname: Priyanthi N. P. surname: Gnanapragasam fullname: Gnanapragasam, Priyanthi N. P. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 11 givenname: Leesa M. orcidid: 0000-0003-3822-7449 surname: Kakutani fullname: Kakutani, Leesa M. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 12 givenname: Anthony P. orcidid: 0000-0003-4213-5184 surname: West fullname: West, Anthony P. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 13 givenname: Greg orcidid: 0000-0002-0803-6177 surname: Saturday fullname: Saturday, Greg organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA – sequence: 14 givenname: Yu E. orcidid: 0000-0001-5989-326X surname: Lee fullname: Lee, Yu E. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 15 givenname: Han surname: Gao fullname: Gao, Han organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 16 givenname: Claudia A. orcidid: 0000-0002-5085-8027 surname: Jette fullname: Jette, Claudia A. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA – sequence: 17 givenname: Mark G. orcidid: 0000-0001-7852-0135 surname: Lewis fullname: Lewis, Mark G. organization: BIOQUAL, Rockville, MD, USA – sequence: 18 givenname: Tiong K. orcidid: 0000-0001-8746-8308 surname: Tan fullname: Tan, Tiong K. organization: MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK – sequence: 19 givenname: Alain R. surname: Townsend fullname: Townsend, Alain R. organization: MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK., Chinese Academy of Medical Sciences, Oxford Institute, University of Oxford, Oxford OX3 9DS, UK – sequence: 20 givenname: Jesse D. orcidid: 0000-0003-1267-3408 surname: Bloom fullname: Bloom, Jesse D. organization: Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA., Howard Hughes Medical Institute, Seattle, WA 98109, USA – sequence: 21 givenname: Vincent J. orcidid: 0000-0002-2288-3196 surname: Munster fullname: Munster, Vincent J. organization: Laboratory of Virology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA – sequence: 22 givenname: Pamela J. orcidid: 0000-0002-2277-3990 surname: Bjorkman fullname: Bjorkman, Pamela J. organization: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35857620$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1r3DAQxUVJaTZpz70VQS-9OBlJtmVdCk36FUgIlPZYhCyPNwpaaSPZC_nvK5NtaAI9CTS_93gz74gchBiQkLcMThjj7Wm2DoPFE9PfQSfUC7JioJpKcRAHZAUg2qoD2RySo5xvAcpMiVfkUDRdI1sOK_L7KmbjLP1x9pkGE-LWpMlZj5luU5zQTtSsjQt5ovbGeI9hjbS_p4PbYcpIs0k92rhzac5F4wI1wW2Mp5s4oM-vycvR-Ixv9u8x-fX1y8_z79Xl9beL80-Xla05m6rG1qzpBXAcJVMDG3hvuBF86IYRmW2Xv1ayoVVj14_QYg1Q11wy2UuJIMUx-fjgu537DQ4Ww5SM19tUsqR7HY3TTyfB3eh13GnFpQChisGHvUGKdzPmSW9ctui9CRjnrHlbTip5p6Cg75-ht3FOoay3UJ0UnLHF8N2_iR6j_L18AU4fAJtizgnHR4SBXrrV-271vtuiaJ4prJvM5OKykvP_1f0BnrmtIA |
CitedBy_id | crossref_primary_10_1002_ange_202412294 crossref_primary_10_1007_s00284_024_03803_9 crossref_primary_10_3389_fimmu_2023_1123158 crossref_primary_10_4049_jimmunol_2300315 crossref_primary_10_1038_s41467_023_35949_8 crossref_primary_10_1016_j_antiviral_2024_105917 crossref_primary_10_1126_sciadv_adg0330 crossref_primary_10_1111_nyas_14960 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1002_bip_23563 crossref_primary_10_1039_D3CB00164D crossref_primary_10_3390_ijms26052056 crossref_primary_10_1039_D3TB01659E crossref_primary_10_1016_j_matt_2025_102006 crossref_primary_10_1016_j_cell_2024_07_052 crossref_primary_10_1016_j_celrep_2023_112266 crossref_primary_10_1016_j_ebiom_2023_104574 crossref_primary_10_3389_fimmu_2023_1135815 crossref_primary_10_3389_fpubh_2023_1229045 crossref_primary_10_1080_21645515_2023_2264594 crossref_primary_10_1038_s44298_024_00043_3 crossref_primary_10_3389_fimmu_2023_1130539 crossref_primary_10_3389_fimmu_2024_1392898 crossref_primary_10_3390_vaccines10091447 crossref_primary_10_1016_j_copbio_2022_102821 crossref_primary_10_1080_14760584_2024_2337051 crossref_primary_10_3389_fimmu_2023_1086035 crossref_primary_10_3390_vaccines12060588 crossref_primary_10_1172_JCI165034 crossref_primary_10_1016_j_ijbiomac_2024_134012 crossref_primary_10_1021_acsnano_2c08840 crossref_primary_10_3390_vaccines11030682 crossref_primary_10_1128_jvi_00376_24 crossref_primary_10_1146_annurev_chembioeng_101121_084508 crossref_primary_10_1038_s41467_024_45404_x crossref_primary_10_1038_s41392_023_01724_w crossref_primary_10_1038_s41467_023_44265_0 crossref_primary_10_1016_j_ebiom_2022_104341 crossref_primary_10_1016_j_xcrm_2023_101088 crossref_primary_10_1021_acsnano_4c07061 crossref_primary_10_1038_s41541_024_00924_x crossref_primary_10_1002_jmv_28516 crossref_primary_10_1016_j_cell_2024_12_015 crossref_primary_10_1098_rsif_2023_0247 crossref_primary_10_3390_vaccines11111655 crossref_primary_10_3390_v16050803 crossref_primary_10_1128_mbio_03036_23 crossref_primary_10_1038_s41541_023_00792_x crossref_primary_10_3390_v15091901 crossref_primary_10_1126_sciimmunol_ade0958 crossref_primary_10_7554_eLife_95708_3 crossref_primary_10_3389_fpls_2023_1275228 crossref_primary_10_1016_j_chom_2024_10_016 crossref_primary_10_2217_nnm_2023_0362 crossref_primary_10_1016_j_ymthe_2023_09_002 crossref_primary_10_1016_j_chom_2023_10_018 crossref_primary_10_1128_spectrum_04998_22 crossref_primary_10_1038_s41541_024_00954_5 crossref_primary_10_3389_fcimb_2024_1388222 crossref_primary_10_3390_vaccines10122035 crossref_primary_10_1016_j_ijbiomac_2022_12_006 crossref_primary_10_3390_vaccines10091545 crossref_primary_10_1038_s41541_022_00597_4 crossref_primary_10_1038_s41541_024_00806_2 crossref_primary_10_1016_j_banm_2024_10_007 crossref_primary_10_1093_abt_tbad024 crossref_primary_10_2217_nnm_2022_0316 crossref_primary_10_1097_COH_0000000000000821 crossref_primary_10_1016_j_xcrm_2024_101668 crossref_primary_10_1038_s41467_024_54916_5 crossref_primary_10_7554_eLife_95708 crossref_primary_10_1002_advs_202303366 crossref_primary_10_3390_vaccines12010037 crossref_primary_10_1073_pnas_2317367120 crossref_primary_10_1038_s41467_025_55824_y crossref_primary_10_1016_j_jbc_2024_108072 crossref_primary_10_1016_j_isci_2024_110174 crossref_primary_10_1039_D4BM00827H crossref_primary_10_1080_19420862_2022_2133666 crossref_primary_10_1038_s41467_024_44889_w crossref_primary_10_1038_s41422_022_00746_3 crossref_primary_10_1038_s41467_024_44869_0 crossref_primary_10_1038_s41565_024_01655_9 crossref_primary_10_1016_j_vaccine_2024_01_036 crossref_primary_10_1016_j_celrep_2023_113553 crossref_primary_10_1016_j_celrep_2023_113552 crossref_primary_10_1007_s00281_023_00996_2 crossref_primary_10_3390_vaccines12010030 crossref_primary_10_3390_bios14020108 crossref_primary_10_1126_scitranslmed_adg7404 crossref_primary_10_1016_j_ijid_2024_107173 crossref_primary_10_1186_s12929_022_00853_8 crossref_primary_10_1038_s41564_023_01505_9 crossref_primary_10_1016_j_it_2023_03_002 crossref_primary_10_1038_s41467_024_50133_2 crossref_primary_10_3390_vaccines10071135 crossref_primary_10_1016_j_immuni_2022_10_019 crossref_primary_10_3390_v16030484 crossref_primary_10_1016_j_ejmech_2023_116000 crossref_primary_10_3390_vaccines10101655 crossref_primary_10_1016_j_cell_2024_07_025 crossref_primary_10_3390_bioengineering10020148 crossref_primary_10_1002_wnan_1880 crossref_primary_10_1126_sciadv_abq4149 crossref_primary_10_1016_j_vaccine_2024_05_028 crossref_primary_10_1038_s41541_023_00755_2 crossref_primary_10_3390_vaccines12060676 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_3390_v14092061 crossref_primary_10_1038_s41467_023_41342_2 crossref_primary_10_1016_j_cell_2023_04_024 crossref_primary_10_1016_j_celrep_2024_115036 crossref_primary_10_1038_s41467_024_45495_6 crossref_primary_10_1080_14760584_2023_2211153 crossref_primary_10_1002_anie_202412294 crossref_primary_10_1002_advs_202301034 crossref_primary_10_1016_j_chom_2023_07_004 crossref_primary_10_1038_s41541_024_00891_3 crossref_primary_10_1007_s00103_025_04024_6 crossref_primary_10_1016_j_chom_2023_05_017 crossref_primary_10_1371_journal_ppat_1012650 crossref_primary_10_1016_j_bbagen_2022_130288 crossref_primary_10_1016_j_isci_2022_105649 crossref_primary_10_3389_fcimb_2024_1406091 crossref_primary_10_1016_j_cell_2023_04_034 crossref_primary_10_1038_s41423_023_01116_8 crossref_primary_10_1038_s41541_024_00982_1 crossref_primary_10_1016_j_celrep_2023_112391 crossref_primary_10_1002_jmv_28172 crossref_primary_10_3390_v15030596 crossref_primary_10_1016_j_celrep_2024_114235 |
Cites_doi | 10.1016/S2213-2600(21)00559-2 10.3390/v14010113 10.1038/s41591-021-01318-5 10.1016/j.celrep.2021.109760 10.1128/JVI.00964-21 10.1016/j.ijid.2021.11.009 10.1016/j.immuni.2020.11.015 10.1101/2021.12.05.471310 10.1073/pnas.1115485109 10.1038/s41590-018-0305-x 10.1038/s41586-020-2349-y 10.1038/s41467-021-26809-4 10.1126/science.abd0826 10.1016/j.cell.2020.09.037 10.1038/s41586-021-03594-0 10.1371/journal.pone.0247963 10.1016/j.cell.2021.09.015 10.1126/science.abc5902 10.1016/j.cell.2020.10.052 10.1038/s41586-020-2571-7 10.1021/acsnano.8b02805 10.1016/j.celrep.2022.110812 10.1128/JVI.02370-20 10.1038/s41467-021-21240-1 10.1038/s41586-020-2456-9 10.1016/j.cell.2020.10.043 10.1016/j.cell.2020.08.012 10.1038/s41586-022-04464-z 10.1038/s41590-020-0778-2 10.1016/j.chom.2021.02.003 10.1016/j.cell.2020.05.025 10.1126/science.abm3425 10.1056/NEJMoa2107659 10.1093/sysbio/syq010 10.3390/v13010132 10.1038/s41586-021-03324-6 10.1021/acsnano.0c08379 10.1146/annurev-micro-020518-115759 10.1016/j.chom.2020.11.007 10.21105/joss.02353 10.1038/s41423-021-00643-6 10.1126/science.abc7520 10.1016/j.celrep.2022.110515 10.1371/journal.ppat.1009897 10.1038/s41586-021-04388-0 10.1038/s41573-021-00163-y 10.1126/science.abf9302 10.1093/oxfordjournals.aje.a118408 10.1016/j.immuni.2021.10.019 10.1073/pnas.1909653116 10.3390/v12050513 10.1016/j.immuni.2020.10.023 10.1101/2022.06.28.497989 10.1088/1478-3975/4/3/004 10.21203/rs.3.rs-995273/v1 10.1038/s41591-020-0998-x 10.1084/jem.20211003 10.1016/j.immuni.2020.06.001 10.1161/HYPERTENSIONAHA.120.15256 10.1038/msb.2011.75 10.1016/j.cell.2021.06.008 10.1016/j.celrep.2021.110143 10.1038/srep19234 10.1038/s41586-021-03807-6 10.1016/j.cell.2021.02.032 10.1038/s41541-021-00393-6 10.1371/journal.ppat.1009195 10.1093/nar/gki370 10.1038/s41467-021-24435-8 10.1038/s41586-021-04386-2 10.1016/j.cell.2020.06.025 10.1101/2022.01.03.474825 10.1016/j.cell.2020.06.044 10.1016/j.cell.2021.03.052 10.1016/j.celrep.2022.111299 10.1038/s41586-020-2381-y 10.1038/s41467-020-20654-7 10.1038/s41564-021-00932-w 10.1021/acscentsci.0c01405 10.1038/s41586-020-2852-1 10.3389/fimmu.2020.02057 10.1126/science.abc6284 10.1038/s41564-020-0688-y 10.1073/pnas.1309215110 10.1038/s41586-020-2548-6 10.1126/science.abf6840 10.1126/scitranslmed.abh0755 10.1371/journal.ppat.1010248 |
ContentType | Journal Article |
Copyright | Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors |
Copyright_xml | – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). – notice: Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). 2022 The Authors |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.abq0839 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology Public Health |
EISSN | 1095-9203 |
ExternalDocumentID | PMC9273039 35857620 10_1126_science_abq0839 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust – fundername: Howard Hughes Medical Institute – fundername: NIH HHS grantid: U42 OD021458 – fundername: NIAID NIH HHS grantid: HHSN272201400006C – fundername: Intramural NIH HHS grantid: ZIA AI001179 – fundername: NIH HHS grantid: S10 OD028685 – fundername: NIH HHS grantid: P40 OD012217 – fundername: NIAID NIH HHS grantid: R01 AI141707 – fundername: NIAID NIH HHS grantid: 75N93021C00015 – fundername: ; – fundername: ; grantid: 1011770 – fundername: ; grantid: R01AI141707 – fundername: ; grantid: S10OD028685 – fundername: ; grantid: HHSN272201400006C – fundername: ; grantid: INV-016575 – fundername: ; grantid: 1ZIAAI001179-01 – fundername: ; grantid: INV-004949 – fundername: ; grantid: 75N93021C00015 – fundername: ; grantid: INV-034638 |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC 08G 0R~ 0WA 123 18M 2FS 2KS 2WC 2XV 34G 36B 39C 3R3 53G 5RE 66. 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAMNW AANCE AAWTO AAYXX ABCQX ABDBF ABDEX ABDQB ABEFU ABIVO ABJNI ABOCM ABPLY ABPPZ ABQIJ ABTLG ABWJO ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ACUHS ADDRP ADUKH ADXHL AEGBM AENEX AETEA AFBNE AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS ALSLI ASPBG AVWKF BKF BLC C45 CITATION CS3 DB2 DU5 EBS EMOBN F5P FA8 FEDTE HZ~ I.T IAO IEA IGS IH2 IHR INH INR IOF IOV IPO IPY ISE JCF JLS JSG JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OMK OVD P-O P2P PQQKQ PZZ RHI RXW SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UKR UMD UNMZH UQL USG VVN WH7 WI4 X7M XJF XZL Y6R YK4 YKV YNT YOJ YR2 YR5 YRY YSQ YV5 YWH YYP YZZ ZCA ZE2 ~02 ~G0 ~KM ~ZZ CGR CUY CVF ECM EIF NPM 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c421t-5c415b302ef719d1d2ba2a32d8dfe1c619d1671d69f8bf06e400442717b77e073 |
ISSN | 0036-8075 1095-9203 |
IngestDate | Thu Aug 21 18:06:28 EDT 2025 Sat Sep 27 21:48:16 EDT 2025 Fri Jul 25 19:11:09 EDT 2025 Mon Jul 21 06:03:52 EDT 2025 Tue Jul 01 02:24:12 EDT 2025 Thu Apr 24 22:53:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6606 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c421t-5c415b302ef719d1d2ba2a32d8dfe1c619d1671d69f8bf06e400442717b77e073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 These authors contributed equally to this work. Present address: Department of Biology, Stanford University, Stanford, CA 94305, USA. |
ORCID | 0000-0001-6713-6904 0000-0003-4213-5758 0000-0002-0803-6177 0000-0001-8746-8308 0000-0001-5989-326X 0000-0003-4213-5184 0000-0002-5085-8027 0000-0001-7852-0135 0000-0002-2288-3196 0000-0002-2818-656X 0000-0002-2277-3990 0000-0002-5317-6398 0000-0003-1267-3408 0000-0001-7202-3349 0000-0003-1103-9608 0000-0003-3822-7449 0000-0001-5462-5952 0000-0003-4368-6359 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9273039 |
PMID | 35857620 |
PQID | 2698732119 |
PQPubID | 1256 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9273039 proquest_miscellaneous_2692072890 proquest_journals_2698732119 pubmed_primary_35857620 crossref_primary_10_1126_science_abq0839 crossref_citationtrail_10_1126_science_abq0839 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-05 |
PublicationDateYYYYMMDD | 2022-08-05 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2022 |
Publisher | The American Association for the Advancement of Science American Association for the Advancement of Science |
Publisher_xml | – name: The American Association for the Advancement of Science – name: American Association for the Advancement of Science |
References | e_1_3_3_50_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_77_2 e_1_3_3_79_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_58_2 e_1_3_3_90_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_56_2 e_1_3_3_92_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_73_2 e_1_3_3_40_2 e_1_3_3_61_2 e_1_3_3_86_2 e_1_3_3_88_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_69_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_67_2 e_1_3_3_80_2 e_1_3_3_44_2 e_1_3_3_65_2 e_1_3_3_82_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_63_2 e_1_3_3_84_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_76_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 35378752 - bioRxiv. 2022 Mar 28:2022.03.25.485875. doi: 10.1101/2022.03.25.485875. |
References_xml | – ident: e_1_3_3_5_2 doi: 10.1016/S2213-2600(21)00559-2 – ident: e_1_3_3_9_2 doi: 10.3390/v14010113 – ident: e_1_3_3_3_2 doi: 10.1038/s41591-021-01318-5 – ident: e_1_3_3_33_2 doi: 10.1016/j.celrep.2021.109760 – ident: e_1_3_3_42_2 doi: 10.1128/JVI.00964-21 – ident: e_1_3_3_2_2 doi: 10.1016/j.ijid.2021.11.009 – ident: e_1_3_3_72_2 doi: 10.1016/j.immuni.2020.11.015 – ident: e_1_3_3_86_2 doi: 10.1101/2021.12.05.471310 – ident: e_1_3_3_39_2 doi: 10.1073/pnas.1115485109 – ident: e_1_3_3_78_2 doi: 10.1038/s41590-018-0305-x – ident: e_1_3_3_76_2 – ident: e_1_3_3_28_2 doi: 10.1038/s41586-020-2349-y – ident: e_1_3_3_10_2 doi: 10.1038/s41467-021-26809-4 – ident: e_1_3_3_45_2 doi: 10.1126/science.abd0826 – ident: e_1_3_3_7_2 – ident: e_1_3_3_29_2 doi: 10.1016/j.cell.2020.09.037 – ident: e_1_3_3_68_2 doi: 10.1038/s41586-021-03594-0 – ident: e_1_3_3_83_2 doi: 10.1371/journal.pone.0247963 – ident: e_1_3_3_79_2 doi: 10.1016/j.cell.2021.09.015 – ident: e_1_3_3_17_2 doi: 10.1126/science.abc5902 – ident: e_1_3_3_47_2 doi: 10.1016/j.cell.2020.10.052 – ident: e_1_3_3_20_2 doi: 10.1038/s41586-020-2571-7 – ident: e_1_3_3_81_2 doi: 10.1021/acsnano.8b02805 – ident: e_1_3_3_66_2 doi: 10.1016/j.celrep.2022.110812 – ident: e_1_3_3_50_2 doi: 10.1128/JVI.02370-20 – ident: e_1_3_3_12_2 doi: 10.1038/s41467-021-21240-1 – ident: e_1_3_3_21_2 doi: 10.1038/s41586-020-2456-9 – ident: e_1_3_3_75_2 doi: 10.1016/j.cell.2020.10.043 – ident: e_1_3_3_88_2 doi: 10.1016/j.cell.2020.08.012 – ident: e_1_3_3_14_2 doi: 10.1038/s41586-022-04464-z – ident: e_1_3_3_44_2 doi: 10.1038/s41590-020-0778-2 – ident: e_1_3_3_46_2 doi: 10.1016/j.chom.2021.02.003 – ident: e_1_3_3_18_2 doi: 10.1016/j.cell.2020.05.025 – ident: e_1_3_3_53_2 doi: 10.1126/science.abm3425 – ident: e_1_3_3_70_2 doi: 10.1056/NEJMoa2107659 – ident: e_1_3_3_91_2 doi: 10.1093/sysbio/syq010 – ident: e_1_3_3_51_2 doi: 10.3390/v13010132 – ident: e_1_3_3_13_2 – ident: e_1_3_3_30_2 doi: 10.1038/s41586-021-03324-6 – ident: e_1_3_3_74_2 doi: 10.1021/acsnano.0c08379 – ident: e_1_3_3_16_2 doi: 10.1146/annurev-micro-020518-115759 – ident: e_1_3_3_55_2 doi: 10.1016/j.chom.2020.11.007 – ident: e_1_3_3_89_2 doi: 10.21105/joss.02353 – ident: e_1_3_3_71_2 doi: 10.1038/s41423-021-00643-6 – ident: e_1_3_3_24_2 doi: 10.1126/science.abc7520 – ident: e_1_3_3_54_2 doi: 10.1016/j.celrep.2022.110515 – ident: e_1_3_3_73_2 doi: 10.1371/journal.ppat.1009897 – ident: e_1_3_3_6_2 doi: 10.1038/s41586-021-04388-0 – ident: e_1_3_3_52_2 doi: 10.1038/s41573-021-00163-y – ident: e_1_3_3_63_2 doi: 10.1126/science.abf9302 – ident: e_1_3_3_84_2 doi: 10.1093/oxfordjournals.aje.a118408 – ident: e_1_3_3_34_2 doi: 10.1016/j.immuni.2021.10.019 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.1909653116 – ident: e_1_3_3_85_2 doi: 10.3390/v12050513 – ident: e_1_3_3_32_2 doi: 10.1016/j.immuni.2020.10.023 – ident: e_1_3_3_80_2 doi: 10.1101/2022.06.28.497989 – ident: e_1_3_3_36_2 doi: 10.1088/1478-3975/4/3/004 – ident: e_1_3_3_59_2 doi: 10.21203/rs.3.rs-995273/v1 – ident: e_1_3_3_23_2 doi: 10.1038/s41591-020-0998-x – ident: e_1_3_3_58_2 doi: 10.1084/jem.20211003 – ident: e_1_3_3_25_2 doi: 10.1016/j.immuni.2020.06.001 – ident: e_1_3_3_41_2 doi: 10.1161/HYPERTENSIONAHA.120.15256 – ident: e_1_3_3_92_2 doi: 10.1038/msb.2011.75 – ident: e_1_3_3_11_2 doi: 10.1016/j.cell.2021.06.008 – ident: e_1_3_3_67_2 doi: 10.1016/j.celrep.2021.110143 – ident: e_1_3_3_38_2 doi: 10.1038/srep19234 – ident: e_1_3_3_62_2 doi: 10.1038/s41586-021-03807-6 – ident: e_1_3_3_60_2 doi: 10.1016/j.cell.2021.02.032 – ident: e_1_3_3_31_2 doi: 10.1038/s41541-021-00393-6 – ident: e_1_3_3_43_2 doi: 10.1371/journal.ppat.1009195 – ident: e_1_3_3_90_2 doi: 10.1093/nar/gki370 – ident: e_1_3_3_61_2 doi: 10.1038/s41467-021-24435-8 – ident: e_1_3_3_64_2 doi: 10.1038/s41586-021-04386-2 – ident: e_1_3_3_82_2 doi: 10.1016/j.cell.2020.06.025 – ident: e_1_3_3_65_2 doi: 10.1101/2022.01.03.474825 – ident: e_1_3_3_19_2 doi: 10.1016/j.cell.2020.06.044 – ident: e_1_3_3_4_2 doi: 10.1016/j.cell.2021.03.052 – ident: e_1_3_3_57_2 doi: 10.1016/j.celrep.2022.111299 – ident: e_1_3_3_22_2 doi: 10.1038/s41586-020-2381-y – ident: e_1_3_3_37_2 doi: 10.1038/s41467-020-20654-7 – ident: e_1_3_3_8_2 doi: 10.1038/s41564-021-00932-w – ident: e_1_3_3_69_2 doi: 10.1021/acscentsci.0c01405 – ident: e_1_3_3_27_2 doi: 10.1038/s41586-020-2852-1 – ident: e_1_3_3_77_2 doi: 10.3389/fimmu.2020.02057 – ident: e_1_3_3_48_2 doi: 10.1126/science.abc6284 – ident: e_1_3_3_15_2 doi: 10.1038/s41564-020-0688-y – ident: e_1_3_3_87_2 doi: 10.1073/pnas.1309215110 – ident: e_1_3_3_26_2 doi: 10.1038/s41586-020-2548-6 – ident: e_1_3_3_35_2 doi: 10.1126/science.abf6840 – ident: e_1_3_3_49_2 doi: 10.1126/scitranslmed.abh0755 – ident: e_1_3_3_56_2 doi: 10.1371/journal.ppat.1010248 – reference: 35378752 - bioRxiv. 2022 Mar 28:2022.03.25.485875. doi: 10.1101/2022.03.25.485875. |
SSID | ssj0009593 |
Score | 2.6836605 |
Snippet | To combat future severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses)... A mosaic approach to protectionThe COVID-19 pandemic has been ongoing for more than 2 years now, and new variants such as Omicron are less susceptible to the... To combat future SARS-CoV-2 variants and spillovers of SARS-like betacoronaviruses (sarbecoviruses) threatening global health, we designed mosaic nanoparticles... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | eabq0839 |
SubjectTerms | Animal models Animals Antibodies Antibodies, Neutralizing - immunology Antibodies, Viral - immunology Antisera Avidity Betacoronavirus - immunology Binding Coronavirus Infections - prevention & control Coronaviruses COVID-19 COVID-19 vaccines Disease Models, Animal Domains Epitope mapping Epitopes - chemistry Epitopes - immunology Epitopes - therapeutic use Global health Immunization Immunodominance Immunology Lymphocytes B Macaca Mice Microbio Monoclonal antibodies Mosaics Nanoparticles Nanoparticles - therapeutic use Neutralization Pandemics Protein Domains - immunology Public health Receptors Respiratory diseases Sarbecovirus SARS-CoV-2 - immunology Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus - immunology Trimers Vaccines Viral diseases Zoonoses - prevention & control Zoonoses - virology |
Title | Mosaic RBD nanoparticles protect against challenge by diverse sarbecoviruses in animal models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35857620 https://www.proquest.com/docview/2698732119 https://www.proquest.com/docview/2692072890 https://pubmed.ncbi.nlm.nih.gov/PMC9273039 |
Volume | 377 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKJyReEBtfhYGMxMNQlCpxGjt5TClTNWl72qS9oMhOHOhUEmhSpPFX8Sdyjh0vGas0eIkqf6Rp7lffnf27O4Tes4jSiEee62eB2q0qYld4mXApldAqpcdztaF_ekaXF7OTy_ByNPrdYy1tGzHNft0ZV_I_UoU2kKuKkv0HydqbQgN8BvnCFSQM13vJ-LSquSLCzxdOyUtwfw3LzTHZFxz-BRz_ulHhvbpkirI285aKIZ2ab-DVVj9Xm23d0rIcXq6-qWgSVR2n7put3QoA5qg94ukJ1nIVE80o6AgGZlpvt8FGg9jAGieZdp0qlGpRbSQ8gx50JuW6ubLQU9sZhpyWrNdt7cQTOzlpo3T0vCUvDVvA7GeAK6z4F2F_jTYpkrWG0suypypKEi_or9uBqf-iAUppm7ngDpXQK2Ipp1z8AKMzvtF-3Yn_LaVoqYqtk0Roam6Qmhs8QHuEgbU2RnvJfDE_3pno2aST6gVqdc8wtIT-cm9us3R7Zs_5E_TY-Cs40cjaRyNZHqCHuoLp9QHaNyKu8ZFJYP7hKfqscYkBl3iAS2xwiQ0uscUlFtfY4BIPcYlXJda4xBqXz9DF8afzj0vXlPFwsxnxGzfMwEgUgUdkwfw493MiOOEByaO8kH5GVRtlfk7jIhKFR6VSKzPCfCYYk6CCnqNxWZXyJcIMtI0swGgNhTcreCxiX0QFByXJJQ9ZMEHT7pWmmclxr0qtrNMdYpygIzvhu07vsnvoYSej1KwBdUpoHLFAZUmcoHe2G1ZodewGf4lq244hHlMH-hP0QovUflcA3jqYI9DDBsK2A1T292FPufraZoGPwfHwgvjV_X_Ba_To5g93iMbNZivfgEndiLcGxX8AXyPVdw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mosaic+RBD+nanoparticles+protect+against+challenge+by+diverse+sarbecoviruses+in+animal+models&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Cohen%2C+Alexander+A.&rft.au=van+Doremalen%2C+Neeltje&rft.au=Greaney%2C+Allison+J.&rft.au=Andersen%2C+Hanne&rft.date=2022-08-05&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=377&rft.issue=6606&rft_id=info:doi/10.1126%2Fscience.abq0839&rft.externalDBID=n%2Fa&rft.externalDocID=10_1126_science_abq0839 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |